California Environmental Protection Agency

Air Resources Board

Test Procedure for Determining Diurnal Emissions from Portable Fuel Containers Systems

TP-502

NOTE: This is a new Certification Procedure. For clarity the proposed text is shown in normal type. This document is written in a style to indicate changes from the existing provisions. All existing regulatory language is indicated by plain type. All additions to the regulatory language are indicated by underlined type. All deletions to the regulatory language are indicated by strikeout.

Adoption Date: July 26, 2006 Amended: December 9, 2016

TABLE OF CONTENTS

1.	APPLICABILITY	3
1.1.	Requirement to Comply with All Other Applicable Codes and Regulations	3
1.2.	Safety	4
2.	PRINCIPLE AND SUMMARY OF TEST PROCEDURE	4
3.	BIASES AND INTERFERENCES	4
4.	SENSITIVITY AND RANGE	5
5.	EQUIPMENT	5
6.	CALIBRATION PROCEDURE	6
7.	DURABILITY DEMONSTRATION	7
8.	PRECONDITIONING FUEL SOAK	9
Ambie	ent Condition Soak	7
Eleva	ted Temperature Soak	7
9.	DIURNAL TEST WITH TRIP BLANKREFERENCE CONTAINER CORRECTION	11
10.	CALCULATING RESULTS	13
Calcu	llating Weight Loss Using Trip Blank	11
Diurn	al Rate Calculation	11
Eleva	ted Temperature Data Point Correlation	11
11.	RECORDING AND REPORTING DATA	15
12.	QUALITY ASSURANCE / QUALITY CONTROL	15

13.	ALTERNATIVE TEST PROCEDURES	15
14.	REFERENCES	16
Fi	gure 1 Diurnal Test Data Sheet	-1 4
15.	FIGURES	16
	California Environmental Protection Agency	
	Air Resources Board	
	<u>TP-502</u>	
	Test Procedure for Determining Diurnal Emissions from Portable Fuel Containers Systems	
	definitions in <u>Ss</u> ection 2467.1, <u>Article 6, Chapter 9 of Ttitle</u> 13, California Code of the color of the co	of
Boar	he purpose of this procedure, the term "ARB" refers to the California Air Resourd, and the term "Executive Officer" refers to the ARB Executive Officer or his or orized representative or designate.	
1.	APPLICABILITY	
	This <u>Ttest Pprocedure</u> is used by <u>the ARB</u> to determine the diurnal emission ra from portable fuel containers (PFC) systems as <u>defined inrequired</u> by <u>Certification Procedure 501 ARB Certification Procedure CP-501, Certification Procedure for Portable Fuel Container Systems</u> . This procedure is applicable in all cases who portable fuel containers <u>systems</u> and their components are <u>subject to the maximum allowable diurnal emission standard for portable fuel containers that are manufactured for sale, advertised for sale, sold, or offered for sale in Califo or that are introduced, delivered, or imported into California for introduction into</u>	ion <u>r</u> ere rnia

1.1. Requirement to Comply with All Other Applicable Codes and Regulations

Certification or approval of a portable fuel container <u>system</u> by the Executive Officer does not exempt the <u>portable fuel</u> container <u>system</u> from compliance or with other applicable codes and regulations such as local, State, or federal safety codes and regulations.

commerce.

1.2. Safety

This test procedure involves the use of flammable materials—and operations and should only be used by or under the supervision of those familiar and experienced in the use of such materials—and operations. _Appropriate safety precautions should be observed at all times while performing this test procedure.

2. PRINCIPLE AND SUMMARY OF TEST PROCEDURE

This procedure is used to determine the diurnal emission rate of a six (6) portable fuel containers—(PFC) sealed with a spill-proof spout. Testing includes a preconditioning period to demonstrate maximize permeation rate equilibrium, a durability demonstration, and a minimum three-day diurnal test using a variable temperature profile. The durability demonstration requires that the spout be actuated while exposed to certification test fuel as defined in Section 5.7 (g) of this test procedure.

