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Abstract

We developed a spatiotemporal modeling framework based on a deep-forest algorithm to estimate
daily concentrations of five major PM, s components—sulfate (SO+*"), nitrate (NOs~), elemental
carbon (EC), organic carbon (OC), and mineral dust (DUST)—across the western United States
from 2002 to 2019 at 1-km resolution. The framework first generated gap-free total PM s fields
using MAIAC acrosol optical depth (AOD) and ancillary predictors, then incorporated these
estimates and CMAQ-speciated simulations, together with meteorological and land-use variables,
to predict component concentrations. Cross-validation against ground observations showed strong
performance (R?=0.81, 0.89, 0.75, 0.66, and 0.75; RMSE = 0.30, 0.59, 0.26, 1.52, and 0.59 pg/m?
for SO+, NOs~, EC, OC, and DUST, respectively). The results reproduced realistic spatial and
temporal patterns, capturing both long-term declines and episodic wildfire extremes. We extended
the record for California to 2000-2020 by integrating MERRA-2 and MERRA-2 GMI reanalysis
predictors for years without CMAQ data. Persistent exposure hotspots were identified in the Los
Angeles Basin and San Joaquin Valley, dominated by OC and NOs~. Population-weighted PM: s
exposure declined by about 20 % from 2000 to 2020, driven primarily by ~50 % reductions in NOs~
and SO+*", while OC and EC decreased modestly and DUST remained nearly unchanged. Disparity
analyses using CalEnviroScreen revealed that tracts with higher burdens of asthma, cardiovascular
disease, low birth weight, and child populations consistently faced higher exposures to NOs~ and
OC (0.28-0.59 pg/m* above low-burden tracts). Decomposition analyses indicated that
meteorology contributed variably but weakly (<10 % of interannual variance for most species,
except DUST at ~30-40 %), whereas wildfire smoke increasingly offset regulatory gains,
especially in northern California and the Sierra Nevada. These high-resolution component datasets
provide a valuable foundation for characterizing spatiotemporal exposure patterns, evaluating
emission-control effectiveness, and informing equitable air-quality management strategies across

California.



Executive Summary

Fine particulate matter (PM,s) remains a major public health concern, yet most monitoring and
regulation have focused on its total mass rather than chemical composition. Different PM, s species
arise from distinct sources, display unique atmospheric behaviors, and exert varying health effects.
Despite these differences, PM, s continues to be regulated on the basis of total mass, and most
exposure assessments and health studies have examined associations with total PM, s rather than
individual components. Although interest in and concern about PM» 5 components are increasing,
variability in component-specific exposures and their health effects remains less well understood.
To address this gap, this project developed high-resolution, long-term estimates of PM, s chemical
components and examined their implications for exposure, policy effectiveness, and environmental

justice in the western United States, with particular emphasis on California.
Methodology

This project developed the first high-resolution, long-term dataset of PM» s chemical components—
sulfate (SO4>"), nitrate (NOs"), elemental carbon (EC), organic carbon (OC), and mineral dust
(DUST)—across the western United States (2002-2019) and California (2000-2020). The 2002-
2019 dataset across the western United States was generated by integrating multiple data sources
within a two-stage advanced machine-learning framework. In the first stage, gap-free daily PM; s
total mass concentrations at 1-km resolution were derived from satellite aerosol optical depth
(AOD) and ancillary predictors. In the second stage, these gap-free PM» s estimates and speciated
PM; 5 fields from the Community Multiscale Air Quality (CMAQ) model were used as primary
predictors, supplemented by meteorological variables, land cover, population density, and satellite-
based wildfire detections. Using these inputs, daily 1-km concentrations of the five components
were estimated with spatiotemporal deep-forest models. The models achieved strong predictive
performance (cross-validation R? = 0.66—0.89) and reproduced realistic spatial and temporal
patterns consistent with ground observations. To extend the framework to California for 2000—
2020, MERRA-2 and MERRA-2 GMI reanalysis products were incorporated to replace unavailable
CMAQ inputs before 2002 and after 2019, producing a continuous 21-year record of daily 1-km
concentrations for all five PM» s components. Using the long-term high-resolution dataset across
California, we conducted long-term trend, population-weighted exposure, and environmental
disparity analyses, along with a two-stage decomposition to identify the drivers of observed trends.
The decomposition first applied meteorological normalization to isolate emission-driven changes
from meteorology-induced variability, followed by partitioning concentrations into fire and non-
fire components based on satellite-derived smoke plume observations serving as wildfire candidate
gates. This framework enabled quantitative attribution of long-term PM, s and component changes

to meteorological, wildfire, and anthropogenic emission influences.



Key Findings

Western U.S. (2002-2019): Spatiotemporal analysis of our model predictions showed that urban

populations were exposed to 1.5-2 times higher concentrations of SO.>", NOs~, EC, and OC
compared with rural populations, while exposures to DUST were comparable. All five species
exhibited declining trends over the study period, although patterns varied by season, region, and
species. Wildfire events contributed sharp episodic increases, particularly in OC, NOs~, and EC,
superimposed on the broader downward trends. Day-to-day analysis of extreme events, such as the
2018 Camp Fire, revealed that OC and NO;~ exposures increased approximately sixfold during the
fire period, demonstrating the models’ capability to capture both chronic and acute exposure

patterns.

California hotspots (2000-2020): From 2000 to 2020, concentrations of PM,s and its major

components showed strong and persistent spatial concentration in the Los Angeles megaregion and

the San Joaquin Valley (SJV), with secondary elevations in the San Francisco Bay Area and along
inland transport corridors. OC and NOs~ were the dominant contributors to these concentration
hotspots, jointly accounting for nearly half of total PM, s, while SO+>-, and DUST played smaller
yet region-specific roles. Population-weighted PM> 5 exposures decreased by about 20 % over two
decades—from approximately 14.8 pug/m? in 2000 to 11.9 pg/m?® in 2020. Statewide component
averages declined most strongly for SO+*~ and NOs~ (=50 %), reflecting effective fuel-sulfur and
NOx controls, whereas OC and EC decreased more modestly (=6—12 %) and DUST remained
largely unchanged. However, the benefits were uneven: communities with high burdens of asthma,
cardiovascular disease, child populations, or low-birth-weight prevalence consistently experienced
higher exposures, especially to NOs~ and OC, while elderly-dense tracts tended to face lower
concentrations. These patterns reveal both the progress and the persistence of regional and

demographic disparities in California’s PM> s burden.

Decomposition and Policy Implications: Decomposition analyses separating meteorological,

wildfire, and anthropogenic influences show that most long-term PM;s and component trends
reflect emission reductions rather than weather variability, with meteorology explaining less than
10% of the variance for most species but up to 30-40% for DUST. Wildfire smoke, dominated by
OC and EC, emerges as an increasingly frequent episodic driver, particularly in northern California
and Sierra Nevada mountain regions, while the chronic baseline in the SJV and Southern California
remains governed by anthropogenic sources. After removing meteorological and fire effects,
SO+*and EC exhibit strong historical declines followed by recent rebounds, NOs™ persists as a
concentrated hotspot in the SJV and coastal SOCAB, OC remains the dominant contributor in both
urban and valley regions, and DUST shows high sensitivity to climatic drying and resuspension but
minimal long-term change. Together, these findings confirm that California’s emission-control
programs have achieved major and lasting reductions but also highlight emerging challenges—
plateauing progress in EC and SO4+*, persistent NOs~ and OC burdens, climate-linked DUST



variability, and escalating wildfire smoke—that must be addressed to sustain and equalize future

air-quality gains.

Implications

The decomposition of California’s PM» s record underscores both the effectiveness of past policies
and the challenges that remain. Sharp reductions in SO+ and EC, particularly in Southern
California, demonstrate the success of fuel sulfur regulations, diesel emission standards, and
industrial controls, showing that technology-based policies can deliver rapid and large-scale
benefits. However, persistently high NOs™ and OC levels in the San Joaquin Valley reveal the limits
of current strategies in ammonia-rich and secondary-organic-aerosol-prone environments, pointing
to the need for targeted agricultural measures, better control of residential wood combustion, and
reductions in aerosol precursors. DUST also remains problematic, with plateauing or rebounding
trends in Fresno, Sacramento, and Los Angeles indicating that existing controls have been
insufficient to curb agricultural and resuspended urban dust. Finally, the growing influence of
wildfire smoke—dominated by OC and EC and concentrated in the northern Sacramento Valley
and Sierra Nevada—presents a distinct and worsening challenge, emphasizing the need to link air
quality management with forest and land management strategies. CalEnviroScreen-based analyses
show census tracts with higher burdens of asthma, cardiovascular disease, and low birth weight
consistently experience elevated exposures to NOs~ and OC—the two dominant components in
California’s most polluted regions—underscoring that the remaining PM,s burden
disproportionately affects vulnerable populations. Addressing these disparities will require
integrating air quality management with environmental justice initiatives, prioritizing emission
reductions and clean-technology investments in disadvantaged communities. Together, these
findings suggest that while California’s emission control programs have been broadly effective,
sustaining progress will require a dual focus on reducing persistent anthropogenic sources, and
mitigating wildfire smoke impacts.



1. Introduction

1.1 Motivation

Fine particulate matter with an aerodynamic diameter smaller than 2.5 pm (PMas) is a complex
mixture of chemical constituents, including sulfate (SO4*"), nitrate (NOs"), elemental carbon (EC),
organic carbon (OC), and mineral dust (DUST). A growing body of toxicological and
epidemiological evidence suggests that these constituents differ in their sources, atmospheric
behavior, and potential to cause harm to human health. For example, EC—primarily emitted from
combustion sources—is strongly associated with cardiovascular effects, while secondary inorganic
aerosols such as NOs~ and SO+*" have been linked to respiratory and systemic inflammation. OC,
which can originate from both primary and secondary formation processes, contains various
compounds of differing toxicity, some of which are highly oxidative and can trigger cellular stress.
Consequently, certain PM» 5 species may be more harmful than others on an equal-mass basis, and
their health impacts cannot be fully inferred from total PM, s concentrations alone.

In addition to differing toxicities, these five major PM, s constituents often display greater spatial
and temporal variability than total PM» s mass. This variability arises from differences in emission
source distributions, atmospheric formation pathways, meteorological influences, and chemical
reactivity. For instance, EC concentrations can vary sharply over short distances in urban areas due
to localized traffic emissions, while secondary species such as SO+** may have more regional
patterns influenced by precursor transport and photochemical processes. Such heterogeneity means
that monitoring only total PM»s mass may fail to capture important local-scale differences in
exposure and risk.

California presents a particularly critical case for advancing PM, s speciation research. The state
continues to experience some of the highest PM; s levels in the United States, with persistent non-
attainment in regions such as the South Coast and San Joaquin Valley air basins. The spatial
patterns of SO+*>-, NOs~, EC, OC, and DUST in California are shaped by a complex interplay of
urban traffic emissions, industrial activities, agricultural operations, wildfires, and long-range
transport. However, the state’s ground-based PM; s speciation monitoring network is sparse—Los
Angeles County, for example, has only two routine monitoring sites for chemical speciation—
limiting the ability to evaluate fine-scale exposure differences across communities. Given the
environmental justice concerns in California, where disadvantaged populations often live closer to
major emission sources, a high-resolution understanding of PM»s constituent concentrations is

essential for effective and equitable air quality management.



1.2 Research Objectives

The overarching goal of this project is to generate high spatiotemporal resolution estimates of five
key PMss constituents—SO4>", NOs~, EC, OC, and DUST—across California by integrating
multiple data sources, including satellite remote sensing, chemical transport model outputs,
meteorological reanalyses, land-use information, and ground-based measurements. This integrated
modeling framework enables the quantification of constituent-specific patterns and trends over two
decades, providing critical insights into spatial disparities and long-term progress in air quality

improvement.

The specific objectives are:

(1). Quantify California’s local and regional ambient PM> s components'—S0.>~, NOs~, EC, OC,
and DUST—for the period 2000-2020 by integrating multiple data sources, including ground-
based measurements, satellite observations, simulations, and reanalysis data.

(2). Evaluate long-term trends in both total PM, s mass and its major chemical components, with
particular focus on areas underrepresented in the existing monitoring network.

(3). Assess spatial disparities in PM,s constituent concentrations across demographic and
geographic subgroups in California.

(4). Recommend pathways to refine PM s mitigation strategies that account for constituent-specific
patterns and incorporate environmental justice considerations.

1.3 Hypotheses

This study is guided by the following hypotheses:

1. Greater spatial heterogeneity of constituents — The five major PM; 5 constituents—SO4*~, NOs",
EC, OC, and DUST—exhibit greater spatial variability than total PM, s mass, particularly in regions
influenced by localized sources such as traffic corridors, industrial zones, and agricultural areas.

2. Enhanced detection through high-resolution multi-source integration — Integrating multiple data
sources, including satellite products, chemical transport model outputs, meteorological reanalyses,
land-use variables, and ground-based measurements, will provide high spatiotemporal resolution
estimates capable of revealing spatial and temporal patterns of SO+*, NOs~, EC, OC, and DUST
that are not captured by the existing ground monitoring network.

3. Identification of disparities in constituent exposures — The improved high-resolution constituent
data will uncover disparities in exposure to SO4+>", NOs~, EC, OC, and DUST among different
demographic and geographic subgroups in California, providing evidence to inform more equitable
and effective PMa s mitigation strategies.

1 Throughout this report, the terms “component” and “species” are used interchangeably, both
referring to the entities discussed under “speciation” in the project proposal.



2. Literature Review and Preliminary Results

2.1 Introduction

Understanding the chemical composition of fine particulate matter (PMa) is a critical step toward
improving air quality management and public health protection. PM> s comprises a mixture of
components with distinct emission sources, atmospheric lifetimes, and physical and chemical
properties (Hand et al. 2014; Seinfeld and Pandis 2016; WHO 2021). Among these, SO4>-, NOs™,
EC, OC, and DUST are the most abundant constituents in many regions, contributing significantly
to the mass and toxicity of PM>s. Their individual spatial and temporal variations carry important
implications for exposure assessment, source attribution, and targeted emission controls. However,
their quantification at fine spatial and temporal resolution over long periods is challenging, as direct
chemical speciation monitoring is sparse and infrequent, and no single data source provides the
necessary combination of chemical accuracy, spatial continuity, and temporal completeness. In the
following sections, we review existing data sources for PM, s components (Section 2.2) and recent
developments in hybrid modeling approaches (Section 2.3), followed by a discussion of their
implications for this study.

2.2 Data sources available for PM,s components

2.2.1 Monitoring networks

Ground-based chemical speciation measurements are the foundation for PM, s component research,
providing the most reliable data for model training and evaluation. In the United States, three
nationwide monitoring networks form the backbone of these observations. The Chemical
Speciation Network (CSN) focuses on urban and suburban sites, capturing population exposure in
densely inhabited areas; the Interagency Monitoring of Protected Visual Environments
(IMPROVE) network targets rural and remote locations, often within national parks and wilderness
areas; and the Clean Air Status and Trends Network (CASTNET) primarily measures rural
background air quality on a weekly basis (Solomon et al. 2014). These networks have generated
long-term datasets—CSN since the late 1990s and IMPROVE since the late 1980s—that have been
used extensively for trend analysis, regulatory assessments, and epidemiological studies (Hand et
al. 2014; Malm et al. 2011). However, site density is limited to a few hundred stations across the
continental U.S., with large gaps in mountainous, rural, and desert regions. Sampling intervals,
typically every 1-6 days, further restrict their utility for daily mapping, particularly for species with
high day-to-day variability.

