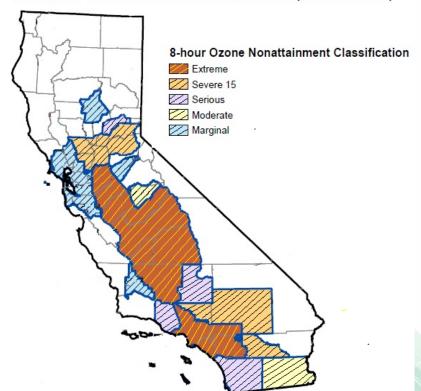


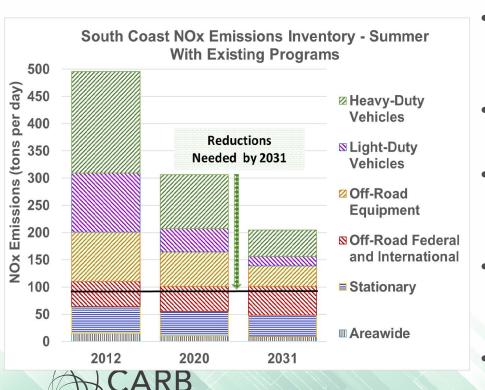
Proposed Heavy-Duty Engine and Vehicle Omnibus Regulation

August 27, 2020

Outline


- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Benefits and Costs
- 15-Day Changes
- Staff Recommendations

Air Quality Challenges


California 8-hour Ozone Nonattainment Areas (2008 Standard)

- Over 12 million Californians breathe unhealthy air
- Key challenges:
 - South Coast ozone
 - San Joaquin Valley PM2.5
- Significant NOx reductions needed to meet ozone standards in South Coast
 - ~80% reduction by 2031

Background

Reducing Heavy-Duty Truck NOx: Critical for SIP Attainment

- Even with existing programs, heavyduty trucks remain largest source under CARB authority
- Heavy-duty vehicles emit nearly one third of total statewide NOx
- Further NOx reductions needed from heavy-duty trucks to attain air quality goals
- Most significant NOx regulation the Board has adopted in more than a decade
- Necessary for achieving our SIP commitments

Background

Federal Action Also Critical for SIP Attainment

- Federal trucks contribute 40% of heavy-duty NOx
 - U.S. EPA action to reduce emissions from federal certified trucks is critical
- U.S. EPA Cleaner Trucks Initiative (CTI) announced Nov. 13, 2018
- Advanced Notice of Proposed Rule Published January 21, 2020
- Notice of Proposed Rulemaking Delayed but expected next year
- U.S. EPA is required to provide minimum of 4 years lead time and 3 years of stability between standards
 - CTI to start with 2027 model year (MY) engines
- Close coordination with U.S. EPA staff with goal of a harmonized 2027 and beyond national program

Heavy-Duty Low NOx & Advanced Clean Trucks (ACT) Regulations

- The Board approved ACT requirements in June 2020
- ACT mandates percentage of sales for ZEVs
- Omnibus rulemaking complements this effort:
 - Provides incentive mechanism by creating NOx credit generation pathway for heavy-duty Zero-Emission technologies in early years of ACT rule

Outline

- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Benefits and Costs
- 15-Day Changes
- Staff Recommendations

Overview of Current Heavy-Duty Program

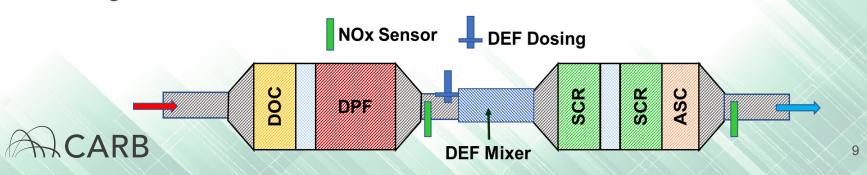
- Standards Compliance Throughout Useful Life
- Durability Demonstration during Certification
- Averaging, Banking, and Trading (ABT) Program
- Heavy-Duty In-Use Testing (HDIUT) Program
- Emissions Warranty
- Emissions Warranty Information Reporting (EWIR)

