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Abstract 
This project combined an initial retrospective analysis of trends of fine particulate matter (PM2.5) in 
Riverside, Bakersfield, and San Jose (Task 1) with a series of field campaigns in Riverside, Bakersfield, 
and Wilmington that generated new datasets to aid in understanding present-day PM2.5 sources and 
controls. The generalized additive model (GAM) used in Task 1 provided insight into the meteorological 
and chemical factors that have the most influence on ambient PM2.5 concentrations.  The four ~1-month 
field campaigns were designed to build on what was learned from Task 1 and to produce a dataset suitable 
for additional GAM analysis.  The first two were conducted in Riverside, followed by one in Wilmington 
and one in Bakersfield.  An array of online instruments alternated between sampling ambient air, ambient 
air that is exposed to high oxidant concentrations in a flow reactor, and from each of two environmental 
chambers located outside.  Collectively, the data describe ambient and secondary PM concentrations and 
composition.   The largest contributor to the ambient submicron PM was organic aerosol (58-67%), 
followed by nitrate in Riverside and sulfate in Wilmington and Bakersfield.  The impact on secondary PM 
formation of additions of one or more trace gases to an ambient air background was evaluated at all three 
sites, with a focus on addition of nitrogen oxides (NOx) and ammonia gas.  Addition of 5 ppb of ammonia 
resulted in enhancements of as much as ~0.7 µg m-3 of both organic and nitrate aerosol.  Formation of 
secondary PM from outside air was evaluated with an oxidation flow reactor.  The dependence of the 
amount of PM formed on the extent of atmospheric photochemical processing and on the presence and 
amount of liquid water present in the air mixture were found to differ significantly between sites and 
between days.  Two complementary techniques were used to connect the observed ambient and secondary 
PM with sources and controls.  Positive Matrix Factorization was applied to mass spectra of the organic 
component of ambient PM to identify responsible sources and processes, while the GAM approach used 
for Task 1 was applied to understand the factors most closely associated with both ambient PM 
components and secondary production.   



Executive Summary 

The objective of project 21RD010 was to provide an integrated assessment of fine particulate matter 
(PM₂.₅) sources, formation mechanisms, and controls across key regions of California. The study 
combined retrospective analysis of historical PM₂.₅ data with a series of intensive field campaigns to 
understand both long-term and present-day drivers of particulate pollution. These efforts aimed to support 
the California Air Resources Board (CARB) by improving understanding of the chemical and 
meteorological processes controlling PM₂.₅ and by informing strategies to meet National Ambient Air 
Quality Standards (NAAQS). 

The project consisted of three major thrusts. Task 1 analyzed multidecadal PM₂.₅ trends using a 
generalized additive model (GAM) to identify meteorological and chemical variables having the greatest 
influence on ambient PM concentrations. The analysis incorporated long-term data from the Chemical 
Speciation Network (CSN) and focused on metrics such as mean bias, root mean square error, and R² for 
PM₂.₅ and major species including nitrate, sulfate, ammonium, and organic aerosol. Sensitivity analysis 
revealed that the drivers of PM₂.₅ varied across regions, with meteorological conditions, precursor 
emissions, and secondary formation processes each playing distinct roles. For example, temperature and 
humidity were closely associated with secondary organic and nitrate aerosol formation. The GAM 
analysis provided both quantitative and mechanistic insight into seasonal and interannual variability, 
guiding the subsequent field measurements. 

Tasks 2 and 3 encompassed the design, preparation, and execution of four field campaigns. Each 
campaign lasted about one month and combined advanced online instrumentation to measure both 
ambient PM concentrations and potential secondary PM formation. The setups alternated sampling 
among: (1) ambient air; (2) ambient air processed through an oxidation flow reactor (OFR) to simulate 
photochemical aging; and (3) air within two parallel environmental chambers—referred to as Captive 
Aerosol Growth and Evolution (CAGE) chambers. The Accelerated Production and Processing of 
Aerosols (APPA) reactor complemented the chambers by enabling investigation of the formation of 
secondary PM under controlled oxidation and humidity conditions. Together, these instruments and 
techniques enabled simultaneous examination of ambient and secondary aerosol composition and size 
distributions. 

Across all sites, organic aerosol consistently represented the largest fraction of PM₂.₅ mass. However, the 
relative abundance and composition of organic, nitrate, and sulfate PM varied by location and season. At 
the inland sites in Riverside and Bakersfield, nitrate contributed significantly during cooler months due to 
enhanced gas-to-particle partitioning of ammonium nitrate. In contrast, Wilmington, with strong marine 
and industrial influences, was impacted more by contributions of organics, sulfate, and chloride-
containing particles. The data demonstrated that secondary aerosol formation, particularly from organic 
and nitrate species, was sensitive to local precursor availability and meteorological conditions such as 
temperature, relative humidity, and wind patterns. 

The field measurements also investigated the impact of added trace gases on secondary particle 
formation. Perturbation experiments, in which controlled concentrations of VOCs, NOₓ, or NH3 were 
introduced into one of the dual CAGE chambers, provided direct evidence of chemical sensitivities under 



real-world atmospheric conditions. The results showed that added NOₓ generally had minimal influence 
on PM2.5 or its components, while added ammonia enhanced nitrate and, sometimes, organic aerosol 
formation, particularly under high relative humidity. The lack of response to added NOx may reflect 
insufficient NH3 in the ambient air during the experiments for formation of ammonium nitrate.  Addition 
of alpha-pinene and toluene led to increased organic aerosol concentration, while addition of isoprene did 
not and seemed to have an inhibitory effect.  The findings are consistent with the expectation that the 
response of PM₂.₅ to changes in precursor emissions is nonlinear and highly dependent on local chemical 
regimes. The experiments also demonstrated day-to-day variability in potential secondary PM2.5 
formation and its dependence on environmental conditions.  Aqueous-phase chemistry is shown to be an 
important contributor to PM2.5 formation at each of the three sites.  

Task 4 focused on data analysis and synthesis. Two complementary techniques were used to connect 
measured PM composition with sources and atmospheric processes. Positive Matrix Factorization (PMF) 
was applied to the  organic aerosol mass spectra to identify and quantify the dominant PM sources and 
formation pathways. Factors resolved by PMF included hydrocarbon-like organic aerosol (HOA) 
associated with primary traffic emissions, oxygenated organic aerosol (OOA) linked to secondary 
formation, and nitrate- and sulfate-rich components indicative of aged aerosols. Correlation analyses 
between PMF factors and external variables such as temperature, humidity, and gas-phase precursors 
further highlighted connections between emissions and secondary chemistry. The second approach, 
expanding the GAM used in Task 1, was applied to the field campaign data to identify the meteorological 
and chemical drivers most closely associated with both ambient and secondary PM components. The 
modeling revealed strong regional contrasts, with distinct sets of covariates found to best explain 
measured concentrations.   

The integrated analysis across all sites underscored several consistent patterns. First, organics were the 
dominant PM component statewide, and their secondary production was modulated by both 
photochemical and aqueous-phase pathways. Second, while emission reductions in NOₓ and VOCs have 
historically lowered PM₂.₅ levels, the ongoing decline in the NOₓ:VOC ratio could alter ozone and 
secondary aerosol sensitivities in complex ways. Third, ammonia emerged as an important factor in 
controlling both nitrate and secondary organic aerosol formation, particularly in agricultural and mixed 
urban regions such as the San Joaquin Valley. Fourth, meteorological variability, especially relative 
humidity, temperature, and wind direction, significantly influenced day-to-day PM₂.₅ concentrations and 
composition, complicating attribution of changes solely to emissions. 

The report concludes that combining long-term data analysis with targeted, comprehensive field 
measurements provides a powerful framework for evaluating PM₂.₅ sources and formation mechanisms. 
The GAM and PMF approaches together offered complementary perspectives: the former identified 
causal relationships and meteorological sensitivities, while the latter decomposed complex aerosol 
mixtures into interpretable source categories. The addition of controlled perturbation experiments using 
CAGE and aerosol formation under varying conditions using APPA provided a novel experimental 
capability to isolate and quantify the effects of specific precursors and environmental factors under 
realistic conditions. 



In summary, project 21RD010 successfully achieved its objective of advancing scientific understanding 
of fine particulate matter sources, chemistry, and controls in California. The results directly support 
CARB’s mission to design effective and equitable air quality policies. The project established a 
foundation for future studies that combine observational data and diverse modeling techniques to predict 
how evolving emissions and climate will shape air pollutant concentrations in the coming decades.  
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Abstract 

This project combined an initial retrospective analysis of trends of fine particulate matter (PM2.5) in 
Riverside, Bakersfield, and San Jose (Task 1) with a series of field campaigns in Riverside, Bakersfield, 
and Wilmington that generated new datasets to aid in understanding present-day PM2.5 sources and 
controls. The generalized additive model (GAM) used in the Task 1 analysis provided insight into the 
meteorological and chemical factors that have the most influence on ambient PM2.5 concentrations.  Each 
of the four field campaigns included about a month of data collection.  The first two were conducted in 
Riverside, followed by one in Wilmington and one in Bakersfield.  An array of online instruments 
alternated between sampling ambient air, ambient air that is exposed to high oxidant concentrations in a 
flow reactor, and from each of two environmental chambers located outside.  Collectively, the data 
describe ambient and secondary PM concentrations and composition.  Organics contributed the most of 
any measured components to the PM mass concentration at all three sites.  The impact on secondary PM 
formation from the addition of one or more trace gases to an ambient air background was evaluated at all 
three sites, with a focus on the addition of nitrogen oxides (NOx) and ammonia gas.  Formation of 
secondary PM from outside air was evaluated with an oxidation flow reactor.  The dependence on the 
equivalent atmospheric photochemical processing time and on the presence and amount of liquid water 
present in the air mixture were found to differ significantly between sites and between days.  Two 
complementary models were used to connect the observed ambient and secondary PM with sources and 
controls.  Positive Matrix Factorization was applied to mass spectra of the organic component of ambient 
PM to identify responsible sources and processes, while the GAM approach used for Task 1 was applied 
to understand the factors most closely associated with both ambient PM components and secondary 
production. 

 

 

  



Task Summary and Work Described in This Project 

 

The five tasks of this project were: 

Task 1:  Evaluation of long-term trends 

Task 2:  Design and prepare for field campaigns 

Task 3:  Conduct field measurements 

Task 4:  Data analysis 

Task 5:  Final Report 

 

The results of Task 1 were used to guide some of the measurement approaches and analyses for Tasks 2 – 
4.  Even so, it was somewhat distinct from the other three.  Thus, the activities and results of Task 1 are 
presented independently of those for Tasks 2 – 4.  Tasks 2 and 3 are closely connected, with Task 2 
focused on the pre-campaign preparation and Task 3 on campaign execution and initial data analysis.  
Task 4 builds upon the analysis done as part of Task 3 and adds in datasets from other available sources.   
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1. Task 1 Activities and Results - Multidecadal Analysis of Meteorological 
and Emissions Regimes for PM2.5 Across California 

 

1.1 Background  

As of 2025, large swathes of California remain in nonattainment of the U. S. Environmental Protection 
Agency (EPA)’s National Ambient Air Quality Standards (NAAQS) for particulate matter (PM) (“Area 
Designation Maps,” n.d.). PM2.5 nonattainment is concentrated around the state’s most populous regions. 
This puts many millions of California residents at risk of adverse health effects from PM2.5 exposure. 
PM2.5 is associated with adverse health effects, including morbidity and mortality from respiratory and 
cardiovascular diseases (Ackermann-Liebrich et al., 1997; Atkinson et al., 2001; Dockery et al., 1993; 
Halonen et al., 2008; Pope et al., 1995; Raizenne et al., 1996; Zanobetti et al., 2000). Furthermore, the 
EPA has recently revised the PM2.5 annual standard to 9 µg m-3 down from its previous value of 12 µg m-3 
(US EPA, 2023). For California to meet the revised standard and safeguard public health, the forces 
driving nonattainment must be well characterized so that effective control strategies can be designed. 

Driving forces behind PM2.5 nonattainment in California include emissions and meteorology. Emissions 
of nitrogen oxides (NOX) and sulfur oxides (SOX) are oxidized to nitrate (NO3

-) and sulfate (SO4
2-), 

respectively, while ammonia (NH3) emissions form ammonium (NH4
+). In addition to these inorganic 

aerosol species, emissions of reactive organic gases (ROG) provide reactants for secondary organic 
aerosol (SOA) formation. Further, different aerosol species dominate PM2.5 pollution in different regions 
of California. In addition to the geographic variability in PM2.5 mass profiles, meteorology varies 
throughout the state and plays a role in high ambient PM2.5 levels (Zhu et al., 2019). Wind, humidity, and 
temperature patterns differ, for instance, between coastal regions like the South Coast Air Basin (SoCAB) 
and inland regions like the San Joaquin Valley (SJV), leading to differential meteorological modulation of 
PM2.5 formation regimes. As such, PM2.5 levels depend on a complex interplay between numerous 
environmental factors, precluding an immediate understanding of the interaction of meteorological and 
emissions drivers and their role in PM2.5 nonattainment in California. 

The association between PM2.5 and a set of covariates can be inferred through the use of generalized 
additive models (GAMs) (Gao et al., 2022; Pearce et al., 2011a). GAMs enable us to capture complexities 
in the statistical relationships between PM2.5 and covariates by fitting nonlinear functions to the covariates 
of interest. Corresponding to each covariate is a nonlinear fit that can be analyzed independently of 
others’ fits, elucidating the distinct effects of each individual covariate. Moreover, with variable 
importance ranking, we can identify which covariates are most important for modeling PM2.5, thereby 
identifying potential drivers of high ambient PM2.5 levels. This makes the problem of understanding PM2.5 
nonattainment in California more tractable. 

Knowledge of how different covariates are associated with PM2.5 throughout California and specifically 
which covariates drive high ambient PM2.5 levels can inform regulatory policy design. By taking 
geographic variability into account and focusing on driving variables, policymakers can better target and 
tailor regulations to control PM2.5. 
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This regional approach is well suited to informing programs like the California Air Resources Board 
(CARB)’s Community Air Protection Program (“Community Air Protection Program,” n.d.). 
Implemented in response to Assembly Bill (AB) 617, which seeks to alleviate air pollution impacts on 
environmental justice communities, the Community Air Protection Program supports community-level 
efforts to monitor air quality and reduce emissions. As the locations we consider in this paper are all 
located in AB 617 communities, our results can help inform Community Air Protection Program 
strategies. 

Our main goal is to develop models that characterize the historical PM2.5 response to different chemical 
and meteorological regimes in California. Exactly how PM2.5 responds to different data variables and how 
that response differs across the state are not well understood. While Vutukuru et al. (2006) have 
characterized simulated SOA responses as functions of certain covariates, their analysis examines just one 
meteorological and two emissions covariates and is limited to the Los Angeles area  More recent work by 
Nussbaumer and Cohen (2021) produced temperature trends for PM2.5 in the Los Angeles Basin . 
Numerical modeling by Zhu et al. (2019), however, shows that emissions and meteorological impacts on 
PM2.5 vary by air basin, indicating that the response curves of Vutukuru et al. and Nussbaumer and Cohen 
may not be generalizable to the rest of California (Zhu et al., 2019). Our work extends the 
characterization of PM2.5 response curves to more of California and a greater number of covariates. 
Moreover, our work incorporates measured rather than simulated data, leveraging California’s extensive 
measurement network. In this paper, we present a series of GAMs for total and speciated PM2.5 at 3 
Chemical Speciation Network (CSN) sites in the state of California. These models characterize PM2.5 
responses to chemical and meteorological variables throughout the state and how that response differs 
from site to site. 

1.2 Materials and Methods 

1.2.1  Study Area 

We construct GAMs at 3 CSN sites in the state of California over many years of data. These sites are 
located in Bakersfield (2004-2019), Riverside (2001-2019), and San Jose (2011-2019) and are selected as 
representative of three major geographical regions each located in distinct air basins. 

. From these sites, we obtain PM2.5 mass and speciation data. We also utilize data from meteorological 
stations in the proximity of these CSN sites, as well as from the nearest radiosonde stations or the North 
American Mesoscale (NAM) historical analysis product. 

Bakersfield is located in the San Joaquin Valley, which has topography characterized by mountain ranges 
in the east, west, and south that inhibit the transport of air pollutants out of the valley. Climate in the San 
Joaquin Valley is characterized by high temperatures, low humidity, and sparse rainfall (Marjollet et al., 
2015). NOX and VOC emissions in the San Joaquin Valley are dominated by mobile sources and oil and 
gas production, respectively, while primary PM2.5 emissions come mainly from road and agricultural dust 
(“ARB Almanac 2013,” n.d.) . 

Riverside is found in the South Coast Air Basin, which is bounded by the Pacific Ocean on the west and 
mountains to the north, and east. The regional climate is characterized by warm, sunny days and stagnant 
air conditions exacerbated by frequent inversions (“ARB Almanac 2013,” n.d.). NOx and VOC emissions 
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are dominated by on-road motor vehicles while primary PM2.5 emissions come predominantly from 
commercial cooking (“ARB Almanac 2013,” n.d.; Cheung et al., n.d.). 

San Jose is in the San Francisco Bay Area, which is a coastal area dominated by the San Francisco Bay, 
leading to year-round mild temperatures and good ventilation. Emissions are dominated by on-road 
motor vehicles for NOX and VOC and wood burning for primary PM2.5 (“ARB Almanac 2013,” n.d.; 
“Protecting Public Health in the San Francisco Bay Area,” 2012).

 
Figure 1.1.  Map of study area showing locations of CSN sites in California. 

1.2.2  Choice of Covariates  

We investigate a set of covariates chosen based on existing work as well as first principles (Blanchard et 
al., 2019; Gao et al., 2022; Ivey et al., 2022; Pearce et al., 2011a; Seinfeld and Pandis, 2016). Our models 
include meteorological and gaseous covariates. Meteorological covariates include surface and upper-air 
measurements. Gaseous covariates included are those measured at collocated photochemical assessment 
monitoring stations (PAMS) and play a role in secondary PM formation (details below). 