2.2.2 Satellite retrievals

Satellite remote sensing has transformed air quality research by offering broad spatial coverage
and, in some cases, fine spatial resolution. The Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm applied to MODIS observations produces aerosol optical depth
(AOD) retrievals at 1 km resolution, enabling near-global mapping of atmospheric aerosol loading



(Li et al. 2020; He et al. 2023a). MAIAC’s high resolution makes it particularly valuable for
capturing fine-scale gradients in urban and complex-terrain settings. However, AOD represents
total columnar extinction rather than surface-level mass, and the relationship with ground-level
PM, s components is nonlinear and modulated by atmospheric mixing, humidity, and aerosol
composition (Franklin et al. 2017; Meng et al. 2018a). The Multi-angle Imaging SpectroRadiometer
(MISR) fractional AOD offers additional information on particle size and composition at 4.4 km
resolution, improving physical relevance for component estimation (Geng et al. 2020), but its
coarse revisit time (global coverage every nine days) and reduced spatial footprint limit its capacity
for continuous daily mapping. Both products are further constrained by retrieval gaps due to clouds,
snow cover, or bright surfaces.

2.2.3 Chemical transport models (CTMs)

CTMs simulate the full life cycle of atmospheric particles by integrating emissions, chemical
transformations, transport, and deposition, driven by meteorological data. The Community
Multiscale Air Quality (CMAQ) model, developed by the U.S. EPA, provides species-resolved
PM, s outputs at resolutions as fine as 12 km for regional applications (Appel et al. 2017). CMAQ
has been widely used in research and regulatory contexts for its ability to generate physically
consistent spatiotemporal patterns of PM, s components, including SO+*", NOs~, EC, OC, and dust.
However, uncertainties in emission inventories, parameterizations of secondary aerosol formation,
and coarse resolution for large domains (often >12 km) can limit agreement with local observations,
especially in heterogeneous regions such as the western U.S. Other CTMs, such as GEOS-Chem
and WRF-Chem, have similar limitations, with typical long-term simulations conducted at even
coarser spatial scales (>25 km).

2.2.4 Dispersion models

Dispersion modeling approaches, including Gaussian plume (e.g., AERMOD) and Lagrangian
particle tracking models, are designed to predict pollutant concentrations from specific sources
given meteorological inputs (Gibson et al. 2013). They are effective for estimating near-source
impacts and for regulatory permitting applications but are not suited to simulating regional-scale
secondary aerosol formation or the broad range of chemical processes affecting PM» s components.

2.2.5 Reanalysis datasets

Atmospheric reanalysis products blend model simulations with multiple observational datasets,
producing spatially and temporally complete fields of meteorological and chemical variables.
MERRA-2 includes global, multi-decadal records of speciated aerosol concentrations (Randles et
al. 2017). While reanalyses provide consistent, gap-free coverage and can extend component
estimates into data-sparse regions, their coarse resolution (~0.5° x 0.625°) makes them insufficient
for detailed exposure assessment, especially in urban and topographically complex environments.



2.3 Review of PM, s component hybrid modeling approaches

Estimating PM» s components at fine spatiotemporal resolution is inherently more complex than
modeling total PM; 5, given their greater variability, shorter lifetimes, and localized sources (Amini
et al. 2022; Donkelaar et al. 2019; He et al. 2023b). Hybrid modeling integrates complementary
data sources to overcome the limitations of individual datasets. By combining chemically accurate
ground observations, spatially extensive satellite retrievals, and mechanistically rich CTM
outputs—together with meteorological, land use, and population data—these approaches enable
broader coverage and more accurate predictions (Donkelaar et al. 2019; Amini et al. 2022).

2.3.1 Statistical and machine-learning PM, s component models and limitations

Hybrid models use diverse statistical and machine-learning frameworks to integrate multiple
predictors. Land-use regression (Hoogh et al. 2013; Hsu et al. 2018) incorporates geographic
covariates but is limited in temporal coverage. Geographically weighted regression (Donkelaar et
al. 2024) improves spatial flexibility but is computationally demanding and sensitive to monitoring
density. Nonlinear methods such as random forest (Geng et al. 2020) and backpropagation neural
networks (Di et al. 2016) capture complex interactions among predictors but often rely on
predictors at coarse resolution. For example, Meng et al. (2018b) estimated PM> s components using
coarse-resolution GEOS-Chem reanalysis component data and auxiliary predictors at ~0.25° x
0.3125°, demonstrating the feasibility of multi-source integration but also highlighting the need for
high-resolution, physically relevant predictors. Ensemble approaches, such as those in Amini et al.
(2022), stack multiple base learners to improve accuracy, achieving resolutions as fine as 50 m in
urban areas at the annual scale. Despite these advances, most existing models achieve either high
spatial resolution or high temporal resolution, but rarely both, due to resolution constraints in key
predictors and computational costs.

2.3.2 Challenges in estimating components in California

California presents a particularly complex environment for PM,.s component modeling due to its
combination of diverse emission sources, frequent wildfire activity, complex terrain, and
meteorological variability. The state’s urban areas, such as the Los Angeles—Long Beach—Anaheim
metropolitan region, experience intense traffic emissions and industrial activities, contributing to
elevated levels of NOs~, OC, and EC. The San Joaquin Valley, bounded by mountains, suffers from
poor dispersion conditions that exacerbate NOs~ and carbonaceous aerosol accumulation. Episodic
wildfire events—especially in northern and central California—introduce large, variable emissions
of OC and EC, often overwhelming typical seasonal patterns. Additionally, DUST emissions in the
southeastern deserts contribute significantly to DUST concentrations, especially under dry and
windy conditions. Sparse monitoring coverage in mountainous and rural regions, combined with
retrieval gaps in satellite AOD data due to cloud, smoke, or snow cover, further complicates
modeling. Previous studies have consistently reported lower predictive performance for PMs s
components in western United States, particularly for California, compared to other parts of the
United States (Meng et al. 2018b; Geng et al. 2020), underscoring the need for models capable of



integrating high-resolution predictors that can resolve both the spatial heterogeneity of emission
sources and the temporal variability driven by episodic events.

2.4 Preliminary analysis

2.4.1 Correlation coefficient analysis based on monitoring observation data

Previous efforts to estimate PM» 5 component concentrations over large geographic areas have often
been constrained by limited spatiotemporal resolution and suboptimal modeling accuracy, even
when incorporating multiple data sources such as satellite AOD and CTM outputs. To inform the
design of our modeling framework, we conducted a preliminary analysis examining the statistical
relationship between observed total PM» s mass concentrations and observations of the five major
components.

The degree of linear association between total PM» 5 and each component was quantified using the
Pearson correlation coefficient. As summarized in Table 2.1, the five target components are key
chemical constituents of PM, s mass and exhibit moderate to strong correlations with total PM, s
concentrations (r = 0.33—-0.85). These correlations reflect the shared influence of emission sources
and atmospheric processes on both total PM» s and its components. Based on this evidence, total
PM; s was selected as a primary predictor for component modeling.

Table 2.1. Correlations between PM2.5 observations and species observations across the western U.S., 2000-2020.

SO~ NOs~ EC oC DUST
0.50 0.67 0.74 0.85 0.33

In addition to its chemical relevance, total PM» s mass can be estimated at high spatial and temporal
resolution. Specifically, daily, 1 km gap-free PM,s fields can be derived from satellite AOD and
other auxiliary predictors, providing spatially continuous and temporally consistent coverage
across the study domain. This dual advantage—strong chemical linkage to the components and
high-resolution availability—positions total PM, s as an effective anchor variable for integrating
other predictors, including CTM-speciated outputs, meteorological parameters, and land-use

characteristics.

2.4.2 Expanding modeling region

During the implementation stage, we found that California’s PM» s component monitoring network
contains only a limited number of stations, particularly for speciated measurements (Figure 2.1).
The sparse spatial coverage limits the representativeness of the training and validation data if
modeling were restricted solely to California. To enhance model robustness and capture a broader
range of emission source types, meteorological regimes, and terrain features, we expanded the
modeling domain to encompass the entire western United States. This larger study area (Figure 2.1)
includes additional monitoring sites from the CSN and IMPROVE networks, increasing both the
diversity and volume of training data. Expanding the domain also helps the model learn from



regions with similar pollution characteristics and transport patterns to California, ultimately
improving prediction accuracy within the state.

1094. 81 A CSN  IMPROVE e CASTNET |
294, 805 D Study region State boundary

Figure 2.1. Study region and spatial distribution of PM2.s component monitoring network used in this study.

2.5 Summary

Existing studies on PM, s component estimation have significantly advanced our understanding of
spatial and temporal patterns, yet datasets offering both high spatial and high temporal resolution
remain exceptionally scarce. Most prior efforts have achieved either fine spatial detail, often limited
to annual or seasonal averages, or daily to sub-daily resolution at much coarser spatial scales. As a
result, no long-term, spatially continuous record currently exists for PM2 s chemical components
that simultaneously resolves fine-scale spatial variability and daily temporal dynamics across large
and complex regions such as California. Two major limitations underlie this gap:



» First, many hybrid models still depend on coarse-resolution predictors, such as CTM or
reanalysis outputs at >12 km, which limit the ability to resolve fine-scale gradients in
complex environments. Integrating high-resolution, physically and chemically relevant
predictors—particularly daily, 1 km total PM, 5 estimates supplemented by CTM-speciated
outputs and other covariates—can address this gap.

» Second, many modeling algorithms are not optimized to capture both gradual seasonal
variations and rapid changes from episodic events like wildfires. Employing advanced
spatiotemporal modeling approaches—such as deep learning, deep forest, or stacking
ensemble techniques—can better capture these dynamics, especially in data-sparse and
heterogeneous regions.

Through this exploratory analysis, we identified these two focal areas as potential improvement
directions for developing more accurate, spatially resolved, and temporally continuous PM; s
component datasets for California and other regions with complex atmospheric environments.
Therefore, we chose to develop a spatiotemporal deep-learning model where PM, s total mass
serves as a primary predictor to estimate daily, gap-free PM» s SO4*>", NOs~, EC, OC, and DUST at
a high spatial resolution of 1 km over the western United States. This approach addresses both
identified gaps: (1) using high-resolution, gap-filled total PM: s as a chemically relevant predictor
(correlation coefficients r = 0.33-0.85 with components), and (2) employing a spatiotemporal deep-
forest algorithm capable of capturing complex spatiotemporal patterns including episodic wildfire

events.



3. Data Sources and Preprocessing

This project integrates a diverse suite of ground-based measurements, satellite remote sensing
products, chemical transport model outputs, meteorological reanalysis datasets, and geographical
variables to produce daily, gap-free estimates of five major PM, s components—SO4+*~, NOs~, EC,
OC, and DUST—at a 1-km spatial resolution across the western United States for the period 2000—
2020. In this section, we describe the data sources and preprocessing procedures used to harmonize
datasets with varying spatial and temporal resolutions onto a uniform 0.01° (~1 km) grid, using
satellite-derived AOD as the spatial reference. The modeling domain was expanded beyond the
core study area for reasons detailed in Section 2.4.2. The resulting spatial extent, encompassing the
western United States, is shown in Figure 3.1.

A CSN % IMPROVE e CASTNET __
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Figure 3.1. Modeling region and spatial distribution of PM2.s component monitoring network used in this study.



3.1 Ground-level PM; s total mass and speciated measurements

We obtained daily PMas component concentrations from three major U.S. monitoring networks:
(1). Chemical Speciation Network (CSN) — Operated by the U.S. Environmental Protection Agency
(EPA) (https://www.epa.gov/amtic/chemical-speciation-network-csn). CSN sites are primarily
located in urban and suburban areas. Sampling frequency: 1-6 days.

(2). Interagency Monitoring of Protected Visual Environments (IMPROVE) — Managed by a
federal-state partnership (https://vista.cira.colostate.edu/Improve/). IMPROVE sites are generally
located in remote or rural locations, including national parks and wilderness areas. Sampling
frequency: 1-3 days.

(3). Clean Air Status and Trends Network (CASTNET) — Operated by EPA to monitor rural air
quality (https://www.epa.gov/castnet). CASTNET measurements have weekly resolution and were
used only for independent validation.

In the modeling, CSN and IMPROVE measurements served as the training and cross-validation
datasets, while CASTNET data provided independent evaluation of SO4*>" and NOs~ estimates.
Measurements of SO4>~ and NOs™ are comparable between CSN and IMPROVE (Hand et al., 2012;
Solomon et al., 2014) and were directly combined. EC and OC were harmonized following Malm
et al. (2011) and Meng et al. (2018a) to correct for analytical differences. Specifically, for CSN EC
and OC measurements, data processing differed by method. When analyzed using the Thermal
Optical Reflectance (TOR) technique, blank corrections were applied directly to the measurements.
For samples analyzed with the Thermal Optical Transmittance (TOT) method, EC concentrations
were scaled by a factor of 1.3 to align with IMPROVE EC values. OC concentrations, on the other
hand, were adjusted using Equation below (Malm et al., 2011).
0Cqaaj = ((0Ccsy — 0.X ECeoy) — A/M

The coefficients A and M used in this equation are provided in Table 3.1. The equation was derived
from paired CSN and IMPROVE measurements of PM2.5 OC and EC at collocated sites during
2005-2006. In this context, A accounts for the monthly positive artifact caused by filter adsorption
of semivolatile organic compounds (SVOCs), while M represents the multiplicative negative
artifact associated with volatilization losses of collected OC (Malm et al., 2011).

Table 3.1. A and M values for CSN OC conversion.

M (unitless) 1.2
Ajan (ng/m?) 1.1
Are (ng/m?) 1.3
Amar (pg/m>) 1.2
Anpr (ng/m?) 1.4

Amay (ug/m®) 1.6



Ayun (Rg/m’)
A (ng/m?)
Anug (ng/m’)
Asep (ng/m?)
Aout (ng/m’)
Anov (ng/m?)
Apec (ng/m’)

1.7
1.8
1.9
1.5
1.2
1.0
1.1

DUST concentrations were calculated from elemental measurements using the IMPROVE formula:
DUST=2.20x Al+2.49 xSi+1.63 x Ca+ 242 xFe+1.94 x Ti

Daily PM, s total mass concentrations from approximately 1,300 U.S. EPA monitoring sites (Figure
3.2) were used as the target variable in the modeling of gap-free PM s total mass, which served as
a primary predictor for PM» s component estimation. To reduce edge effects associated with the
spatial boundaries of PM,s estimates, the PM,s modeling domain was expanded beyond the
component modeling region to include entire states along the western edge of the study area (Figure

3.2).
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Figure 3.2. Spatial distribution of total PM:.s observation sites used in this study with extended modeling region
for total PM2.s modeling.

3.2 Satellite aerosol optical depth (AOD) and gap filling

We used the MODIS Collection 6.1 MAIAC AOD product (MCDI19A2)
(https://Ipdaac.usgs.gov/products/mcd19a2v061/) retrieved from the MODIS sensors aboard
NASA’s Terra and Aqua satellites (1 km daily resolution over land). To address missing retrievals
from clouds, snow, or bright surfaces (availability <50% in many areas; Figure S3), we
reconstructed gap-free daily AOD using a random forest imputation framework described in
Section 5.

3.3 CMAQ speciated PM; s simulations

We obtained weekly outputs from the Community Multiscale Air Quality (CMAQ) model
(https://www.epa.gov/cmaq) at 12-km resolution for SO+*>-, NOs;~, NH4", EC, and OC. CMAQ
explicitly simulates emissions, chemical transformation, and transport (Appel et al., 2017). These
outputs were interpolated to the 1-km modeling grid via inverse distance weighting.