Equilibrium is defined as the state where gasoline permeates through the container at a constant, steady state rate. During pPreconditioning, equilibrium can be demonstrated is accomplished by soaking the container with fuel for 140 days. Equilibrium may also be demonstrated by subjecting the container to an elevated temperature and obtaining a weight loss correlation coefficient of 95% or greater as measured over ten consecutive daily weighings. certification fuel at minimum 23 °C (73.4 °F) for 140 days or at 43 ± 5 °C (109.4 ± 9 °F) for 70 days. Once equilibrium is demonstrated After preconditioning, the container is subjected to a minimum of three consecutive 24-hour diurnal cycles and weighed before and after each cycle. Each daily-weigh-in shall be corrected for the effects, if any, of moisture humidity, temperature, and pressure with use of a trip blank reference container. The diurnal emission rate shall be calculated using the highest recorded daily weightcorrected mass loss divided by the container's rated storage capacity.

3. BIASES AND INTERFERENCES

- **3.1** Certification fuel is required for testing. Currently certification fuels do not contain alcohol. Fuels containing alcohol may increase the diurnal rate. Only the fuel specified in Section 5.7 shall be used for testing.
- 3.2(a) Moisture Humidity, temperature, and pressure can bias mass measurements. In order to eliminate minimize bias, a sealed trip blankreference container shall be used to correct for buoyancy effects and varying atmospheric conditions.
- 3.3(b) The trip blankreference container may absorb hydrocarbons and gain weightmass if stored in close proximity to high levels of gasoline vapor. Care shall be taken to store the reference container separately from fuel-filled

containers, and the reference container shall only be placed in close proximity to fuel-filled containers during diurnal testing. Purge the temperature enclosure used for preconditioning at regular frequencies intervals to limit gasoline vapor buildup and potential bias.

- **3.4**(c) Incorrectly installed spill-proof spouts can bias the reported results.
- 3.5 Calibration frequency and calibration standard(s). In order to obtain accurate weight measurements, the balance listed in Section 4 shall be calibrated by an independent agency using National Institute of Standards and Technology (NIST) mass standards every six months. The balance must also be checked using NIST mass standards both prior to and following mass measurements (25 containers maximum). At minimum, the balance shall be checked at 80%, 100% and 120% of the containers test mass. If the readability drifts more than 1/-0.2 grams between initial and final measurements, the balance shall be recalibrated or a different balance that is within specification shall be used.
- 3.6(d) Care shall be taken to ensure no bias occurs as a result of static electricity through use of practices such as statically discharging the containers prior to weighing and repetitive weighing of the containers to demonstrate a constant weight. Some electronic balances are sensitive to the effects of small static charges produced by permeating plastic fuel containers. If small amounts of static electricity influence the balance, the container shall either be statically discharged or the balance shall be shielded from the effects of static electricity.

4. SENSITIVITY AND RANGE

The range of the mass measurement of filled containers is approximately 1,750 grams to $\frac{26,000}{17,500}$ grams, depending on the container capacity. A top loading balance, capable of a maximum weightmass measurement of not less than $\frac{2,000}{1000}$ grams greater than the weight 120 percent of the mass of the largest filled container for which it is being used, with a minimum readability of 0.1 gram and reproducibility of \pm 0.2 grams, must be used to perform mass measurements. For mass measurements more than 6,200 grams, the minimum sensitivity of the balance must be 0.1 grams. For mass measurement less than or equal to 6,200 grams, the minimum sensitivity of the balance must be 0.01 grams.

5. EQUIPMENT

- **5.1**(a) AOne or more top loading balances that meets the requirements of Section 4 above.
- **5.2**(b) NIST<u>-traceable</u> mass standards. A sufficient number of mass standards to verify the measurements listed in <u>Section 3.56 (b)</u>.

- 5.3(c) A ventilated, temperature-conditioning enclosure capable of controlling the internal air temperature from 18.3 °C to 40.6 °C, with a tolerance of 1.1 °C (65 °F to 105 °F, +/-with a tolerance of 2 °F). The enclosure shall be capable of producing a variable temperature profile as specified in Table 9-1.
- **5.4**(d) A temperature instrument capable of measuring the internal temperature of the temperature conditioning enclosure accurately to within a sensitivity of +/-± 1.1 °C (± 2 °F).
- 5.5(e) A barometric pressure instrument capable of measuring atmospheric pressure at the location of the balance to within +/-± 70 Pa (± 0.02 inches of mercury).
- 5.6(f) A relative humidity measuring instrument capable of measuring the relative humidity (RH) at the location of the balance with a sensitivity of +/- ± 2% percent RH.
- 5.7(g) Certification fuel as described in Part II, Section 100.3 of the Air Resources Board "California Exhaust Emissions Standards and Test Procedures for 2001 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles, "adopted August 5, 1999, part II, section A.100.3.1.2 of the "California 2015 and Subsequent Model Criteria Pollutant Exhaust Emission Standards and Test Procedures and 2017 and Subsequent Model Greenhouse Gas Exhaust Emission Standards and Test Procedures for Passenger Cars, Light Duty Trucks, and Medium-Duty Vehicles" or in 40 C.F.R. Part 1065.710 (b), which isare incorporated by reference herein.