NOx and PM Certification Standards

FTP/RMC Test Cycles

- NOx: 0.20 g/bhp-hr
- PM: 0.01 g/bhp-hr
- Optional NOx:
 - 0.02/ 0.05/ 0.10 g/bhp-hr

NOx idling standard


• 30 grams/hour

Diesel Engine Technology

- Diesel Oxidation Catalyst (DOC)
- Diesel particulate filter (DPF)
- Urea or diesel exhaust fluid (DEF) based selective catalytic reduction (SCR)
- Ammonia slip catalyst (ASC)

Otto-Cycle Engine Technology

Three-way Catalyst

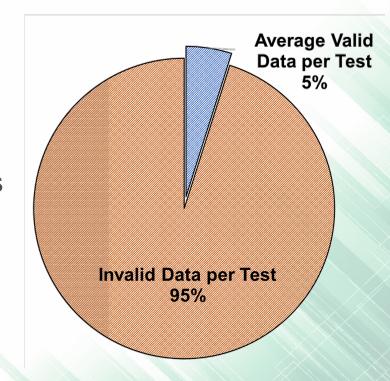
Certification Test Cycles

- FTP and RMC test cycles
 - Do not account for sustained low load operations
 - Do not require adequate thermal management of aftertreatment system
- Low load duty cycles have lower exhaust temperatures
 - SCR not functional at low exhaust temperatures
 - Prevalent in urban stop-and-go operation in communities near congested transportation corridors
- Need for low load certification cycle (LLC)
 - Ensure engine and aftertreatment system controls needed for low load operations are functional

Durability Demonstration Program

- Manufacturers must demonstrate emissions compliance for the full useful life at time of certification
- Current durability procedures require partial useful life durability demonstration with some field data evaluation
- Partial useful life aging methodology is insufficient

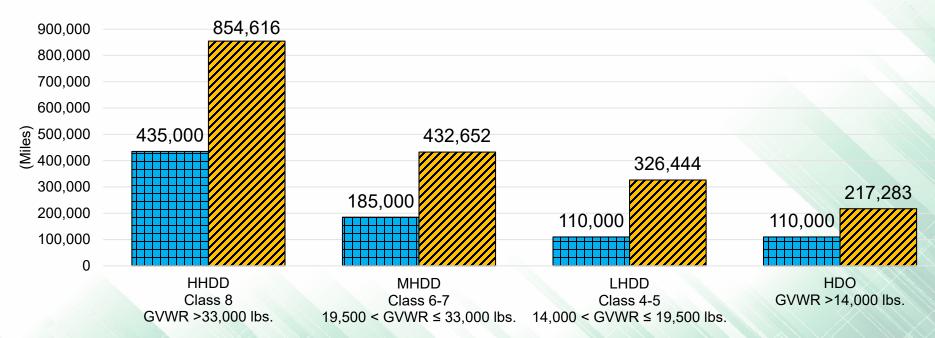
Heavy-Duty In-Use Programs and Methods


 Heavy-Duty In-Use Testing (HDIUT) program: manufacturer self testing

 Testing based on the Notto-Exceed (NTE) in-use test method

Not-to-Exceed (NTE)

- The NTE method evaluation captures only a portion of real-world operation and emissions
- Analysis of the HDIUT data by staff revealed only 4.9% of testing time was captured by the NTE method
- CARB's testing has identified significant problems, resulting in mandated recalls of hundreds of thousands of heavy-duty trucks