3.4 Meteorological datasets

Three sources of meteorological data were used:

(1) Daily maximum (Tmax) and minimum (Tmin) temperature, shortwave radiation (SRAD), snow
water equivalent (SWE), daylight duration (DayL), and water vapor pressure (W VP) were obtained
from DayMet (1km x 1km) (Thornton et al. 2022);

(2) daily maximum (Rmax) and minimum (Rmin), relative humidity, mean vapor pressure deficit
(VPD), mean wind speed at 10 m (WS10M), and wind direction (WD) were obtained from
gridMET (~4 km x 4 km) (Abatzoglou 2013);

(3) planetary boundary layer height (PBLH), total cloud area fraction (CLDTOT), 2-m eastward
(U2M) and northward (V2M) wind, surface air temperature (TLML), surface pressure (PS) and
total precipitation (PRECTOT) were obtained from MERRA-2 GMI “Daily Average Diagnostics”
(~55.5 km X 50 km) reanalysis data (https://acd-
ext.gsfc.nasa.gov/Projectss GEOSCCM/MERRA2GMI).

Datasets with spatial resolutions coarser than 1 km were downscaled to a 1-km grid using bilinear
interpolation for MERRA2-GMI and inverse distance weighting for gridMET.

3.5 Auxiliary data

We incorporated multiple geospatial datasets:

- We obtained 30-m resolution impervious surface and land cover data from the National Land
Cover Database (NLCD) for years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019
(https://www.mrlc.gov). We then aggregated the 30-m data to our 1-km grid by calculating the
fraction of road density (RD), developed areas of varying intensity (NLCD_D), forest (NLCD_F),
grassland (NLCD_G), and wetlands (NLCD_W) within each 1-km grid cell.

- Annual 1-km population (POP) data were downloaded from the LandScan Global database
developed by Oak Ridge National Laboratory (https://landscan.ornl.gov/).

- Elevation (ELE) data were sourced from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM) version 2
(https://asterweb.jpl.nasa.gov/gdem.asp). From this database, to represent geographical
topography, we calculated slope, aspect, hillshade (HS), roughness, and topographic position index
(TPI) using ArcGIS 10.8 Spatial Analyst Tools.

- 1-km resolution MODIS 16-day normalized difference vegetation index (NDVI) data
(MOD13A2.061) were obtained to reflect vegetation surface changes.

Recognizing the frequent occurrence of wildfires in the western United States, we also obtained
fire  point  detection data  from the Hazard Mapping  System (HMS,
https://www.ospo.noaa.gov/products/land/hms.html) at daily time resolution for years 2004 to
2019. To integrate this dataset into our model, we applied Gaussian kernel density estimation to


https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI
https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI
https://landscan.ornl.gov/

detected fires, generating daily spatially continuous fire intensity maps by estimating the density

of fire points within a 1-km radius. The bandwidth was set automatically based on standard

deviation and sample size of the data.

3.6 Summary

This section focused on data sources used for project. All datasets, their sources, resolutions, and

preprocessing steps are summarized in Table 3.2.

Table 3.2. Data sources used in this project and spatiotemporal information.

Variable source Variable Abbreviation Spatia Tempora Time Preprocess
Iscale 1scale span ing method

MODIS C61 Aerosol optical depth AOD* 0.01°x  daily 2002 ----
MAIAC aerosol 0.01° -
product 2019
(MCD19A2)
CMAQ EC EC_ CMAQ 12x12  weekly 2002 IDW

NH4 NH4 CMAQ  km -

NO3 NO3_CMAQ 2019

ocC OC_CMAQ

SO4 S04 CMAQ
Daymet Day length DayL 1km daily 2002
(https://daymet.  Precipitation -
ornl.gov/overvie Shortwave SRAD 2019
W) Snow water SWE

equivalent

Maximum air Tmax

temperature

Minimum air Tmin

temperature

Water vapor pressure  WVP

Daily total radiation = Trad Eq. S1
gridMet Precipitation amount 0.0416 Daily 2000 IDW
(https://www.cli Maximum  relative Rmax °x0.04 -
matologylab.org  humidity 16° 2020
/gridmet.html) Minimum  relative Rmin*

humidity

Wind direction WD

Mean vapor pressure VPD

deficit

Wind speed WS10M*




MERRA-2 GMI Total cloud area CLDTOT* 0.5°%0  Daily 2000 BR
"Daily Average fraction .625° -
Diagnostics" Planetary boundary PBLH* 2020
(https://acd- layer height
ext.gsfc.nasa.go  Total precipitation PRECTOT*
v/Projects/§GEO  Surface air TLML*
SCCM/MERRA temperature
2GMI) Surface pressure PS*
2-Meter eastward U2M
wind
2-Meter northward V2M
wind
National Land Developed, Open NLCD D* Extracting
Cover Database Space and fraction of
(NLCD) Low/Meduim/High each class
(https://www.mr Intensity land cover based on
lc.gov) Deciduous forest, NLCD F* area
Evergreen  Forest,
Mixed Forest, and
Shrub/Scrub
Herbaceous and NLCD G*
Hay/Pasture
Woody wetlands and NLCD W*
Emergent herbaceous
wetlands
Primary, Secondary, RD
Tertiary, and Thinned
road land cover
Urban  impervious UMS
surfaces
ASTER DEM Elevation ELE* 30m -—-- -—-- Resampling
(https://doi.org/1  Slope Spatial
0.5067/ASTER/  Aspect Analyst in
ASTGTM.003)  Hillshade HS* ArcGIS
Roughness 10.8 based
Topographic position TPI* on
index elevation
MODIS Terra Normalized NDVI* 1km 16-day 2002
16-day difference vegetation -
vegetation index 2019




product
(MOD13A2.061

)

LandScan Population density POP* 1km 1 years 2002
Global -
(https://landscan 2019
.ornl.gov/)

Hazard Mapping Active fire detection  fireKD* Points  Daily 2003 Kernel
System Fire - density
Detection 2019  estimation
(https://www.os

po.noaa.gov/pro

ducts/land/hms.

html)

Trad =(srad (W/m2) x dayl (s/day)) / 1,000,000; IDW: inverse distance weighted interpolation: BR:
bilinear resampling. * indicates this variable is used for modeling total PMos.



4. Effect of Incorporating MISR Fractional AOD on PM: s
Component Estimation

4.1 Introduction

Previous research has demonstrated the potential of MISR (Multi-angle Imaging
SpectroRadiometer) fractional aerosol optical depth (AOD) to improve PM; s chemical component
estimation by providing size-resolved aerosol properties linked to different chemical species (Meng
et al., 2018a; Geng et al., 2020). MISR’s unique multi-angle viewing geometry allows retrieval of
fractional AOD for multiple aerosol size bins, thereby offering additional microphysical
information beyond bulk total AOD from other satellite instruments. Such information is
particularly relevant for species discrimination, as it can help distinguish between sulfate-rich fine
aerosols, coarse-mode dust, and carbonaceous particles.

This section evaluates the influence of MISR fractional AOD on PM;s component modeling for
the western United States during 2004—2019. We assessed MISR’s contribution both for (1) models
developed only at locations and times where MISR fractional AOD is available (Section 4.3), and
(2) gap-free high-resolution species modeling in which MISR data are combined with other
predictors to fill missing coverage (Section 4.4).

4.2 MISR Fractional AOD Data and Calculation Method

The MISR instrument, aboard NASA’s Terra satellite, observes the atmosphere at nine along-track
viewing angles in four spectral bands (blue, green, red, near-infrared). This multi-angle capability
enables retrieval of aerosol microphysical properties, including fractional AOD for predefined
aerosol components characterized by size, shape, and single-scattering albedo.

In this study, we used the MISR Version 23 (V23) Aerosol Physical and Optical Properties product
and focused on eight fractional AODs: AOD1, AOD2, AOD3, AOD6, AOD8, AOD14, AODI19,
and AOD21. These correspond to aerosol components most relevant to dominant particle types in
the western United States, such as sulfate-like fine aerosols, carbonaceous aerosols, and coarse-

mode dust.
Fractional AOD values were calculated following Liu et al. (2007a, 2009):

Fractional AOD; (i = 1-8)
= (Zj=1"* a x AOD_mixture; X Fraction_component i in mixture;) / (No. of successful mixtures)

where AOD_mixture; is the total AOD of mixture j at 558 nm, Fraction_component i in mixture; is
the fractional contribution of component i to mixture j, and a = 1 if mixture j is successfully
retrieved, otherwise o = 0.



The calculated fractional AODs were reprojected and collocated to the 1-km modeling grid, and
subsequently used in a series of experiments to evaluate their influence on PM»s component
modeling. In these experiments, the fractional AODs were incorporated directly as predictors

alongside meteorological, land cover, and other ancillary variables.

4.3 PM:s Species Estimation Using MISR Fractional AODs

For the MISR-available subset, two sets of species-specific models were developed: one including
MISR fractional AOD variables and one excluding them, to evaluate the incremental contribution
of MISR’s aerosol-type information. Both models used the same set of predictors to ensure a
controlled comparison. Both models used the same non-MISR predictors, which comprised:

e PM;; total mass concentration from the main component modeling framework (see Section
6).

e Meteorological variables: daily maximum temperature, snow water equivalent, vapor
pressure, minimum relative humidity, planetary boundary layer height, total cloud area
fraction, total precipitation, and horizontal wind components (U2M and V2M), as well as
other atmospheric indicators derived from DayMet, gridMET, and MERRA-2.

e Land-use and land-cover metrics: including fractions of selected National Land Cover
Database (NLCD) classes such as open/developed areas, land cover changes, and
vegetation indices (NDVI), and elevation.

e Ancillary variables: day-of-year, and year.

The details including data sources and preprocessing approaches are detailed in Section 3.
Performance evaluation using 10-fold cross-validation (CV) is summarized in Table 4.1. Inclusion
of MISR fractional AODs produced small but consistent gains for certain species. In sample-based
CV, R? increased from 0.78 to 0.79 for SO+, from 0.84 to 0.86 for NOs™, and from 0.67 to 0.68
for EC, while OC and DUST remained unchanged at 0.63 and 0.64, respectively. In site-based CV,
which assesses spatial predictive skill, R? increased by 0.02 for SO+*~ (0.68 to 0.70), NOs~ (0.76 to
0.78), EC (0.61 to 0.63), and DUST (0.46 to 0.48), with OC again showing no change (0.58). These
results indicate that MISR fractional AODs enhance spatial discrimination of certain PM> s species,
particularly those with distinct optical properties in MISR’s aerosol component set, though the
magnitude of improvement remains modest given the strong baseline predictor set that already
incorporates total PM, s concentration and multiple physical drivers.

Table 4.1. The CV results of models with and without MISR fractional AODs as predictor across western U.S.,
2000-2020.

Model Evaluation method SO+ NOs~ EC oC Dust
Include MISR Sample-based R? 0.79 0.86 0.68 0.63 0.64
Site-based R? 0.70 0.78 0.63 0.58 0.48

Exclude MISR Sample-based R? 0.78 0.84 0.67 0.63 0.64




Site-based R? 0.68 0.76 0.61 0.58 0.46

4.4 Impact on gap-free, High-Resolution Modeling

To assess MISR’s role in a gap-free, high-resolution daily species estimation framework, we
designed two groups of experiments:

(1). Combined-model approach: For MISR-available areas/dates, models used MISR fractional
AODs together with the same other predictor set listed in Section 3.3; for MISR-unavailable
areas/dates, models used CMAQ-simulated species concentrations together with the same predictor
set.

(2). CMAQ-only approach: For the entire study domain and all dates, models used CMAQ-
simulated species concentrations together with the same predictor set.

Results for the 2004-2019 period (Table 4.2) show that the combined-model approach did not
outperform the CMAQ-only approach. For example, for SO+*", the combined model achieved an
R? of 0.82 with an RMSE of 0.29 ug/m?, compared to 0.83 and 0.28 pg/m? for the CMAQ-only
model. For NOs~, both approaches achieved R? = 0.90 with RMSE differing by only 0.01 pg/m?
(0.57 vs. 0.56). Similar equivalence was observed for EC, OC, and dust.

Table 4.2. Sample-based 10-fold CV results of models with and without MISR fractional AODs as predictors

Model Metrics SO+ NOs~ EC oC Dust
(1) Areas with MISR R? 0.80 0.86 0.66 0.65 0.67
(MISR used as RMSE 0.36 0.68 0.34 1.49 0.80
predictors) Sample No. 14716 14659 12604 12601 14599
(2) Areas without R2 0.82 0.90 0.75 0.65 0.77
MISR (CMAQ species RMSE 0.28 0.56 0.24 1.48 0.53
used as predictors) Sample No. 236806 235851 211737 211625 235331
Combined (D+(2)) R? 0.82 0.90 0.75 0.65 0.77
RMSE 0.29 0.57 0.25 1.48 0.55
Sample No. 251522 250510 224341 224226 249930
Entire areas (CMAQ R2 0.83 0.90 0.75 0.65 0.78
species used as RMSE 0.28 0.56 0.25 1.48 0.54
predictors) Sample No. 251522 250510 224341 224226 249930

The absence of performance gains is primarily due to MISR’s sparse observational coverage (<10%
of daily samples across the study domain), which substantially reduces the effective sample size
for the MISR-based portion of the combined model. Consequently, predictions in most of the
domain are driven by the CMAQ-based model, and the limited MISR contribution does not
materially change gap-free model accuracy.



4.5 Summary

In summary, MISR fractional AODs—derived from eight microphysically distinct aerosol
components in the MISR V23 product—enhanced spatial predictive performance for SO+*-, NOs™,
EC, and DUST in MISR-available samples when used together with total PM> s concentration and
other meteorological and land surface predictors, improving sample-based CV R? by 0.01-0.02 for
most species. However, their sparse spatiotemporal coverage (<10% of daily samples across the
study domain) prevented these gains from improving gap-free, daily estimation. Consequently,
MISR fractional AODs were excluded from the final gap-free, high-resolution species models in
this project phase due to their limited contribution under current observational constraints. For
future applications where continuous daily coverage is not required—such as episodic exposure
assessments or validation studies—MISR fractional AODs may still provide valuable

microphysical information for component discrimination.



5. MAIAC AOD Imputation

5.1 Introduction

Producing accurate, high-resolution estimates of PM» s components requires complete daily PM; s
total mass data. This, in turn, depends on full-coverage aerosol optical depth (AOD) information
because AOD is physically related to PM, s: both measure aerosol loading in the atmosphere, and
AOD captures the total column extinction of sunlight due to aerosols, which is strongly linked to
surface-level PM» s through shared emission sources, transport, and removal processes. AOD is
also available at a daily time step and fine spatial resolution (1 km), making it an essential input for
our PM; 5 total mass modeling. However, these satellite acrosol retrievals contain large spatial and
temporal gaps due to persistent cloud cover, snow, bright surfaces, and algorithm constraints. In
the western U.S., more than half of daily grid cells lack valid retrievals (Fig 5.1). To ensure that
PM; s total mass modeling has the required gap-free AOD inputs, this section focused on the
development of an AOD imputation process for generating a complete, gap-free, high-resolution
AOD dataset for 2000-2020.
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Figure 5.1. Spatial distribution of the availability proportion (%) of daily MAIAC AOD merged from Terra and
Aqua observations across the western United States from 2002 to 2019.