6. CALIBRATION PROCEDURE

- **6.1**(a) All instruments and equipment used to conduct this procedure shall be calibrated prior to use perat the minimum interval specified by the manufacturer's specifications.
- 6.2(b) The balance listed in section 5 (a) shall be calibrated by an independent organization using National Institute of Standards and Technology (NIST)-traceable mass standards annually. The accuracy of the balance shall be checked using NIST-traceable mass standards prior to and following mass measurements (25 containers maximum). At minimum, the balanceaccuracy shall be checked at approximately 80% percent, 100% percent, and 120% percent of the container's expected test weight. Refer to Section 3.5. If the measured mass of any of the NIST-traceable mass standards drifts more than ± 0.1 gram for a balance with 0.1 gram sensitivity and ± 0.02 grams for a balance with 0.01 gram sensitivity between initial and final measurements, the balance shall be re-calibrated or a different balance that is within specification

shall be used. The NIST-traceable mass standards shall be calibrated annually by an independent organization.

7. DURABILITY DEMONSTRATION

A durability demonstration is required at the beginning and at-conclusion of the preconditioning period (Ssection 8 (a)). This durability demonstration is performed during a minimum 10 day periodrequires at least two weeks of testing at both the beginning and end of the preconditioning period. This testdurability demonstration exposes the PFC spout, seals, and mechanisms to fuel in order to demonstrate durability. Compliance testing may be performed without this durability demonstration.

- **7.1**(a) Use a permanent marker to identify the containers(s). Use a unique ID number for each container. Record the ID number on the data sheet.
- 7.2(b) Fill theeach container to 50% of the rated capacity (+/- 1%) with certification fuel and install and tighten the spill-proof spouts per ASTM F852-08 section 4. Record the amount of fuel dispensed into theeach container and the temperature at which the spouts are installed.
- **7.3**(c) Install the spill-proof spout per the manufacturer's instructions. Check the leak tightness of the spoutportable fuel container systems by raising the ambient temperature 30 °F +/- 5 °F at least 14 °C (25 °F) for a minimum of two hours. This should slightly expand the containers. If the Any container that does not expand, there may have be a leak.

For any container that does not expand, allow the container and fuel to return to the temperature at which the spout was installed. Remove the spout, then-install and tighten it per ASTM F852-08 section 4 and record the temperature at which the spout is installed. Place the container in an environment that is at least 14 °C (25 °F) warmer than the temperature at which the spout was installed for a minimum of two hours.

After removing a portable fuel container system from the elevated temperature environment, Ssubmerge it in a water bath large enough to submerge the entire container to a depth of least six (6) inches. _Tilt the container back and fourth-forth while submerged to dislodge any air from external cavities. _Wait at least thirty (30) seconds. _Any bubbles coming from the container denotes denote a leak.

No repairs may be performed unless documentation from the manufacturer <u>or independent laboratory performing the testing</u> is provided. Leaks, repairs, or adjustments shall be listed on the data sheet. For containers with leaks that cannot be repaired without the use of tools, sealant, etc., those containers and spouts shall be removed from testing and the failure documented on the

