RESEARCH PROPOSALS

March 17, 2005

California Environmental Protection Agency

Ventilation and Indoor Air Quality in New Homes

Indoor Environmental Engineering
Francis J. Offermann
\$1,042,935 (31 months)
Funded by the California Energy Commission

Objective: Conduct a field study to gather information on ventilation characteristics and indoor air quality in new homes.

Expected Results: Representative information on indoor air quality and household ventilation practices from multiple seasons and regions of the state.

Hourly, In-Situ Quantitation of Organic Aerosol Marker Compounds

(Contract augmentation)

University of California, Berkeley Professor Alan Goldstein \$99,819 (9 months)

Objective: To deploy in-situ gas and aerosol phase instrumentation in Fresno and to analyze data sets to resolve organic aerosol source contributions.

Expected Results: Strong source attribution analysis of the major contributors to the organics in PM2.5 in the Central Valley.

Development and Demonstration of an Aerosol Tracer Technique

University of California, Los Angeles Professor Keith Stolzenbach \$87,704 (24 months)

Objective: To test tracer-based field methods by cyclic suspension, deposition, and resuspension.

Expected Results: Better estimation of the downwind migration and consequent health risk of fugitive particle pollution.

Dairy Operations: Comparison of Baseline and Potential Mitigation Practices in the San Joaquin Valley

California State University, Fresno Professor Charles Krauter \$249,980 (36 months)

Objective: To estimate the reactive organic gases (ROG) and ammonia emissions from dairies through a field monitoring and ambient air quality sampling program.

Expected Results: More accurate estimates of ammonia and ROG emissions from dairies; emissions quantification of different manure managing practices; an estimate of achievable emission reductions from various emission reduction technologies.

The Collection and Development of Exhaust Speciation Profiles from Commercial Jet Aircraft Engines

University of Missouri
Professor Philip Whitefield
\$259,966 (12 months)

Objective: To develop up-to-date chemical speciation profiles for the exhaust from modern commercial jet aircraft engines.

Expected Results: Updated data to develop improved commercial jet engine exhaust speciation profiles.

RESEARCH PROPOSALS

March 17, 2005

California Environmental Protection Agency