5.2 Data for Imputation
The Multi-Angle Implementation of Atmospheric Correction (MAIAC) product provides high
resolution (daily, 1-km) AOD retrievals from MODIS Terra and Aqua observations. We used the



daily MAIAC AOD product (MCD19A2, Collection 6.1) from MODIS Terra and Aqua as the
dependent variable in our imputation models. To maximize observational coverage, same-day Terra

and Aqua retrievals were merged using a linear regression approach, following previous studies.

The resulting merged MAIAC AOD dataset still contained gaps but provided greater coverage than

either satellite alone. Figure 5.2 shows the spatial distribution of the multi-year mean merged

MAIAC AOD across the western United States.
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Figure 5.2. Spatial distribution of daily mean MAIAC AOD merged from Terra and Aqua observations across
the western United States from 2000 to 2020.

For imputing missing MAIAC AOD values, we used multiple publicly available datasets as

explanatory variables. These included satellite aerosol products, reanalysis meteorological fields,

and static geophysical data, each with defined spatial and temporal resolutions. Aerosol data:

>

>

MERRA-2 GMI AOD from the 'Aerosol Diagnostics' product (~0.5° x 0.625° spatial
resolution, daily).
Meteorological data (from MERRA-2 GMI 'Daily Average Diagnostics'):
- 2-m air temperature (daily, ~0.5° x 0.625°)
- 2-m specific humidity (daily, ~0.5° x 0.625°)
- 2-m eastward wind component (u-wind, daily, ~0.5° x 0.625°)
- 2-m northward wind component (v-wind, daily, ~0.5° x 0.625°)
- Total cloud fraction (daily, ~0.5° x 0.625°)
Land surface and geophysical data:
- NDVI from MODIS/Terra vegetation indices (MOD13A2), 1 km resolution, 16-day
interval; monthly composites were used.



- Elevation from ASTER GDEM (30 m native resolution, aggregated to 1 km).
- Longitude and latitude of each 1-km grid cell centroid.
- Time index (continuous daily count from the start of the study period).
The data sources and preprocess are detailed in Section 3.

5.3 Modeling Approach and Validation

The overall methodologies followed previous studies (He et al. 2023a; Li et al. 2020).

Previous studies have shown that monthly AOD patterns are promising predictors for representing
the spatial and long-term trends of AOD variability in high-resolution imputation (Li et al., 2020).
Therefore, where available, the monthly mean MAIAC AOD was included as a predictor to provide
additional context on broader temporal patterns. This variable was only available for pixels meeting
the >50% valid-day criterion within a given month. Two model branches were therefore
implemented:

(1). mAOD models — used for grid cells with valid monthly MAIAC AOD, including 12 predictors
(MERRA-2 GMI AOD, meteorological variables, NDVI, elevation, coordinates, time index, and
monthly MAIAC AOD).

(2). non-mAOD models — used for grid cells without valid monthly MAIAC AOD, excluding the
monthly AOD predictor.

We applied a spatiotemporal random forest modeling approach for each day from 2000 to 2020. A
time-stratified sampling method was employed to help each imputation model capture short-term
variations in AOD. The model was trained on the 1 km x 1 km grid using three rolling-day samples,
with the middle day as the target day. A temporal dummy variable, coded as [1, 2, 3], was used to
indicate the position of each day within the three-day window. We did not use a larger wind since
previous study tested models using five- and seven-day rolling windows (with the third or fifth day
as the target), but sensitivity analyses showed that these did not improve performance and increased
computation time.

Approximately 20% of valid daily merged MAIAC AQD retrievals were withheld for hold-out
validation, ensuring that performance metrics reflected the ability of the models to generalize to
unseen data.

5.4 Results

The AOD imputation models performed well throughout the 2000-2020 period. In hold-out
validation, the correlation coefficient (r) between predicted and observed MAIAC AOD ranged
from 0.861 to 0.997, with an average of 0.938 (Fig. 5.3). These results demonstrate that the model
accurately reconstructed daily AOD patterns across diverse spatial and temporal contexts.
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Figure 5.3. Time series of validated R? of AOD imputation models from 2000 to 2020.

Spatially, the imputed full-coverage AOD fields closely matched the original merged MAIAC
retrievals where available, while filling in large areas with missing data due to cloud cover, snow,
or retrieval algorithm limitations. Figure 5.4 compares the merged MAIAC retrievals and our
imputed full-coverage AOD for a representative day. This comparison illustrates that our
imputation process effectively extends the original retrievals to produce a continuous, high-
resolution dataset, while preserving the fine-scale spatial structure of aerosol distributions.

u|
°

To construct the final fused AOD dataset, we began with the merged MAIAC retrievals and
replaced all missing values with their corresponding imputed estimates. This ensured that observed
retrievals were preserved where available, and modeled values were only used to fill gaps. The
resulting fused dataset provides a complete, daily 1-km AOD time series for the entire 2000—2020
period (Fig. 5.5), forming a consistent and physically meaningful satellite-based predictor for
subsequent PM; s total mass modeling.
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Figure 5.5. Spatial distribution of imputed full-coverage AOD across the western United States from 2000 to
2020.

5.5 Summary

While MAIAC AOD retrievals remain incomplete, they are far more abundant than surface PM; s
observations. This makes AOD imputation inherently easier than PM;s total mass modeling
(achieving higher modeling R? of 0.861-0.997 in Fig. 5.3), as the model can be trained on a much
larger number of valid samples. In contrast, PM, s total mass modeling is limited by the relatively
small number of ground-based measurements, which constrains the model’s ability to learn detailed
spatial and temporal patterns. Through the integration of multi-source aerosol, meteorological, and
geophysical data in a spatiotemporal random forest framework, we generated a gap-free, daily 1-
km MAITAC AOD dataset for 2000—2020 across the western United States. The inclusion of both
spatial and temporal context, along with monthly AOD climatology where available, enabled the
model to achieve high accuracy in hold-out validation while maintaining the observed spatial and
temporal variability of AOD. This fused AOD dataset, combining observed MAIAC retrievals with
model-imputed values to ensure complete coverage, served as a critical input to the PM, s total
mass modeling in this project. By providing continuous, high-resolution aerosol information over
two decades, the dataset supports more accurate and consistent estimation of PM> s total mass and
its chemical components, enabling robust assessments of spatial patterns, temporal trends, and
potential exposure risks.



6. PM:.s Component Modeling during 2002-2019

6.1 Introduction

The major components of PM» s exhibit substantial differences in their formation mechanisms,
emission sources, and atmospheric lifetimes, which lead to strong spatiotemporal heterogeneity.
Accurately estimating their concentrations requires integrating multiple data sources and advanced
spatiotemporal modeling techniques. As discussed in Section 2, it is necessary to first obtain gap-
free daily PM>s total mass estimates at high spatial resolution to help the model quantify the
spatiotemporal variability of major PM» s components. In this section, we first generated daily, 1-
km total PM»s concentrations across the western United States as a foundational predictor for
modeling five components. Our component modeling approach therefore followed a two-stage
framework: first estimating total PM,s from satellite-derived aerosol optical depth (AOD),
meteorology, and land cover data, and then using these estimates with CMAQ outputs and
additional meteorological variables, and geographical features to predict individual components.
Since we only obtain CMAQ-speciated outputs from 2002 to 2019, this section models components
from this period. The predictor data, estimation modeling approach, evaluation method and
modeling results and discussions are shown in this section.

6.2 Data and Preprocessing

The modeling relied on multiple datasets (Section 3 and Table 3.1), harmonized to a 1-km
resolution across the 2002—2019 study period. PM» s and speciated component measurements were
obtained from CSN, IMPROVE, and CASTNET networks (Fig. 3.1), with CSN and IMPROVE
data used for model training/validation and CASTNET reserved for independent evaluation of
SO+* and NOs~ estimates. Measurement harmonization steps included adjustments for EC and OC
differences between networks, and calculation of DUST from elemental composition following
IMPROVE protocols.

Satellite AOD was derived from the MODIS MAIAC product and gap-filled to full coverage using
a random forest—based imputation approach (detailed in Section 5). CMAQ simulations provided
weekly speciated PM,s concentrations at 12-km resolution, interpolated to 1 km. Additional
meteorological data were drawn from DayMet, gridMET, and MERRA-2 GMI; land cover and
population from NLCD and LandScan; and topographic metrics from ASTER GDEM. Wildfire
activity was represented using daily HMS detections processed with kernel density estimation.

6.3 Modeling PM,s Components
The modeling framework is outlined in Fig. 6.1 and detailed below.
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Figure 6.1. Modeling framework of high-resolution PM: s constituent modeling.

6.3.1 AOD-based Total PM, s Estimation

Our approach for modeling total PM,s mass concentrations (PM»,s_est) was to train annual
XGBoost models on the daily PM, s concentrations measured at EPA monitoring sites with imputed
AOD as the primary predictor, alongside meteorological and land cover covariates. XGBoost
(Extreme Gradient Boosting) (Chen and Guestrin 2016) is an efficient and scalable implementation
of gradient boosting decision trees, widely used for structured data modeling due to its high
predictive accuracy, ability to handle missing data, and built-in regularization to prevent overfitting.
Unlike the deep learning algorithm employed for component modeling, XGBoost was chosen here
for its computational efficiency in handling large datasets while maintaining comparable model
performance. The dataset for total PM,s was approximately ten times larger than that of an
individual PM, s component due to the EPA sampling schedule. Our preliminary analyses using
convolutional neural networks and insights from previous studies (Yang et al. 2022) indicated that
deep learning models would not yield significantly better predictions but would substantially
increase computational costs. Additionally, preliminary analyses indicated that training models on
annual data outperformed a single multi-year model, likely because yearly models better account
for year-specific trends and intra-annual variations in emissions, meteorology, and other
influencing factors. To mitigate edge effects caused by the spatial boundaries of PM, s estimates,
we expanded the PM» s modeling area beyond the study region, including entire states along the



western edge of the study domain (Fig. 3.2). The model incorporates 18 variables detailed in Table
3.1: the imputed gap-free, 1 km AOD; seven meteorological parameters; and 10 auxiliary variables.
Since the HMS fire data were only available from April 2003 onward, the fire density variable was
included only in annual models for 2004-2019. We also added an indicator variable for day of the
year to help capture day-to-day variations. We also constructed a temporal dummy variable, day of
year, to indicate the seasonal variations in the data.

A Bayesian optimization approach was used to tune five key hyperparameters for each model:
n_estimators, max_depth, learning_rate, subsample, and colsample bytree. To mitigate overfitting,
optimal hyperparameters were selected based on spatial cross-validation performance.
Additionally, early stopping was implemented during training using a 30% validation subset,
terminating training when validation performance no longer improved. Final model performance
was assessed using 10-fold cross-validation. The XGBoost for total PM, 5 yielded a 10-fold CV R?
of 0.81 and an RMSE of 3.43 pg/m3 across the study period (Fig. 6.2). These results indicate that
total PM>s mass concentration estimates (referred to as PMasest hereafter) align well with
monitoring measurements, thus providing confidence in their use as a predictor in PM» 5 component

models.
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Figure 6.2. Sample-based 10-fold cross validation results for PM: s total mass concentration modeling.



6.3.2 Feature Selection
We applied Pearson correlation analysis to remove redundant predictors with high intercorrelation

(Ir| > 0.6 for meteorological/geographical variables and |r| > 0.8 for CMAQ outputs) but weak

correlation with observed component concentrations. This process resulted in 21 predictors in the
models for SO+*~, NO3—, OC, and DUST, and 20 predictors for EC. The predictors included: five
CMAQ species outputs, 17 meteorological variables, and five geographical features. The specific

predictor variables used for each model are provided in Table 6.1.

Table 6.1. The final set of features used for each component modeling and their correlations with ground-level

observations.
Category SO NOs~ EC ocC DUST
Feature obs Feature obs Feature obs Feature obs Feature obs
Total PM2:s PMj 5 est 0.467  |PMas est 0.636  |PMazs est 0.716  |PMas est 0.728 |VPD 0.416
CMAQ S04, CMAQ 0.596 |NOs_CMAQ 0.606 |EC_CMAQ 0576 |EC_CMAQ 0.347 |SOs CMAQ 0.200
NHs CMAQ 0413 |[EC CMAQ 0416 |NOs CMAQ 0357 |0C CMAQ 0305 |EC CMAQ  0.095
EC CMAQ 0336 |SOs CMAQ 0225 |0C CMAQ 0251 |NOs CMAQ 0214 |0C CMAQ  0.065
OC_ CMAQ 0.186 |0C CMAQ 0.158  |SOs CMAQ 0.231 |SOs CMAQ 0.155 |NH4s CMAQ 0.059
Meteo-  Tmin 0369 [NLCD D 0352  |NLCD_D 0.454 |NLCD D 0.254  |PMas est 0.309
rological ~ ELE -0.288  |ELE -0.247 |ELE -0.236 |TLML 0.185 |SRAD 0.296
&  geo-NLCD D 0.278  |PBLH -0.194 |WS10M -0.162 |ELE -0.158 |PBLH 0.283
graphical  Trad 0.246  |WS10M -0.158  |Tmax 0.137  |WS10M -0.140 |CLDTOT -0.189
variables  CLDTOT -0.167 |DayL -0.125 |PBLH -0.109 |CLDTOT -0.086 |PRECTOT  -0.144
WS10M -0.164 |NDVI -0.090 |NLCD G -0.097 |Rmin -0.082 |NLCD D 0.140
PRECTOT  -0.151 |NLCD G -0.072  |DayMet swe -0.081 |PRECTOT  -0.074 |NDVI -0.122
Rmin -0.135 |PRECTOT  -0.065 |[PRECTOT  -0.073 [SWE -0.073 |V2M 0.083
SWE -0.102 |SWE -0.060 |U2M -0.060 |NDVI 0.059 |U2M 0.077
V2M 0.074  |Rmin 0.060 |WVP 0.056  |Trad 0.055 |NLCD G -0.061
PBLH 0.062 |[NLCD W -0.049 |CLDTOT -0.052 |U2M -0.051 |WVP 0.061
NDVI -0.054  |Tmin 0.020 |NLCD W -0.050 |PBLH -0.044 |SWE -0.054
NLCD G -0.048 |U2M -0.018 |WD -0.035 |NLCD G -0.043 |ELE -0.051
NLCD W -0.044 |WD -0.012  |NDVI -0.030 |NLCD W -0.031 |WS10M -0.024
UM 0.020  |CLDTOT -0.010 |V2M -0.025 |V2M -0.027 |NLCD W -0.020
WD -0.004 |V2M -0.010 WD -0.008 |WD 0.001

6.3.3 Spatiotemporal deep-forest model for PM,s Component estimation

Our PM; s component estimation framework employs a spatiotemporal deep-forest model. Deep

forest (Zhou and Feng 2019) is a decision tree-based deep learning algorithm having a layered

structure of decision forests. This approach merges the benefits of traditional ensemble methods,

like random forests, with a multi-level hierarchical design. Unlike neural network-based deep



learning models, which often demand extensive hyperparameter tuning, deep forest delivers strong
predictive performance with much less tuning required. Given the substantial heterogeneity in
PM: s components due to their complex sources and variations relative to total PM. s, along with
the high computational demands posed by the large spatial domain, the long study period, and the
high spatiotemporal resolution, we employed deep forest for its powerful, effective, and efficient
data-mining capabilities. Comparisons with other models, including random forest and related
ensemble methods, are provided in Section 6.5.2. To enhance the model’s spatial and temporal
predictive power, we constructed additional spatiotemporal heterogeneity features, obtaining the
spatiotemporal deep-forest model. Spatial constructed features included Haversine distances—
which measure the great-circle distance between two points on a sphere based on their latitude and
longitude—from each grid cell to the upper-left (HavdLU), upper-right (HavdRU), lower-left
(HavdLD), lower-right (HavdRD), and central points (HavdC) of the study region (see the detailed
equations for those constructed features in previous studies (Wei et al. 2020). Temporal variability
was accounted for by including the year and day of the year (DOY) as additional features.