- data sheet. Remove the container from the water bath and dry off all excess water from the exterior surfaces.
- (d) Actuate the spout, by fully opening and closing without dispensing fuel, to relieve pressure. Take care to point the spout away from the user.
- (e) Fill each container to nominal capacity with certification fuel and install and tighten the spouts per ASTM F852-08 section 4.
- 7.4(f) Slowly invert the <u>portable fuel</u> container <u>system and keep it inverted</u> for at least five (5) seconds to ensure that the spout and mechanisms become saturated with fuel. Any fuel leaking from any part of the <u>containersystem</u> will denote a leak and shall be reported on the data sheet <u>as a failure</u>. Once completed, place the container on a flat <u>horizontal</u> surface in the upright position.
- 7.5(g) With the portable fuel container system in the upright position, Aactuate the spout by fully opening and closing without dispensing fuel. For fuel containers configured in such a manner that actuating the spout with the container upright results in dispensing fuel, the container may be rotated to the degree necessary that actuating the spout does not dispense fuel. The spout shall return to the closed position without the aid of the operator (i.e.g., pushing or pulling the spout closed, etc.). Repeat for a total of ten (10) actuation's actuations. If the portable fuel container system has a pressure relief valve, actuate the valve for a total of ten (10) actuations. If at any point the spout or valve fails to return to the closed position, the container fails the test.
- **7.6**(h) Repeat the steps 7.4 and 7.5 in paragraphs (f) and (g) of this section.
- 7.7(i) After twenty (20) actuations's are completed, remove and replace the spout by tightening per ASTM F852-04 section 4 to simulate filling the container. If the portable fuel container system has a non-removable spout, remove and replace the refueling cap.
- 7.8(j) Repeating Repeat the steps 7.4 through 7.7in paragraphs (f), (g), (h), and (i) of this section no more than once per day four (4)nine more times until one two hundred (100) actuation's spout actuations and five (5)ten spout replacements are completed in a minimum seven (7) ten-day period.
- **7.9** Repeat steps 7.4 through 7.8 until at least two-hundred (200) actuation's and ten (10) spout replacements are completed in a minimum two week period.
- **7.10** The durability demonstration shall be repeated (an additional 200 actuation's) during the time periods specified below:

- a. If the ambient condition equilibrium demonstration is used, repeat steps 7.4 through 7.9 near conclusion of the 140-day soak (i.e., the period starting prior to day 126 and ending on day 140).
- b. If the elevated temperature equilibrium demonstration is used, repeat steps 7.4 through 7.9 after a total of 126 -days has lapsed where the container is continuously stored with certification fuel (i.e., the period starting prior to day 126 and ending on day 140).
- (k) Repeat the steps in paragraphs (f), (g), (h), (i), and (j) of this section beginning at least ten days before the conclusion of the preconditioning period.
- **7.11**(I) Record the dates and number of eyclesspout actuations and replacements completed on the data sheet where provided.

8. PRECONDITIONING FUEL SOAK

<u>Complete the following steps before performing diurnal emissions</u>
<u>testing._Compliance testing may be performed without this preconditioning fuel</u>
soak.

- Ensure that the portable fuel containers are filled with the specified fuel to their nominal capacities, seal them using the spouts by tightening per ASTM F852-08 section 4, and allow them to soak for 140 days at minimum 23°C (73.4°F) or for 70 days at 43 ± 5 °C (109.4 ± 9 °F). The time required to perform the Durability Demonstration in section 7 of this procedure and the Pressure Cycling Test, UV Exposure Test, and Slosh Test in section 5 of TP-501 may count as part of the preconditioning fuel soak, as long as the temperature remains within the specified temperature range for either the 140 day or 70 day preconditioning fuel soak. During the preconditioning fuel soak, fuel may be added or replaced as needed to maintain liquid level at nominal capacity;
- (b) At the conclusion of the preconditioning soak period, pour the fuel out of the containers and immediately refill to 50 percent of nominal capacity. Be careful to not spill any fuel on the containers. Wipe the outside of the containers as needed to remove any liquid fuel that may have spilled on them. Record the volume of fuel dispensed into each container on the data sheet; and
- (c) Install the spout assembly that will be used in the production containers and tighten per ASTM F852-08 section 4. All manual closures other than fuel caps must be left off the container and spout during testing in section 9.

A preconditioning period is required to demonstrate permeation equilibrium. Equilibrium occurs when the container's walls have become saturated with fuel. Preconditioning may be combined with the durability demonstration listed above and conducted using ambient conditions for at least 140 days or accelerated to a shorter timeframe using elevated temperature, a trip blank, and a mass loss correlation coefficient.