1.2.3  Air Pollution Data 

Air pollution data are obtained from the EPA Air Quality System (AQS)’s pre-generated data files. We 
retrieve daily summary data for all species, although species measurements are not available every day. 
Species of interest include total PM2.5 mass (PM2.5), organic carbon (OC), elemental carbon (EC), nitrate 
(NO3

-), sulfate (SO4
2-), and ammonium (NH4

+). We use PM2.5 as measured at selected PM2.5 Monitoring 
Network sites and its speciated components as measured at collocated CSN sites, which all sample for 24 
hours at a collection frequency of 1-in-3 days (“40 CFR 58.12 -- Operating schedules.,” n.d.). The PM2.5 
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Monitoring Network sites under consideration sample PM2.5 either with Federal Reference Method 
(FRM) R&P Model 2025 PM2.5 Sequential Air Samplers or Federal Equivalent Method (FEM) MetOne 
BAM-1020 samplers. CSN sites sample 33 aerosol species on Teflon filters and ions on nylon filters in 
MetOne SASS/SuperSASS samplers. Quartz filters in URG3000N samplers are used to sample carbon. 
Both carbon species, EC and OC, are measured using the thermal optical transmittance (TOT) method. 
OC is corrected for sampling artifacts according to Ahangar et al. 2021: we linearly regress OC against 
PM2.5 and calculate corrected OC by subtracting the model’s intercept and omitting negative values 
(Enayati Ahangar et al., 2021). 

In addition to PM data, gaseous species are also retrieved from AQS. These include formaldehyde 
(HCHO), nitrogen oxides (NOX), and ozone (O3) as representatives of reactants in secondary PM2.5 
formation or, in the case of HCHO, as a tracer of those reactants. These species are measured at PAMS 
via automated gas chromatography coupled with a mass spectrometer or flame ionization detector, an 
automated chemiluminescence detector, or a UV absorbance monitor, respectively (Hafner and Penfold, 
2018). 

1.2.4  Meteorological Data 

All surface meteorological data are retrieved from the California Air Resources Board’s (CARB) Air 
Quality and Meteorological Information System (AQMIS) or meteorological monitors available at CSN-
collocated PAMS (“AQ Data Query,” n.d.). From AQMIS, we retrieved daily maximum solar radiation 
from the meteorological monitors located nearest to the CSN site under consideration. Daily average 
relative humidity, daily average surface temperature, and daily average 10-meter wind speed and 
direction are retrieved from PAMS. 

Upper-air meteorology observations, defined as meteorological data measured at the 850 mb air pressure 
level, are retrieved from the NOAA Earth System Research Laboratory (NOAA/ESRL) Radiosonde 
Database (“NOAA/ESRL/GSL - RAOB,” n.d.). We used upper-air meteorology at this pressure level 
following Blanchard et al. (2019) to quantify potential transport effects. The radiosonde station chosen for 
each CSN site is the nearest one with a data archive that does not restrict our timespan. From 
NOAA/ESRL, we retrieved wind speed, wind direction, temperature, and dew point depression data. Dew 
point is recovered from the depression and combined with temperature to calculate upper-air relative 
humidity using the August-Roche-Magnus equation (Equation 1.1) (Alduchov and Eskridge, 1997). 

 𝑒𝑒𝑠𝑠(𝑇𝑇) = 6.1094 exp �
17.625 𝑇𝑇
𝑇𝑇 + 243.04

� (Equation 1.1) 

 

In Equation 1.1, es is saturation vapor pressure and T is temperature in Celsius. Based on Equation 1.1, 
relative humidity is calculated as 

 𝑅𝑅𝑅𝑅 = 100% ×
𝑒𝑒𝑠𝑠(𝑇𝑇𝑑𝑑)
𝑒𝑒𝑠𝑠(𝑇𝑇)

 (Equation 1.2) 

In Equation 1.2, T and Td are temperature and dew point, respectively (Seinfeld and Pandis, 2016). 

In addition to observed upper-air meteorology, we incorporate modeled upper-air data because the Fresno 
and Bakersfield CSN sites are not within reasonable proximity to active radiosonde launch sites. We used 
the North American Mesoscale (NAM) 12-kilometer historical analysis product for the same covariates at 
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the same pressure level as our radiosonde data, namely wind speed and direction (recovered from the U 
and V components of wind) as well as relative humidity at the 850 mb pressure level.  

1.2.5  Generalized Additive Models (GAMs) 

The modeling tool we employ in this study is the generalized additive model, introduced by Hastie and 
Tibshirani in 1986 (Hastie and Tibshirani, 1986). We use GAMs because of their ability to capture 
nonlinear relationships between covariates and the target variable to be modeled and for how they 
facilitate a covariate-by-covariate analysis of the resulting models (Gao et al., 2022; Pearce et al., 2011a). 
A GAM is analogous to a generalized linear model (GLM) of the form 

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 +�𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

+ 𝜖𝜖 (Equation 1.3) 

In Equation 1.3, 𝑔𝑔 is the link function that represents the relationship between the covariates 𝑥𝑥𝑖𝑖 and the 
expected value 𝜇𝜇 of the target variable, where the 𝛽𝛽𝑖𝑖 are the fitted model coefficients, 𝛽𝛽0 is the intercept, 
and 𝜖𝜖 are the residuals. When 𝑔𝑔 is the identity function, we have multiple linear regression, whereas we 
have logistic regression in the case where 𝑔𝑔 is the logit link 𝑔𝑔(𝑝𝑝) = log � 𝑝𝑝

1−𝑝𝑝
�. Many choices for the link 

function exist. 

In contrast to the form of a GLM, which fits constant coefficients of the covariates 𝑥𝑥𝑖𝑖, a GAM fits 
functions of 𝑥𝑥𝑖𝑖. GAMs therefore have the form 

 𝑔𝑔(𝜇𝜇) = 𝛽𝛽0 + �𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑖𝑖

+ 𝜖𝜖 (Equation 1.4) 

In Equation 1.4, the functions 𝑓𝑓𝑖𝑖 are fit with smoothing algorithms and typically take the form of splines. 
The fits are therefore data driven and capture nonlinear relationships naturally. 

We fit our GAMs using the package mgcv in the R environment for statistical computing (R Core Team, 
2021; Wood, 2011, 2000). We use mgcv’s gam function to fit our models. For full algorithm details see 
Wood (2011) and Wood et al. (2016) (Wood, 2011; Wood et al., 2016). Briefly, gam constructs and 
iteratively penalizes basis functions for each smoothing spline using one of several smoothing parameter 
selection criteria such as generalized cross validation (GCV) or restricted maximum likelihood (REML) 
scores (“R: Generalized additive models,” n.d.). For the model specification detailed next, we choose 
REML as our scoring criterion because it is less prone than GCV to selecting local minima rather than the 
desired global minimum in the score space (“R: Generalized additive models,” n.d.). 

1.2.6  Model Description 

Our base model is 

 

𝑦𝑦� = log(𝜇𝜇) = 𝛽𝛽0 + 𝑠𝑠(TMAX) + 𝑠𝑠(WINDS) 
+ 𝑠𝑠(WINDD) + 𝑠𝑠(RH)  
+ 𝑠𝑠(SR) +  𝑠𝑠(RH850) 
+ 𝑠𝑠(WS850) + 𝑠𝑠(WD850) 
+ 𝑠𝑠(NOX) + 𝑠𝑠(HCHO) 
+ 𝑠𝑠(O3) + 𝜖𝜖 

(Equation 1.5) 

In Equation 1.5, 𝑦𝑦� is the model fit and the argument of the log link, 𝜇𝜇, is the expected value of the target 
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variable, which is 24-hour average PM2.5 mass or one of its speciated components. We use the log link in 
our models following precedent (Aldrin and Haff, 2005; Gao et al., 2022; Pearce et al., 2011a). Moreover, 
we found the log link to reduce bias in our models’ fit against annual 98th percentile values as compared 
with the identity link. As mentioned before, 𝛽𝛽0 is the model intercept and 𝜖𝜖 is the residual. We express 
spline fits as 𝑠𝑠(∙). Table 1.1 summarizes the covariates. 

 

Table 1.1.  Summary of terms in Equation 1.5. 

 

Covariate Description Units 

TMAX Daily maximum surface temperature °C 

WINDS Daily average 10 m wind speed m s-1 

WINDD Daily average 10 m wind direction Degrees from north 

RH Daily average surface relative humidity % 

SR Daily maximum solar radiation W m-2 

RH850 850 mb daily average relative humidity % 

WS850 850 mb daily average wind speed m s-1 

WD850 850 mb daily average wind direction Degrees from north 

NOX Daily average nitrogen oxides concentration ppb 

HCHO Daily average formaldehyde concentration ppb of carbon (ppbC) 

O3 Daily average ozone concentration ppb 

 

Each fit 𝑠𝑠(∙) is a cubic regression spline (cyclic for wind direction) with an extra shrinkage penalty that 
enables the spline to be penalized to zero at sufficiently high smoothing parameters (“R: Generalized 
additive models,” n.d.). This manifests as automatic model selection, zeroing out and essentially dropping 
terms that the smoothing process heavily penalizes, which are the terms that do not contribute explanatory 
power to the model. This facilitates a data driven approach to distinguish on a site-by-site basis which 
covariates drive PM2.5 levels and which have less impact. 

A further important detail about our model specification is the number of knots chosen for the spline fits. 
The choice of knot quantity has consequences for fit, with too many knots often resulting in overfitting 
and too few knots leading to bias from underfitting (Perperoglou et al., 2019). In all of our models, we fit 
splines with 4 knots. While our use of penalization would help control overfitting if we used many knots, 
we found no improvement in models fit with more than 4 knots per spline. 

Finally, we need to specify an error distribution. Defaulting to a Gaussian distribution produces 
heteroscedastic residuals with predictions that are biased low at large observations of the target variable. 
The resulting error distribution suggests a skewed distribution is most appropriate. Therefore, we choose a 
Gamma distribution, and the resulting models produce homoscedastic residuals. 
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1.2.7  Model Performance Evaluation 

Model performance metrics reported are calculated by 10-fold cross validation. Performance metrics 
include mean bias (MB), root-mean-square error (RMSE), and coefficient of determination (R2). We use 
the standard R2 over the adjusted R2 because our models are penalized and zero out non-explanatory 
covariates. 

 
𝑀𝑀𝑀𝑀 = � (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
 

 
(Equation 1.6) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁

𝑖𝑖=1
𝑁𝑁

 (Equation 1.7) 

 
𝑅𝑅2 = 1 −

∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

 (Equation 1.8) 

In Equations 1.6-8, 𝑦𝑦�𝑖𝑖 are the modeled values, 𝑦𝑦𝑖𝑖 are the observed values, 𝑁𝑁 is the number of data points, 
and 𝑦𝑦� is the mean of the observed data. 

1.2.8  Variable Importance 

While penalization in the model fitting algorithms helps identify driving covariates, we additionally 
employ a variable importance ranking method to further distinguish between impactful covariates and 
those that do not hold significant explanatory potential. 

We use a variance-based method of global sensitivity analysis for our variable importance determination. 
Global sensitivity analysis, as opposed to local sensitivity analysis, better characterizes model sensitivity 
to covariates in the presence of non-additivity, typically manifesting as covariate interactions (Ferretti et 
al., 2016). Therefore, global sensitivity analysis enables the ranking of covariates by importance while 
simultaneously testing for the presence of significant interactions. 

The measure of importance we calculate is the Sobol’ index, which apportions the variance in model 
output attributable to different covariates. The index of any given covariate is the proportion of total 
model variance attributable to that covariate (Puy et al., 2021). 

To find the first order Sobol’ index of a covariate 𝑥𝑥𝑖𝑖, we first calculate the model output 𝑦𝑦� after varying 
all other covariates with fixed 𝑥𝑥𝑖𝑖. Borrowing notation from sensitivity analysis, we denote by 𝒙𝒙~𝑖𝑖 all 
covariates except the 𝑖𝑖th, where “~𝑖𝑖” indicates all except 𝑖𝑖. We do this for each value of 𝑥𝑥𝑖𝑖 and then take 
the mean of the variance in model output,  

𝐸𝐸[𝑉𝑉(𝑦𝑦�|𝑥𝑥𝑖𝑖)], 

where 𝐸𝐸(∙) and 𝑉𝑉(∙) are the mean and variance operators, respectively. We note that 

 𝑉𝑉(𝑦𝑦�) = 𝑉𝑉[𝐸𝐸(𝑦𝑦�|𝑥𝑥𝑖𝑖)] + 𝐸𝐸[𝑉𝑉(𝑦𝑦�|𝑥𝑥𝑖𝑖)] (Equation 1.9) 

where 𝑉𝑉(𝑦𝑦�) is the model variance. Let 

𝑉𝑉𝑖𝑖 = 𝑉𝑉[𝐸𝐸(𝑦𝑦�|𝑥𝑥𝑖𝑖)] 

Then the first order Sobol’ index for covariate 𝑥𝑥𝑖𝑖 is 
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 𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝑉𝑉(𝑦𝑦�)

 (Equation 1.10) 

𝑆𝑆𝑖𝑖 measures the individual variance contribution of 𝑥𝑥𝑖𝑖. We can additionally calculate the total index 

 
𝑇𝑇𝑖𝑖 = 1 −

𝑉𝑉[𝐸𝐸(𝑦𝑦�|𝒙𝒙~𝑖𝑖)]
𝑉𝑉(𝑦𝑦�)  (Equation 1.11) 

The total index 𝑇𝑇𝑖𝑖 measures the sensitivity of the model to 𝑥𝑥𝑖𝑖 and any interactions. If 𝑆𝑆𝑖𝑖 < 𝑇𝑇𝑖𝑖, this 
suggests the presence of significant covariate interactions. On the other hand, if 𝑆𝑆𝑖𝑖 ≈ 𝑇𝑇𝑖𝑖 and ∑ 𝑆𝑆𝑖𝑖 ≈ 1𝑖𝑖 , 
this suggests the model is additive and has no significant interactions. Any significant interaction terms 
can be analyzed with higher order Sobol’ indices, which would fix two or more covariates together and 
compute the model variance attributable to their interactions. Sobol’ indices are estimated with the 
sensobol package in R via Monte Carlo methods with 95% confidence intervals bootstrapped (Puy et 
al., 2021). 

1.2.9  Marginal Effects 

Additionally, we report the influence of individual covariates as marginal effects. We calculate marginal 
effects as follows. We hold each covariate except that which is under consideration, that is, 𝒙𝒙~𝑖𝑖, constant 
at the observation corresponding to the mean fitted value 𝑦𝑦��. We then make predictions as we vary only 
the covariate of interest 𝑥𝑥𝑖𝑖 over its observed range. We denote this by 

 𝑀𝑀𝑀𝑀 = 100% × �exp�𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦��)� − 1� (Equation 1.12) 

In Equation 1.12, 𝑀𝑀𝑀𝑀 is the marginal effect, 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖) is the spline fit for covariate 𝑥𝑥𝑖𝑖, and 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖|𝑦𝑦��) is the 
spline fit for covariate 𝑥𝑥𝑖𝑖 at the value of 𝑥𝑥𝑖𝑖 that corresponds to the mean fitted value 𝑦𝑦��. The marginal 
effect is interpreted as the percent change from the mean fitted value as 𝑥𝑥𝑖𝑖 varies (Pearce et al., 2011b). 
To see this, note that the full model would include the exponential of the sum of every spline, but we 
would subtract each spline evaluated at the value corresponding to the mean fitted value 𝑦𝑦��. Since we are 
holding 𝒙𝒙~𝑖𝑖 constant at that same value, all but two terms cancel, leaving us with Equation 1.12.  

1.3  Results and Discussion 

1.3.1  Model Performance Metrics 

We report model performance metrics for selected species at the CSN sites in San Jose, Bakersfield, and 
Riverside. Results are highlighted for PM2.5 and the dominant speciated component for each site. These 
sites are selected as representatives of three distinct air sheds and geographic regions of California. 

We report metrics for the 24-hour average, 3-year average annual mean, and 3-year average 98th 
percentile values, the latter two of which are the values regulated by the PM2.5 NAAQS. All models 
predict 24-hour average values, so the metrics reported are for 24-hour values and 24-hour values 
aggregated to annual values. Annual and 98th percentile values include an additional rolling average over 
the preceding two years to produce 3-year backward rolling averages. 
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Table 1.2.  24-hour, 3-year average annual mean, and 3-year average 98th percentile MB, RMSE, and R2 
values for PM2.5 and species at the CSN sites under consideration. 

Metric Category 
Bakersfield 
PM2.5 

Bakersfield 
NO3 

Riverside 
PM2.5 

Riverside 
NO3 

San 
Jose 
PM2.5 

San 
Jose 
OC 

MB 

(µg m-3) 

24-hour -0.22 -0.22 -0.065 0.022 -0.11 -0.018 

Annual 0.22 -0.17 -0.72 -0.40 -0.13 -0.011 

98th 
Percentile -2.0 -1.1 -2.5 -1.0 -1.1 -0.30 

RMSE 

(µg m-3) 

24-hour 8.9 4.4 7.8 3.8 4.0 1.2 

Annual 3.4 1.6 3.0 1.5 0.99 0.40 

98th 
Percentile 

6.1 3.0 5.4 2.7 3.3 1.1 

R2 (%) 

24-hour 66 67 54 54 68 71 

Annual 77 79 71 75 74 71 

98th 
Percentile 

71 70 67 67 66 76 

 

We report MB and RMSE to characterize the distribution of fitted values around the observed value, with 
MB representing a measure of central tendency and RMSE measuring spread. Generally, the models 
perform reasonably well with respect to MB and RMSE, with daily MB values below 0.25 µg m-3, 
although daily RMSE attains a wider range. 

The most salient metric for our objective, however, is the coefficient of determination, R2. R2 measures 
the proportion of observed variability captured by the model and therefore measures how well the model 
characterizes the data’s behavior, which is our primary goal. From this perspective, our models are 
performing well. Our worst-performing model still captures 54% of the observed 24-hour average 
variability. 

While our models perform satisfactorily with respect to daily metrics, their performance improves when 
aggregated to NAAQS values. This suggests our models may be useful for investigating factors that 
influence attainment or a lack thereof. 

In general, our San Jose models are performing best while our Riverside models perform worst. Based on 
R2, one potential reason for this trend is that our models are missing important sources of variability, such 
as organic vapors or mixing layer height, and the relative importance of those missing sources is greatest 
in Riverside. 