We trained a spatiotemporal deep-forest model for each PM, s component using measured PMo s
component concentrations from the CSN and IMPROVE networks as the dependent variables and
AOD-derived PM,s and CMAQ speciation outputs as the primary predictors, along with
meteorological variables and geographical features. Each PM, s component model was trained on
samples from all years combined, rather than individually for each year, as the sample size from a
single year was insufficient to build a robust model. The hyperparameters were automatically
adjusted by the built-in self-adaptive mechanism during training (Zhou and Feng 2019).

6.3.4 PM,s Component Modeling Evaluation

Model evaluation employed random (sample-based), spatial (site-based), and temporal (day-based)
10-fold CV (Table 6.2). For each CV type, all samples, sites, or days were randomly and equally
divided into 10 subsets. In each iteration, data from 9 subsets were used for model training, while
the remaining subset was used for validation. This process was repeated 10 times to ensure that all
subsets were used for validation (see Table S4 for a summary of the three CV types). To assess
model accuracy, we calculated the coefficient of determination (R?), root-mean-square error
(RMSE), and mean absolute error (MAE) by comparing the model estimates (predictions) to the
observed measurements. Additionally, to comprehensively assess model outputs, we used weekly
measurements from the CASTNET network to independently validate SO4>~ and NO3— estimates.
Daily estimates were averaged across the start and end days of the CASTNET sampling window
(i.e., “DayON” and “DayOFF” fields) to obtain weekly-aggregated data. These three statistical
indicators were calculated both for all estimate-measurement pairs and specifically for pairs at
CASTNET sites not located near CSN and IMPROVE networks.

Table 6.2. Summary of CV methods for constituent model validation.

CV approach Description




Random CV or sample- Site-day samples were randomly divided into 10 folds, with 9 folds used for model
based 10-fold CV training and the remaining fold used for validation.

Spatial CV or site-based Site-day samples were randomly grouped into 10 folds based on site ID, with 9 folds
10-fold CV used for model training and the remaining fold used for validation.

Temporal CV or day- Site-day samples were randomly grouped into 10 folds based on date, with 9 folds used
based 10-fold CV for model training and the remaining fold used for validation.

6.3.5 Model Interpretation Using SHAP

To interpret model predictions, Shapley Additive Explanations (SHAP) were applied, quantifying
the magnitude and direction of each predictor’s contribution (Figs. 3, S8). PM,s_est consistently
ranked as the most influential predictor across all components, followed by the corresponding
CMAQ species output and key meteorological variables such as temperature, planetary boundary
layer height, and vapor pressure deficit.

6.4 Results and Discussions

6.4.1 Descriptive Statistics of Modeling Data

Descriptive statistics of the concentrations measured at CSN and IMPROVE networks in the
western United States from 2002 to 2019 are summarized in Table 6.3. The 18-year average
concentrations across the study region were 0.67, 0.62, 0.25, 1.19, and 0.77 pg/m? for SO+*~, NOs™,
EC, OC, and DUST, respectively. Over time, concentrations exhibited decreasing trends, declining
from 0.86, 0.91, 0.36, 1.66, and 0.96 ng/m* in 2002 to 0.48, 0.49, 0.26, 0.91, and 0.64 pg/m?® in
2019. In addition, the southwestern United States experienced relatively higher pollution levels,
particularly in California, where NOs concentrations were approximately five times higher, and the

other four components were 1.5 to 2 times higher compared to the northwest.

Table 6.3. Descriptive statistics of PM2.s component observations from CSN and IMPROVE networks in western
United States from 2002 to 2019.

Year SO+ NOs~ EC ocC DUST

Ave  Std Ave  Std Ave Std Ave Std Ave  Std
2002 0.86 0.88 091 2.67 036 0.64 1.66 3.42 096 1.46
2003 0.81 0.80 072 1.87 036 0.58 1.60 3.05 0.83 148
2004  0.88 1.02 0.85 2.25 0.35 0.59 1.39 2.51 0.76  1.07
2005 090 097 0.79 2.24 041 0.66 141 2.15 0.70  1.13
2006 0.77 0.79 0.70  2.00 0.39 0.67 143 2.35 0.85 1.19
2007  0.81 0.85 0.78 2.27 0.23 0.51 1.16 2.23 0.82 1.25
2008 0.76  0.70 0.63 1.69 020 0.43 1.11  2.53 0.89 1.36
2009 0.72 0.70 0.65 1.79 022 0.55 1.09 2.59 0.84 1.20
2010  0.61  0.58 0.54 1.44 0.14 0.26 0.74 1.27 0.74 1.27
2011 0.65 0.60 0.56 1.67 0.15 0.28 0.82 1.60 0.71 1.19

2012 0.62 0.54 0.50 1.38 0.16 0.33 1.01 246 0.89 1.28



2013  0.61  0.55 0.63 2.04 0.14 0.28 0.81 1.55 0.74 1.17

2014 0.55 051 0.51 1.63 0.13 0.24 0.77 131 0.76 1.17
2015 053 048 049 1.42 0.14 0.33 1.04 2.52 0.62 0.83
2016 045 047 042 1.25 0.18 0.35 0.95 1.55 0.65 0.88
2017 050 047 047 1.50 0.26 0.63 1.60 4.68 0.67 0.93
2018 048 0.46 052 1.53 0.30 0.69 1.52 4.01 0.80 1.12
2019 048 045 049 1.27 026 0.44 091 1.06 0.64 0.96
18yrs 0.67 0.70 0.62 1.82 0.25 0.51 1.19 2.60 0.77 1.18

Ave and Std represent the mean and standard deviation, respectively.

6.4.2 PM;,s Component Modeling Results

6.4.2.1 Cross-validation results

Across the five PM, s components, there was a total of 255,691 to 283,206 site- and day-specific
samples. Figure 6.3 presents the daily random, spatial, and temporal CV results for the five PM, s
components, along with maps showing model R? and RMSE at each monitoring site based on the
random CV results. Generally, the daily estimates aligned well with ground-level measurements,
showing high sample-based CV R? values of 0.81, 0.89, 0.75, 0.66, and 0.75 and low RMSE values
of 0.30, 0.59, 0.26, 1.52, and 0.59 ug/m® for SO4*", NOs~, EC, OC, and DUST, respectively.
Approximately 78%, 63%, 66%, 82%, and 51% of stations demonstrated strong correlations with
ground-level measurements, as indicated by random CV R? values exceeding 0.6 (Fig. 6.3b).
Spatial and temporal CV results reveal similar error patterns as the random CV, though with
decreased performance, particularly in spatial CV, where R? values dropped to 0.76, 0.85, 0.65,
0.60, and 0.61 for the five components (Fig. 6.3a). We aggregated the three types of CV results
over time for the five species. As shown in Table 6.4, the monthly- and yearly-aggregated CV
results indicate that uncertainties in components estimates significantly decrease when estimates
are aggregated: at the monthly scale, R? values increased (RMSE decreased) to 0.89-0.97 (0.11-
0.64 pg/m?®) for random CV, 0.70-0.93 (0.20—0.95 ug/m?) for spatial CV, and 0.89—0.97 (0.11-
0.64 pg/m?) for temporal CV.
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Figure 6.3. Validation results for PM2.s5 components models: (a) Scatterplots showing 10-fold CV results using
random (sample-based), spatial (site-based), and temporal (day-based) partitions; (b) Spatial maps depicting the

model performance (R? and RMSE) based on daily PM2.s component estimates compared to observations at
each monitoring site over the period 2002-2019.

Table 6.4. Summary statistics of time-aggregated validation results for constituent modeling

10-fold cross-validation

CV type

Random

Spatial

Temporal

Metric

R2
RMSE
MAE
R2
RMSE
MAE
R2
RMSE

Monthly (Grid cell-month pairs)

S04
0.95
0.13
0.08
0.88
0.20
0.11
0.94
0.14

NO;
0.97
0.25
0.10
0.93
0.42
0.19
0.97
0.27

EC

0.94
0.11
0.04
0.80
0.20
0.09
0.94
0.11

oC

0.89
0.64
0.19
0.76
0.95
0.37
0.89
0.64

DUST
0.91
0.27
0.15
0.70
0.49
0.28
0.89
0.29

Yearly (Grid cell-year pairs)

SO
0.95
0.10
0.04
0.90
0.15
0.08
0.94
0.12

NOs~
0.99
0.10
0.05
0.95
0.26
0.14
0.99
0.10

EC

0.98
0.05
0.02
0.85
0.15
0.08
0.98
0.05

oC

0.97
0.20
0.11
0.83
0.52
0.30
0.97
0.21

DUST
0.97
0.12
0.08
0.72
0.36
0.22
0.97
0.13



MAE 0.08 0.11 0.05 0.20 0.16 0.04 0.05 0.03 011 0.08

Pair size 32646 32350 28513 28501 32486 2814 2781 2454 2453 2796
CASTNET-based independent validation at yearly level

Metric R? RMSE MAE Metric  R? RMSE MAE Pair size
S04 0.81 0.09 0.06 NOs~ 0.78 0.16 0.10 111

The regression lines between model estimates and observed concentrations from the three cross-
validation approaches suggest minor underestimation, particularly for SO+*~ and NOs~, with slopes
of 0.81 and 0.88, respectively. The magnitudes of these slopes are comparable to those reported in
other PM component modeling studies (Liu et al. 2022). To further assess whether the potential
underestimation affects the fraction of total PM, s mass captured by the model, we compared the
sum of our final predictions for the five targeted species with both (1) the sum of their observed
concentrations (Fig. 6.4(a)) and (2) the total PM> s mass measured at monitoring sites (Fig. 6.4(b)).
For reference, we also compared total PM, s observations with the sum of the five component
observations, which yielded an R? of 0.92, RMSE of 2.66 pg/m?, and a regression slope of 0.66
(Fig. 6.4(c)). Our predicted component sum showed strong agreement with the observed component
sum (R? = 0.98, RMSE = 0.62 pg/m?, slope = 0.99), and tracked total PM, s concentrations with
comparable accuracy to the observed component sum (R>=0.91 vs. 0.92, RMSE = 2.66 ng/m?* and
slope = 0.66 in both cases), indicating that the model captures the expected fraction of total PM 5
accounted for by the five major components. These results indicate that the minor underestimation
observed in individual species does not compound when components are aggregated, suggesting
that our component models do not systematically underpredict total component mass.
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Figure 6.4. Scatterplots showing (a) observed vs. predicted sum of the five targeted PM..s components, (b)

observed total PM:z.s mass vs. predicted sum of the five targeted components, and (c) observed total PMz.s mass

vs. observed sum of the five targeted components.

6.4.2.2 Independent validation results

Figure 6.5 presents the independent validation results of daily SO+~ and NO;™ estimates against
CASTNET measurements. For all estimate-measurement comparisons, including at CASTNET
sites near (>25 km) CSN and IMPROVE locations, our estimates show good agreement, with R?
and RMSE values 0f 0.89 and 0.19 pg/m? for SO+* and 0.62 and 0.34 ug/m? for NO;™, respectively
(Fig. 6.5a). When considering only sites located at least 25 km from CSN and IMPROVE locations,
our estimates still demonstrate reasonable agreement, with R* and RMSE values of 0.74 and 0.17



pg/m? for SO4* and 0.43 and 0.36 pg/m? for NO;™ (Fig. 6.5b). Time series plots of weekly estimates
and measurements at selected monitoring sites—located at least 25 km from a CSN or IMPROVE
site and spanning all study years—show similar temporal patterns, with a strong correlation
(r=0.85) for SO+* (Fig. 6.5¢) and a lower correlation for NO;™ (r = 0.42). Compared to SO+>", the
lower performance observed for NOs™ is primarily attributed to the greater discrepancies between
CASTNET and CSN/IMPROVE measurements for this species. Since CASTNET data were not
used for model training, inter-network differences likely contribute to the weaker validation results.
The observed inter-network correlation coefficients are 0.92 for SO+>~ and 0.83 for NOs", indicating
larger inconsistencies for NO3—. Additionally, the lower model performance for NO;™ is partially
due to its lower ambient concentrations (0.19 pg/m?® for NO;™ vs. 0.44 pg/m? for SO+*" in screened
observations), which increases relative uncertainty in both measurements and estimates. At lower
concentrations, the signal-to-noise ratio diminishes, making small deviations more impactful on
correlation metrics. At the annual aggregated scale, observed and predicted concentrations exhibit
strong agreement, with R? increasing to 0.81 for SO4*" and 0.78 for NO;™ and RMSE decreasing to
0.09 pg/m* and 0.16 pg/m?, respectively (Table 6.4). Overall, together with the CV results
presented in Section 6.4.2.1, the validation results demonstrate that our PM, s components models
robustly capture long-term variations in SO+~ and NOs~ concentrations across diverse spatial

contexts.
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Figure 6.5. Scatterplots comparing observed and estimated PM..s component concentrations (a) at all CASTNET
monitoring sites and (b) at sites 25-km distant from CSN and IMPROVE networks; (c) Time series of observed
versus estimated component concentrations at CASTNET sites located at least 25 km from CSN and IMPROVE
networks.

6.4.3 PM,s Component Modeling Results

In Fig. 6.6, we present the SHAP values to illustrate both the local and average contributions of
each predictor to each PM,s component. The predicted daily, high-resolution PM> s total mass
consistently ranked first, showing the highest average contribution across all monitoring stations
over the 18-year study period. Its SHAP values were generally positive at higher PM» 5 levels,
indicating a strong positive influence. This was followed by the CMAQ species output
corresponding to the target component; for example, the SO+ PM, 5 concentration from CMAQ
ranked second. Meteorological parameters—especially temperature and planetary boundary layer
height (PBLH)—are important predictors for mapping high-resolution PM,s component
concentrations. Typically, temperature is particularly important for the SO+*>~ and OC components,
where it is the most influential meteorological variable, ranking third and sixth in SHAP
contributions, respectively. PBLH is the most important meteorological predictor for NOs~ and EC,



ranking fourth for both. VPD is especially important for the DUST component, with the second-
highest SHAP contribution.
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Figure 6.6. Local contribution of each predictor to each PM:scomponent, quantified using the SHAP method.
Colors range from red to blue, representing high to low normalized values of each predictor, respectively. The
full names corresponding to each abbreviation are detailed in Section 3 and also summarized in Table 3.1.