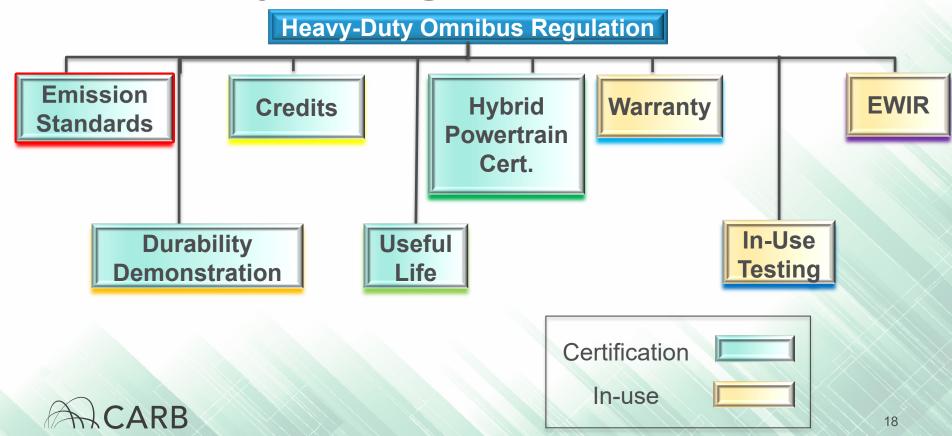
Useful Life and Warranty Periods

Vehicle / Engine Category Gross Vehicle Weight Rating (GVWR)	Useful Life Current Periods (Miles)	Warranty Current Periods (Miles)	June 2018 Warranty Amendments Effective 2022 MY (Miles)
Heavy Heavy-Duty Diesel (HHDD) Class 8 GVWR >33,000 lbs.	435,000 10 years / 22,000 hours	100,000 5 years / 3,000 hours	350,000 5 years
Medium Heavy-Duty Diesel (MHDD) Class 6-7 19,500 <gvwr 33,000="" lbs.<="" td="" ≤=""><td>185,000 10 years</td><td>100,000 5 years / 3,000 hours</td><td>150,000 5 years</td></gvwr>	185,000 10 years	100,000 5 years / 3,000 hours	150,000 5 years
Light Heavy-Duty Diesel (LHDD) Class 4-5 14,000 < GVWR ≤ 19,500 lbs.	110,000 10 years	100,000 5 years / 3,000 hours	110,000 5 years
HD Otto (HDO) GVWR >14,000 lbs.	110,000 10 years	50,000 5 years	N/A

Heavy-Duty Useful Life Compared to Engine Rebuild/Replacement Mileages

Emissions Warranty Information Reporting (EWIR)

- Goal is to ensure that defective emission components are expeditiously identified and remedied through corrective action (i.e., recall or extended warranty)
- Requires manufacturers submit reports when components warranty claims rates reach 25 warranty claims or 1%
- Manufacturers subject to corrective action when failure rates reach 4%



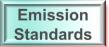
Outline

- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Benefits and Costs
- 15-Day Changes
- Staff Recommendations

Major Program Elements

Broad Applicability

- Medium-duty diesel engines (MDDE)
 - $10,000 < GVWR \le 14,000$ pounds
- Heavy-duty diesel engines (HDDE)
 - GVWR > 14,000 pounds
- Medium-duty Otto-cycle engines (MDOE)
 - $10,000 < GVWR \le 14,000$ pounds
- Heavy-duty Otto-cycle engines (HDOE)
 - GVWR > 14,000 pounds
- 2024 and subsequent MY





NOx Emissions Standards 2024 – 2026 MY

DIESEL					ОТТО
MYs	FTP (g/bhp-hr)	RMC (g/bhp-hr)	LLC (g/bhp-hr)	Idling (g/hr)	FTP (g/bhp-hr)
Current	0.20	0.20		30	0.20
2024 - 2026	0.050	0.050	0.200	10	0.050

- Proposed PM standard: 0.005 g/bhp-hr applies to all 2024 and subsequent MY engines
- FTP/RMC: 75% below current standard

Optional 50-State-Directed Engine NOx Emissions Standards

DIESEL					отто
MYs	FTP (g/bhp-hr)	RMC (g/bhp-hr)	LLC (g/bhp-hr)	Idling (g/hr)	FTP (g/bhp-hr)
Current	0.20	0.20		30	0.20
2024 - 2026	0.10	0.10	0.30	10	0.10

- Manufacturer required to certify all their engines nationally
- Must meet all other proposed requirements applicable for the MY
 - PM standard, warranty and useful life periods, etc.