Ambient Condition Soak

8.1 Store the container at ambient conditions for at least 140 days with the spill-proof spout installed.

Elevated Temperature Soak

- **8.2** The leak check described in Section 7.3 shall be repeated on the container prior to this portion. The container shall be tested at elevated temperature with the same fuel as used for durability testing.
- 8.3 Install an identical spout on an identical new container (trip blank). This container shall remain empty and shall not have been previously subject to gasoline or gasoline vapors. Using a compressed air source, slowly pressurize the trip blank to 5.0 psig. Submerge in a water bath large enough to submerge the entire container to a depth of least six (6) inches. Tilt the container back and fourth while submerged to dislodge any air from external cavities. Observe the container for leaks for at least thirty (30) seconds. Leaks are determined through the evidence of any bubbles coming from the container. If any evidence of leaks is observed, remove the trip blank from testing. Record all observations on the field data sheet. Remove the trip blank from the water bath and dry off excess water from the exterior surfaces.
- **8.4** The balance shall be checked using NIST traceable mass standards both prior to and following mass measurements (25 containers maximum). At minimum, the balance shall be checked at 80%, 100% and 120% of the containers test weight. Refer to Section 3.5.
- **8.5** Ensure that the exterior surface of the container(s) and trip blank is clean, dry, and free of dirt or debris. Carefully place on the balance. Record the date, initial weight, start time, relative humidity and barometric pressure on the data sheet (Figure 1).
- **8.6** Check that the balance has not deviated using the NIST traceable mass standards. Refer to Section 3.5.
- 8.7 Place the container(s) and trip blank into the temperature enclosure and begin soaking at a constant temperature of 105°F +/- 2°F. Alternate constant

- temperatures (i.e., 90°F +/- 2°F or 140°F +/- 2°F, etc.) may also be used. Document the temperature applied on the data sheet.
- 8.8_ Weigh the container(s) and trip blank once per 24-hour period. Correct each measurement using the trip blank.. Continue soaking at elevated temperature until equilibrium is reached. The results of 10 consecutive daily weigh-ins (one weigh-in per 24-hour period) identifying constant weight loss with a cumulative weight loss correlation coefficient of 95% or greater shall demonstrate equilibrium. See Section 10 for calculation.

9. DIURNAL TEST WITH TRIP BLANKREFERENCE CONTAINER CORRECTION

The diurnal test is <u>usedperformed after preconditioning</u> to determine the <u>evaporative (permeation and vented)</u> emission rate when the <u>containerportable fuel container system</u> is subjected to a minimum of three (3) <u>consecutive</u> diurnal cycles <u>as specified in Table 9-1</u>. This test measures evaporative emissions (permeation and vented) when a container is subjected to <u>the California's</u> summertime temperature profile <u>after permeation equilibrium has been reached</u> in Table 9.1.

- 9.1(a) Repeat Tthe leak check described in Ssection 7 (c).3 shall be repeated on each of the CERT-six portable fuel container systems (test containers) prior to this portion. It is not necessary to perform the leak check on the reference container. The containers may continue being tested with the same CERT-fuel as used for durability and equilibrium testingadded in paragraph (b) of section 8.
- 9.2 Install an identical spout on an identical new container (trip blank). This container shall remain empty and shall not have been previously subject to gasoline or gasoline vapors. Using a compressed air source, slowly pressurize the trip blank to 5.0 psig. Submerge in a water bath large enough to submerge the entire container to a depth of least six (6) inches. Tilt the container back and fourth while submerged to dislodge any air from external cavities. Observe the container for leaks for at least thirty (30) seconds. Leaks are determined through the evidence of any bubbles coming from the container. If any evidence of leaks is observed, remove the trip blank from testing. Record observations on the field data sheet. Remove the trip blank from the water bath and dry off all excess water from the exterior services.
- (b) A reference container is required to correct for buoyancy effects that may occur during testing. Prepare the reference container as follows:
 - (1) Obtain a seventh container of the same model as the set of six containers tested in other sections of this procedure. The container must not have previously contained fuel or any other contents that might affect the stability of its mass;