6.5 Comparisons and advantages of the proposed PM:s component modeling

6.5.1 Comparisons with prior studies

We developed a spatiotemporal deep-forest model that produces the first PM» s component dataset
for the western United States with both fine spatial (1 km) and temporal (daily) resolution over an
extended period (2002-2019). The performance of our component models is superior to, or at least
comparable with, those of existing models used in the U.S (Table 6.5). For example, the hybrid
geoscience-statistical model by Donkelaar et al. (2024) reported 10-fold CV R? values 0 0.77, 0.76,
and 0.48 for SO4>-, NOs~, and DUST, respectively, at the bi-weekly level over North America.
Similarly, the ensemble machine-learning models by Amini et al. (2022) achieved test R? values of
0.86—0.96 for SO+, NOs~, EC, and OC at a coarser temporal resolution of the annual level across
the U.S. Geng et al. (2020) predicted daily ground-level PM2s5 SO+, NOs, OC, and EC
concentrations in California at a 1-km spatial resolution, reporting out-of-bag R? values of 0.72,
0.70, 0.68, and 0.70, respectively. Di et al. (2016) applied a backpropagation neural network to
predict PM, s components at a 1 x 1 km resolution in the northeastern United States, achieving R?
values around 0.70-0.80 for individual components. By comparison, even when modeling across
the western United States—a region where previous studies have typically reported lower modeling
accuracy (Donkelaar et al. 2019), our model produced estimates with simultaneously high spatial
and temporal resolution (daily, 1-km resolution) and demonstrated improved accuracy at both the
daily (CV R? = 0.66-0.89; Fig. 6.3) and annual levels (CV R? = 0.95-0.99; Table 6.4). Given
differences in validation methods, modeling domains, and study periods between our work and
prior studies, we find that our model is at least comparable in terms of estimation performance

alone, though we while not claiming it definitively outperforms them.

Table 6.5. Comparison of PM2s component modeling studies conducted in the United States



Study Spatial Temporal Geographic Time Span  Notes

Resolution Resolution Coverage
Donkelaar et al. 1-km Bi-weekly North 2000-2022  10-fold CV R* SO+* (0.77), NOs~
(2024) America (0.76), DUST (0.48)
Amini et al. 50-m for Annual United States 2000-2019  Test R% 0.86-0.96 for SO+*, NOs~,
(2022) urban, 1-km EC, OC

for rural
Geng et al. lkm Daily California 2005-2014  Out-of-bag R* SO+* (0.72), NOs~
(2020) (0.70), OC (0.68), EC (0.70)
Di et al. (2016) 1 km Daily Northeastern 2000-2010 R? = 0.70-0.80 for individual

United States components

Meng et al. 44km Daily (global revisit Southern 20012015 GAMs explained 55-66% daily
2018a every 9 days) California variability for SO+*~, NOs~, OC, EC
Meng et al. 0.25°x0.3125° Daily Conterminous  2005-2015 Random forest; OOB R?: SO+*~ (0.86),
2018b United States NOs (0.82), OC (0.71), EC (0.75)
Our study 1 km Daily Western 2002-2019 Spatiotemporal deep-forest:

United States

random CV R2: SOs (0.81), NOs
(0.89), EC (0.75), OC (0.66), DUST
(0.75); 0.95-0.98 at the annual level

6.5.2 Advantages and comparisons with other machine-learning models

A key reason for the improved performance of our species-level models lies in the physical and
chemical relevance of the predictors, particularly the inclusion of total ground-level PM> s mass
concentrations (PMays_est). PM» s is a chemically complex mixture composed of multiple species,
and its total mass often covaries with these components through shared emission sources and
atmospheric transformation processes (Hand et al. 2014). The high-resolution PM,s_est, derived
from satellite AOD and calibrated using an extensive ground monitoring network, directly captures
surface-level aerosol mass and provides a chemically meaningful anchor for estimating the
behavior of individual components, with moderate correlation coefficients ranging from 0.31 to
0.73 (Table 2.1). In contrast, AOD reflects total column aerosol loading and lacks vertical
specificity, resulting in weaker and less consistent associations with near-surface species
concentrations. This is supported by model performance comparisons in Tables 6.4 and 6.6, where
the inclusion of the imputed AOD alone provided only modest improvements (e.g., random CV R?
increases of 0.1-0.5 across species). In contrast, replacing AOD with PM,s est resulted in
consistently higher predictive accuracy, and SHAP analysis (Figs. 6.6) further confirms that
PM:s_est is the most influential predictor across all five components, contributing 24-37% of the
model’s explanatory power. These findings validate our two-stage strategy of first estimating PM, s
total mass and then using it as a key predictor for species modeling.

Table 6.6. Cross validation results of constituent models with various model structures.



Model Metric  SO4*~ NO;3~ EC oC DUST

CV method Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp
Ref R? 081 076 0.78 0.89 0.85 088 075 0.65 072 0.66 0.60 065 0.75 0.61 0.71
+PMasest  RMSE 030 034 033 059 070 0.63 026 031 027 152 165 155 0.59 0.74 0.63
Ref R? 0.74 0.70 0.68 0.78 073 0.74 069 0.56 066 0.58 049 0.54 057 040 0.51
+AOD RMSE 036 038 039 085 09 093 028 035 030 1.70 186 1.77 0.77 094 0.83
Ref R? 0.73 069 0.67 076 0.70 0.71 067 0.53 063 0.53 044 048 0.57 040 0.51
RMSE 037 039 040 090 1.01 099 030 036 031 179 197 188 078 0.94 0.83

The Ref model incorporated meteorological predictors, CMAQ predictors, and spatiotemporally
constructed features used for each constituent modeling. The specific predictors for each
component model are detailed in Table 3.1. AOD is the imputed gap-free AOD. Rd, Sp, and Tp
represent the random, spatial, and temporal CV, which is described in Section 6.3.4. The unit for
RMSE is pg/m?3.

The CMAQ-speciated outputs further enhanced model performance by providing species-specific
chemical information. In addition, CMAQ offers relatively high spatial resolution (~12 km),
enabling finer spatial representation of species concentrations compared to MERRA-2 and GEOS-
Chem, which have coarser resolutions of 0.625° x 0.5° and 0.25° x 0.3125°, respectively, and were
used in previous studies (e.g., Meng et al. 2018b). As shown in Table 6.7, incorporating CMAQ
data improved validation R? by 0.01-0.11 across species. SHAP analysis further reveals that the
CMAAQ species corresponding to the target component typically rank as the second most important
predictors after PM»s_est. These findings reinforce that model performance is closely tied to the
physical and chemical alignment between predictors and target species. Interestingly, in the OC
model, EC_CMAQ ranks higher than OC_CMAQ in SHAP importance, unlike the other species
models where the corresponding CMAQ species is the dominant chemical predictor. This result
likely reflects the co-emission of EC and OC from combustion sources, as well as CMAQ’s limited
ability to capture secondary organic aerosol (SOA) formation processes (Appel et al. 2017; Woody
et al. 2016). As a result, EC_ CMAQ may serve as a stronger proxy for combustion-related OC
variability than OC_CMAQ itself. SHAP results also highlight the importance of meteorological
predictors that influence relevant atmospheric processes—particularly secondary formation and
vertical mixing and geographical variables. As groups, meteorological conditions accounted for 8—
23% of the total predictive importance, with the significance of individual predictors within these
groups varying considerably across models (Fig. 6.6). Temperature is particularly important for the
SO4>~ and OC components, ranking third and sixth in SHAP contributions, respectively. This likely
reflects the strong temperature dependence of secondary aerosol processes: for SO+*", temperature
influences photochemical reaction rates and gas—particle partitioning of sulfur species, while for
OC, it affects both the volatility of semi-volatile organic compounds and the rate of secondary
organic aerosol formation (Carlton et al. 2009). PBLH emerges as the most important
meteorological predictor for NOs~ and EC, consistent with its role in controlling vertical mixing

and dilution. For NOs™, a shallow boundary layer under cold, stagnant conditions enhances NOs~



accumulation via gas—particle partitioning (Guo et al. 2017; Seinfeld and Pandis 2016). For EC,
which is primarily from combustion sources, boundary layer dynamics strongly regulate surface
concentrations by modulating the extent of dispersion. VPD is especially important for DUST,
reflecting its link to surface dryness and soil moisture availability, both of which influence the
emission potential of windblown DUST particles (Prospero and Lamb 2003).

Table 6.7. Cross validation results of constituent models with various model structures.

Model Metric  SO4* NOs~ EC oC DUST
CV method Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp
Ref R? 0.75 059 0.73 088 0.75 087 0.72 059 0.70 0.63 0.54 0.61 0.70 0.51 0.68
RMSE 035 045 036 063 092 066 027 033 028 159 1.77 1.63 0.64 0.83 0.67
Ref R? 0.80 074 0.77 089 083 088 0.75 062 0.72 065 0.59 064 074 0.60 0.71
+ST RMSE 031 036 034 059 076 0.65 026 032 027 153 1.67 157 0.60 0.75 0.64
Ref R? 079 0.70 0.76 0.89 0.84 083 0.73 064 0.71 065 0.59 063 0.72 055 0.69
+CMAQ RMSE 032 038 034 0.6l 073 064 027 031 028 155 167 158 0.62 080 0.66

The Ref' model incorporated the 1-km PM; s estimates and meteorological predictors used for each
constituent modeling. ST represents the spatiotemporally constructed predictors and CMAQ
represents the CMAQ species predictors. The other abbreviations are the same as Table 6.6.

Another key factor contributing to the strong performance of our component modeling is the use
of a spatiotemporal deep-forest algorithm, which effectively captures both spatial and temporal
variability inherent in the data. Compared to traditional tree-based algorithms such as random forest
and CatBoost, deep forest is better suited for complex tasks involving limited sample sizes and
higher spatiotemporal heterogeneity—as is the case for PMs chemical components, which are
more variable and sparsely monitored than total PM,s mass. In our comparison, deep forest
outperformed random forest and CatBoost, with average cross-validation R? values higher by 0.06
and 0.04, respectively, across various validation schemes (Table 6.8). Its performance is also
comparable to more complex ensemble approaches like the stacking model used in Di et al. (2019).
To enhance the model’s ability to generalize across space and time, we incorporated explicit
spatiotemporal features—such as Haversine distances and day of year (DOY )—into the deep forest
framework, ultimately developing a spatiotemporal deep-forest model (Section 6.3.3). This was
particularly important given the sparse and infrequent nature of chemical speciation monitoring
(sampling intervals ranging from 1 to 7 days). Sensitivity analyses confirmed the importance of
these features: removing them led to a decline in spatial predictive performance, with spatial CV
R? values reduced by 0.03-0.15 (Table 6.7). Furthermore, we found that individual tree-based
models such as XGBoost were prone to generating spatially erratic or unrealistic component
predictions when spatial features like latitude, longitude, or Haversine distances were included, a
phenomenon also reported in prior PM, s modeling studies (e.g., Yang et al. 2022). In contrast, the
cascade structure of the deep forest model, which ensembles multiple layers of learners, helps



alleviate this issue by introducing regularization and enabling hierarchical feature extraction. This
design allows for more stable incorporation of spatial features and effectively reduces the risk of
overfitting or abnormal predictions in our spatiotemporal deep-forest model.

Table 6.8. The cross-validation results of component models with machine-learning algorithms

Models  Metric  SO+*~ NOs~ EC oC DUST
cv Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp
XGB R? 074 0.67 072 0.86 083 0385 069 058 069 0.6l 056 061 064 044 0.62

RMSE 036 040 037 069 076 070 028 033 029 163 173 163 071 0.89 0.73

CAT R? 0.76 069 074 087 083 087 072 062 070 063 057 062 067 055 0.66

RMSE 034 039 036 065 074 067 027 032 028 159 171 161 068 079 0.69
Two- R? 0.80 074 078 0.89 08 088 074 065 072 065 058 063 074 060 0.71
stagel RMSE 031 036 033 061 070 063 026 031 027 155 171 158 061 0.76 0.64
Two- R? 078 074 077 086 08 08 069 070 070 066 066 064 067 062 0.66

stage?2 RMSE 033 035 034 069 071 070 028 028 028 153 153 157 068 0.73 0.68

XGB refers to the XGBoost model, and CAT represents the CatBoost model. Two-stage 1 is a
stacking model where the first stage includes Random Forest, XGBoost, and CatBoost, and the
second stage uses Random Forest. Two-stage 2 is another stacking model, with a first stage
composed of Gradient Boosting, Neural Network, and Random Forest, followed by a second stage
using a Generalized Additive Model (GAM), as described in Di et al. (2019). All other
abbreviations are consistent with those used in Table 6.6. All models in this table were trained on
the same sample dataset used for our deep-forest models to ensure a fair comparison.

6.6 Limitation and Future Directions

Despite advancements in modeling PM» s components, uncertainties and limitations remain. The
much sparser ground-level PM, s composition monitoring network, compared to that of total PM, s,
provides less spatial representation, leading to relatively large uncertainties in unmonitored areas.
Although independent validation against CASTNET measurements generally suggests reasonable
accuracy, inter-network inconsistencies between CASTNET and CSN/IMPROVE may affect the
interpretability of these results. Additionally, CASTNET provides measurements not for OC and
EC, restricting the scope of external validation. Because our spatial resolution is set to 1 km and
monitoring sites are scarce near high-emission areas in small-scale regions (e.g., roadsides), our
component models are likely to underestimate extremely high concentrations. In addition, given
that observational data for separating primary and secondary OC are limited, we did not disentangle
them in our modeling process. Potential biases from CMAQ simulations may occur in areas with
complex terrain or unique emission sources, and the model may struggle to fully capture extreme
events or rapid PM, s component changes. Additionally, the CMAQ species dataset used in this
study is limited to the period from 2002 to 2019 and is available only at a weekly resolution. Future
work should focus on extending component estimates to more recent years, potentially by
incorporating alternative reanalysis products when CMAQ data are unavailable.



6.7 Summary

This section developed a two-stage spatiotemporal deep-forest framework to estimate daily, 1-km
concentrations of five major PM>s components across the western U.S. over 2002-2019. The
models integrated gap-free AOD, CMAQ speciated outputs, meteorology, land cover, topography,
wildfire activity, and spatiotemporal features. The framework achieved strong predictive
performance (sample-based CV R? = 0.66-0.89), substantially outperforming alternative machine
learning approaches including random forest and CatBoost, and producing estimates comparable
to or better than previous studies while providing simultaneous high spatial (1-km) and temporal
(daily) resolution. Validation demonstrated strong predictive performance, and SHAP analysis
identified the estimated high-resolution PM: s total mass concentration (PM»s est) as the most
influential predictor (accounting for 24-37% of model explanatory power) and chemically relevant
CMAQ predictors as dominant influences. Independent wvalidation against CASTNET
measurements confirmed model generalizability, with yearly R? values of 0.81 for SO+*~ and 0.78
for NOs™. The resulting dataset captures long-term trends, regional disparities, and episodic events
such as wildfires, providing a valuable resource for exposure assessment and policy evaluation.



7. Spatiotemporal Patterns of PM:s Components over Western US

In this section, we analyze spatiotemporal patterns and population exposure for daily, 1-km PM; s
total mass and five chemically resolved components across the western United States from 2002 to
2019. We summarize multi-year and seasonal spatial distributions, quantify long-term trends using
deseasonalized monthly anomalies, and assess exposure gaps between urban and rural populations
using population-weighted metrics. We also highlight short-term dynamics via a wildfire case study
(the 2018 Camp Fire) to elucidate day-to-day variability and species composition during extreme
events. Results are presented as long-term means and pixel-level trends (Section 7.2), and regional
exposure summaries (Section 7.3) and day-to-day variations (Section 7.4).

7.1 Statistical analysis methods

We conducted analyses at both the pixel level and the region-aggregated level. For the latter, we
aggregated grid-cell estimates by predefined regions to construct time series and assess region-
specific trends. The western United States was divided into two subregions: (1) Northwestern U.S.
— Washington, Oregon, Idaho, Montana, and Wyoming; (2) Southwestern U.S. — California,
Nevada, Utah, Colorado, Arizona, and New Mexico.