NOx Emissions Standards 2027 and Subsequent

	DIESEL ENGIN	ОТТО		
MYs	FTP/RMC LLC Idling (g/bhp-hr) (g/hr)		FTP (g/bhp-hr)	
2027 and later	0.020	0.050	5	0.020

FTP/RMC: 90% below current standard

NOx Emissions Standards 2027 and Subsequent

- FTP/RMC: Intermediate standards 90% below current
- New standard at proposed longer useful life

HEAVY-DUTY DIESELS (>33,000 lbs GVWR)					
MY		2027-2030 2031 and subsequent			
Mileage	(miles)	@435,000 @600,000* @435,000 @800,000*			@800,000*
FTP/RMC	(g/bhp-hr)	0.020	0.035	0.020	0.040
LLC	(g/bhp-hr)	0.050	0.090	0.050	0.100
Idling	(g/hr)	5	5	5	5

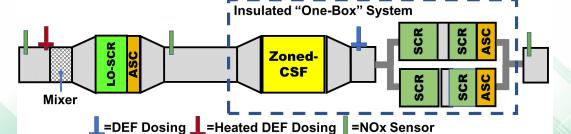
Optional Low NOx Standards

	DIES	ОТТО	
MY	FTP/RMC	LLC	FTP
IVI Y	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)
2024 - 2026	0.020	0.080	0.020
2027 and subsequent	0.010	0.025	0.010

- Must meet all other proposed requirements applicable for the MY
 - PM standard, warranty and useful life periods, etc.

Standards are Technically Feasible

 Extensive CARB-sponsored demonstration programs supported by federal / local air agencies and industry



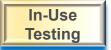
- Results at full useful life indicate:
 - FTP \approx 0.025 g/bhp-hr NOx
 - RMC \approx 0.022 g/bhp-hr NOx
 - LLC \approx 0.050 g/bhp-hr NOx
 - Idling $\approx 1.6 2.8 \text{ g/hr NOx}$
 - Engine calibration / CDA / split SCR /DEF injection controls

Standards are Technically Feasible (cont'd)

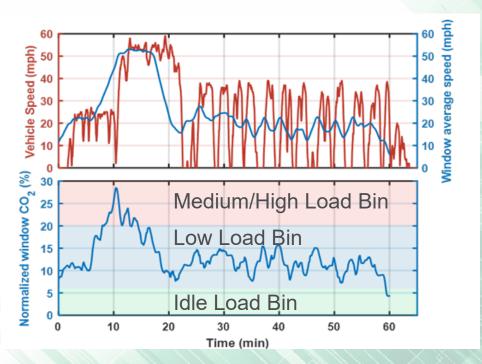
Related work by manufacturers/suppliers

- MECA Modelling of engine calibration/CDA/ split SCR:
 - 0.014 0.016 g/bhp-hr FTP NOx

- Dynamic Cylinder Deactivation
- Mild hybrids/ 48 V system electrification
- Advanced turbochargers (e.g., SuperTurbo)
- Opposed piston engine

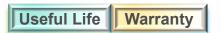


Lead time for further research and development



More Comprehensive, Effective In-Use Test Method

- Binned MAW method would replace the deficient NTE method
- Diesel engine operation would be evaluated over three bins based on certification test cycles and standards (i.e. idle, LLC, and FTP/RMC)
- 3B-MAW method includes nearly all operation
- Otto-cycle engines are only certified to the FTP so they would be evaluated by a single bin based on the FTP standard