- (2) Fill the reference container with enough dry sand, glass beads, or other inert material so that the mass of the reference container is approximately the same as the test container when filled with fuel. Use good engineering judgment to determine how similar the mass of the reference container needs to be to the mass of the test container considering the performance characteristics of your balance;
- (3) Ensure that the sand, glass beads, or other inert material is dry. This may require heating the container or applying a vacuum to it; and
- (4) Seal the reference container with a spout by tightening per ASTM F852-08 section 4.
- 9.3(c) Place the trip blankreference container and CERT fueltest containers into a temperature enclosure acclimated at 105°F +/-± 2°F for a minimum of 24-hours to remove excess hydrocarbon buildup that may have resulted from preconditioning. The tester may elect to skip this step.
- 9.4 Clean the exterior surface of the containers with Alconox or another hydrocarbon dissolving solution that effectively removes hydrocarbon residue from the outer surfaces of the containers. This step shall only be conducted following Section 9.3 and shall not be repeated for the remainder of testing.
- 9.5(d) Place the trip blankreference container and test containers CERT fuel containers into a temperature enclosure acclimated at a-18.3 °C ± 1.1 °C (65°F +/-± 2°F) for a minimum of 624 to a maximum of 36-hours to eliminate potential temperature bias that may occur from Section 9.3.stabilize the temperature of the containers and their contents. Vent the containers at the conclusion of the stabilization period to relieve any positive or negative pressure that may have developed during stabilization.
- 9.6(e) The accuracy of the balance shall be checked using NIST_traceable mass standards prior to and following mass measurements (25 containers maximum). At minimum, the balanceaccuracy shall be checked at approximately 80% percent, 100% percent, and 120% percent of the container's test weight. Refer to Section 3.56 (b).
- 9.7(f) Carefully place each container on the balance. _Record the date, initial weightmass, start time, relative humidity, and barometric pressure on the data sheet. The initial mass is determined by repeating the weighings until two consecutive weighings are within 0.1 grams for a balance with 0.1 gram sensitivity or within 0.05 grams for a balance with 0.01 gram sensitivity. No more than fifteen (15) minutes shall lapse between the temperature stabilization period (section 9.5 (d)) and replacing the containers

- into the temperature enclosure after weighing. Precautions should be taken to ensure the containers remain at $18.3 \,^{\circ}\text{C}$ +/-± $1.1 \,^{\circ}\text{C}$ (65 °F +/-± $2 \,^{\circ}\text{F}$).
- **9.8** Check that the balance has not deviated using the NIST traceable mass standards. Refer to Section 3.5.
- **9.9**(g) Begin the variable temperature profile (diurnal cycle) as shown in Table 9-1.
- 9.10(h) At conclusion of the diurnal cycle, place each container on the balance and record the final weightmass, date, end time, relative humidity, and barometric pressure on the field data sheet. The final mass is determined by repeating the weighings until two consecutive weighings are within 0.1 grams for a balance with 0.1 gram sensitivity or within 0.05 grams for a balance with 0.01 gram sensitivity. If the containers are removed from the enclosure for weighing, no more than fifteen (15) minutes shall lapse before being replaced into the enclosure. Repeat Section 9.8 and Section 9.9.
- 9.11(i) Repeat the steps in paragraphs (g) and (h) of this Section 9.10-until a minimum of three (3) consecutive diurnal cycles ishave been completed.
- **9.12** The leak checks described in Section 7.3 and Section 9.2 shall be repeated at the conclusion of diurnal testing. Any leak check failure(s) shall be recorded on the data sheet and the containers removed from testing.
- **9.13** Correct each mass measurement using the daily trip blank measurements. Refer to Section 10 for calculations. Calculate the diurnal rate using the highest recorded daily weight loss observed of the three diurnal cycles.

Table 9-1 Diurnal Temperature Profile

Hour	0	1	2	3	4	5	6	7	8	9	10	11	12
(°C)	<u>18.3</u>	<u>19.2</u>	22.6	<u>26.8</u>	<u>30.1</u>	<u>32.6</u>	<u>34.8</u>	<u>36.7</u>	<u>38.4</u>	<u>39.7</u>	<u>40.5</u>	<u>40.6</u>	<u>40.1</u>
(°F)	65	66.5	72.7	80.2	86.2	90.7	94.6	98.1	101.1	103.5	104.9	105.1	104.2
Hour	13	14	15	16	17	18	19	20	21	22	23	24	_
Hour (°C)	13 38.4	14 35.2	15 31.6	16 29.1	17 <u>27.1</u>	18 <u>25.4</u>	19 <u>24.1</u>	20 22.2	21 21.1	22 20.1	23 19.2	24 18.3	_