We also stratified the study area into urban and rural categories. Urban areas were defined
according to the 2010 U.S. Census Bureau urbanized area boundaries (https://www.census.gov/cgi-
bin/geo/shapefiles/index.php), while rural areas encompassed all locations outside these

boundaries.

7.1.1 Seasonal and multi-year summaries

We computed multi-year (2002—2019), annual, and seasonal means on the 1-km grid. Seasons are
defined as winter (December, January, February), spring (March, April, May), summer (June, July,
August), and autumn (September, October, November).

7.1.2 Long-term trend estimation

To assess temporal changes at the local scale, we conducted pixel-level long-term trend analyses
using monthly anomaly time series. Monthly anomalies were computed by subtracting the multi-
year mean for each calendar month from the corresponding monthly mean concentration, thereby
removing the influence of the seasonal cycle. This approach ensures that the estimated slopes reflect
genuine long-term changes rather than seasonal fluctuations. We then applied ordinary least squares
to the anomaly series to estimate linear trends and their statistical significance (p < 0.05), following
Weatherhead et al. (1998). Trends are reported as pug/m?* per year, and statistical significance was
assessed at the p < 0.05 level. The resulting spatial maps of trends provide insight into both the
magnitude and direction of change at the grid-cell level, allowing for direct comparison across
pollutants and regions.



7.1.3 Population-weighted exposures
We adopted the conventional population-weighted mean concentration approach to quantify
exposure hotspots. Specifically, for each grid cell, we multiplied the pollutant concentration by the
concurrent population from the 1-km LandScan dataset. The total weighted sum across a given
region was then divided by the total population of that region to obtain the population-weighted
mean concentration.

C pop=(Z {i=1}"n(C ixP i))/(Z {i=1}"nP i)
Where:
C_pop = population-weighted mean concentration for the region;
C_i=pollutant concentration in grid cell i;
P_i=population in grid cell i;
n = number of grid cells in the region.

7.2 Spatial distribution and long-term trends

Figure 7.1 presents the spatial distributions of multi-year average concentrations of the five derived
components, alongside observed values at corresponding grid cells, demonstrating good agreement
between model estimates and measurements. The multi-year estimated concentrations are 0.78,
0.44,0.22,1.31, and 1.33 pg/m?* for SO+*~, NOs~, EC, OC, and DUST, respectively, with substantial
spatial variability. DUST is predominantly concentrated along the southern California and western
Arizona boundary, an arid and semi-arid region frequently affected by dust events (Aryal and Evans
2022). The other four components— SO4>", NOs3~, EC, and OC—show high concentrations in the
urbanized southern California region, centered in the Los Angeles—Long Beach—Anaheim
metropolitan area, a densely populated urban agglomeration with intensive human activity. NOs",
OC, and EC also show elevated levels in California’s Central Valley, particularly in the San Joaquin
Valley, a region notorious for consistently exceeding federal particulate pollution standards due to
a combination of complex anthropogenic emissions, frequent wildfires, and unfavorable
topographical conditions that limit pollutant dispersion (Casey et al. 2024; P et al. 2022).
Additionally, high EC and OC concentrations are observed in parts of the northwestern U.S.,
including areas of Washington and Oregon.
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Figure 7.1. Spatial distribution of multi-year mean PM2.s and its components for 2002-2019 over western United
States, shown alongside monitoring observations.

Seasonal patterns in total PM,s concentrations across the study region revealed distinct peaks in
summer and autumn, with average levels reaching 6.34 pg/m? and 4.58 pg/m?, respectively. These
seasonal peaks were primarily driven by elevated concentrations of OC (1.99 pg/m?® in summer and
1.40 pg/m? in autumn), DUST (1.30 pg/m?® and 0.85 pg/m?), and SO+*~ (0.83 pg/m? and 0.61 pg/m?)
(Figure 7.2). In contrast, winter exhibited the lowest average PM» s concentration at 3.36 ug/m?,
with OC (0.77 pg/m?) and NOs™ (0.70 pg/m?®) contributing to the total mass. During winter, EC is
a significant contributor in regions such as Southern California, urban areas of western Washington,
the Central Valley, and central Arizona, where transportation emissions and episodic biomass
burning are dominant sources (Faraz Enayati Ahangar 2021; Sorooshian et al. 2011).
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Figure 7.2. Seasonal average total and compositional PM2.s concentrations for 2002-2019.

As shown in the pixel-level trend figure, from 2002 to 2019, steady declines were observed in the
concentrations of total PM»s and the five major components across the western U.S., with
significant spatial variations (Fig. 7.3). The statistically significant decline in total PM, s (slope <-
0.05 pg/m?/year, p < 0.05) is most pronounced in the southwestern U.S. and northwestern coastal

0.00



areas, particularly in southern California’s urban regions and Central Valley, which exhibited
steeper negative trends (slope <-0.20 pg/m?/year, p < 0.05). Similarly, EC and OC had comparable
declining patterns, though with smaller magnitudes (slope <-0.003 pg/m?*/year for EC and slope <-
0.02 pg/m?/year for OC, p < 0.05). SO+* and NOs also exhibited widespread declines across the
study region, with steeper trends in southern California’s urban areas (slope <- 0.045 pg/m?*/year
for SO+~ and slope < -0.15 pg/m?*/year for NOs~, p < 0.05). These substantial reductions over
densely populated areas can be largely attributed to significant decreases in anthropogenic
emissions, driven by diesel emission controls, vehicle NOx standards, and industrial regulations
under major air quality policies such as the Clean Air Act amendments and California Air
Resources Board (CARB) PM Reduction Programs (Kotchenruther 2020; Mailloux et al. 2022).
DUST also shows a widespread declining trend, except in areas with higher levels, such as the
southern California and western Arizona boundary, which warrant greater attention and targeted
mitigation measures.
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Figure 7.3. (a) Spatial distribution of annual mean total PM2s mass and its components, and (b) pixel-specific
long-term trends of monthly anomalies for the period 2002-2019 across the western United States.



7.3 Population exposure variations

Figure 7.4 illustrates regional variations in population-weighted exposure to PM s and its species
from 2002 to 2019, revealing substantial spatial heterogeneity. On average, urban populations
experienced ~1.5 times higher exposure than rural populations for SO+* (1.24 vs. 0.84 pg/m?) and
OC (2.97 vs. 2.01 ug/m?®), ~2 times higher for NOs~ (1.83 vs. 0.93 pg/m?) and EC (0.87 vs 0.41
pg/m?), and comparable levels for DUST (1.09 vs. 1.08 pg/m?®) (Figure 7.4(a)). Monthly
population-weighted mean concentrations based on CMAQ-simulated species also showed that EC
and NOs~ levels were substantially higher in urban areas compared to rural areas, ranging from 0.73
to 1.84 pug/m*® versus 0.31 to 1.29 pg/m?, respectively. In the northwestern U.S., the average
monthly population-weighted mean PM s slightly decreased from 8.28 pg/m?® in 2002—2004 to 7.23
ug/m?in 2017-2019 (Figure 7.4(a)). The month with the highest concentration of total PM, 5 in this
region varies annually, occurring primarily in winter but sometimes in August. These peaks in total
PM, s are largely driven by the OC component. In contrast, the southwestern U.S. experienced a
significant decrease in PM»s concentrations, with average monthly population-weighted means
declining from 12.32 pg/m? in 2002-2004 to 9.03 pg/m? in 2017-2019, primarily due to reductions
in OC and NOj levels, partly driven by tailpipe emission regulations.

(a) Monthly exposure from 2002 to 2019

(b) Population exposure for 2013-

100 (c) Annual population exposure from 2002 to
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Figure 7.4. Regional variation in population-weighted exposure to PM:s and its five components from 2002 to
2019 across various time scales. PMa s total (black), SO4>~ (red), NOs~ (orange), EC (yellow), OC (light blue),
DUST (blue), and ‘other’ (green, defined as the difference between total PMz.s and the sum of the five target
species) are represented by color: (a) Monthly population-weighted mean concentrations from 2002 to 2019; (b)
Proportions of each species versus total PM2s for 2013-2019, with the black line showing cumulative
proportions of the population exposed to each PMz s level (this time frame was selected because the last U.S.
national air quality standard for annual PM2 s was set at 12 pg/m? in 2012); (c) Annual population-weighted
concentrations of species exceeding the 2024 U.S. national annual PMz.s mass concentration limit (9 pg/m?), with
the black line indicating the percentage of the population exceeding the annual limit.

Figure 7.4(b) concentrations within the context of the 2012 regulatory framework. Similar to
patterns observed across North America (Donkelaar et al. 2019), the relative contribution of the
DUST component decreased significantly as PM, s levels increase across the four regions (Fig.



7.4(b)). In the southwest, NOs~ has a minor contribution at low PM; s levels but becomes a major
contributor at higher levels, which is in line with previous studies (Donkelaar et al. 2019). In the
northwest, OC was the largest contributor among the five target species, with its relative
contribution increasing as total PM, s levels rose, though the population exposed to elevated levels
was very small. Figure 7.4(c) illustrates the annual changes in population exposure to PM; 5 levels
exceeding the latest 2024 U.S. National Ambient Air Quality Standard (annual average
concentration of 9 pg/m?®). The northwestern is approaching compliance with the stricter standard,
with the proportion of the population exposed to non-compliant PM 5 levels remaining around 1%
in many years since 2010. However, the southwestern region remains far from meeting the new
standard, with a large proportion of the population (~24% in 2019) still exposed to above-standard
levels, despite significant improvements over time. The impact of wildfires is evident across the
study region, with seasonal OC enhancements varying annually. This effect was particularly
pronounced in 2017 and 2018, when substantially elevated OC and total PM,s levels were
observed, highlighting the influence of wildfire events during these years.

7.4 Day-to-day variability

Our estimates effectively captured daily variations in PM» s component concentrations, providing
valuable insights into atmospheric pollution and chemical composition dynamics, supporting
targeted environmental management, and aiding in the mitigation of health impacts from short-
term exposure. Using the Camp Fire—a severe wildfire in California from November 8-25, 2018—
as an example, our estimates show that population-weighted mean PM»s concentrations began
rising on November 10, 2018, rapidly peaking at 77.55 pg/m?® the same day. Levels remained
elevated until reaching a maximum of 110.41 pg/m? on November 16, 2018, before subsequently
decreasing to a background level (5.47 pg/m®) by November 22, 2018, following rainfall on
November 21, 2018 (Fig. 7.5(a)). These trends align well with observed data (Fig. 7.5(c)),
highlighting the accuracy of our daily-scale estimates.
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The PM» s component estimates indicate that concentrations of OC and EC, direct emissions from
biomass combustion, substantially increased, particularly over the Central Valley, closer to the fire
source (Fig. 7.5(c) and Fig. 7.6). In contrast, NO;™ increases were primarily observed in the San
Joaquin Valley, while SO4*” and DUST showed only moderate increases. Overall, exposure to OC
and NOs~ significantly increased across the Central Valley during the Camp Fire, with levels
averaging ~6 times higher (18.9 and 9.2 ug/m?, respectively) compared to pre-fire levels (3.8 and
1.5 pg/m?). Increases in EC exposure were also notable. Figure 7.5(b) illustrates that OC, the
dominant component, does not scale proportionally with total PM,s during the Camp Fire,
suggesting that other PM, s components, such as metals (e.g., lead and zinc), potassium ion (K*),
and ammonium (CARB 2021), may have significantly increased. These other components, which
spiked due to the burning of buildings and infrastructure, also should be a focus for environmental

management due to their potential health and environmental impacts (Potter et al. 2021; Sicheng
Li 2023).
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Figure 7.6. Spatial distributions of the five PM2.s component concentrations before (upper panel), during (middle
panel), and after (lower panel) Camp fire.

7.5 Discussion

Figure 7.7 displays component concentrations from 2002 to 2019 across the western U.S. based on
monitoring data, revealing variation patterns consistent with those estimated by our component
models at the monitored grid cells (Fig. 7.3). Figure 7.8 shows the annual concentrations of CMAQ-
simulated species and their long-term trends, derived using the same methodology as in Figure 7.3.
Overall, the 12-km CMAQ outputs capture broad-scale trend patterns similar to our high-resolution
estimates, indicating widespread declines across the study region, although differences in
magnitude and spatial detail are evident.
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CMAQ-speciated simulation data.

Although the CMAQ-simulated species exhibit broadly similar spatiotemporal patterns to our high-
resolution estimates, notable differences in magnitude and spatial detail are evident (Fig. 7.3 vs.
7.8). Specifically, CMAQ tends to underestimate concentrations, particularly in high-concentration
regions identified by our model. In addition, CMAQ shows increasing trends in NOs~ over the
northwestern part of the study region and in OC over central California—patterns not observed in
either ground-based measurements (Fig. 7.7) or our estimates. In contrast, our model predictions
align more closely with observed trends at monitoring sites, as demonstrated in Figs. 7.1, 7.3, and
7.7. These discrepancies are likely due to the relatively lower estimation accuracy of CMAQ.
Validation against CSN and IMPROVE observations (Fig. 7.9) confirms CMAQ’s lower accuracy,
with R? values of 0.39, 0.55, 0.40, and 0.16 and RMSEs of 0.53, 1.45, 0.41, and 2.36 pg/m® for
SO+>7, NOs~, EC, OC, respectively.
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from 2002 to 2019.

We further observed that CMAQ-based population-weighted concentrations tend to underestimate
exposure levels, with underestimation patterns varying by species and between urban and rural
settings (Figure 7.3 vs. 7.10). This underestimation is partly attributed to CMAQ’s coarse spatial
resolution. Previous studies have shown that using coarse-resolution PM, s data can systematically
underestimate exposure (He et al. 2021). SO+>~ and NOs~ components show greater underestimation
in urban areas, likely due to limitations in resolving high-density emission sources and the more
intense secondary formation processes driven by elevated precursor levels in urban environments.
In contrast, EC underestimation is more pronounced in rural areas, likely reflecting missing or
underestimated rural combustion sources such as residential biomass burning and wildfires. OC
underestimation was relatively balanced between urban and rural areas, consistent with its mixed

original from both primary emissions and secondary organic aerosol formation.
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Figure 7.10. Monthly population-weighted mean concentrations from 2002 to 2019 based on CMAQ-speciated
data.

7.6 Summary

This section observed the spatiotemporal patterns of PM2 s components using the high-resolution
estimates generated in Section 6. Spatiotemporal analysis of the modeling results revealed that
urban populations were exposed to 1.5-2 times higher concentrations of SO+*-, NOs~, EC, and OC
compared to rural populations, with similar exposure levels for DUST. These trends exhibited
consistent declines over time, accompanied by notable interannual variability, seasonal cycles, and
regional differences. The influence of wildfires was particularly significant, with daily OC and
NOs™ concentrations increasing by approximately sixfold during the Camp Fire relative to non-fire
periods. The estimated spatial patterns and long-term trends showed strong agreement with ground-
based observations and more realistic spatiotemporal variability than CMAQ-speciated
simulations. The PM,.s component modeling approach presented here demonstrates strong potential
for application in other regions with ground-level PM» s chemical speciation monitoring networks.
These results provide the foundation for subsequent analyses of California-specific patterns
(Section 8) and decomposition of meteorological, wildfire, and anthropogenic drivers (Section 9).



8. Exploring PM:s Component Exposure Hotspots in California and
Their Trends

8.1 Introduction

Understanding the spatial and temporal behavior of PM» s and its major chemical components is
critical for air quality management in California. The state’s diverse emission sources—from dense
urban traffic corridors to agricultural ammonia in the Central Valley—combine with complex
topography and meteorology to produce pronounced regional variability in both total PM, s mass
and its chemical composition. These variations have important implications for public health,
particularly for vulnerable populations such as children, the elderly, and individuals with pre-
existing respiratory or cardiovascular conditions.