1.3.2  Variable Importance 

We report variable importance from our sensitivity analysis for each of the three sites under consideration 
for both their PM2.5 and speciated component models. 
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An important result from our sensitivity analysis is the finding that, for each model, the sum of first order 
Sobol’ indices is approximately unity and each covariate’s first order index is indistinguishable from its 
total index. The implication is that there are no significant interactions among the selected covariates in 
the models. That is, our models are truly additive. 

 

 
Figure 1.2.  Sensitivity analysis results for a) Bakersfield PM2.5, b) Riverside PM2.5, and c) San Jose 
PM2.5. 

 

We see that Bakersfield PM2.5 is influenced most strongly by gaseous precursors, suggesting a strong 
secondary component to Bakersfield PM2.5. The only meteorological covariates that contribute variance 
significantly different from zero are solar radiation as well as upper-air and surface relative humidity, 
altogether contributing 24% of model variance. NOX and HCHO, on the other hand, account for 66% of 
model variance, with NOX alone contributing 50%. The remainder of the model variance is contributed by 
O3 and temperature. Given the importance of NOX, we might expect nitrate aerosol to be a prominent 
speciated component of Bakersfield PM2.5. In fact, it is the dominant speciated component, as we see in 
Figure 1.3. Distinguishing between meteorological and gaseous precursor covariates, we find that direct 
meteorological effects contribute 29% of model variance with the remaining 71% attributable to 
chemistry. 

In Riverside, we see that meteorology plays a more significant role than in Bakersfield, with relative 
humidity appearing as the most important covariate, contributing 22% of model variance. Altogether, the 
significant meteorological covariates, i.e., those whose 95% confidence intervals do not cross zero, 
contribute 48% of model variance, nearly twice as much as in Bakersfield. Gaseous precursors account 
for the remaining 52%. Therefore, we see a differential in meteorological importance between Bakersfield 
and Riverside. In the former, less than a third of model variance is attributable to meteorology, while one 
half is contributed by meteorology in Riverside. 

San Jose PM2.5 is dominated by the influence of HCHO, indicating a strong association with 
photochemistry and potentially the presence of significant SOA. Indeed, OC, which includes SOA, 
constitutes the dominant speciated component of San Jose PM2.5. Including NOX and O3, gaseous 
covariates contribute 66% of model variance, with the remaining 34% attributable to direct meteorology. 
Thus, San Jose falls in between Bakersfield and Riverside on a spectrum from meteorology-dominance to 
precursor-dominance with respect to PM2.5. 
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While meteorology influences chemistry, our additive model structure excludes covariate interactions 
because they were found to contribute negligible explanatory power at the modeled timescales. Therefore, 
the effects we see are the main effects attributable to the direct or proxy influences of precursors and 
meteorology. 

We focus next on the dominant speciated components for our sites as illustrated in Figure 1.3. 

 
Figure 1.3. Average PM2.5 speciation by study site. 

 

 

 



12 
 

 
Figure 1.34.  Sensitivity analysis results for a) Bakersfield NO3

-, b) Riverside NO3
-, and c) San Jose 

OC. 

 

Gaseous precursors account for 46% of Bakersfield NO3
- model variance, with NOX contributing 35%. 

This leaves 54% of model variance attributable to meteorology, with temperature being the dominant 
covariate at 25% followed by relative humidity at 18%. 

The Riverside NO3
- model’s variance is dominated by relative humidity, which contributes 42% of model 

variance. Altogether, meteorology contributes 64% of model variance, leaving 36% attributable to 
gaseous precursors. The dominant gaseous precursor is NOX at 17%. The importance of relative humidity 
for both Riverside and Bakersfield NO3

- may be at least partly explained by the ion’s hygroscopicity and 
equilibrium partitioning of nitric acid (HNO3), which is greater at higher relative humidity and leads to 
aqueous NO3

- production (Seinfeld and Pandis, 2016). 

San Jose OC is dominated by HCHO, to which 62% of model variance is attributable. This is likely a 
result of HCHO acting as a tracer for ROG chemistry that produces secondary OC PM while OC 
contributes the majority of PM mass (Fig. 1.3). Altogether, gaseous precursors contribute 79% of model 
variance, leaving 21% attributable to meteorology, with daily maximum temperature dominating 
meteorological contributions at 10%. 

The preceding discussion presents our sensitivity analysis results. However, it must be noted that Sobol’ 
indices measure variable importance with respect to the model and not with respect to observations. A 
simple back-of-the-envelope calculation might qualify the numbers as follows. With 52% of Riverside 
PM2.5 model variance attributable to gaseous precursors and considering that the model explains 54% of 
observed daily variability, we might conclude that the gaseous precursors we consider in our model 
explain 52% × 54% = 28% of observed variability. Similarly, 26% of observed daily variability is 
explained by the particular set of meteorological variables we consider, leaving 46% of observed daily 
variability to be explained by some set of covariates for which we have not accounted. 

1.3.3  Marginal Effects 

We highlight marginal effects plots for the top two most important covariates identified from our 
sensitivity analysis for each site’s PM2.5 and speciated component models. Marginal effects curves are 
plotted along with their 95% confidence bands. Rug plots are included to indicate observation density. 
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Because our models are truly additive, as indicated by our sensitivity analysis, we can analyze marginal 
effects on an individual covariate basis without caveats or the need to qualify our interpretations with any 
consideration of interactions. 

  
Figure 1.45.  Marginal effects plots for the top two most important covariates for the Bakersfield PM2.5 
model (a and b) and the Bakersfield NO3

- model (c and d). 

 

 

For both NOX and HCHO in our Bakersfield PM2.5 model, the marginal effects curves exhibit nonlinear 
monotonic positive associations. We see that there is a correlation between NOX enhancement of PM2.5 
while HCHO levels are correlated with an opposing effect on PM2.5 formation. The positive association 
exhibited by NOX is consistent with a modeling study by Chen et al. (2014) that suggests reduced NOX 
levels would reduce PM2.5 in the San Joaquin Valley (Chen et al., 2014). Although that study indicates 
ROG does not strongly influence PM2.5 levels, while our HCHO response curve indicates otherwise, a 
separate measurement study by Zhao et al. (2013) suggests that reduced gaseous organic precursors 
would reduce SOA levels in Bakersfield (Zhao et al., 2013). This discrepancy arises because Chen et al. 
modeled wintertime PM2.5 in Bakersfield, which is dominated by NO3

-, whereas Zhao et al. measured 
summertime organic aerosol, which is the dominant speciated component of PM2.5 during the summer 
season. Therefore, we have identified the top two most influential drivers of PM2.5 in Bakersfield, with the 
most influential being the wintertime and the second most influential being the summertime driver. This 
ranking makes sense given that PM2.5 levels are worst in the winter (Chen et al., 2014). This may also 
explain the negative marginal effect we see with HCHO. As a tracer for ROG, the influence of HCHO is 
strongest when the organic PM mass fraction is greatest, which occurs in the summer. Overall PM2.5 is 
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greatest during the winter, however, so HCHO exhibits a negative marginal effect over most of its range 
because it is correlated with relatively lower summertime PM2.5. 

We observe a similar story for NO3
- and NOX as for PM2.5 and NOX, however, temperature exhibits non-

monotonic behavior. This suggests cooler temperatures may be optimal for NO3
- formation, as we see a 

correlation to that effect. This effect is due to the higher likelihood of ammonium nitrate formation during 
cooler weather, given its potential to evaporate back to the gas phase in warmer weather (Nussbaumer and 
Cohen, 2021). 

 
Figure 1.56.  Marginal effects plots for the top two most important covariates for the Riverside PM2.5 
model (a and b) and the Riverside NO3

- model (c and d). 

 

In Riverside, relative humidity is correlated with reductions in total PM2.5 as well as speciated NO3
- over 

most of its range, but at sufficiently high values relative humidity is correlated with enhancements in 
PM2.5 concentrations. The positive association is likely due to HNO3 conversion to NO3

- in aqueous 
aerosol, which explains the NO3

--NOX relationship given NOX conversion to HNO3 (Seinfeld and Pandis, 
2016). Unlike in Bakersfield, HCHO in Riverside is correlated with enhancements in PM2.5 over the 
majority of its range rather than reductions. This is an expected outcome due to the prevalence of SOA 
formation in the South Coast Air Basin (Woody et al., 2016). While the OC mass fraction in Bakersfield 
grows from winter (0.13) to summer (0.17), the Riverside OC mass fraction, to a lesser extent, decreases 
from winter (0.17) to summer (0.16). Therefore, in Riverside we see PM2.5 enhancement over a greater 
range of the marginal effect of HCHO than we did for Bakersfield because HCHO is not correlated with 
relatively less ambient PM2.5 in Riverside. 
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Figure 1.67.  Marginal effects plots for the top two most important covariates for the San Jose PM2.5 
model (a and b) and the San Jose OC model (c and d). 

 

San Jose HCHO is correlated with enhancements in both PM2.5 and OC over most of the covariate’s 
range. We see daily maximum temperature playing an important role, with cooler temperatures correlated 
with PM2.5 enhancement. This is because PM2.5 levels are greatest during cool weather in the wintertime 
(“Protecting Public Health in the San Francisco Bay Area,” 2012). Like HCHO, NOX is also correlated 
with enhanced OC, suggesting contributions from organic NO3

- aerosol. Indeed, secondary PM2.5 in the 
San Francisco Bay Area is dominated by NO3

- (“Understanding Particulate Matter: Protecting Public 
Health in the San Francisco Bay Area,” 2012). OC appears as the dominant speciated component overall, 
likely in the form of primary PM2.5, because of significant wood burning emissions (“Understanding 
Particulate Matter: Protecting Public Health in the San Francisco Bay Area,” 2012). Such emissions also 
explain the importance of HCHO in its role as an ROG tracer, because ROGs are important precursors for 
SOA and are co-emitted with primary OC from wood burning. 

 

1.4  Limitations and Future Recommendations 

We acknowledge the following limitations in our work. Our models do not resolve seasonality, which can 
lead to different dominant speciated components and emissions sources between seasons. Future work 
should seek to construct models that account for seasonality, whether through factor interactions or 
separate models per season. Moreover, our models use point data from stationary observation stations, 
and therefore are not necessarily generalizable to other locations within their regions or air basins. Future 



16 
 

work should test this generalizability by making predictions with the models described in this work on 
new data sets within the models’ respective regions. We are further limited by data quality and 
availability through the EPA’s AQS. While we have taken steps to correct OC in particular, future work 
should consider a more careful treatment of blank corrections and may conduct new measurements for 
greater control over data quality and density. New measurements may especially benefit from the use of 
more recent measurement techniques, such as aerosol mass spectrometry (AMS).In Bakersfield, the 
marginal effect of HCHO is negative over a substantial portion of its range, whereas NOX remains 
positive over almost its entire range, only turning negative for very low NOX concentrations. This 
indicates that ROG, for which HCHO is a tracer, may be a more efficacious target for control, since it 
would take a smaller reduction in HCHO to reduce PM2.5 than it would take in NOX to achieve the same 
result. 

Compared to Bakersfield, NOX controls may be more effective in Riverside because more of the range of 
the marginal effect of NOX is negative. HCHO controls may be similarly as effective as in Bakersfield. 

In San Jose, both NOX and HCHO marginal effects are positive over most of their ranges, indicating that 
strong controls for both may be necessary as neither is significantly more efficacious than the other. 

 

2. Tasks 2 - 4 Field Campaign Objectives, Sites, and Methods 

2.1 Background 

A series of four field campaigns was designed to characterize ambient concentrations and potential for 
secondary formation of PM2.5.  The duration of each of the campaigns was approximately four weeks, 
which was sufficient to capture variability in conditions and concentrations and to permit multiple 
sensitivity experiments using the outdoor chambers.  A multi-tiered strategy was employed that combined 
measurement of i) ambient PM and precursors, ii) secondary PM formed through gas- and aqueous-phase 
chemistry in a flow reactor, and iii) secondary PM formed from ambient air in parallel chambers with and 
without added precursors. 

2.2 Methods 

2.2.1 Site Selection and Timing 

Sites were selected to represent EJ communities with distinct causes of high PM, while also considering 
site-dependent costs of travel, site preparation, and materials. The sites selected were Riverside, 
Wilmington, and Bakersfield, with two campaigns in Riverside and one each in the other two cities.  The 
campaigns are referred to by location and the month on which each study was centered:  Riverside (Mar), 
Riverside (Oct), Wilmington (Mar), and Bakersfield (Apr)..  The locations are shown in the regional and 
local satellite images in Figure 2.1.  Riverside is representative of the Inland Empire region of southern 
California where the prevailing westerly winds frequently bring high primary and secondary PM and 
where there is significant influence from emissions associated with the goods movement industry. 
Wilmington is one of the areas selected for the Year-1 Assembly Bill (AB) 617 Community Emissions 
Reduction Program and is significantly impacted by port and truck emissions. Bakersfield experiences 
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high PM2.5 during the winter like many locations in the San Joaquin Valley (SJV) and is in a region 
impacted by significant oil and gas operations, and agricultural operations.  All three sites were in SB 535 
designated Disadvantaged Communities (“SB 535 Map,” n.d.). 

 

 

Figure 2.1.  Satellite images of all three field sites (top) and of each of sites (bottom). 

The Riverside site was on the grounds of the College of Engineering Center for Environmental Research 
and Technology (CE-CERT), which is near the northern edge of the city in an industrial area that has seen 
significant warehouse construction over the past several years.  The site is about 1.5 km east of I-215, 
such that freeway emissions impact concentrations of PM and pollutant gases, but not so much as to make 
the site not representative of the surrounding region.  The site is 15 km east of the Mira Loma CARB site, 
which has among the highest 24-hour PM2.5 design values in the South Coast Air Basin (SCAQMD, 
2021).  That, combined with being impacted by emissions sources that are common throughout the Inland 
Empire, made the site an excellent choice for contributing to the development of PM2.5 state 
implementation plans.  As importantly, having the first of the field studies in a location with ease of 
access and with adjacent laboratory facilities was critical to the success of the overall project because it 
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allowed the research team to optimize the sampling strategy and troubleshoot any initial issues 
encountered as all of the instruments were configured and operated together for the first time.   

The Wilmington site was a South Coast Air Quality Management District (SCAQMD) site used for 
special studies and some limited longer-term measurements, but not for regulatory monitoring.  It is 
behind a small neighborhood and impacted by emissions from the Ports of Los Angeles and Long Beach a 
few km to the south to southeast, the 110 Freeway 0.15 km to the east, and the Phillips 66 refinery that 
begins just meters to the west.  The trailer at the site was large enough to accommodate all of the 
sampling instrumentation and there is a large open area for the mobile chambers.   

The Bakersfield site was in an agricultural area to the east of the urban area.  It was at the location of the 
CARB Edison monitoring site (# 15242).  It was selected following a lengthy screening process that 
considered about 10 options throughout the Bakersfield region.  Though outside of the urban core, it 
captures the regional air quality aspects of the area and provides interesting data on emissions and 
exposure in agricultural areas. 

Field studies at each of the sites were planned for winter when 24-hr PM2.5 exceedances are most common 
at the sites.  For the Riverside site only, an additional study targeted summer conditions when average 
PM2.5 is highest.  The site coordinates and project periods are summarized in Table 2.1. 

 

Table 2.1.  Field campaign summary 

 Riverside (Mar) –  Riverside (Oct) Wilmington (Mar) Bakersfield (Apr) 
Location 34 00'0.08"N 

117°20'7.45"W 
34°00'0.08"N 
117°20'7.45"W 

33°46'40.28"N 
118°16'54.58"W 

35°20'44.63"N 
118°51'6.22"W 

Project period March 15–April 7, 
2022 

September 28–
October 27, 2022 

February 28–
March 28, 2023 

March 30–April 
22, 2024 

 

Variability in the sources and processes responsible for PM2.5 at the sites is evident in Figure 2.2, which 
shows the average composition at the CSN site nearest each of the study locations. Averages were 
calculated for the 5-year period from 2015 to 2019, excluding July 4 and 5 and January 1. The pie charts 
labelled NDJF (November, December, January, February) represent averages for the late fall/early winter 
period of the proposed studies and that labelled JJA (June, July, August) represents the average for the 
summertime period. Though there are similarities among the sites, there are important differences as well, 
with sulfate ranging from 4.1% to 14.9%, nitrate from 25.0% to 41.9%, and elemental carbon (EC) from 
4.6% to 10.1%. It is likely that there are also significant differences in the organic PM composition, 
which will be examined using the mini Aerosol Mass Spectrometer (mAMS) data and then exploited for 
the source apportionment analysis. 
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Figure 2.2.  Average PM2.5 composition at the CSN sites nearest the three study locations. Five years of 
data from 2015 to 2019 were used to calculate the averages. Winter averages included November, 
December, January, and February and summer averages included June, July, and August.  A factor of 1.4 
was used to convert measured organic carbon to total organic aerosol (OA). 

 

2.2.2 Measurement Instrumentation and Strategy 

The analyzers used to measure primary and secondary PM and secondary PM precursor gases are 
summarized in Table 2.2. Relevant details of each of the analyzers are provided below.  Some analyzers 
measured only concentrations in ambient air while others alternated between sampling ambient air and 
processed air from the Accelerated Production and Processing of Aerosols (APPA) flow reactor and/or 
Captive Aerosol Growth and Evolution (CAGE) chambers through the use of automated valves that, like 
many of the measurement systems, were controlled using data acquisition systems and Labview software 
(National Instruments).  The configuration of the instruments and the flow schematic are shown in Figure 
2.3.  As indicated in that figure, the gas and particle analyzers were located indoors (trailer or building) 
and the chambers were positioned just outside.   
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Table 2.2.  Measurements and instruments for the field studies. SMPS = scanning mobility particle sizer; 
CToF mAMS = compact time of flight mini aerosol mass spectrometer; PAX = photoacoustic 
extinctiometer; μm = micrometer; NH4

+ = ammonium; SO4
2- = sulfate; NO3

- = nitrate; Cl- = chloride; OA 
= organic aerosol; NO = nitric oxide; NO2 = nitrogen dioxide; SO2 = sulfur dioxide. 