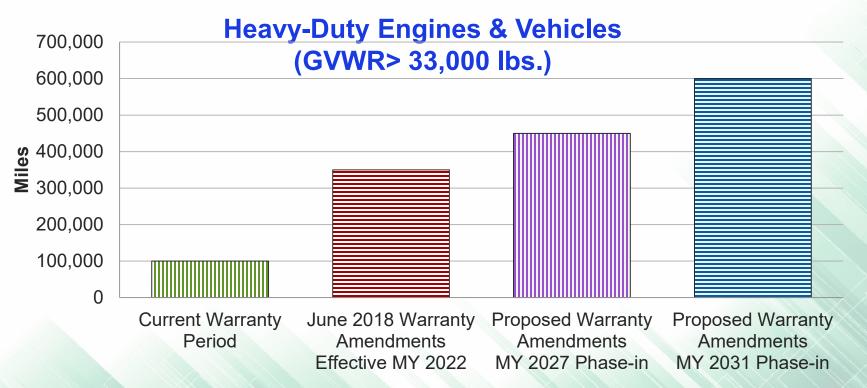
Durability Demonstration Program

- Applicable to 2024+ MY engines
- Use standardized engine or chassis cycles for aging
- Age engine and aftertreatment system to full useful life
- Allowance for accelerated aftertreatment aging for a portion of useful life
- Accelerated aftertreatment aging requires annual submittal of NOx sensor (REAL) emissions data on thousands of trucks

Useful Life and Warranty Amendments

Vehicle / Engine Category	Useful Life	Useful Life	Warranty	Warranty
Gross Vehicle Weight	Phase-in	Phase-in	Phase-in	Phase-in
Rating	MY 2027	MY 2031	MY 2027	MY 2031
(GVWR)	(Miles)	(Miles)	(Miles)	(Miles)

· · ·	· ·	· · ·		
HHDD Class 8 GVWR >33,000 lbs.	600,000 11 yrs./ 30,000 hrs.	800,000 12 yrs./ 40,000 hrs.	450,000 7 yrs./ 22,000 hrs.	600,000 10 yrs./ 30,000 hrs.


GVWR >33,000 lbs.	11 yrs./ 30,000 hrs.	12 yrs./ 40,000 hrs.	7 yrs./ 22,000 hrs.	10 yrs./ 30,000 hrs.
MHDD Class 6-7	270,000	350,000	220,000	280,000

MHDD Class 6-7 19,500 < GVWR ≤ 33,000 lbs.	270,000 11 yrs.	350,000 12 yrs.	220,000 7 yrs./ 11,000 hrs.	280,000 10 yrs./ 14,000 hrs.
I HDD				

19,500 < GVWR ≤ 33,000 lbs.	11 yrs.	12 yrs.	7 yrs./ 11,000 hrs.	10 yrs./ 14,000 hrs.
LHDD Class 4-5 14,000 < GVWR ≤ 19,500 lbs.	190,000 12 yrs.	270,000 15 yrs.	150,000 7 yrs./ 7,000 hrs.	210,000 10 yrs./ 10,000 hrs.

Longer Warranties Required

Useful Life and Warranty Amendments (cont'd)

- Expand maintenance interval applicability to diesel-fueled engines used in hybrid vehicles and powertrains, and engines that are fueled by gasoline and alternative fuels
- Expand useful life and warranty provisions to include heavy-duty hybrid vehicles
- Enable already purchased warranty coverage to stay with vehicles even if they are no longer registered in California

Emissions Warranty Information Reporting Amendments

- Effective for 2024 and Later Model Years
- Streamlines corrective action to be based solely on failure rate
- Provides longer reporting periods consistent with longer warranty periods
- Lowers warranty reporting and corrective action thresholds for small volume engine families
- Eliminates the ability to use defective parts in subsequent years if no improvements were made for current model year

Averaging, Banking & Trading (ABT)

