# Modeling iLUC For Novel Feedstocks

The Macauba Case – Challenges and Opportunities







# World's first fully-integrated SAF/RD solution from macauba

### **Novel Feedstock**

## **Farming**

## Milling Hydrotreating

## **SAF** Distribution



Macauba, a native Brazilian high-yielding species



178,000 ha of degraded pastures in the Northeast of Brazil



Zero waste: residual biomass is used for energy and co-products



Vegetable oils to be processed in HEFA<sup>1</sup> and converted into SAF



California, US, EU, CORSIA and Brazil

#### TRACEABILITY FROM SEED TO FUEL

**EXPECTED** FIGURES

**SAF PRODUCED (BPD)** 

PLANTED AREA (ha)

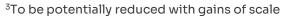
**JOBS CREATED<sup>2</sup>** 

CAPEX

**1**ST UNIT

20k

178k


85k 450k \$3.0bn \$15.0bn<sup>3</sup>

**5 UNITS** (SCALED PROJECT)

100k

~1.0m

<sup>&</sup>lt;sup>1</sup> HEFA unit hydrotreatment is a process that uses hydrogen to refine vegetable oils, fats, or waste oils into sustainable aviation fuel (SAF) <sup>2</sup>Estimated values by FGV





# WHY MACAUBA?

Macauba is a native Brazilian plant that can help move the biofuel industry in a more sustainable direction, generating positive environmental, social, and economic impacts



#### **REGENERATIVE**

Macauba thrives on degraded land, restoring soil health and contributing to carbon sequestration with low iLUC risk



#### **RESILIENT**

Botanical and physiological characteristics that favor the efficient use of water and soil



#### **PRODUCTIVE**

Significantly more oil production per ha than soybean, promoting more efficient use of land



#### **VALUE CHAIN**

Incipient value chain with strong potential for full fruit utilization (little waste), creating solutions for hard-to-abate sectors



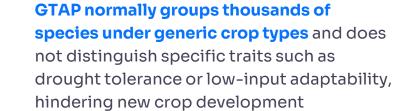


The cultivation of macauba will create social impact and employment opportunities on a large scale

# But current models do not fully reflect these benefits



#### **REGENERATIVE**


Macauba thrives on degraded land, restoring soil health and contributing to carbon sequestration with low iLUC risk





#### **RESILIENT**

Botanical and physiological characteristics that favor the efficient use of water and soil





#### **PRODUCTIVE**

Significantly more oil production per ha than soybean, promoting more efficient use of land

**>>** 

**>>** 

The model assumes average cropland productivity and resource use, underestimating yields and efficiency of high-performance perennials like macauba



#### **VALUE CHAIN**

Incipient value chain with strong potential for full fruit utilization (little waste), creating solutions for hard-to-abate sectors

To accurately reflect macauba's emerging value chains, **new sectors will need to be created**, adding complexity while supporting improved model fidelity



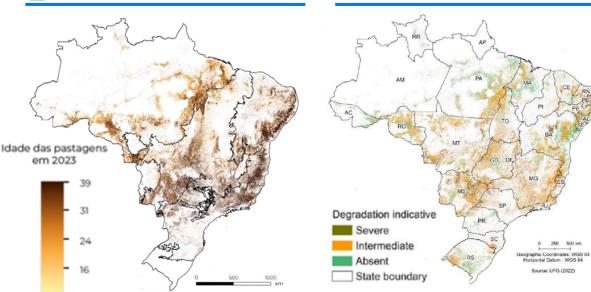


#### **IMPACT**

The cultivation of macauba will create social impact and employment opportunities on a large scale

GTAP treats labor as a single aggregated factor, ignoring new specialized jobs in bioeconomy, new jobs in rural communities, income distribution, and social co-benefits of regenerative crops

# Zoom in: Brazil's degraded pastures present a unique opportunity


With over 100 million hectares of degraded land, macauba offers a solution to regenerate soil and capture carbon — without triggering deforestation or displacing agriculture



MapBiomas and LAPIG highlight degradation in a significant portion of the country's pasturelands in 2022

## **Pastureland age**<sup>1</sup>

Based on Landsat satellite imagery (30 m resolution)