Measurement Instrument Time 
resolution 

Samples from Measurement 
details 

Particulate measurements 
Size distribution SMPS 

(fabricated) 
3 min Ambient, 2 x 

CAGE, APPA 
0.02 – 0.5 µm 

Size-resolved non-
refractory 
composition 

CToF mAMS 
(Aerodyne) 

3 min Ambient, 2 x 
CAGE, APPA 

NH4
+, SO4

2-, NO3
-, 

Cl-, OA 

Equivalent black 
carbon 

PAX (DMT) or 
MA200 
(AethLabs) 

3 min Ambient  

Metals and PM2.5 
concentration 

PX-375 
(Horiba) 

20 min Ambient Al, Ba, Ca, Cl, Cr, 
Cu, Fe, K, Mn, Ni, 
Pb, S, Sb, Si, Ti, V, 
Zn 

Gas and meteorology measurements 
NO and NO2 T200U 

(Teledyne API) 
1 min Ambient  

SO2 T100U 
(Teledyne API) 

1 min Ambient  

O3 T400 (Teledyne 
API) 

1 min Ambient  
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Figure 2.3.  Experimental configuration for the field studies.  The dashed lines represent flow paths for 
additions to the CAGE chambers while the solid lines represent flow paths for sampling.  The colors of 
the sampling flow paths match those of the source (CAGE A, CAGE B, APPA, or ambient).  The thick 
blue arrows below the CAGE chambers represent the perturbed or unperturbed ambient air that flows 
across the gas-permeable membrane, as is described below. 

2.3  Measurements and Analysis 

2.3.1  Non-refractory PM1 Composition Measurements 

A mini aerosol mass spectrometer (mAMS) was used to measure fast, size-resolved composition of non-
refractory aerosol particles in the submicron range (Bahreini et al., 2012, 2003; Canagaratna et al., 2007; 
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Dingle et al., 2016; Jayne et al., 2000; Vu et al., 2016). The mAMS is a newer and more compact version 
of the typical Aerodyne aerosol mass spectrometers; it is equipped with a compact time-of-flight mass 
spectrometer (C-ToF) and a chopper wheel for obtaining speciated mass distributions. Ambient air at a 
flow rate of ~100 cubic centimeters per minute (cm3 min-1) is sampled through a critical orifice and a 
system of aerodynamic lenses where particles are focused into a narrow beam. After exiting the lens and 
passing through a skimmer, sample flow is expanded into a differentially pumped chamber where 
particles travel with different speeds, depending on their size. At the end of the chamber, particles impact 
on a tungsten vaporizer (600 °C) and non-refractory components are vaporized. Vapors are ionized by 
electron impact and ions are extracted into the mass analyzer. A servo motor is used to move a multi-slit 
chopper wheel in and out of the aerosol beam to determine the mass spectrum of the ensemble of 
particles. If the chopper is positioned at its chopped setting, mass distributions of the ensemble particles 
are determined by measuring the time particles take to travel the known distance of the particle time-of-
flight chamber.  
 
During typical operations, aerosol mass spectra and mass distributions were obtained every ~17 s. 
However, on top of this, the mAMS sampled from APPA and the CAGE chambers intermittently as 
described below. The mAMS data were analyzed using Squirrel (v. 1.62G) and Pika (v. 1.22G) toolkits 
written in IGOR- Wavemetrics (Allan et al., 2004, 2003). Detection limit (2σ) for different species in the 
mass spectrum mode was 0.18-0.26 micrograms per cubic meter (µg m-3) for ammonium (NH4

+), 0.03-
0.08 (µg m-3) for sulfate (SO4

2-), 0.02-0.04 µg m-3 for nitrate (NO3
-), 0.01 µg m-3 for chloride (Cl-), and 

0.08-0.15 µg m-3 for organic aerosol (OA). The uncertainty in the measured mass concentrations is 
estimated to be ~34-38% (Bahreini et al., 2009).  
 
During each campaign, the flow rate-inlet pressure relationship, size calibration, and sensitivity to 
ammonium nitrate and sulfate were determined and used in the quantification. Furthermore, a 
composition-dependent collection efficiency (CDCE) was applied following the methodology outlined in 
Middlebrook et al. (Middlebrook et al., 2012). Quantification of the mAMS species was further refined to 
match the mass concentration from mAMS with those estimated from size distributions and the mAMS-
derived composition-based effective density. 
 
With the typical mass resolution of a C-ToF mass spectrometer (DeCarlo et al., 2008), higher-resolution 
analysis of the OA spectra was carried out to provide information on the relative contribution of purely 
hydrocarbon vs. oxygenated hydrocarbon ions to the signal at each fragment (i.e., CxHy

+ vs. CxHyOz
+, 

where x, y, and z are positive integers) (Bahreini et al., 2012). Furthermore, to constrain the fate of NOx 
as it relates to aerosol formation, measured ratios of NO2

+ to NO+ in the ambient air along with the ratios 
measured when sampling pure ammonium nitrate were used in a formulation previously set forth by 
Farmer et al. (Farmer et al., 2010). First, the fractional contribution of NOx

+
org ions to total NO3

- is 
calculated as follows (x):  
 

𝑥𝑥 = (𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜−𝑅𝑅𝐴𝐴𝐴𝐴)(1+𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙)
(𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙−𝑅𝑅𝐴𝐴𝐴𝐴)(1+𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜)

                                              (Equation 2.1) 

 
where 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 is the observed [NO+]/[NO2

+] in the ambient data, 𝑅𝑅𝐴𝐴𝐴𝐴 is the calculated [NO+]/[NO2
+] value 

from mAMS ammonium nitrate (NH4NO3) calibration in each campaign (1.43-1.65), representing the 
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inorganic nitrate contribution to NO3
-, and 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙  is the expected [NO+]/[NO2

+] from organonitrate (RONO2) 
or nitroorganic (RNO2) species. Previous work indicates that RAN/Rlit is typically 2.75 (Day et al., 2022; 
Fry et al., 2013), allowing campaign-specific estimation of 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙. Concentrations of the organic aerosol 
portion of the measured nitrate are then estimated by the product of x and the measured total NO3

-.  
 

2.3.2 Equivalent Black Carbon Measurements 

 
During Riverside (Mar), Riverside (Oct), and Wilmington (Mar), a Photoacoustic Extinctiometer (PAX-
375, Droplet Measurement Technology) was deployed to estimate concentrations of equivalent black 
carbon (eBC) from its online measurements of absorbing coefficients (βabs) at 375 nm using photoacoustic 
technique (Dingle et al., 2019; Nakayama et al., 2015). Measurements were performed at 1-Hz, with 
internal aerosol filtering (for removing gaseous interferences) set for every 10 min. By using the mass 
absorption coefficient of BC at 375 nm (MAC375=11 m2 g-1) and the measured βabs, eBC mass 
concentration (CeBC) was estimated from the following equation:  
 

𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑀𝑀𝑀𝑀𝑀𝑀375 × 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒                                                (Equation 2.2) 

 
 
It is worth noting that this approach has the potential to overestimate the concentration of eBC due to 
contributions from brown carbon (BrC) at the short wavelength of 375 nm. During Riverside (Mar), the 
instrument was not set up properly for most of the campaign and did not provide much of a reliable 
measurement. Furthermore, during Wilmington (Mar), only limited data are available due to water 
condensation in the PAX inlet.  
 
During Bakersfield (Apr), PAX-375 was not available and eBC was estimated from a micro-aethalometer 
(MA200, AethLabs). This is a filter-based measurement with automatic tape-advance technology that 
measures the rate of change of transmitted light through the filter, due to continuous particle deposition 
on the filter, at 5 wavelengths. The aethalometer was run using its DualSpot sampling mode, which 
allowed for correcting artifacts related to filter loading, and data were recorded with a 1-min time 
resolution.  Mass concentration of eBC is estimated internally from the measurements at 880 nm.  

2.3.3 Particulate Size Distributions 

The PM size distribution from 0.015 to 0.5 micrometer (µm) diameter (Dp) was measured by a scanning 
mobility particle sizer (SMPS, fabricated in-house). The measurement time resolution was about 3 
minutes (min).  The SMPS employed a high flow differential mobility analyzer to reduce the time needed 
for each measurement.  The measured size distributions were used to calculate quantities such as PM 
mass concentration for comparison with other PM measurements.   

2.3.4  Captive Aerosol Growth and Evolution (CAGE) chambers 

The sensitivity of PM concentration and composition to changes in precursor gas concentrations was 
investigated using the CAGE chambers. These are the most recent versions in a series of portable 



24 
 

chambers that employ the same basic function and methodology. The first generation chambers were used 
to study atmospheric processing of soot particles in Houston and Beijing (Peng et al., 2017, 2016). 
Second generation chambers were used to study the contributions of important oxidants and precursor 
gases to daytime and nighttime secondary PM production at a site north of Houston, Texas (Sirmollo et 
al., 2021).  Just prior to their use in the first of the campaigns of this project, the same two CAGE 
chambers were operated at a Department of Energy site in Oklahoma (Zhu et al., 2025).    

A photo and sketch of the redesigned chambers are shown in Figure 2.4.  At the core of each of the two 
identical systems is a 2 m3 cylindrical all-Teflon chamber that rotates along its horizontal axis to 
minimize particle loss. Each chamber is suspended in a powder coated stainless steel rectangular 
enclosure that is covered in UV-transmitting acrylic panels (Spartech Solacryl SUVT).  The use of UV-
transmitting materials for the chamber and enclosure, together with a UV-reflective gasket sheet below 
the chamber, results in a solar spectral intensity inside that is similar to that just outside.   

 

Figure 2.4.  Photo and sketch of the CAGE chamber.  The labels on the sketch illustrate the connection 
between conditions inside and just outside of the chambers. 

Approximately 75 liters per minute (L min-1) of ambient air is pulled into an inlet from about 1 m above 
each chamber and filtered through an all-Teflon particle filter.  For this project, controlled injections of 
gases such as NOx, VOCs, or NH3 can be added to the ambient air flow for one of the two chambers.  The 
ambient or perturbed ambient air is then directed through a channel through the center of the chamber that 
is wrapped in a permeable expanded polytetrafluoroethylene (ePTFE) membrane, across which gas-phase 
species are exchanged with the air in the chamber. The transmission efficiency of the ePTFE membrane 
and the resulting relationship between ambient and chamber gas phase composition were evaluated by 
Zhu et al. (2024).  Trace gas concentrations in the chamber can be explained by treating the volume as a 
continuous stirred-tank reactor (CSTR).  The resulting rate of change of the concentration of any trace 
gases can then be expressed as 

𝑑𝑑𝐶𝐶𝑐𝑐ℎ
𝑑𝑑𝑑𝑑

= 𝑃𝑃 − 𝐿𝐿 + 𝑄𝑄𝑒𝑒𝑒𝑒
𝑉𝑉𝑐𝑐ℎ

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 −
𝑄𝑄𝑒𝑒𝑒𝑒
𝑉𝑉𝑐𝑐ℎ

𝐶𝐶𝑐𝑐ℎ                             (Equation 2.3) 

Where Cch is the concentration in the chamber, Camb is the ambient concentration, Vch is the volume of the 
chamber (2 m3), P and L are the per unit volume rates of chemical production and loss in the chamber, 
respectively, and Qex is the effective exchange “flow rate” across the ePTFE membrane, which was 
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calculated from the recorded time series and was found to result in a turnover time, τg, of about 65 min.  
For reactive species, chemical loss and/or production over that turnover time in the chambers may be 
significant. For free radicals and other highly reactive or condensable species with typical atmospheric 
lifetimes much shorter than 65 min (e.g., hydroxyl radical, OH∙, and nitrate radical, NO3∙), exchange 
across the ePTFE membrane is insignificant and P ≈ L.  

In contrast to gases, for which the composition inside the chamber tracks that outside, the ambient and 
chamber particle populations are distinct because the ePTFE membrane is non-permeable to particles.  
Only particles that are intentionally injected into the chambers are present and those are exposed to the 
ambient- or perturbed ambient-mirroring environment until being sampled or lost to the walls. 
Monodisperse ammonium sulfate seed particles are generated by atomizing a solution with a Collison 
atomizer (TSI 3076), drying with a molecular sieves diffusion dryer, and separating a narrow size range 
(0.2 µm most often, with 0.05 µm for select experiments) with a differential mobility analyzer (DMA) 
configured as an electrostatic classifier. Injections of fresh particles were generally timed to maintain a 
stable concentration of 0.2 µm particles or to re-establish a population of 0.05 µm to track over time. The 
monodisperse particle mode is injected into one of the chambers at a time. Particle retention is maximized 
by rotating the chambers and by taking steps to minimize static charge on the Teflon surfaces. With this 
approach, experiments are continuous and measurements are made 24 h day-1.  The size distribution and 
composition of the particles in each chamber was intermittently measured, with a repeated sampling 
sequence of Chamber A → Chamber B → OFR (described below) → ambient, such that sample is 
extracted from each chamber only 1/4th of the time in order to minimize the loss rate of the captive 
particles.  

2.3.5 Accelerated Production and Processing of Aerosols (APPA) reactor 

Formation of secondary PM in the CAGE chambers proceeds at a rate comparable to that in the 
surrounding air.  Though that rate varies considerably with time of day, pollution level, and meteorology, 
the timescale of conversion of precursors to PM is typically hours.  To characterize short-term variability 
in PM precursors and to explore different formation pathways, an oxidation flow reactor (OFR; e.g., Kang 
et al., 2007) was used to accelerate chemistry that would occur over hours in the atmosphere to occur in 
just a couple of minutes.  Particle-filtered ambient air was continuously introduced into the inlet of the 
OFR and the secondary PM that formed from it was intermittently measured with both the particle sizing 
instruments and the mAMS.  As described by Xu et al. (2024), the core of the OFR used is a 
Perfluoroalkoxy (PFA) Teflon flow tube in which high concentrations of OH∙ result in equivalent 
atmospheric exposure ranging from a few hours to more than a week. Ambient air is pulled into the top of 
the reactor and reactive components are rapidly oxidized as they travel through the reactor tube.  
Secondary PM that forms is sampled from the outlet at the bottom of the reactor and measured with the 
particle sizing instruments and the mAMS.   
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To generate OH∙, O3 is produced externally (Jelight Co., Inc. 
model 610) and introduced into the reactor, where it is 
photolyzed by 254-nm emitting germicidal UV lamps. The 
resulting excited oxygen atom (O(1D)) reacts with water vapor 
to create OH∙ concentrations ranging from ~108 to ~1010 cm-3, 
which, for the average reactor residence time of 120 seconds, 
results in equivalent exposure, or photochemical age, of 
between about 2.5 h and 1 week for an assumed average 
atmospheric [OH∙] of 1.5 x 106 cm-3. The reactor assembly is 
enclosed in an aluminum shell with all interior surfaces covered 
by highly UV-reflective 6 millimeter (mm) thick PTFE gasket 
(Intertech, Inc. SQ-S) to maximize UV intensity uniformity 
throughout the reactor. A pair of 254-nm emitting UV lamps are 
mounted inside the aluminum enclosure and outside of the 
reactor. The UV intensity is controlled using a dimmable ballast 
and is typically maintained at a level that results in photolysis of 
15% of the added O3, which represents a balance between 
maximizing the OH∙/O3 concentration ratio (high UV desirable) 
and minimizing the OH∙ gradient over the length of the reactor 
(low UV desirable).  

The APPA reactor differs from that of all other OFRs described in 
the literature in that it is also used to simulate aqueous phase chemistry in aerosol liquid water and in 
clouds and fogs. To do so, temperature is precisely controlled by circulating water from a chiller between 
the PFA reactor and a quartz tube surrounding it. Droplets with a median diameter of about 3.5 µm are 
formed on monodisperse seed particles using a modified Spot Sampler (Aerosol Devices, Inc.) and 
introduced into the top of the reactor, as depicted in Figure 2.5. Ammonium sulfate was used during all of 
the field studies in part because it is not refractory and does not accumulate in the mAMS as would other 
types used for other experiments.  The initial dry seed particle composition, concentration, and size were 
the same for all humidity conditions to facilitate isolation of the role of water content on measured 
secondary PM formation. The droplet-containing flow is rapidly mixed with ambient air, O3, and water 
vapor. The temperature and RH of the gas mixture flow and the temperatures of the droplet-containing 
flow and the reactor are controlled such that the resulting RH in the reactor is 85% to surround the gas 
sample with aqueous aerosol particles (abbreviated as AQ mode below) or 100% to surround the gas 
sample with droplets (abbreviated as CLD mode below). To minimize the influence of the reactor walls 
and to narrow the particle residence time distribution (RTD), the central 50% (1.5 L min-1) of the total 
flow is subsampled and directed to the aerosol analyzers. The resulting RTD in the APPA is much 
narrower than those reported for other OFRs, as described by Xu et al. (2024).  The narrow RTD results 
in a correspondingly narrow range of photochemical aging, which aids in data interpretation. 

To study gas phase-only chemistry, only the RH and temperature of the gas mixture flow are changed 
such that the resulting RH in the reactor is 40% (abbreviated as DRY mode below). The contribution of 
aqueous phase chemistry to the total PM formed is determined by subtracting from what is measured 
during cloud chemistry experiments that formed for the same experimental conditions but at low RH.  
The reactor was alternated between production of PM from gas- and aqueous-phase chemistry.   

Figure 2.5.  Sketch of the APPA 
flow reactor illustrating the basic 
operation used to study 
formation of secondary PM in 
cloud and fog droplets. 
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3. Field Campaign Results 

3.1 Meteorology and Auxiliary Ambient Gaseous Measurements 

Figures 3.1-3.4 provide context for interpretation of our observations given the local meteorology and  
diurnal profiles of  several auxiliary gases. It is important to note that the meteorological parameters and 
trace gas concentrations were often not co-located with our measurements but within 4-13 miles of the 
measurement sites (Table 3.1). Therefore, their absolute values are less relevant to the report and degree 
of correlations between our measurements and the trace gases may not be high, but their evolution during 
the day can still guide the interpretation of our results.  

 

Table 3.1.  Location of monitoring sites with auxiliary data used in analysis. 