10. CALCULATING RESULTS

The diurnal <u>emission</u> rate is calculated by using the highest recorded <u>dailyindividual</u> <u>weightmass</u> loss of the three <u>all</u> diurnal cycles tested. The diurnal emission rate and elevated temperature correlation coefficient (if

used) shall be calculated in grams per gallon per day using the following equations listed below.:

Calculating Weight Loss Using Trip Blankthe Diurnal Emission Rate

Emission Rate =
$$\frac{M_{initial}-M_{final}}{(nominal capacity) \times (one day)}$$

Where:

<u>M_{initial}</u> = Initial Test Container Mass – Initial Reference Container Mass (grams) <u>M_{final}</u> = Final Test Container Mass – Final Reference Container Mass (grams)

$$L = W_i - C_T$$

Where:

L = The corrected weight loss (grams)

 W_i = Initial weight of full container (grams)

 $C_T = W_f + D_T$ (Trip Blank Correction) (grams)

Where:

 W_f = Final weight of full container (grams)

 $D_T = T_f - T_f$ (Difference in Trip Blank weight) (grams)

Where:

 T_i = Initial weight of Trip Blank (grams)

 T_f = Final weight of Trip Blank (grams)

Diurnal Rate Calculation

$$D_{rate} = A_{Loss} / C_{container}$$

Where:

 D_{rate} = The diurnal rate (grams/gal-day)

 A_{loss} = The average highest corrected weight loss (grams/day)

C_{container} = The rated capacity of the container (gallons)

Elevated Temperature Data Point Correlation

If elevated temperature was used in the equilibrium demonstration, plot the cumulative daily weight loss (grams) against the sampling time (days). Perform a linear regression of ten consecutive data points (spreadsheet or hand calculation) as shown. If the correlation coefficient is 95% or greater, the container is considered to have reached equilibrium.

$$r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n\sum X^{2} - (\sum X)^{2}][n\sum Y^{2} - (\sum Y)^{2}]}}$$

Where:

r = The correlation coefficient

n =The number of samples (10)

X =The Day Number (i.e., 1-10)

Y = The cumulative weight loss per day (grams)

11. RECORDING AND REPORTING DATA

Record data on the field data sheet shown in Figure 1. Alternate test forms may be used provided they list the same minimum parameters as shown in Figure 1. Data forms, field notes, and any supporting documentation shall be made available to ARB upon request. The manufacturer shall maintain these documents for a period of not less than 5 years after the completion of testing.

12. QUALITY ASSURANCE / QUALITY CONTROL

All data must be carefully recorded on the field data sheet during the test. _Any unusual occurrences in the process operation, unusual test instrument readings, or items that could possibly affect the test results should be noted on the data sheet. It is recommended that a checklist, in addition to the data sheet, be used to assure all data needed for calculation or process information are obtained.

13. ALTERNATIVE TEST PROCEDURES

Test procedures, other than specified above herein, shall only be used if prior written approval is obtained from the ARB-Executive Officer. In order to secure the ARB-Executive Officer's approval of an alternative test procedure, the applicant is responsible for demonstrating to the ARB-Executive Officer's satisfaction that the alternative test procedure is equivalent to this test procedure as described in section 6 of ARB Certification Procedure "CP-501, Certification Procedure for Portable Fuel Container Systems." The Executive Officer reserves the right to require the applicant of an innovative system to develop an alternative test procedure which demonstrates the intent of each test requirement not achieved due to the innovative design.

(1) Such approval shall be granted on a case-by-case basis only.

(2) Documentation of any such approvals, demonstrations, and approvals shall be maintained by the ARB Executive Officer and shall be made available upon request.

14. REFERENCES

<u>Control of Evaporative Emissions From New and In-Use Portable Fuel Containers.</u>

<u>Title 40, Code of Federal Regulations, Part 59. United States Environmental Protection Agency, Subpart F.</u>

Certification fuel as described in Part II, Section 100.3 of the Air Resources Board "California Exhaust Emissions Standards and Test Procedures for 2001 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles," adopted August 5, 1999. California 2015 and Subsequent Model Criteria Pollutant Exhaust Emission Standards and Test Procedures and 2017 and Subsequent Model Greenhouse Gas Exhaust Emission Standards and Test Procedures for Passenger Cars, Light Duty Trucks, and Medium-Duty Vehicles. Part II, section A.100.3.1.2.

