Research Update on Air Pollution and the Brain

California Environmental Protection Agency
Air Resources Board

April 27, 2017
Air Pollution May Contribute to Dementia

By NICHOLAS BAICALLA  FEB. 16, 2017

A new study suggests that air pollution may accelerate brain aging and contribute to the progression of dementia, and women with a specific gene variant are at greater risk than others.

The analysis included 3,647 women ages 65 to 79. From 1995 to 2010,
Background

- Air pollution-related cardiovascular and respiratory health effects well documented
- Less known about brain impacts
  - U.S. EPA, Health Effects Institute: more brain/PM studies needed\(^1\),\(^2\)
- More studies published since reviews
- Today’s focus: neurodegenerative effects

Observational Evidence: Mexico City

Children from Mexico City vs. less-polluted areas:

- Breakdown of brain protective layer and nasal cavity lining
- Signs of early-stage Alzheimer’s disease
- Cognitive deficits

Note:
- Lack pollutant measurements
Outline for Today’s Talk

- Can inhaled pollutants enter the brain?
- What have we learned from animal studies?
- Are effects observed in exposed populations?
Can Inhaled Pollutants Enter the Brain?

- Direct particle entry via olfactory nerve
- Blood-brain barrier (BBB) protects brain
  - Ultrafine PM can penetrate BBB
  - BBB can be compromised
- Other indirect pathways likely
What Have We Learned from Animal Studies?

Air pollution exposures lead to:

- Brain inflammation = potential mechanism
  - Normal response to harmful stimuli
  - If chronic: can contribute to disease
- Impairments in learning & memory
- Behavioral changes
Are Effects Observed in Exposed Populations?

Ontario, Canada Study

- >2 million adults (55-85 years), 2001-2012
- Residential distance from major roads 5 years prior
- Accounted for age, sex, pre-existing disease

⇒ Increased dementia risk near busy roads:
  - <50 meters: ↑7%
  - 50-100 meters: ↑4%
  - 101-200 meters: ↑2%

- No increased risk for Parkinson's disease

Are Effects Observed in Exposed Populations? (cont.)

U.S. Nationwide Study

- Women’s Health Initiative Memory Study: 3,647 women (65-79 years, European ancestry)*
- Residential PM2.5 exposure, 1999-2010
- Accounted for age, BMI, SES, lifestyle, clinical factors

⇒ For PM2.5 > annual national standard (12 µg/m³):
  - Cognitive decline: ↑81%
  - Dementia risk: ↑92%
  - Even larger increases for women with gene related to Alzheimer’s disease risk

*Cacciottolo et al. (2017) Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. *Translational Psychiatry 7(1):e1022*
Conclusions

• Can inhaled pollutants enter the brain?
  ◦ Yes

• What have we learned from animal studies?
  ◦ Brain inflammation, cognitive impairment

• Are effects observed in exposed populations?
  ◦ Emerging evidence

Additional questions:

• Which pollutants pose greatest risk, over what time frame; who is most at risk?
Related Research Activities

• Completed ARB Study: Central nervous system effects of ambient PM2.5
  (M. Kleinman, UC Irvine)

• Current ARB Study: Ultrafine PM exposure and Parkinson’s disease in a mouse model
  (A. Cho, UCLA)

• Other Research:
  ◦ Possible neurological add-on to current ARB epidemiological study of ultrafine PM and mortality
  ◦ SCAQMD studies on brain tumors
What ARB is Doing

- Diesel regulations led to decreasing ultrafine PM emissions:
  - I-710: About 70% decrease in ultrafine PM emission factors from heavy-duty trucks (2009-2016)

- Truck Field Enforcement / New Screening Technologies

- Just released: “Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways”
  (https://www.arb.ca.gov/ch/landuse.htm)

- Longer-term: Transportation electrification
Thank You