 Riverside (Mar) and 
Riverside (Oct) 

 Wilmington (Mar)  Bakersfield (Apr) 

Station name Riverside-Rubidoux Long Beach-Signal Hill Edison 
Latitude and 
longitude 

33.99952, -117.41595 33.79371, -118.17102 35.34561, -118.85183 

Data used 
CO, NOx, O3, Wind 
direction and speed 

NOx, O3 NOx, O3 

    
Auxiliary Station 
name 

March Air Reserve Base 
(KRIV) 

Compton-700 North Bullis 
Road 

Bakersfield-Municipal 
Airport 

Latitude and 
longitude 

33.88194, -117.25902 33.90145, -118.20499 35.33156, -118.99990 

Data used Temperature and humidity CO CO 
    

Station name - 
Zamperini Field Airport 
(KTOA) 

Meadows Field Airport 
(KBFL) 

Latitude and 
longitude 

- 33.80338, -118.33961 35.43386,-119.05767 

Data used - 
Wind direction and speed, 
temperature, humidity 

Wind direction and speed, 
temperature, humidity 

 
The wind rose plots indicate that regardless of the season, westerly flows dominated transport during 
Riverside (Mar) and Riverside (Oct) (Figure 3.1 and 3.2), making the Riverside site ideal for sampling air 
masses originating from coastal and western parts of the Los Angeles Basin. During Wilmington (Mar), 
winds at a nearby airport (Zamperini Field airport) were predominantly westerly with some flows from 
north (Figure 3.3). It is worth noting that it is possible that wind direction at the measurement site was not 
best represented by the measurements at Zamperini Field airport, given the complex topography of nearby 
neighborhoods. During Bakersfield (Apr), the meteorology at Meadows Field airport was dominated by 
easterly flows (Figure 3.4). Assuming a similar behavior at the sampling site, and given its location, this 
corresponds to air masses travelling over agricultural fields and foothills of the southern Sierra Nevada. 
However, some air masses from north and west (urban/industrial parts of Bakersfield) were also 
transported, with typically higher concentrations of NR-PM1.   
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These figures illustrate that despite sampling in different seasons in Riverside during Riverside (Mar) and 
Riverside (Oct) (Figure 3.1 and 3.2), campaign-average maximum and minimum temperatures were 
within 5 degrees of each other and relative humidity (RH) was also within 10%. Cooler temperature and 
higher RH was observed during Wilmington (Mar) (Figure 3.3), while conditions during Bakersfield 
(Apr) (Figure 3.4) were most similar to those of Riverside (Mar) .  
 
In all locations, a sharp morning rush-hour peak is observed for CO and NOx from ~4-7 am, with a 
secondary peak beginning at ~6 pm. With the exception of observations at Wilmington, this nightly 
increase continues and plateaus out by midnight. At Wilmington, the afternoon peaks in CO and NOx 
subside by 8 pm.  
 
At all sites, O3 peaks in the early afternoon, consistent with the time of maximum photochemistry. 

 
 

 
 

Figure 3.1.  Summary of campaign-average meteorological parameters and auxiliary gas phase 
measurements during Riverside (Mar). (a) Wind rose of total NR-PM1 concentrations; (b) Diurnal profiles 
of ambient temperature, relative humidity (RH), and wind speed; (c) Diurnal profiles of NOx, CO, and O3. 
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Figure 3.2.  Summary of campaign-average meteorological parameters and auxiliary gas phase 
measurements during Riverside (Oct). (a) Wind rose of total NR-PM1 concentrations; (b) Diurnal profiles 
of ambient temperature, relative humidity (RH), and wind speed; (c) Diurnal profiles of NOx, CO, and O3. 
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Figure 3.3.  Summary of campaign-average meteorological parameters and auxiliary gas phase 
measurements during Wilmington (Mar). (a) Wind rose of total NR-PM1 concentrations; (b) Diurnal 
profiles of ambient temperature, relative humidity (RH), and wind speed; (c) Diurnal profiles of NOx, CO, 
and O3. 
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Figure 3.4.  Summary of campaign-average meteorological parameters and auxiliary gas phase 
measurements during Bakersfield (Apr). (a) Wind rose of total NR-PM1 concentrations; (b) Diurnal 
profiles of ambient temperature, relative humidity (RH), and wind speed; (c) Diurnal profiles of NOx, CO, 
and O3. 

3.2 Ambient PM1 composition 

 
Figures 3.5-3.8 summarize the general observations of ambient non-refractory PM1 composition and eBC. 
Consistently during all campaigns, OA contributed to 58-67% of NR-PM1. The second highest 
contributor to NR-PM1 mass was nitrate (14-19%) in Riverside (Mar and Oct) and sulfate in Wilmington 
(Mar) and Bakersfield (Apr) (17-21%). Surprisingly, the contribution of nitrate to NR-PM1 was not 
significant in Bakersfield (Apr) and the average concentration was less than the PM2.5 total nitrate that 
was measured during the same period at CSN’s Bakersfield site. This may partially be explained by the 
different size cuts of the two measurements if nitrate mass distribution was extended to the super-micron 
size range. Another potential explanation is differences in the measurement site location: the Bakersfield 
CSN site is located ~10 miles west of our sampling location and in the more urbanized area of 
Bakersfield. As suggested by Figure 3.4, our measurement site which was closer to the foothills and 
among the agricultural fields was predominantly upwind of the CSN site.  NR-PM1 chloride was 
insignificant during all campaigns. During Riverside (Oct) and Bakersfield (Apr), when longer 
measurements of eBC were available, the contribution of eBC was low at ~3%. Despite sampling in 
different seasons in Riverside , the overall composition was similar during March and October, although 
the absolute concentrations were higher during Riverside (Oct) (Figures 3.5-3.6). 
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At all sites, nitrate aerosol concentration peaked during the early morning rush-hour and its concentration 
decreased with increased ambient temperature, presumably due to the semivolatile nature of ammonium 
nitrate, as well as deepening of the daytime boundary layer its mixing with the nocturnal residual-layer. 
OA increased during morning rush-hour and then decreased continuously until the afternoon rush-hour 
during Riverside (Mar) and Wilmington (Mar). During Riverside (Oct), there are minimal changes in the 
OA concentration after the morning peak, suggesting significant secondary production that along with a 
deeper boundary layer mid-day resulted in more or less constant concentrations. During  Bakersfield 
(Apr), the OA concentration increased after sunset by ~30%, which as discussed under Task 4, is 
consistent with a nighttime source of secondary OA (Figure 3.8b). The concentration of sulfate in all 
campaigns was mostly constant during the day, consistent with its regional distribution and suggesting 
again some contribution from secondary production that counteracts the daytime dilution due to boundary 
layer deepening. During Riverside (Oct) and  Bakersfield (Apr), eBC concentrations peaked during early 
morning hours (Figure 3.6 and Figure 3.8), consistent with vehicular traffic emissions that also resulted in 
enhanced CO and NOx levels (Figure 3.2 and Figure 3.4). However, during Bakersfield (Apr) a secondary 
peak was also observed in mid-morning, which could indicate influence from a more local emission 
source (Figure 3.8b).    
 
As indicated above, a comparison between the nitrate fragmentation pattern when sampling ambient air 
and those during regular ammonium nitrate calibrations can be used to estimate the contribution of 
organonitrate/nitroorganics to the nitrate signal. Following these procedures, 60-80% of the observed 
nitrate in Riverside is attributed to organic molecules (fNO3,org) (Figures 3.5-3.6). Furthermore, elevated 
nitrate (and ammonium) signal corresponded to lower values of fNO3,org, consistent with morning 
production of inorganic nitrate (i.e., ammonium nitrate) during the cooler times of the day. During 
Wilmington (Mar) and Bakersfield (Apr) (Figures 3.7-3.8), the calculated fNO3,org is noisier because of the 
overall much lower concentration of nitrate during the campaigns; hence there is no obvious trend in 
fNO3,org.  
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Figure 3.5.  Summary of NR-PM1 observations during Riverside (Mar). (a) Time series of NR-PM1 
components (note that the Total mass concentration trace is added to the right axis); (b) Diurnal profiles 
of the NR-PM1 mass concentrations; (c) Average distribution of NR-PM1 components. 
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Figure 3.6.  Summary of PM1 and eBC observations during Riverside (Oct). (a) Time series of NR-PM1 
components and eBC (note that the Total mass concentration trace is added to the right axis); (b) Diurnal 
profiles of the NR-PM1 and eBC mass concentrations; (c) Average distribution of NR-PM1 components 
and eBC. 
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Figure 3.7.  Summary of PM1 and eBC observations during Wilmington (Mar). (a) Time series of NR-
PM1 components and eBC (note that the Total mass concentration trace is added to the right axis); (b) 
Diurnal profiles of the NR-PM1 mass concentrations; (c) Average distribution of NR-PM1 components. 
Note that due to limited eBC data, its diurnal profile and overall average contribution are not calculated. 
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Figure 3.8.  Summary of PM1 observations during Bakersfield (Apr). (a) Time series of NR-PM1 
components (note that the Total mass concentration trace is added to the right axis); (b) Diurnal profiles 
of the NR-PM1 mass concentrations; (c) Average distribution of NR-PM1 components. 

3.3 Chamber Perturbation Experiments 

As described above, perturbation experiments were conducted at the three field sites using the dual CAGE 
chamber system. Before each perturbation experiment, both chambers were operated under identical 
settings with ambient particle-free air circulated through their membrane-wrapped center channels for 
several hours to ensure minimal contamination and confirm similarity. In the perturbation experiments, 
controlled injections of NO2, VOCs, or NH₃ were introduced into the ambient air flow pulled through one 
of the two CAGE chambers. The details of the perturbation experiments are shown in Table 3.2. Each of 
the precursors was continuously added at a controlled rate to increase its mixing ratio by a prescribed and 
constant amount. Most perturbation experiments lasted the entire day, except where specific time ranges 
are indicated in the table. 
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Table 3.2.  Perturbation experiments overview. Experiments ran for the full day except where time 
ranges are specified. 

 
Experiment Date   Perturbation 

time 
Perturbation 

Type 
Perturbation 

Concentration 
Location 

1 4/3/22 4/2 11 pm  Biogenic VOC 
(Isoprene+α-

pinene) 

Δ 5 ppb Riverside 

2 4/5/22 4/4 11 pm  α-pinene Δ 5 ppb Riverside 

3 4/6/22 11:30 am Toluene Δ 5 ppb Riverside 

4 10/25/22 9 am NO2 Δ 5 ppb Riverside 

5 10/27/22 11 am NH3 Δ 10 ppb Riverside 

6 3/20/23 10 am NO2 Δ 10 ppb Wilmington 

7 3/24/23 10 am NO2 Δ 10 ppb Wilmington 

8 3/28/23 7:30 am NH3 Δ 10 ppb Wilmington 

9 4/3/24 10 am NO2 Δ 10 ppb Bakersfield 

10 4/4/24 10 am NO2 Δ 10 ppb Bakersfield 

11 4/5/24 10 am NO2 Δ 20 ppb Bakersfield 

12 4/6/24 6 pm to 12 
am 

NO2 Δ 20 ppb Bakersfield 

13 4/7/24 10 am to 6 
pm 

NO2 Δ 20 ppb Bakersfield 

14 4/8/24 3 pm to 12 
am 

NO2 Δ 20 ppb Bakersfield 

15 4/9/24 9 am NH3 Δ 10 ppb Bakersfield 

16 4/11/24 9 am NH3 Δ 10 ppb Bakersfield 

17 4/13/24 9 am NO2 Δ 20 ppb Bakersfield 

18 4/14/24 9 am NO2 Δ 20 ppb Bakersfield 

19 4/15/24 9 am NO2 Δ 20 ppb Bakersfield 

20 4/16/24 9 am NO2 Δ 20 ppb Bakersfield 

21 4/17/24 9 am NH3 Δ 20 ppb Bakersfield  

22 4/18/24 9 am NH3 Δ 20 ppb Bakersfield 
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23 4/19/24 9 am NH3 Δ 20 ppb Bakersfield 

24 4/20/24 9 am NH3 Δ 20 ppb Bakersfield 

 
 

3.3.1 VOC Addition Experiments 

VOC perturbation experiments were conducted only during the Riverside (Mar) campaign. These 
experiments included biogenic volatile organic compounds (BVOCs; isoprene and α-pinene) and an 
anthropogenic volatile organic compound (AVOC; toluene). For the perturbation experiment in which the 
BVOC mixture was added, formation of SOA resulted in an observed  growth in 50 nm seed particles in 
the perturbation chamber and an increase in organic aerosol concentration measured by the mAMS of 
0.35 μg m-3 relative to the control chamber (Figure 3.9). Based on the SMPS volume size distribution, the 
enhancement in organic content was primarily attributed to oxidation product condensation on larger seed 
particles and not new particle formation. Notably, less SOA was produced during daytime than at night 
during these experiments.  The effect of alpha-pinene addition without isoprene was evaluated under 
similar conditions during an experiment on April 5, 2022. The resulting growth rate of the seed particles 
and SOA mass formed both exceeded those measured for the biogenic mixture experiment, with an 0.6 μg 
m⁻³ enhancement relative to the control chamber (Figure 3.10). These findings align with previous 
research, which reported negligible SOA formation from isoprene and that isoprene addition to alpha-
pinene may inhibit SOA formation (Voliotis et al., 2022).  Analysis of organic fractions revealed lower f44 
(m/z=44) and higher f43 (m/z=43) values in both experiments (Figure 3.11). The f44 signal represents 
highly oxidized CO₂⁺ fragments from decarboxylation, while f43 corresponds to less oxidized C₂H₃O⁺ 
fragments. The observed lower oxygenation products are consistent with α-pinene's tendency to form less 
oxidized products, as previously reported (Voliotis et al., 2022).  
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Figure 3.9.  Time series of particle size distributions in the control chamber (a) and perturbation 
chamber (b) and mass concentration of organic aerosol in both chambers (c) during the perturbation 
experiment on April 3, 2022 in Riverside in which alpha-pinene and isoprene were added to the ambient 
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air pulled through one of the two chambers. The orange dotted line indicates the time of sunrise. The 
perturbation began at 11 pm on April 2, 2022, and continued thereafter.  
 

 
Figure 3.10.  Time series of particle size distributions in the control chamber (a) and perturbation 
chamber (b) and mass concentration of organic aerosol in both chambers (c) during the perturbation 
experiment on April 5, 2022 in Riverside in which alpha-pinene was added to the ambient air pulled 
through one of the two chambers. The orange dotted line indicates the time of sunrise. The 
perturbation began at 11 pm on April 4, 2022, and continued thereafter.  
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Figure 3.11.  Times series of the signal fraction of m/z=44 and m/z=43 in the total organic signal 
measured by mAMS in the alpha-pinene + isoprene experiment (a) and alpha-pinene-only experiment (b). 

 

Toluene was used as a surrogate for anthropogenic VOCs.  Similar to the experiments that examined the 
impact of adding BVOC(s), 5 ppb was added to the perturbation chamber in an experiment conducted in 
Riverside on April 6, 2022, with the results shown in Figure 3.12. New particle formation and the growth 
of small seed particles were observed in the perturbation chamber, though minimal change in the size of 
the larger particles present in the chamber was observed. The mass concentration of organic aerosol was 
enhanced by 0.4 μg m⁻³ in the perturbation chamber, while that of other aerosol chemical components 
was unchanged.  No SOA formation enhancement was observed during the nighttime portion of the 
experiment, which contrasts with what was observed for the BVOCs and is explained by the minimal 
reactivity of toluene with NO3 radicals and O3 that are the dominant nighttime oxidants. 
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Figure 3.12.  Time series of particle size distributions in the control chamber (a) and perturbation 
chamber (b) and mass concentration of organic aerosol in both chambers (c) during the perturbation 
experiment on April 6, 2022 in Riverside in which toluene was added to the ambient air pulled through 
one of the two chambers. The perturbation began at 11:30 am, and continued thereafter.  

3.3.2 NOx Addition Experiments 

NO₂ perturbation experiments were conducted at all three field sites. During the Riverside (Oct) 
campaign, no significant growth of seed particles or formation of new particles was observed with 
addition of 5 ppb to the perturbation chamber (Figure 3.13). AMS measurements revealed no 
enhancement in nitrate concentration or other species. While addition of NO₂ results in increased 
production of nitric acid, formation of particulate nitrate can be limited by the concentration of ammonia 
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or another gas-phase base.  Aerosol formation potential may also depend on the concentration and 
speciation of VOCs because of their influence on the NO2 oxidation process through influence on 
production of OH and O3. In regions with limited ammonia, an increase in NO₂ does not necessarily lead 
to enhanced secondary aerosol formation. Additionally, higher NO concentration can sometimes reduce 
SOA yield as products of reaction of RO₂ radicals with NO are often more volatile than those from 
reaction with HO2 or RO2 radicals (Ng et al., 2007; Sarrafzadeh et al., 2016).   

 

 

Figure 3.13.  Time series of particle size distributions in the control chamber (a) and perturbation 
chamber (b) and nitrate mass concentration for both chambers (c) during the perturbation experiment on 
October 25, 2022 in Riverside in which NO2 was added to the ambient air pulled through one of the two 
chambers. The perturbation began at 9 am, and continued thereafter. 
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NO₂ perturbation experiments at Wilmington yielded similar results over two experimental days (Figure 
3.14). Despite NO₂ injection initiation at 10 am on both days, nitrate aerosol concentrations in the 
perturbation chamber remained comparable to the control chamber. These results suggest that 
Wilmington, like Riverside, is ammonia-limited, and that elevated NO₂ alone does not lead to enhanced 
secondary aerosol formation. 

 

 

Figure 3.14.  Aerosol mass concentrations of nitrate in both chambers during NO₂ perturbation 
experiments in Wilmington on (a) March 20, 2023 and (b) March 24, 2023. Both perturbations began at 
10 am and continued thereafter.  

