Science of Ozone and PM<sub>2.5</sub> Chemistry in the South Coast and San Joaquin Valley

0

Air Quality Planning and Science Division California Air Resources Board February 20, 2014

#### **Goals of the Presentation**

- Discuss scientific basis of SIP process
- Summarize ozone and PM<sub>2.5</sub> chemistry and atmospheric processes
- Provide overview of air quality modeling results for South Coast and San Joaquin Valley
- Describe how atmospheric science is used to guide SIP strategy development

#### California's Investment in Science

- ARB has a long history of air quality research in collaboration with air districts
- Academic partnerships leverage ARB resources and expand scientific expertise in air pollution
- Field studies in the South Coast and San Joaquin Valley provide region-specific understanding of air quality problems

# California's History of NO<sub>x</sub> Control

- The 1990 Federal Clean Air Act emphasized control of VOC for ozone
- Early on, California recognized the importance of adding NO<sub>x</sub> control
- California's regulation of ozone forming pollutants has strongly relied on science with effective results
- New PM<sub>2.5</sub> standards in 1997 added further importance to NO<sub>x</sub> control

### Federal Air Quality Standards

- Presentation focuses on standards addressed in 2016 SIPs:
  - 8-hour ozone: 75 ppb
  - $^{\rm o}$  Annual PM $_{2.5}$ : 12  $\mu g/m^3$
- EPA evaluating need for more stringent ozone standard between 60 and 70 ppb
- Attainment deadlines established following promulgation of new standards

Understanding Atmospheric Chemistry and Responses to Emissions Reductions

0

The Basics: Chemistry of Ozone and PM<sub>2.5</sub> Formation

**Ozone Formation:** 

$$NO_x + VOC + Sunlight \rightarrow O_3$$

#### **PM<sub>2.5</sub>** Formation:

 $NO_{x} + VOC + NH_{3} \rightarrow Ammonium Nitrate$ 

 $SO_x + VOC + NH_3 \rightarrow Ammonium Sulfate$ 

VOC → Secondary Organic Aerosol

# The Atmosphere: Complex Multi-Pollutant System

- Ozone and PM<sub>2.5</sub> air quality reflects multipollutant interactions among:
  - Emissions
  - Meteorology
  - Atmospheric chemistry
- Emissions of each precursor vary in space and time
- Meteorology causes transport and dispersion
- Chemical reactions occur with differing time scales and are highly nonlinear

# Atmospheric Response to Emissions Controls Depends on Linked Processes

- Controlling common precursors is basis of an effective multi-pollutant control strategy
- Effectiveness of reductions may differ by region and by location within a region
- This relationship may also change over time due to relative pace of emission reductions

### Use of Models is Required for SIPs

- Air quality modeling integrates these complex atmospheric processes
- Provides tool to evaluate response to emissions changes
- System consists of:
  - Emissions model
  - Meteorological model
  - Air quality model



# Scientific Foundation of California Modeling

- Recent major field studies:
  - 2000 : CRPAQS/CCOS
  - 2000-2010: EPA/ARB Advanced Monitoring Initiative, MATES III, ARCTAS, CalNex
  - 2010+: MATES IV, Discover-AQ
- Annual science meetings:
  - International Conferences on Atmospheric Chemical Mechanisms, Aerosol Modeling Algorithms, and Meteorology Modeling
- Staff publications in peer-reviewed technical journals

# Using Models in SIP Strategy Development

- Assessing relative effectiveness of different precursors
- Identifying magnitude of precursor reductions needed to meet standards
- Evaluating impacts of reductions in different source sectors

Overview of Modeling Results for South Coast and San Joaquin Valley

0

# **California's Comprehensive** Assessment of PM<sub>2.5</sub> Science

 Science documented in SIPs, workshops, and peer-reviewed publications

> by Lynn Terry, Karen Magliano,

and Ajith Kaduwela Lynn Terry, MS, is a

deputy executive officer at the Air Resources Board of the California Environ ental Protection Agency in Sacramento, CA. She oversees the Air Quality

Planning and Science Division and the Research ion. Karen Magliano,

MS, is the assistant division

Planning and Science Div

Ph.D., is a staff air pollution

specialist in the Modeling

and Meteorology Branch

of the Air Quality Planning

and Science Division. He is also affiliated with the

Department of Land, Air,

and Water Resources and

the Air Quality Research

Center at the University of

sion. Aiith Kaduwela.

chief of the Air Quality

- NO, most effective on a regional basis
- PM<sub>25</sub> reductions effective for targeted attainment needs