<u>Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards. Title</u> 40, Code of Federal Regulations, Part 1065. United States Environmental <u>Protection Agency, Subpart H.</u>

ARB Certification Procedure for Portable Fuel Container Systems, CP-501.

ARB Test Procedure for Determining Integrity of Portable Fuel Container Systems, TP-501.

<u>Standard Specification for Portable Gasoline Containers for Consumer Use, ASTM F852-08.</u>

15. FIGURES

Figure 1. Test Data Sheet.

Figure 1 Diurnal Test Data Sheet

Container Man	ufacturer:	Test Company:					
CERT FuelTes	t Container I.D:	Ŧri	ip Blank Refere	nce C	Container ID:		
Container Mod	el:	_Spout Model:			Rated Capacity:(gal)		
Durability Tes	ting Gallo	ons of CERT	fuel Placed in	Conta	ainer:	gallons	
	Seal Temperature (°C or °F)		mperature for l Check (°C or °F)	Leak	Submerged L Check (Pass/		
Section 7(c)	,		,				
Section 9(a)			- \				
Initial Trip Blan	k Weight <u>Mass</u> :_	(/	_i) grams	We	eigh-In Date:		
Date 1	Number of Cycles	Actuations	Date Leak Ch (Pass/Fail		Number of CyclesSpout Clo (Pass/Fail)		
Ambient Cond	lition Precondition	oning Fuel	Soak Star	t Date	e:End Date:		
Temperature R	ange:	Volume of	Fuel Added to	each	container:		

	e Date/Time		Initial Weight	Final Weight	Difference	%RH	Barometri	
Start End		 	₩ _i (grams) ₩ _i (gram		(grams)	701111	Pressure	
Diurnal T	est Resu	ılts (Tr	ip Blank Cont	tainer)				
			Final Weight Reference	Difference			Paramatria	
Date/Time	Date/T		Container M	<i>Đ</i> ∓Test Container	%RH		Barometric Pressure	
Start	End	k	ass ass	Mass	701111		(in. Hg)	
			\mathcal{I}_f (grams)	(grams)			<u>(iii. i ig)</u>	
Continued	l on Next	¹ Page						
Continued								
Continued			Page	CERT Fuel Co	ontainer I.D:_			
			Page	CERT Fuel Co	ontainer I.D:_			
Continued Diurnal T	I from Pro	e vious ılts (C l	ERT Fuel Con	tainer)				
Continued Diurnal T Date/Time	Hrom Pro	evious ults (Cl	ERT Fuel Con Initial Weight	tainer) Final Weight	Trip Blank	€ Co	orrected Los	
Continued Diurnal T	I from Pro	evious ults (Cl	ERT Fuel Con	tainer)		€ Co		
Continued Diurnal T	Hrom Pro	evious ults (Cl	ERT Fuel Con Initial Weight	tainer) Final Weight	Trip Blank	€ Co	orrected Los	
Continued Diurnal T Date/Time	Hrom Pro	evious ults (Cl	ERT Fuel Con Initial Weight	tainer) Final Weight	Trip Blank	€ Co	orrected Los	
Diurnal T Date/Time Start	est Resu Date/T	evious ults (Cl ime	ERT Fuel Con Initial Weight	tainer) Final Weight ₩ _f (grams)	Trip Blank	€ Co	orrected Los	
Diurnal T Date/Time Start	est Resu Date/T	evious ults (Cl ime	ERT Fuel Con Initial Weight Wi-(grams)	tainer) Final Weight Wf (grams)	Trip Blank Correction	¢ Ce G _τ	errected Los L (grams)	
Diurnal T Date/Time Start	est Resu Date/T	evious ults (Cl ime	ERT Fuel Con Initial Weight Wi-(grams)	tainer) Final Weight ₩ _f (grams)	Trip Blank Correction	¢ Ce G _τ	orrected Los	

	Diurnal Rate:	g/gal/day
Documentation	of Performance	
Date:	Description of Repair, Adjustment or Failure:	
Comments:		