## **Current Model Scope**

- » Ongoing research efforts better represent degraded lands, although GTAP does not yet include degraded land as a specific category
- » As renewable fuel feedstocks are increasingly expanding to degraded lands, integrating this dimension will enhance the model's accuracy and relevance
- Without this refinement, the model cannot fully capture the true impact of regenerative crops like macauba as part of the energy transition

### **Approaches Under Assessment**

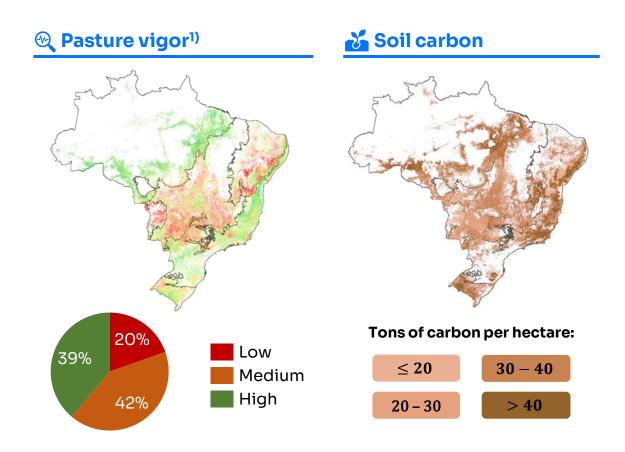






» Served as an input layer for the IIASA<sup>2</sup> study that modeled the AEZ-EF LUT for macauba cultivation on degraded lands

Sources: <u>Lapig UFG</u> (research group within the Federal University of Goiás); <u>MapBiomas Brasil</u> (Brazilian network of geotechnology experts); Aval Technical Services Inc.


**Pastureland degradation** 

- 1. Santos, C.O.d.; Mesquita, V.V.; Parente, L.L.; Pinto, A.d.S.; Ferreira, L.G., Jr. Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive. Remote Sens. 2022, 14, 1024. https://doi.org/10.3390/rs14041024.
- 2. Fischer, G., Reeler, J., Tramberend, S., & van Velthuizen, H. (2024). Sustainable aviation biofuels for South America: A systems analysis investigation into opportunities for sustainable biofuel feedstock production to 2050. International Institute for Applied Systems Analysis & World Wide Fund for Nature South Africa.



# Zoom in: GTAP's carbon assumptions would benefit from greater granularity

While GTAP relies on average values, field data highlights crop-specific soil carbon dynamics that are key to more accurate assessments



### **Model Considerations**

- » GTAP provides a simplified view of soil and ecosystem dynamics that does not reflect real-world complexities
- » The model relies on average carbon values for cropland, pasture, and forest, which do not capture site-specific variations
- » GTAP assumes carbon decreases when land is converted to macauba, though in practice the crop contributes to soil carbon gains
- » Emissions from macauba are overestimated, as the model treats it like a typical annual crop rather than a perennial that can enhance carbon storage



AcelenR standard practice is to define a soil carbon baseline and conduct continuous MRV



<sup>2) &</sup>lt;u>SEEG – Sistema de Estimativa de Emissão de Gases (</u>2023) – Brazilian platform that estimates gas emissions

# Advancing renewable fuels iLUC modeling through strong partnerships

Acelen Renewables is working with leading national and international researchers to enhance models, integrate Brazil-specific dynamics, and support the development of sustainable value chains for low-carbon fuel production



the challenges for novel feedstocks
while upholding sustainability integrity
Ensuring its accurate representation in
models is essential to reflect its true
environmental potential

#### **ACELEN RENEWABLES INITIATIVES**

#### **MODELING EXISTING DATA ON GTAP**



- Preliminary study of the project's iLUC carried out in April 2024
- New scenarios are currently being updated with results expected by Q1 2026

#### COMPREHENSIVE STUDY ON MACAUBA PRODUCTION IMPACT

- Strategic project to analyze the CI score of macauba biofuels in Brazil
- Three analytical models to determine carbon emissions from production and land-use change
- Comprehensive sustainability assessment of the macauba biofuel value chain

#### LOCAL RESEARCH NETWORK











# **THANK YOU!**

Patricia Grossi Reis patricia.grossi@acelen.com