 

Ten days of NO₂ perturbation experiments were conducted in Bakersfield. Most experiments were carried 
out continuously throughout the day, except for those with specific time ranges noted in Table 3.2. On 
just one of the experiment days, nitrate aerosol concentrations in the perturbation chamber increased by 
0.8 μg m⁻³ relative to the control during the late afternoon and persisted until midnight(Figure 3.15). The 
enhanced nitrate aerosol formation observed in Bakersfield is attributed to elevated ambient ammonia 
concentrations characteristic of agricultural regions with intensive fertilizer application. The limited 
frequency of detectable enhancements (1 out of 10 days) suggests temporal variability in ammonia 
availability or potential nitrate volatilization before measurement. 
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Figure 3.15.  Mass concentrations of nitrate aerosol in both chambers during NO2 perturbation 
experiments in Bakersfield on April 15, 2024. The perturbations were applied continuously from April 15 
to April 16, 2024. 3.3.3  

3.3.3 NH₃ Addition Experiments 

NH₃ perturbation experiments were also conducted at all three sites. In Riverside, NH₃ perturbations 
resulted in the growth of seed particles, followed by new particle formation, indicating enhanced aerosol 
production (Figure 3.16). This is consistent with findings from studies in the Los Angeles area, which is 
identified as an NH₃-sensitive regime (Dang et al., 2024). In the early stage of the experiment, nitrate 
concentration increased, suggesting contribution of ammonium nitrate to particle growth. After 
approximately two hours, nitrate aerosol levels stabilized while organic aerosol concentration rose, 
coinciding with new particle formation. These findings align with previous research showing delayed 
organic acid reaction with NH₃ even under background NOx concentration, attributed to initial nitric acid 
formation from NOx photooxidation (Hao et al., 2020).  
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Figure 3.16.  Time series of particle size distributions in the control chamber (a) and perturbation chamber 
(b) and mass concentration of organic aerosol in both chambers (c) during the perturbation experiment on 
October 27, 2022 in Riverside in which ammonia was added to the ambient air pulled through one of the 
two chambers. The perturbation began at 11 am and continued thereafter.  

We observed that the rise in organic aerosol concentration coincided with an increase in f44 (Figure 3.17). 
As previously noted, f44 indicates highly oxidized CO₂⁺ fragments resulting from decarboxylation. CO₂⁺ is 
not only a reliable marker for oxygenated organic aerosols but also closely linked with the formation of 
organic mono- and di-acids, as demonstrated in both laboratory and field measurements. The concurrent 
increases in organic substances and CO₂⁺ fragments suggest a reaction between organic acids and 
ammonia. 
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Figure 3.17.  Time series of signal fraction of m/z=44 and mass concentration of organics in the 
perturbation chamber. 

NH₃ perturbation experiments at Wilmington were limited due to chamber contamination and 
troubleshooting. On March 28, 2023, successful NH₃ injection resulted in nitrate aerosol concentration 
enhancement of 0.68 μg m-³ (Figure 3.18). At Bakersfield, five days of NH₃ perturbation experiments 
were conducted, with nitrate aerosol enhancement observed during two nighttime periods (April 18 and 
April 20, 2024; Figure 3.19). On these nights, nitrate aerosol concentrations in the perturbation chamber 
increased by 0.10 μg m-³ on April 18 and 0.18 μg m-³ on April 20 relative to the control chamber, while 
organic concentrations showed no measurable differences. The enhancement of nitrate without 
corresponding organic aerosol increases suggests that for the environmental conditions at the time, NH₃ 
perturbations primarily enhance inorganic aerosol formation rather than organic aerosol, which is 
different from what was observed in Riverside. Additionally, the magnitude of nitrate enhancement was 
lower than observed in previous campaigns despite higher NH₃ injection concentration, suggesting a 
different chemical regime. 
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Figure 3.18.  Mass concentration of nitrate aerosol in both chambers during NH3 perturbation experiments 
in Wilmington on March 28, 2023. The perturbation began at 7:30 am and continued thereafter.  

 

Figure 3.19.  Mass concentration of nitrate aerosol in both chambers during NH3 perturbation experiments 
in Bakersfield on (a) April 18, 2024, and (b) April 20, 2024. The perturbations were applied continuously 
from April 17 to April 20, 2024.  3.3.4  

3.3.4 Summary of Perturbation Experiments Results 

During VOC perturbation experiments, distinct behaviors in aerosol growth and composition were 
observed. The addition of the biogenic VOCs alpha-pinene and isoprene, particularly under nighttime 
conditions, favored the formation and growth of aerosols. The experiments highlighted the inhibitory 
effect of isoprene on alpha-pinene-induced SOA formation, suggesting a complex interaction between 
different types of VOCs in the atmosphere. On the other hand, the introduction of toluene, a 
representative AVOC, led to new particle formation and demonstrated the importance of VOC type on the 
resulting aerosol. 
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The NO₂ perturbation experiments revealed different outcomes across the studies sites, highlighting the 
influence of local environmental conditions on aerosol formation. In the ammonia-limited environments 
of Riverside and Wilmington, NO₂ perturbations had no impact on aerosol concentration, suggesting that 
NH₃ availability, not NOₓ, controlled nitrate formation during those experiments. However, in 
Bakersfield's agriculturally influenced environment, NO₂ perturbations triggered nitrate aerosol formation 
on one of ten experiments, presumably when sufficient NH₃ was available. 

NH₃ perturbation increased aerosol production across all sites. In Riverside and Wilmington, NH₃ 
injections contributed to immediate and substantial particle growth and new particle formation, 
characterized by an increase in nitrate aerosol concentration followed by an increase in organic aerosol. 
These results highlight the critical role of ammonia in enhancing aerosol formation in NOx-rich 
environments, as well as the contribution of organics to ammonium-related reactions. In Bakersfield, NH₃ 
perturbations had more variable response, primarily driving inorganic nitrate formation without a 
corresponding enhancement in organic aerosol.  

3.4 Secondary Aerosol Formation in the APPA Reactor 

Figure 3.20 presents the time series of organic and nitrate mass concentrations measured in both ambient 
air and in the APPA reactor during the four field campaigns.  During the Riverside (Oct) campaign, a 
significant leak was identified in the tubing between the APPA reactor outlet and the AMS inlet that 
affected measurements between September 28 and October 7, 2022. In addition, the reactor experienced 
frequent operational interruptions between October 8 and October 20, 2022. As a result, only data from 
the final week (October 21–27, 2022) were included in the analysis for that campaign. Elevated organic 
mass concentrations in the reactor relative to ambient levels were observed intermittently across all 
campaigns, particularly under high OH exposure and high reactor relative humidity conditions. For 
example, in Bakersfield (Apr), as shown in Figure 3.20 (d, e), the green line representing reactor OA 
frequently peaks higher than the green dashed line representing ambient OA at corresponding times. 
However, during certain periods, reactor OA concentrations were lower than ambient levels, particularly 
under dry seed aerosol low OHexp conditions. This occurs because ambient particles were removed prior 
to entering the reactor. It indicates that most gas-phase precursors have already partitioned into the 
particle phase, leaving limited precursor gases available for oxidation within the reactor. When comparing 
nitrate concentrations between the reactor and ambient air, Riverside (Mar) and Bakersfield (Apr) 
generally exhibited similar or lower nitrate levels in the reactor than in the ambient environment, whereas 
Riverside (Oct) and Wilmington (Mar) showed higher nitrate concentrations in the reactor relative to 
ambient, particularly under aqueous seed aerosol and cloud droplets conditions with higher water content. 
The OA enhancements highlight the potential for substantial secondary aerosol formation, which may 
significantly contribute to ambient PM2.5 levels. Sulfate concentration is not reported because the 
background level associated with the injected seed particles is comparatively high, resulting in excessive 
uncertainty when subtracting it to calculate the amount formed in the reactor. 
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Figure 3.20.  Time series of organic and nitrate mass concentrations measured in the reactor and ambient 
air under six experimental conditions: (a) dry seed aerosol at low OH exposure (DRY low OHₑₓₚ), (b) dry 
seed aerosol at high OH exposure (DRY high OHₑₓₚ), (c) aqueous seed aerosol at low OH exposure (AQ 
low OHₑₓₚ), (d) aqueous seed aerosol at high OH exposure (AQ high OHₑₓₚ), (e) cloud droplets at low OH 
exposure (CLD low OHₑₓₚ), and (f) cloud droplets at high OH exposure (CLD high OHₑₓₚ). Data are 
presented for all four campaigns:  Riverside (Mar) (top left),  Riverside (Oct) (top right),  Wilmington 
(Mar) (bottom left), and  Bakersfield (Apr) (bottom right). 

 

Tables 3.3 and 3.4 summarize the estimated OH exposures and corresponding equivalent photochemical 
ages under low and high oxidation conditions at each RH level for each campaign. OH exposure was 
estimated using the KinSim chemical kinetics simulator (Peng and Jimenez, 2019), which incorporates 
the 254 nm UV intensity profile and ozone photolysis loss as model inputs. Under low OH exposure, the 
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corresponding photochemical ages were 0.25–0.38, 0.45–1.64, 0.40–1.84, and 0.28–0.69 days for 
Riverside (Mar), Riverside (Oct), Wilmington (Mar), and Bakersfield (Apr), respectively. Under high OH 
exposure, the photochemical ages increased to 1.40–2.30, 3.89–6.75, 3.43–6.78, and 4.97–6.85 days for 
the same sites, respectively. 

Table 3.3.  Estimated OH exposure (molecules cm⁻³ s⁻¹) under different conditions across the four field 
campaigns. 

OH exposure 
(molec cm-3 s) 

Riverside  (Mar) 
(2022) 

Riverside  (Oct) 
(2022) 

Wilmington  
(Mar) (2023) 

Bakersfield  
(Apr) (2024) 

Dry seed, low OHexp (3.20–4.90) × 10¹⁰ (5.80–19.9) × 10¹⁰ (6.19–22.3) × 10¹⁰ (4.53–8.65) × 10¹⁰ 
Dry seed, high OHexp (1.60–2.90) × 10¹¹ (5.84–8.75) × 10¹¹ (4.45–8.79) × 10¹¹ (6.44–8.88) × 10¹¹ 
Aqueous seed, low OHexp (3.20–4.90) × 10¹⁰ (6.20–21.3) × 10¹⁰ (5.13–22.6) × 10¹⁰ (3.71–8.91) × 10¹⁰ 
Aqueous seed, high OHexp (1.60–2.90) × 10¹¹ (5.09–8.53) × 10¹¹ (4.72–8.61) × 10¹¹ (6.59–8.44) × 10¹¹ 
Cloud droplets, low OHexp (3.20–4.90) × 10¹⁰ (6.07–19.4) × 10¹⁰ (6.06–23.9) × 10¹⁰ (3.66–8.99) × 10¹⁰ 
Cloud droplets, high OHexp (1.60–2.90) × 10¹¹ (5.04–7.90) × 10¹¹ (4.55–8.49) × 10¹¹ (6.44–8.57) × 10¹¹ 

 

Table 3.4.  Estimated equivalent photochemical age (days) under different conditions across four field 
campaigns, assuming the average atmospheric OH is 1.5 x 106 cm-3. 

Equivalent photochemical 
age (days) 

Riverside  
(Mar) (2022) 

Riverside 
(Oct) (2022) 

Wilmington  
(Mar) (2023)  

Bakersfield  
(Apr) (2024) 

Dry seed, low OHexp 0.25 to 0.38 0.45 to 1.53 0.48 to 1.72 0.35 to 0.67 
Dry seed, high OHexp 1.30 to 2.30 4.51 to 6.75 3.43 to 6.78 4.97 to 6.85 
Aqueous seed, low OHexp 0.25 to 0.38 0.48 to 1.64 0.40 to 1.74 0.29 to 0.69 
Aqueous seed, high OHexp 1.30 to 2.30 3.93 to 6.58 3.64 to 6.65 5.08 to 6.51 
Cloud droplets, low OHexp 0.25 to 0.38 0.47 to 1.50 0.47 to 1.84 0.28 to 0.69 
Cloud droplets, high OHexp 1.30 to 2.30 3.89 to 6.10 3.51  to 6.55 4.97 to 6.61 

 

3.4.1  Organic and Nitrate Aerosol Enhancements 

Figure 3.21 presents the average concentrations of organic and nitrate aerosols, measured by the mAMS, 
under various RH and OH exposure conditions for each campaign. RH was stepped between 40%, 85%, 
and 100% to create environments in the reactor with dry seed aerosol, aqueous seed aerosol, and cloud 
droplets, respectively. For each RH condition, the OH exposure varied between low and high levels, 
resulting in the six experimental conditions:  dry seed aerosol at low OH exposure (DRY low OHₑₓₚ), dry 
seed aerosol at high OH exposure (DRY high OHₑₓₚ), aqueous seed aerosol at low OH exposure (AQ low 
OHₑₓₚ), aqueous seed aerosol at high OH exposure (AQ high OHₑₓₚ), cloud droplets at low OH exposure 
(CLD low OHₑₓₚ), and cloud droplets at high OH exposure (CLD high OHₑₓₚ). For Riverside (Mar), 
secondary organic aerosol (SOA) concentrations averaged 2.20, 2.88, 6.26, 6.50, 5.45, and 6.07 µg m⁻³ 
under the six reactor conditions described above, respectively, in comparison to an average ambient 
concentration of 4.18 µg m⁻³. Corresponding nitrate concentrations were 0.17, 0.18, 1.04, 0.82, 0.52, and 



53 
 

0.52 µg m⁻³, compared to the ambient level of 1.24 µg m⁻³. During Riverside (Oct), average organic 
concentrations under reactor conditions were 5.02, 4.78, 8.24, 8.56, 7.55, and 8.52 µg m⁻³, compared to 
the ambient concentration of 5.67 µg m⁻³. Average nitrate levels were 0.38, 0.51, 3.27, 3.70, 2.97, and 
2.97 µg m⁻³, relative to an ambient value of 0.87 µg m⁻³. In Wilmington (Mar) organic concentrations 
increased from an ambient level of 2.75 µg m⁻³ to 4.83, 7.75, 4.55, 8.59, 3.98, and 10.90 µg m⁻³ across 
the six experimental conditions. Average nitrate levels were elevated from 0.51 µg m⁻³ (ambient) to 0.77, 
0.73, 1.95, 1.82, 1.89, and 1.89 µg m⁻³, respectively. For Bakersfield (Apr), the ambient organic 
concentration was 5.59 µg m⁻³, while average reactor concentrations were 4.60, 7.15, 7.29, 16.20, 6.90, 
and 22.59 µg m⁻³. Average nitrate concentrations were 0.46, 0.49, 0.43, 0.83, 0.48, and 0.82 µg m⁻³, 
respectively, relative to an ambient level of 0.84 µg m⁻³.When comparing SOA and nitrate concentrations 
across the six reactor conditions, the influence of water content and OH exposure varied among sites. 
During the Riverside campaign, water content was the dominant factor, with both SOA and nitrate 
concentrations significantly enhanced under AQ and CLD conditions at both low and high OH exposures. 
In Wilmington (Mar), OH exposure exerted the strongest influence on SOA formation, while nitrate 
concentrations, similar to Riverside, increased markedly with water content. SOA levels under high OH 
exposure were consistently higher than those under low OH exposure across all three RH conditions 
(DRY, AQ, and CLD), whereas nitrate concentrations were substantially higher under AQ and CLD 
conditions compared to DRY. For Bakersfield (Apr), both OH exposure and water content played 
important roles, as SOA and nitrate concentrations were significantly elevated under AQ high OHexp and 
CLD high OHexp conditions. 

 

Figure 3.21. Average mass concentration of nitrate and organic aerosol in ambient air and from the OFR 
for different conditions. (a)  Riverside (Mar), (b)  Riverside (Oct), (c)  Wilmington (Mar), (d)  Bakersfield 
(Apr). 
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Tables 3.5 and 3.6 summarize the average, median, maximum, and standard deviation of organic and 
nitrate aerosol concentrations (µg m⁻³) measured by the AMS under ambient and OFR reactor conditions 
at three Southern California sites during Riverside (Mar), Wilmington (Mar), and Bakersfield (Apr). 
Across all campaigns, organic and nitrate concentrations were generally enhanced in the reactor, relative 
to ambient levels, with the magnitude of enhancement varying by OH exposure level, water content level, 
and site. Organic aerosol concentrations showed the most significant increase under aqueous seed and 
cloud droplet conditions at high OH exposure. Particularly in Bakersfield, where average levels reached 
22.59 µg m⁻³ in CLD high OHₑₓₚ condition, compared to an ambient average of 5.59 µg m⁻³. Nitrate 
enhancements were also most pronounced under aqueous and cloud conditions, especially in Wilmington, 
where concentrations rose from 0.51 µg m⁻³ (ambient) to 1.95 µg m⁻³ (AQ low OHₑₓₚ), 1.82 µg m⁻³ (AQ 
high OHₑₓₚ), 1.89 µg m⁻³ (CLD low OHₑₓₚ), 1.89 µg m⁻³ (CLD high OHₑₓₚ). These results demonstrate the 
significant influence of water content and oxidative aging on secondary aerosol formation, as well as 
regional variety in precursor availability and photochemical reactivity in the atmosphere. 

Table 3.5.  Average, median, maximum, and standard deviation of organic aerosol concentrations (µg 
m⁻³) at the three sites during March/April campaigns under different conditions. 

Organics    
Ambient Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 4.18 2.75 5.59 
Median 4.06 1.67 4.33 
Max 15.07 17.32 31.59 
SD 2.58 2.97 4.56 
Dry seed, low OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 2.20 4.83 4.60 
Median 2.03 4.09 3.67 
Max 6.62 18.38 21.52 
SD 0.80 3.13 3.71 
Dry seed, high OHexp Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 2.88 7.75 7.15 
Median 2.39 6.47 5.71 
Max 16.17 28.14 24.72 
SD 1.79 4.86 4.76 
Aqueous seed, low OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 6.26 4.55 7.29 
Median 5.85 3.58 5.05 
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Max 12.88 18.64 59.89 
SD 2.05 3.32 7.86 
Aqueous seed, high OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 6.50 8.59 16.20 
Median 4.50 6.73 13.18 
Max 29.41 37.76 75.40 
SD 4.83 6.00 10.60 
Cloud droplets, low OHexp Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 5.45 3.98 6.90 
Median 4.96 3.12 5.79 
Max 11.64 19.72 31.67 
SD 1.98 3.32 5.05 
Cloud droplets, high OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 10.02 10.90 22.59 
Median 3.65 8.62 21.99 
Max 31.31 42.87 75.34 
SD 5.49 7.20 9.65 

 

Table 3.6. Average, median, maximum, and standard deviation of nitrate aerosol concentrations (µg m⁻³) 
at the three sites during March/April campaigns under different conditions. 