- Since 2004 MY, CARB & U.S. EPA have used the same 50-State pool of credits for ABT
- Under the Omnibus regulation:
 - Re-establish CA-ABT program starting with 2022 MY
 - Limit credit life to 5 years
 - Credit multipliers for meeting future emission requirements early
 - Heavy-Duty Zero-Emission products would be eligible to generate NOx credits starting with 2022 MY

Credits for HD ZEV, Clean Natural Gas & Diesels (Opportunity for Early Action/Over-compliance)

- In 2022-2023 model years:
 - Zero-emission HD vehicle could generate
 - 0.44 Mg NOx credit for manufacturer
 - A single clean combustion engine meeting 2031 requirements could generate
 - 1.6 Mg NOx credit for manufacturer
 - 1.6 Mg of NOx credits could be used to certify
 14 engines at 0.100 g/bhp-hr (instead of 0.050 g/bhp-hr) during the 2024-2026 model years

Hybrid Powertrain Certification Test Procedure

- Optional pathway using powertrain dynamometer
- Utilize and align with U.S. EPA powertrain test procedures (40 CFR Parts 1036, 1037)
- Combustion engine and hybrid system components certified as a complete system
- Able to assess fuel efficiency and emission benefits
- Certified hybrid powertrains must comply with OBD, warranty, useful life, durability and other certification requirements
- Flexible, efficient, cost-effective

Phase 2 GHG and Other Minor Amendments

- Phase 2 GHG Standards
 - Clarify definition of medium-duty vehicle, end-of-year report requirements
 - Environmental performance label specifications
 - Trailer-specific amendments to clarify warranty, in-use compliance, recall provisions
- Adopt federal standards for auxiliary power units used in sleeper cabs to ensure CARB enforcement authority
- Clarify medium-duty engine requirements

Outline

- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Benefits and Cost
- 15-Day Changes
- Staff Recommendations

NOx Emissions Benefits (tons per day)

Projected benefits from a California-only action:

Calendar Year	Statewide	South Coast	San Joaquin Valley
2031	23.2	7.0	5.7
2040	54.5	16.3	13.6
2050	75.9	23.0	19.0

- Critical 2031 SIP measure for achieving air quality goals
 - Contributes >30% of total NOx reductions from CA SIP measures

Lifetime Health Benefits

Outcome	Avoided Incidents (2024-2050)
Premature Mortality	3,894
Cardiovascular Hospitalizations	616
Acute Respiratory Hospitalizations	735
Emergency Room Visits	1,801

Omnibus benefits value (2018\$): \$36.8 billion

Cost of the Regulation (2018\$)

- Regulation estimated to cost \$4.49 Billion
- Estimated cost of 2031 MY compliant engines

DIESEL	Lifetime increase in Cost	Percent increase cost of ownership over lifetime
HEAVY-DUTY	\$8,841	5.2%
MEDIUM-DUTY	\$5,814	5.6%
Population Average	\$5,912	5.8%

- Total Regulation: \$5.45 per lb of NOx
 - Within range of previous CARB measures
- Expected benefits of \$36.8 billion are over eight times above expected costs

Outline

- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Benefits and Costs
- 15-Day Changes
- Staff Recommendations

15-Day Changes

- Add temporary exemption for heavy-haul engines > 525 hp
- Modify LLC for alternative-fueled engines
- Allow Zero-Emission powertrain manufacturers to generate engine NOx credits instead of vehicles
- Allow Zero-Emission NOx credits only until 2026 MY
- Expand OBD flexibility to include 2022-2023 MY Otto-cycle engines
- Shorter durability demonstration option for 2024 to 2026 MY
- Minor editorial corrections and clarifications to Phase 2 GHG standard tractor and trailer requirements and environmental performance labels

Outline

- Background
- Current Heavy-Duty Requirements
- Staff Proposal
- Staff Proposal
- Benefits and Costs
- 15-Day Changes
- Staff Recommendations

Staff Recommendation

 Approve Resolution 20-8-2 with the staff-proposed 15-day changes.