#### **California's Success in Reducing PM<sub>2.5</sub> Pollution**

Since 2000, annual concentrations of fine particu- atmospheric mix, and California's emission control late matter (i.e., particles less than 2.5 micrometers programs have successfully targeted the most sigin diameter or PM2.5) have dropped approximately inificant emission sources. While PM2.5 attainment 50% in the South Coast Air Basin (SC) and the San strategies have varied somewhat in different loca-Joaquin Valley (SJV) and both regions are expected tions, the major strategies have included Califorto attain the annual standard of 15 µg/m<sup>3</sup> by the nia's longstanding oxides of nitrogen (NO<sub>x</sub>) control 2014 deadline. Compliance with the 24-hr standard programs; statewide fleet rules to reduce both of 35 µg/m<sup>3</sup> is projected in SJV by the 2019 dead- NOx and PM from diesel engines; the phase-out of line and in SC by 2014. The downward trend in most open burning; and the implementation of the peak annual average PM2.5 concentration in episodic controls for residential wood-burning. California's major urban areas is shown in Table 1.

Implementation of the diesel fleet regulations As noted in John Bachmann's introduction to this adopted by the California Air Resources Board

# Ozone Modeling to Support Upcoming SIPs

- Initial modeling for South Coast and San Joaquin Valley for 2016 SIPs underway
- Builds upon modeling conducted for prior ozone SIPs in these regions
- Early model runs focus on response to broad emissions reductions

## Nature of Modeling Evaluation

- Series of modeling runs evaluate benefits of reducing individual precursors
- Reflects percent reduction from today's emission levels
- Benefits shown as percent ozone remaining after reductions
- Modeling runs also evaluate combinations of VOC and NO<sub>x</sub> reductions

#### Relative Effectiveness of NO<sub>x</sub> Reductions: San Joaquin Valley



#### Relative Effectiveness of VOC Reductions: San Joaquin Valley



#### Comparison of Precursor Effectiveness: San Joaquin Valley



#### Comparison of Precursor Effectiveness: South Coast



# Benefits of Combined Strategy: South Coast Ozone



8-Hour Ozone Levels

Modeled: 75% NO<sub>x</sub> + 40% VOC Reduction

# Need for Regional NO<sub>x</sub> Reductions in South Coast

- Modeling indicates large NO<sub>x</sub> reductions needed for attainment
- Modeling can also assess benefits of reducing emissions from different source sectors or locations
- Emission inventories and satellite images indicate regional distribution of NO<sub>x</sub>

# Distribution of NO<sub>x</sub> in the South Coast





0 5 10 20 Mile

#### Spatial distribution of summer 2012 NO<sub>x</sub> emissions

Satellite image of summer 2012 NO<sub>x</sub> concentrations



- Continued assessment of precursor relationships
- Evaluation of role of natural sources and transport
- Detailed modeling to assess benefits of reductions from individual source sectors and potential strategy scenarios

# From Science to Strategy

### **Key Science Findings**

- NO<sub>x</sub> reductions are key to ozone and PM<sub>2.5</sub> attainment
- Large NO<sub>x</sub> reductions needed, coming from many source sectors
- VOC reductions important for progress in South Coast, less effective in SJV
- Targeted reductions in other precursors beneficial for PM<sub>2.5</sub>

#### Science to 2016 SIP Strategy

- Science identifies what reductions are needed for attainment
- Strategy development process:
  - Identifies from where reductions will come
  - Defines *how* reductions will be achieved through specific measures and actions
  - Considers who needs to take action through national, state, regional and local controls
  - Integrates when those reductions need to occur from multi-pollutant perspective, including climate

## **Identifying Contributing Sources**

South Coast NO<sub>x</sub> Emissions (tons/day)



## **Identifying Strategies for 2016 SIP**

- Requires long-term, comprehensive reductions across all sectors
- Encompasses improved technology, fuels, energy efficiency, planning, and infrastructure
- Planning scenarios integrate emission benefits of combined air quality and climate actions
- Modeling can then assess air quality benefits of specific scenarios

# SIP Planning: 2014-2016

- Ozone and PM<sub>2.5</sub> SIPs due in 2016
- Collaborative effort involving ARB, air districts, and U.S. EPA
- Air quality modeling has begun, with continuing feedback to strategy development
- SIP planning process will parallel development of the freight strategy



#### Summary

- Air quality science provides strong foundation for SIPs
- NO<sub>x</sub> reductions needed for both ozone and PM<sub>2.5</sub>
- VOC reductions are important for progress in South Coast, less effective in SJV
- As standards become more stringent, role of science becomes increasingly important in SIP process

# Leading the Way

- California providing international air quality leadership
- Important to follow science-based process
- Most effective strategies will reflect specific nature of the region