Nitrate    
Ambient Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 1.24 0.51 0.84 
Median 0.48 0.17 0.52 
Max 11.82 5.08 4.56 
SD 1.72 0.80 0.91 
Dry seed, low OHexp Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 0.16 0.77 0.46 
Median 0.13 0.55 0.33 
Max 0.73 7.82 11.72 
SD 0.10 0.88 0.84 
Dry seed, high OHexp Measurement site 
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Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 0.18 0.73 0.49 
Median 0.15 0.54 0.39 
Max 1.01 6.38 2.68 
SD 0.12 0.77 0.40 
Aqueous seed, low OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 1.03 1.95 0.43 
Median 0.45 0.79 0.36 
Max 8.74 17.06 2.80 
SD 1.36 2.64 0.30 
Aqueous seed, high OHexp Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 0.82 1.82 0.83 
Median 0.62 0.89 0.72 
Max 5.40 26.42 7.06 
SD 0.67 2.93 0.63 
Cloud droplets, low OHexp Measurement site 

Statistics Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 0.52 1.89 0.48 
Median 0.28 0.64 0.36 
Max 6.29 17.16 10.40 
SD 0.74 2.75 0.73 
Cloud droplets, high OHexp Measurement site 

Statistics 
Riverside 
(2022) 

Wilmington 
(2023) 

Bakersfield 
(2024) 

Average 0.52 1.89 0.82 
Median 0.39 0.95 0.67 
Max 2.72 26.34 7.02 
SD 0.45 3.33 0.86 

 

3.4.2  Relative Organic Aerosol Enhancements  

Figure 3.22 presents the relative organic aerosol (OA) enhancement (EROA = reactor OA / DRY low 
OHexp OA) for three selected 8-hour intervals: 2:00–10:00 AM, 10:00 AM–6:00 PM, and 6:00 PM–2:00 
AM. These intervals were chosen to consider rush hour activity and the diurnal variability in atmospheric 
gases and PM2.5 and the SOA formation in the reactor. Relative OA enhancement was evaluated for five 
experimental conditions—DRY high OHexp, AQ low and high OHexp, and CLD low and high OHexp—
against the DRY low OHexp as a baseline. 
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For both the Riverside Mar and Oct campaigns, water content played a predominant role in EROA. During 
the Riverside (Mar) campaign, elevated EROA values were observed during the first and third intervals 
under AQ and CLD conditions, with averages ranging from 2.51–3.06 and 2.28–3.04, respectively. 
However, the second interval exhibited lower average enhancements (1.45–2.69). For the Riverside(Oct) 
campaign, the average EROA under AQ and CLD conditions ranged from 1.60–1.92 (first interval), 1.09–
0.64 (second), and 1.71–1.27 (third). Notably, data availability for this campaign was limited to the final 
week (October 21–27, 2022). Therefore, the results may not be representative. The lower EROA in the 
second 8-hour interval may be attributed to depletion of atmospheric precursor gases by high ambient OH 
levels, thereby limiting their availability for further oxidation in the APPA reactor. Despite higher 
maximum enhancements being observed under high OH exposure for AQ and CLD conditions, the 
average enhancements remained comparable—likely due to the limited precursor pool being fully 
oxidized even under low OH exposure.  

For the Wilmington (Mar) campaign, OH exposure was the dominant factor influencing the relative OA 
enhancement. For the first 8-hour interval, average EROA values were 1.80 (DRY high OHexp), 0.86 (AQ 
low OHexp), 2.10 (AQ high OHexp), 0.72 (CLD low OHexp), and 2.54 (CLD high OHexp). For the second 
and third intervals in the five conditions, the enhancements were 1.30, 0.90, 1.55, 0.68, and 1.82; and 
1.63, 0.85, 1.70, 0.67, and 2.23, respectively. 

In Bakersfield, both OH exposure and water content contributed significantly to the relative OA 
enhancement. Under AQ high OHexp, EROA increased to 3.89, 3.42, and 3.92 for the first, second, and 
third intervals, respectively. Even higher enhancements were observed under CLD high OHexp, reaching 
5.83, 4.91, and 5.15 for the corresponding periods. 

Overall, our findings are consistent with other OFR field studies conducted in both urban and forest 
environments, which also report enhanced nighttime SOA formation (Ortega et al., 2016; Palm et al., 
2016; Xu et al., 2022; Zhang et al., 2024). In particular, greater OA enhancements during the first and 
third intervals suggest significant SOA formation potential during nighttime hours. Site-specific 
differences in precursor VOC levels and meteorological conditions likely contribute to the variability in 
OA enhancement observed across the three study locations.  
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Figure 3.22.  Secondary aerosol enhancement at different reactor conditions relative to that at DRY low 
OH exp for the first 8h interval (2am-10 am), second 8h interval (10 am-6 pm), and third 8h interval (6 
pm-2 am). Box and whisker plots with the average value (dot) and the 10th,25th, 50th (median), 75th, and 
90th percentiles. Data are presented for the four campaigns:  Riverside (Mar) (top left),  Riverside (Oct) 
(top right),  Wilmington (Mar) (bottom left), and  Bakersfield (Apr) (bottom right). 
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3.4.3  Diurnal Trends  

Figure 3.23 presents the diurnal variation in OA mass concentrations under different reactor conditions as 
well as that of the ambient aerosol. Diurnal profiles of selected gas-phase species and PM2.5 are also 
shown. Hourly average data across the four field campaigns are compared. 

The SOA diurnal patterns (Figure 3.23a–f) exhibited distinct temporal and site-specific characteristics. 
Under DRY low OHexp, SOA formation remained relatively constant throughout the day, whereas 
variability was higher under high OHexp conditions, with the magnitude greatest for AQ and CLD at 
Bakersfield. At Bakersfield, SOA concentrations increased during the early morning (04:00–08:00 PST) 
due to nighttime precursor accumulation and a shallow boundary layer, followed by an afternoon decline 
from boundary layer deepening and atmospheric precursor depletion. A second evening peak (19:00–
22:00 PST) was observed, likely caused by elevated monoterpene emissions during the local citrus 
blooming period that spanned the duration of the campaign. Previous work (Fares et al., 2012) reported 
that monoterpene concentrations exhibited pronounced diurnal patterns and were substantially enhanced 
during blooming, consistent with the late-evening SOA peak observed here. 

In contrast, results from Riverside (Mar), Riverside (Oct), and Wilmington (Mar) showed less diurnal 
variability, with peaks generally aligned with morning traffic emissions (06:00–10:00 PST) and 
subsequent afternoon declines, stabilizing in the early evening. Ambient OA (Figure 3.23g) displayed 
generally lower-amplitude diurnal cycles compared to SOA formed in the reactor, with slight morning 
enhancements, reflecting local emission patterns and boundary layer dynamics. 

Gas-phase species followed characteristic source- and meteorology-driven diurnal cycles. Mean 
concentrations of NO, NOₓ, and CO (Figures 3.23h–j) exhibited sharp morning peaks (06:00–08:00 PST) 
from traffic emissions, followed by a gradual decrease in the afternoon. Ambient PM2.5 (Figure 3.23k) 
concentrations increased in the morning and again in the evening, while O3 (Figure 3.23l) shows a strong 
afternoon peak (~14:00–16:00 PST). 



61 
 

 

Figure 3.23.  Diurnal profiles of SOA concentrations (µg m⁻³) under each experimental condition: (a) 
DRY low OHexp, (b) DRY high OHexp, (c) AQ low OHexp, (d) AQ high OHexp, (e) CLD low OHexp, (f) 
CLD high OHexp, and (g) ambient. Panels (h–l) show the diurnal variation of key ambient gas- and 
particle-phase species: (h) NO (ppb), (i) NOₓ (ppb), (j) CO (ppb), (k) PM2.5 (µg m⁻³), and (l) O₃ (ppb). 

3.4.4  Organic Aerosol Evolution 

Figures 3.24-3.27 present the time series of f44 (middle) and f43 (top) for ambient and reactor conditions, 
along with box-and-whisker plots (bottom) summarizing their distributions under each reactor condition. 
f44 is the fractional contribution of CO₂⁺ at m/z 44, while f43 is the C2H3O+ fraction at m/z 43. In the 
previous work (Ng et al., 2011; Ortega et al., 2016; W. Xu et al., 2022), f44 is typically associated with 
more oxidized organic aerosol (OA), whereas f43 is linked to freshly formed OA. 
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In the Riverside campaigns, f43 decreased markedly and f44 increased during experiments with aqueous 
aerosol seed and cloud droplets relative to dry seed aerosol experiments, indicating more oxidized OA 
formation at higher water content. Similar trends were observed when comparing high- to low-OH 
exposure conditions, with higher OH exposure yielding increased f44 and decreased f43. In Wilmington, f44 
remained consistently higher and f43 lower under high-OH exposure, while water content exerted a 
minimal influence on either parameter. In Bakersfield, both increased OH exposure and elevated water 
content promoted more oxidized OA formation, with the most considerable enhancement in f44 observed 
under higher RH and high OH exposure conditions. 

 

 

Figure 3.24.  Time series and statistical distributions of f43 (fC2H3O), and f44 (fCO2) for Riverside (Mar). 
Box and whisker plots with the average value (dot) and the 10th, 25th, 50th (median), 75th, and 90th 
percentiles. 
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Figure 3.25.  Time series and statistical distributions of f43 (fC2H3O), and f44 (fCO2) for Riverside (Oct). 
Box and whisker plots with the average value (dot) and the 10th, 25th, 50th (median), 75th, and 90th 
percentiles. 
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Figure 3.26.  Time series and statistical distributions of f43 (fC2H3O), and f44 (fCO2) for Wilmington (Mar). 
Box and whisker plots with the average value (dot) and the 10th, 25th, 50th (median), 75th, and 90th 
percentiles. 
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Figure 3.27.  Time series and statistical distributions of f43 (fC2H3O), and f44 (fCO2) for Bakersfield (Apr). 
Box and whisker plots with the average value (dot) and the 10th, 25th, 50th (median), 75th, and 90th 
percentiles. 

4. PMF and GAM Analysis of Field Campaign Data 

4.1  Source Apportionment of Ambient Organic Aerosol through PMF 

4.1.1  PMF Methodology 

Given the large contribution of OA to NR-PM1 mass (Figures 4.1-4.4), additional analysis was carried 
out to characterize different types of OA and their sources using positive matrix factorization (PMF) 
(Paatero and Tapper, 1994; Ulbrich et al., 2009). The ambient OA unit-mass resolution mass spectra  
from each campaign along with their corresponding error matrices, were used in an Igor-based toolkit (v. 
3.0) for PMF analysis (Ulbrich et al., 2009) and different number of solution sets (up to at least 8 factors) 
were investigated. Consistent with common practices in PMF, the data with signal to noise ratio between 
0.2-2 were down-weighted by a factor of 2 while bad data, defined as any data with signal to noise less 
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than 0.2, were removed from the analysis. Furthermore, data from fragments whose signals are somehow 
related to each other in the interpretation of mAMS mass spectra (i.e., m/z 16,17, 18, 28, and 44) were 
considered weak and down-weighted by a factor of 2. PMF results were examined for 
similarity/difference between the mass spectra and time series of the factors within one solution set. The 
number of factors (or sources) was selected to minimize Q/Qexp as long as the factors were not split (i.e., 
resulting in highly similar time series of factor mass spectra profile). Although variations due to different 
fpeak and seed values were also explored, the final set of solutions correspond to fpeak=0 and seed=0. To 
assess stability of the selected final solutions, 100 bootstrap runs were also carried out. The correlation 
coefficient (r) between the base- PMF factor profiles and the average bootstrapped solutions was greater 
than 0.97 for all factors except factor 3 of PMF results in Bakersfield (Apr) (where the highest r was 
0.87), suggesting the overall robustness of the selected final solution factors. 

Typically, correlations among the resolved factors and external parameters are used to finalize the 
selection of the solution and to assign specific sources/formation processes to each factor. Here, we relied 
on knowledge from previous investigations of OA sources, lab-based mass spectral characteristics of 
different OA types, expected diurnal trends in different sources, correlations with the AMS-based 
measurements of nitrate and sulfate, and correlations with eBC (when available), CO, NOx, and ozone by 
CARB or the South Coast Air Quality Management District (Table 4.1). It is worth noting that since most 
of the auxiliary gas measurements were not made at the same site, less than ideal correlations are 
expected in these comparisons. 

4.1.2  Results and Discussion  

The measured ambient OA was attributed to 4-6 sources in each campaign, summary of which are 
provided in Figures 4.1-4.4. The fresh, hydrocarbon-like OA (HOA) factors are identified based on the 
dominance of ion fragments at m/z 41, 43, 55, 57, 69, 71, etc. that is a common hydrocarbon 
fragmentation pattern upon electron-impact ionization (McLafferty and Turecek, 1993a; Zhang et al., 
2005). The mass spectra of the HOA factors are highly similar (r2>0.89) among all sites. The diurnal 
profile of this factor at all sites suggests strong association with vehicular traffic emissions, especially 
during morning rush hours. . Variable levels of correlations were observed between HOA and CO 
(r2=0.15-0.65), eBC (r2=0.32-0.57), and NOx (r2=0.03-0.59). The lower correlation coefficients between 
HOA and the auxiliary gases is likely due to lack of co-location between the aerosol and gas 
measurements. It is interesting to note that during Wilmington (Mar), the contribution of the HOA factor 
did not decrease as quickly as at the other campaigns after the morning rush hour. This may be due to the 
proximity of the sampling site during Wilmington (Mar) to the Ports of Los Angeles and Long Beach and 
influence of port-related traffic beyond the typical morning rush hours.   

The fresh biomass burning OA (BBOA) factor has a similar fragmentation pattern to the HOA factors 
with the exception of having contributions at m/z 60 and m/z 73 which are associated with combustion of 
sugars (Cubison et al., 2011; Zhang et al., 2011). The diurnal profiles of this factor were very similar 
during  Riverside (Mar),  Riverside (Oct), and Wilmington (Mar) with a peak in its fractional contribution 
in late afternoon until midnight. Its correlation coefficient was highest with CO, nitrate or sulfate 
(depending on the campaign) (Table 4.1). Sources of BBOA could be longer-range transported BBOA or 
local sources from residential biomass burning. A fresh BBOA factor was not identified as a source of 
OA during  Bakersfield (Apr).  



67 
 

The cooking OA (COA) factor profile is also very similar to that of HOA and BBOA (minus the strong 
contribution from m/z 60 and 73), but with a higher contribution of m/z 55 instead of m/z 57 (Allan et al., 
2010; Mohr et al., 2012, 2009; Vasilakopoulou et al., 2023). Unlike observations at major cities with 
close proximities of the measurement sites to restaurants with peak emissions during meal times (e.g., 
Allan et al., 2010, (Hayes et al., 2013)),  there isn’t a significant variation in the diurnal profiles of COA 
in either of the campaigns.  

The oxygenated OA (OOA) factors are characterized by a strong signal at m/z 28 (CO+) and m/z 44 
(CO2

+) (Ng et al., 2010; Zhang et al., 2007).  During Riverside (Mar) and Riverside (Oct), the OOA could 
further be classified into More Oxidized OOA (MO-OOA) and Less Oxidized OOA (LO-OOA), based on 
the relative contribution from m/z 43 (Zhang et al., 2011, 2019). Compared to MO-OOA, LO-OOA has a 
relatively higher contribution at m/z 43, suggesting some contribution of less oxygenated fragments. 
Diurnal profiles of OOA showed significant increase in its fractional contribution in early- to mid- 
afternoon, consistent with its link to photochemical processes. The OOA factors showed highest 
correlations with sulfate and/or nitrate (Table 4.1).  

Except for  Riverside (Mar) , additional unique factors were also resolved. A unique factor was identified 
during  Riverside (Oct) and Bakersfield (Apr) with its mass spectra being similar to what has been 
observed in the laboratory from nitrate oxidation of biogenic volatile organic compounds (BVOCs), with 
a very high signal at m/z 43 and much lower signal at m/z 29 and 44 (He et al., 2021), and negligible 
signal at other ions. During  Riverside (Oct), the mass concentration of this factor, named biogenic SOA 
(BSOA) peaked in the early morning hours while its fractional contribution was high throughout the day 
except for the morning and afternoon rush hours, suggesting both daytime and nighttime formation of it. 
During  Bakersfield (Apr), both the mass concentration and fractional contribution of this factor was high 
after sunset. Given recent work on the importance of BVOCs in S. California during warmer months of 
the year (Pfannerstill et al., 2024) as well as the close proximity of the sampling site during Bakersfield 
(Apr) in Bakersfield to citrus fields, it is not surprising to have a measurable (25% in  Riverside (Oct) and 
31% in  Bakersfield (Apr)) contribution from BSOA at these locations. Presence of a nighttime biogenic 
factor during  Bakersfield (Apr) is also consistent with previous aerosol studies in Bakersfield during 
CalNex (Liu et al., 2012). The BSOA factor in both campaigns was best correlated with sulfate, consistent 
with its secondary nature. Although we are not able to differentiate the sulfate signal detected by mAMS 
to organic and inorganic portions, previous studies have observed formation of organosulfates from 
oxidation of BVOCs (Hettiyadura et al., 2019; Wang et al., 2022; Zhang et al., 2012). 

Considering the contributions of OOA and BSOA factors, overall, 45-65% of OA during these campaigns 
are secondary in nature, with higher fractions observed in Bakersfield (Apr). 

In Wilmington (Mar), a factor with a unique fragmentation pattern was consistently observed (Figure 
4.3). Its concentration throughout the day remained more or less unchanged while its fractional 
contribution peaked in the early afternoon. Given the dominance of ions at m/z 29, 31, and 45, which are 
common for primary alcohols (McLafferty and Turecek, 1993b), we attribute this factor to marine 
sources. There could also be some contribution from S- containing fragments (i.e., CHS+) at m/z 45, 
originating from marine dimethyl sulfide oxidation (Saarikoski et al., 2019) or a compound related to 
unique emissions from local industrial activities. 
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As mentioned above, in Bakersfield (Apr), we could not identify a source related to fresh biomass burning 
since none of the factors showed enhancement in m/z 60 and 73. However, a factor rich in m/z 44 as well 
as m/z 41, 51, 55, 65, 67, 79, and 81 was resolved that has signatures of both aged and primary organic 
aerosols, hence called aged POA (Figure 4.4). The absolute concentration of this factor increased after 
sunset while its fractional contribution was relatively constant throughout the day. Given the higher 
correlation of this factor with sulfate and eBC, we speculate the source to be combustion related though 
the exact source (aged cooking or biomass burning or other solid fuel burning) remains unclear.  

 

Table 4.1.  Correlation coefficient of scatter plots between PMF factors and external variables during  
Riverside (Mar) (a),  Riverside (Oct) (b), Wilmington (Mar) (c) and  Bakersfield (Apr)  (d). 
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Figure 4.1.  Summary of ambient OA PMF results for  Riverside (Mar): (a) Mass spectral profiles of the 
resolved factors; (b) Average contributions of each PMF factor; (c) Diurnal profiles of the average mass 
concentration of each factor; (d) Diurnal profiles of the fractional contribution of each factor. 
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Figure 4.2.  Summary of ambient OA PMF results for  Riverside (Oct): (a) Mass spectral profiles of the 
resolved factors; (b) Average contributions of each PMF factor; (c) Diurnal profiles of the average mass 
concentration of each factor; (d) Diurnal profiles of the fractional contribution of each factor. 
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Figure 4.3.  Summary of ambient OA PMF results for Wilmington (Mar): (a) Mass spectral profiles of the 
resolved factors; (b) Average contributions of each PMF factor; (c) Diurnal profiles of the average mass 
concentration of each factor; (d) Diurnal profiles of the fractional contribution of each factor. 
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Figure 4.4.  Summary of ambient OA PMF results for  Bakersfield (Apr): (a) Mass spectral profiles of the 
resolved factors; (b) Average contributions of each PMF factor; (c) Diurnal profiles of the average mass 
concentration of each factor; (d) Diurnal profiles of the fractional contribution of each factor. 

 

4.2.  Generalized Additive Modeling (GAM) 

4.2.1  Training Data 

The training data are processed to investigate trends and short-term fluctuations separately. Trends are 
computed first as rolling 24-hour means, then diurnal cycles are calculated from the trends as the average 
of each hour of the day over the full data set. The denoised training data are the sum of trends and diurnal 
cycles. Detrended data are defined as the difference between the unprocessed data and the denoised data. 
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4.2.2  Model Description 

The models for each campaign and training set (i.e., the denoised and short-term fluctuations) are 
initialized as GAMs that predict OA trained against the covariates detailed in Table 4.2. We model OA 
because it is the major particulate species that exhibits the most complex behavior. The covariates are 
chosen as the widest pool of predictors for which we have collocated data coincident with AMS 
measurements. 

Covariate Description Units Data source 
NH4

+ Particulate ammonium µg m3 AMS (ambient) 
SO4

2- Particulate sulfate µg m3 AMS (ambient) 
NO3

- Particulate nitrate µg m3 AMS (ambient) 
Cl- Particulate chloride µg m3 AMS (ambient) 
NOX Nitrogen oxides ppm ARB ambient monitor 
CO Carbon monoxide ppm ARB ambient monitor 
O3 Ozone ppm ARB ambient monitor 
TEMP Temperature °C Nearby airport monitor 
RH Relative humidity % Nearby airport monitor 
WS Wind speed m s-1 Nearby airport monitor 
WD Wind direction ° Nearby airport monitor 
f43 m/z 43 mass fraction Fraction (unitless) AMS (ambient) 
f44 m/z 44 mass fraction Fraction (unitless) AMS (ambient) 

 

Analysis of variance (ANOVA) is calculated for the initial model, then the covariate with the smallest F 
statistic (i.e. the least significant covariate) is dropped, and the model retrained. We repeat this process 
until dropping a covariate decreases the model R2 by 0.01 or more in a single iteration. 

After denoising or detrending as described in Section 4.2.1, the training distributions become markedly 
less skewed. We therefore train GAMs assuming Gaussian distributions with identity link functions 
instead of the log-link Gamma distributions used in Task 1. Model performance is summarized in Table 
4.3 with R2 defined as in Equation 1.8. As in section 4.2.1, the denoised data are the sum of rolling 24-
hour trends and diurnal cycles while the detrended data are the difference between the unprocessed hourly 
data and the denoised data. Models are trained separately for the denoised and detrended data sets.Table 
4.23.  Model performance measured as R2 for each campaign and training set. 

 
Campaign Denoised R2 Detrended R2 
Riverside (Mar) 0.96 0.80 
Riverside (Oct) 0.88 0.50 
Wilmington (Mar) 0.91 0.66 
Bakersfield (Apr) 0.91 0.42 

4.2.3  Marginal Effects 

Because of the identity link used here, marginal effects are more directly obtained than in Task 1. They 
are simply the spline fit for each covariate, without the need for transformation. 
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4.2.4  Riverside (Mar) 

Focusing on rolling 24-hour trends and diurnal periodicity, ambient OA during this campaign is most 
parsimoniously characterized by NO3

-, NOX, CO, O3, and SO4
2- (Figure 4.5). Because CO and NOX are 

strongly correlated (r = 0.94), they are likely related to mobile sources, which is further supported by their 
diurnal profiles that follow standard traffic patterns. This explains the positive associations of the 
marginal effects for CO (Figure 4.6), which is co-emitted with tailpipe POA and SOA precursors. This 
also helps explain the significance of O3 and the positive associations of its marginal effects (Figure 4.6), 
as ozonolysis of mobile source SOA precursors like alkanes can enhance OA through OOA formation 
(Zhang et al., 2014). From PMF we see that OOA makes up nearly half of OA by mass, on average, 
during this campaign. 

SO4
2-, which likely comes from upwind sources (Mysliwiec and Kleeman, 2002), also displays positive 

associations in its marginal effects (Figure 4.6). This could be due to co-transport of upwind OA or acidic 
SO4

2- seed particles catalyzing SOA formation (Gao et al., 2004; Jang et al., 2002), possibly a mix of 
both. The marginal effects of NO3

- (Figure 4.6) are likely because most NO3
- is organic, 67% on average. 

 

 

Figure 4.5.  Sensitivity analysis for the Riverside (Mar) denoised 
model. 
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Figure 4.6.  Marginal effects of (a) NO3
-, (b) CO, (c) O3, and (d) SO4

2- for the Riverside (Mar) denoised 
model with 95% confidence intervals shaded. 

 

To investigate short-term fluctuations, we remove the rolling 24-hour and diurnal signals. Immediately, 
we see that these fluctuations require a wider set of covariates to balance explanatory power with 
parsimony. As before, SO4

2-, NO3
-, NOX, CO, and O3 all contribute significant explanatory power, but 

now the mass fractions of m/z 43 and m/z 44 are included (Figure 4.7). The covariates common to both 
models are explained by the same logic, while f43 and f44 shed additional light on the chemistry taking 
place. We see f43 display a positive association with its nighttime marginal effect and no effect during the 
day. This indicates that the f43 effect we see is not related to m/z 43 associated with HOA, as HOA is 
related to mobile emissions and would therefore confer daytime importance, but may instead be related to 
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OOA-II, which also has a strong m/z 43 peak in its mass spectrum. This is indicative of particle aging, 
which also explains why f44 has significant explanatory power, since the m/z 44 peak is also present in 
OOA-II and is especially strong in OOA-I. The negative association we see for the marginal effects of f44 
are likely because OOA is anticorrelated with OA, attaining its maximum in the afternoon between rush 
hours. 

 

 

Figure 4.7.  Sensitivity analysis for the Riverside (Mar) detrended 
model. 
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Figure 4.8.  Marginal effects of (a) f43 and (b) f44 for the Riverside (Mar) detrended model with 95% 
confidence intervals shaded. Note: negative covariate values due to detrending. 

4.2.5  Riverside (Oct) 

Like during Riverside (Mar), SO4
2- and CO contribute explanatory power to the model trained on rolling 

24-hour trends and diurnal periodicity, but unlike that campaign, meteorological covariates (wind speed, 
wind direction, and RH) provide additional explanatory power; we also see f43 selected (Figure 4.9). SO4

2-

, CO, and f43 all display positive associations in their marginal effects (Figure 4.10). SO4
2- is likely due to 

a mixture of inflow and acid-catalyzed SOA formation (Gao et al. 2004; Jang et al. 2002; Mysliwiec and 
Kleeman 2002). Although NOX was selected out, CO is still strongly correlated with it (r = 0.85), 
indicating mobile sources for CO. HOA is also strongly influenced by mobile sources and its strong m/z 
43 peak helps explain the positive association in the marginal effects for f43, but BSOA is also 
characterized by a strong mass spectrum peak at m/z 43 and constitutes a larger fraction of OA mass 
throughout the campaign. This suggests that high OA loadings are associated with high BSOA and/or 
HOA mass fractions. 

RH displays a negative daytime association and a concave down nighttime association in its marginal 
effects (Figure 4.10). This is likely because RH and OA are anticorrelated, with OA higher during the day 
than overnight and the inverse for RH. Wind speed displays a positive association in its marginal effects 
(Figure 4.11), indicating the importance of transport as high wind speeds would display a negative 
association if ventilation were the only role they played. The marginal effects of wind speed indicate that 
westerly to east-north-easterly winds suppress OA while southerly to westerly winds enhance OA, with 
westerly winds, as the predominant wind direction, producing no effect relative to the mean. 

 

https://www.zotero.org/google-docs/?CsSXaC
https://www.zotero.org/google-docs/?CsSXaC
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Figure 4.9.  Sensitivity analysis for the Riverside (Oct) denoised 
model. 
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Figure 4.10.  Marginal effects of (a) SO4
2-, (b) CO, (c) RH, and (d) f43 for the Riverside (Oct) denoised 

model with 95% confidence intervals shaded. 
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Figure 4.11.  Marginal effects of (a) wind speed and (b) wind direction for the Riverside (Oct) denoised 
model with 95% confidence intervals shaded. 

 

The covariates at our disposal for this campaign are insufficient to adequately explain short-term 
fluctuations (R2 = 0.50), so we focus on the preceding analysis of rolling 24-hour and diurnal trends. 

 

4.2.6  Wilmington (Mar) 

As in the Riverside campaigns, OA in Wilmington during this campaign is best characterized by a 
covariate set that includes NO3

- and CO. Alongside O3 and f43, which were also important in the Riverside 
campaigns, temperature appears as a significant explanatory variable. With the exception of f43, each 
selected covariate displays positive associations in its marginal effects (Figures 4.12-4.13). NO3

-, as 
before, is due to the large fraction of NO3

- that is organic (0.67), while CO is a tracer for mobile POA and 
SOA precursor emissions and O3 is a tracer for photochemical activity and OA oxidation through 
ozonolysis. Temperature most likely displays positive associations in its marginal effects because it is a 
proxy for insolation, which drives photochemical activity that enhances ozonolysis and thus SOA. In 
contrast, the marginal effects for f43 display negative associations. This is most likely because f43 
anticorrelates with OA, since the mass fractions for HOA and OOA, which have substantial m/z 43 peaks, 
grow when total OA decreases. 



81 
 

 

Figure 4.12.  Sensitivity analysis for the Wilmington (Mar) 
denoised model. 
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Figure 4.13.  Marginal effects of (a) NO3
-, (b) CO, (c) temperature, and (d) O3 for the Wilmington (Mar) 

denoised model with 95% confidence intervals shaded. 
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Figure 4.14.  Marginal effects of f43 for the Wilmington (Mar) 
denoised model with 95% confidence intervals shaded. 

 

 

As in Riverside in March, short-term fluctuations are not as well explained by our data, but most of the 
variance (R2 = 0.66) is accounted for, this time by SO4

2-, NO3
-, Cl-, CO, O3, f44, and wind direction 

(Figure 4.14). The relative importances of NO3
- and CO flip compared to the denoised model, with NO3

- 
now more important than CO, perhaps suggesting secondary NO3

- processes are more important than 
mobile source POA and SOA precursors for short-term fluctuations. The inclusion of Cl- is indicative of 
fresh sea salt influence, which together with its marginal effects (Figure 4.15) suggests Cl- is acting to 
enhance OA. This can be explained by the mechanisms described by Cai and Griffin (2003) or Laskin et 
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al. (2012), which describe how organic coatings on sea salt particles can enhance VOC uptake and 
therefore OA mass. The importance of wind direction corroborates this, as onshore versus offshore winds 
would modulate the influence of Cl-. Since SO4

2- in the Los Angeles basin is largely marine SO4
2- 

(Mysliwiec and Kleeman 2002), wind direction modulates the influence of SO4
2- in the same way. SO4

2- 
itself, in this case, likely exerts its influence through acid-catalyzed SOA formation rather than co-
transport as is the case in Riverside, since the main species that would be co-transported into Wilmington 
with SO4

2- is Cl- from sea salt aerosol rather than upwind OA, although there could feasibly be some 
amount of marine OA co-transported with SO4

2-. O3 only displays a significant marginal effect during the 
daytime and exhibits a plateau before a positive association forms at higher O3 concentrations. Because 
f44 displays negative associations in its marginal effects, the positive association of O3 is less likely to be 
related to SOA formation through ozonolysis since this would form more OOA with m/z 44 peaks and 
thus produce positive associations for f44 marginal effects. Instead, given the simultaneous importance of 
Cl- and NO3

-, the O3 marginal effect may be related to gas-phase chlorine-organic reactions. Cl- 
displacement by NO3

- generates Cl gas that can react with organic gases to generate alkyl and alkylperoxy 
radicals that form O3 in the presence of NOX (Finlayson-Pitts, 2003). In this scenario, as Cl- and NO3

- 
form Cl gas, concentrations of organic radicals increase. These radicals produce NO2 that reacts with 
VOCs to form O3 and can continue reacting to form SOA. In this way, O3 becomes positively associated 
with OA. 

 

 

Figure 4.15.  Sensitivity analysis for the Wilmington (Mar) 
detrended model. 

  

https://www.zotero.org/google-docs/?SiNYf3
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Figure 4.16.  Marginal effects of (a) NO3
-, (b) Cl-, (c) SO4

2-, (d) CO, (e) O3, and (f) f44 for the Wilmington 
(Mar) detrended model with 95% confidence intervals shaded. Note: negative covariate values due to 
detrending. 

4.2.7  Bakersfield (Apr) 

In this campaign, as in the others, Figure 4.17 shows that NO3
-, SO4

2-, and CO are selected for their 
explanatory power, but although this is not the first campaign to include temperature as a significant 
covariate, OA sensitivity to temperature is greater than in Wilmington (Mar). In contrast to Riverside and 
Wilmington, where roughly two-thirds of NO3

- was organic during Riverside (Mar) through Wilmington 
(Mar), only 49% of NO3

- is organic in Bakersfield during this campaign. The positive associations in the 
marginal effects of both NO3

- and SO4
2- (Figure 4.18) may be related. Rollins et al. (2013) find that the 

nitrate functional group alone accounted for 4.8% of OA mass during the 2010 CalNex campaign and that 
isoprene and monoterpene oxidation in the presence of acidic SO4

2- seed formed nitrooxy organosulfates. 
The correlation between NO3

- and SO4
2- (r = 0.60) supports this, and could conceivably be higher between 

specifically organic nitrate and organic sulfate, but organic and inorganic sulfate is indistinguishable by 
AMS (Farmer et al., 2010). 

The diurnal profile of CO shows strong rush hour peaks, as does NOX, suggesting CO is a tracer for 
mobile source POA and SOA precursors, which explains the positive associations in its marginal effects 
(Figure 4.18). The importance of Cl- is surprising since it accounts for just 1% of total AMS mass on 
average during the campaign. It is not immediately clear why Cl- exhibits explanatory power for OA 
during this campaign. One possible explanation is related to biomass burning, but biomass burning 
aerosol is not identified by PMF as a major component of OA during this campaign. Mechanistically, 
wildland and agricultural fires can release potassium chloride (KCl), then NO3

- and SO4
2- can deplete Cl- 

by displacing it from K+ and forcing it into gas-phase chlorine species (Schlosser et al., 2017). This would 
explain the negative associations in the marginal effects of Cl- (Figure 4.18), since biomass burning 
would enhance OA as NO3

- and SO4
2- deplete Cl-. 

Temperature displays positive associations in its marginal effects (Figure 4.18). Physically, higher 
temperatures generally reduce OA mass by enhancing VOC evaporation out of the particle phase. This 
discrepancy suggests an indirect relationship with temperature that overrides the importance of 
evaporation. This is explained by the temperature dependence of emissions of BVOCs like isoprene 
(Tingey et al., 1979). Since BVOC emissions increase with temperature and PMF shows that BSOA 
makes up a large fraction of OA during this campaign, the positive associations in the marginal effects of 
temperature is likely related to BSOA formation. Wind direction suggests that westerly winds reduce OA 
while easterly winds enhance OA. This is surprising since the actual measurement site is located east of 
Bakersfield, leading to the expectation that westerly winds would bring polluted air from the city. One 
possible explanation is that the Bena Landfill lies due east of the measurement site, which may also help 
explain the role of chloride since landfills are significant chlorine emitters as well as VOC emitters 
(Bannan et al., 2019). 
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Figure 4.17.  Figure 4.17. Sensitivity analysis for the Bakersfield 
(Apr) denoised model. 
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Figure 4.18.  Marginal effects of (a) NO3
-, (b) SO4

2-, (c) Cl-, (d) CO, (e) temperature, and (f) wind 
direction for the Bakersfield (Apr) denoised model with 95% confidence intervals shaded. 

 

As in Riverside in October, our data for this campaign do not adequately explain short-term fluctuations 
(R2 = 0.42), so we focus on the preceding analysis of rolling 24-hour and diurnal trends. 

4.2.8  Summary 

Generalized additive modeling combined with sensitivity analysis elucidates the relationships between 
OA covariates and their relative importances for driving OA levels. Marginal effects derived from GAMs 
enable predicting the individual impacts of changes in individual covariates, while sensitivity analysis 
allows for the ranking of covariates by the strength of their influence on OA variability. Together, these 
results help us understand the formation regimes of OA in California, which can help inform how to 
target controllable covariates for efficient OA reductions. 

By contextualizing marginal effects within the literature, this analysis helps attribute marginal effects to 
physical mechanisms or infer likely correlations where marginal effects do not admit physical 
explanations. This furthers our understanding of OA regimes by revealing where interactions between 
covariates confound OA behavior, highlighting the nontrivial nature of OA. 

With hourly time resolution, this Task’s generalized additive modeling resolves features that Task 1 could 
not. Temporal disaggregation into separate night and day model fits sheds light on how OA can behave 
differently between nighttime and daytime. Denoising to separate trends and diurnal cycles from short-
term fluctuations facilitates robust model fits that characterize general OA behavior well, while short-term 
fluctuations are in some cases reasonably well characterized and in others not well characterized. This 
reflects the importance of rich, high-resolution data sets for capturing the complex dynamics of OA. 
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