This section first extends the PM» s component modeling framework introduced in Section 6 to
2000, 2001, and 2020 by substituting CMAQ predictors with MERRA-2 and MERRA-2 GMI
reanalysis variables, ensuring coverage for the entire 2000-2020 period. With this extended dataset,
we examine statewide spatiotemporal patterns for total PM, s and its five components. We identify
long-term exposure hotspots (areas with persistently high multi-year mean concentrations) and
quantify linear trends over two decades. Finally, we integrate these results with Census tract
boundaries and CalEnviroScreen data to compare concentration distributions between high- and
low-vulnerability communities, highlighting environmental disparity considerations. The
remainder of this section is organized as follows: Section 8.2 describes the modeling for 2000,
2001, and 2020 and the integrated performance assessment for 2000-2020. Section 8.3 describes
the statistical analysis methods for exploring the spatiotemporal trends in PM 5 and its component
exposure. Section 8.4 presents spatial hotspot maps and linear trend analyses for total PM, s and
each component. Section 8.5 examines population exposure patterns, contrasting high- and low-
vulnerability communities.

8.2 Modeling PM; s Component Estimates over California for 2000, 2001, and 2020
8.2.1 Data and modeling
To generate daily, 1-km gap-free estimates of SO+, NOs~, EC, OC, and DUST for 2000, 2001,
and 2020—years without available CMAQ-speciated simulations—we applied the deep-forest
modeling framework described in Section 6, with a key modification: CMAQ predictors were
replaced by species mass concentrations from the MERRA-2 and MERRA-2 GMI reanalysis
products. The selected reanalysis predictors were:

e BCSMASS — Black carbon surface mass concentration

e DMSSMASS — Dry matter surface mass concentration from biomass burning aerosol

o DUSMASS2S — Dust surface mass concentration for particles with diameter < 2.5 pm

e OCSMASS — Organic carbon surface mass concentration

e  SO2SMASS — Sulfur dioxide surface mass concentration



e SO4SMASS — Sulfate aerosol surface mass concentration

e SSSMASS2S5 — Sea salt surface mass concentration for particles with diameter < 2.5 pm
These reanalysis fields were bilinearly resampled to the 1-km grid. Following resampling, we
performed component-specific screening to decide which reanalysis variables to keep in each
model: for every component, we computed correlations with observations and removed predictors
that were weakly associated with the target or highly collinear with other candidates. The ultimately
retained MERRA-2 / MERRA-2 GMI variables therefore differ by component; Table 8.1 lists the
retained fields for each component together with their correlation coefficients against the
corresponding observations. All other predictors and modeling settings mirrored those in the main
framework: AOD-derived total PMjs (the
land-use/population covariates, and explicit spatiotemporal features. We evaluated performance
with (site-based), (day-based)
cross-validation.

primary predictor), meteorological and

10-fold random (sample-based), spatial and temporal

Table 8.1. The final set of reanalysis predictors used for each component modeling and their correlations with
ground-level observations (obs) for 2000, 2001, and 2020.

SO+ EC obs
obs NOs™ obs
SO2SMASS  0.214 SO2SMASS  0.269 SO2SMASS  0.375
SO4SMASS  0.397 SO4SMASS  0.172 SO4SMASS  0.221
DMSSMASS  0.080 SSSMASS25  0.040 SSSMASS25  0.021
SSSMASS25  0.061 DUSMASS25 -0.024 DMSSMASS -0.013
DUSMASS25 0.060 DMSSMASS  0.008 DUSMASS25 -0.019
OC obs DUST obs
BCSMASS 0.469 DUSMASS25 0.352
SO4SMASS  0.226 BCSMASS 0.145
DMSSMASS  -0.026 SSSMASS25  -0.088
DUSMASS25 -0.011 SO4SMASS  0.081
SSSMASS25  -0.001 DMSSMASS  -0.065

8.2.2 Model performance

Model performance for the three modeled years was evaluated using sample-based (random),
spatial, and temporal 10-fold cross-validation (CV). The CV R? values for 2000, 2001, and 2020
(Table 8.2) ranged from 0.70—0.84 for the random CV, 0.65—0.74 for the spatial CV, and 0.53-0.81
for the temporal CV, depending on species. NOs~ consistently achieved the highest R? across all
CV types, while EC and DUST showed relatively lower spatial predictive performance. These
results indicate that, even without CMAQ-speciated inputs, the models retained strong predictive
skill across species, comparable to that achieved for 2002—-2019 using CMAQ data (Section 6.4.2).

Table 8.2. CV R? of PMa.s component models across California for 2000, 2001, and 2020.



CV type SO# NOs EC ocC DUST

Random 0.71 0.84 0.70 0.77 0.74
Spatial 0.66 0.74 0.68 0.73 0.65
Temporal 0.66 0.81 0.53 0.72 0.64

We then combined the three-year CV results with the 2002—2019 evaluation results summarized in
Section 6. As shown in Table 8.3, the statewide day-level 2000-2020 CV ranges span 0.66—0.89
(random), 0.60-0.85 (spatial), and 0.53-0.88 (temporal) across SO+*-, NOs~, EC, OC, and DUST.
As in Section 6, aggregation further improves accuracy at monthly and annual scales. Taken
together, the integrated 2000-2020 validation supports the use of these California estimates for
subsequent spatiotemporal trend analyses and population-weighted exposure assessments.

Table 8.3. Validation results of component modeling across CA for 2000-2020

Species 10CV method  R? RMSE (pg/m?®)
DUST sample-based 0.6643 0.5540
DUST spatial 0.5281 0.6707
DUST temporal 0.6051 0.6002
EC sample-based 0.7499 0.3638
EC spatial 0.6595 0.4260
EC temporal 0.7415 0.3699
NOs~ sample-based 0.8859 1.0394
NOs~ spatial 0.8386 1.2503
NOs~ temporal 0.8688 1.1141
ocC sample-based 0.7158 1.8352
oC spatial 0.6387 2.0788
oC temporal 0.6989 1.8890
SO~ sample-based 0.8086 0.4452
SO~ spatial 0.7491 0.5112
SO~ temporal 0.7816 0.4755

8.3 Statistical analysis methods

To investigate long-term spatial patterns and temporal changes in PM; s and its major components
across California, we performed three complementary statistical analyses: hotspot identification,
trend estimation, and population exposure assessment, including a focus on vulnerable
communities. All analyses were conducted using the daily, 1-km resolution dataset covering 2000—
2020, which integrates the modeled estimates for 2000, 2001, and 2020 (Section 8.2) with the
previously developed 2002-2019 fields from Section 6. Beyond the pixel-level analysis, we also
performed a regional analysis distinguishing between urban and rural areas, with urban areas
defined according to the 2010 U.S. Census Bureau urbanized area boundaries



(https://www.census.gov/cgi-bin/geo/shapefiles/index.php). This analysis further examined five
representative megacity regions—San Francisco Bay (SF Bay), Sacramento, Fresno, Los Angeles
(LA metro), and San Diego (SD) megaregions—as shown in Fig. 8.1.

Urban Areas
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Figure 8.1. Spatial distributions of urban areas with the five major metropolitan areas highlighted.

8.3.1 Hotspot identification

We first calculated the spatial distribution of the multi-year mean daily concentrations for total
PM, s and each of the five components over the 21-year period. The multi-year mean maps for each
pollutant were examined to identify long-term hotspots, defined here as areas with persistently
elevated concentrations that stand out from their surroundings in spatial distribution.

8.3.2 Trend analysis

The trend estimation method follows that was detailed in Section 7.1.2. Overall, to evaluate
long-term changes while removing seasonality, we formed monthly anomalies at each grid cell by
subtracting the corresponding 18-year monthly mean. We then applied ordinary least squares to the



anomaly series to estimate linear trends and their statistical significance (p < 0.01, p < 0.05, and
p<0.1), following Weatherhead et al. (1998). Trends are reported as pg/m? per year.

8.3.3 Population exposure assessment

We quantified population exposure to total PM, s and each component at the statewide and regional
scales. Monthly total population exposure was calculated following the approach described in
Section 7.1.3, using annual LandScan 1-km population data to match the resolution of our
concentration fields.

To assess environmental exposure risks among vulnerable populations, we conducted an additional
exposure analysis at the census tract level. Total PM, s and component estimates were overlaid with
California census tract boundaries, and mean concentrations for each tract were calculated using
zonal statistics. We then joined these tract-level concentrations to CalEnviroScreen 4.0 data, which
provides indicators of population vulnerability, including rates of children under age 10, elderly
over age 65, asthma emergency department visits, heart attack emergency department visits, and
low birth-weight births. This allowed us to compare exposures between communities in the highest
vulnerability quartile (>75%) and those in the lowest quartile (<25%) of CalEnviroScreen scores.
The comparison focused on differences in average exposures, interquartile ranges, and the spatial
distribution of elevated exposure burdens.

8.4 Spatial hotspots and their changes of PM, s and its components

Across California, multi-year mean maps (Fig. 8.2) for 2000-2020 reveal that the highest
concentrations of both total PM,s and several components are concentrated in the Los Angeles
(LA) megaregion and the San Joaquin Valley (SJV). These areas are affected by dense emission
sources, frequent stagnation episodes, and meteorological conditions that inhibit dispersion.
Outside these hotspots, concentrations are generally lower but still elevated in other urban centers,
such as the San Francisco Bay Area, and along certain inland transport corridors. Linear trend
analysis (Fig. 8.3) reveals substantial spatial and compositional variations in PM,s and its
components over the past two decades, with the magnitude—and in some cases, even the
direction—of change differing markedly by location and species, although an overall decline in
PM; s and most components over the two decades. The component-to-PM, s ratio analysis (%) for
the five species (Fig. 8.4) further indicates that OC was the dominant component across California,
particularly in the Sacramento and Los Angeles metropolitan regions. The analysis also highlights
pronounced seasonal variations in species composition.
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California from 2000 to 2020.
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Figure 8.3. Spatial distributions of linear trends of PM:s and its five components across California from 2000 to

2020.

2.5

2.0

0.5



wn
o
203
2
202
e
]
S 0.1
@
Q
v
0.0 Fall Spring Summer
Season
rural
wn
o
Z03
2
£ 0.2
c
0
@
T 0.1t
@
Q
v
0.0 Fall Spring Summer
Season
sacramento
w
o~
Z03
2
S o2t
S
0
[
S 0.1t
[
Q.
w
0.0 Fall Spring Summer
Season
LA
w
o
Zo03
]
S0zt
[
0
[
T 0.1f
]
(=%
w
0.0 Fall Spring Summer
Season
B Dust B EC

Winter

Winter

Winter

Winter

Bl Nitrate

urban

Fall Spring Summer Winter
Season
SF
Fall Spring Summer Winter
Season
Fresno
Fall Spring Summer Winter
Season
SD
Fall Spring Summer Winter
Season
oC Em Sulfate
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8.4.1 PM; s total mass

The spatial distribution of multi-year mean total PM» s shows extremely high concentrations in the
LA megaregion, where most grid cells record annual means between 12 and 17 pg/m?. These levels
place the entire metropolitan area well above the last U.S. National Ambient Air Quality Standard
(NAAQS) of 12 pg/m?® for annual PM, 5. The central SIV emerges as another major hotspot, with
extensive areas also exceeding 12 pg/m3, reflecting the combined effects of heavy agricultural
activity, wintertime ammonium NOs~ formation, and limited atmospheric mixing due to valley
topography. When the latest NAAQS annual standard of 9 pg/m? is applied—compared to the
previous 12 pg/m? threshold—the exceedance area expands considerably. In addition to the LA
megaregion and central SJV, large portions of the broader Central Valley, the San Francisco Bay

0 2020.

Area, and the southern California—western Arizona boundary surpass this level.



Pixel-level long-term linear trends reveal pronounced decreases in many of these high-
concentration areas. In the LA megaregion, the majority of grid cells exhibit slopes between —0.3
and —0.7 pg/m? per year (p < 0.05), indicative of substantial reductions over two decades. The SJV
also shows notable declines, though generally smaller in magnitude, with slopes between —0.1 and
—0.3 pg/m? per year (p < 0.05). In contrast, parts of northern California and along the central Sierra
Nevada Mountain range display increasing trends exceeding 0.1 pug/m* per year (p < 0.05),
suggesting localized influences or source shifts that offset statewide improvements.

8.4.2 Sulfate

SO4>~ concentrations are highest in the LA megaregion, where multi-year means typically range
from 1.8 to 2.5 pg/m?. Elevated SO+*~ also extends into the Central Valley, the San Francisco Bay
Area, and the southern California—western Arizona boundary, with most concentrations in these
areas between 1.2 and 1.6 pg/m?.

Trend analysis shows a consistent downward trajectory across the state. The most substantial
declines are concentrated in the LA megaregion, where most slopes are less than —0.10 pg/m? per
year (p <0.05). The Central Valley and the southern California—western Arizona corridor also show
widespread decreases, with typical slopes between —0.03 and —0.06 pug/m? per year (p < 0.05).

The sulfate-to-PM s ratio is relatively low, averaging 12.97% statewide and ranging from 9.45%
in winter to 16.84% in spring. The ratios are nearly identical between urban (12.92%) and rural
(12.98%) areas. However, SO+*~ become the dominant contributor to total PM, 5 in summer within
the San Diego region.

8.4.3 Nitrate

NOs~ exhibits a spatial footprint similar to total PM, s, with very high concentrations in the LA
megaregion (generally 3-5 pg/m?®) and extensive elevated areas in the SJV, particularly in its
southern portion where many grid cells exceeded 4 pg/m?. The San Francisco Bay Area also showes
moderately high NOs~ concentrations of (2-3 pg/m?3).

Linear trends show marked decreases statewide, with the steepest declines in the LA megaregion,
where most slopes fall between —0.20 and —0.30 pg/m? per year (p < 0.05). The Central Valley also
records broad decreases, typically —0.05 to —0.10 pg/m? per year (p < 0.05), reflecting the combined
effect of NOy emission controls and changes in atmospheric chemistry.

The component ratio analysis further indicates that NOs~ contributions are substantially higher in
urban areas than in rural regions (21.12% vs. 13.00% statewide), with particularly elevated ratios
in the Fresno (24.77%), Los Angeles (24.05%), and San Diego (23.01%) megaregions. In addition,



wintertime NOs~ fractions (24.84%) were markedly higher than those in other seasons (7.80—
13.81%).

8.4.4 Elemental carbon

EC hotspots are concentrated in the LA megaregion, where multi-year means typically range from
1.2 to 1.5 pg/m?. Other elevated areas include the Central Valley and San Francisco Bay Area,
generally around 0.8 pg/m?.

Trend maps reveal only modest decreases in EC, with the LA megaregion showing slopes between
—0.01 and —0.05 pg/m? per year (p < 0.05). Notably, increases are observed in parts of northern
California and along the central Sierra Nevada, with slopes of 0.02 to 0.05 pug/m?® per year (p <
0.05).

Among the five major PM, s species, EC contributes the least to total PM» s mass, with a statewide
mean EC-to-PM: s ratio of 5.20%. Over rural areas, the ratio varies only slightly across seasons
(3.86-5.87%). However, over urban areas, EC fractions are substantially higher in autumn (8.24%)
and winter (9.42%) than in spring (6.49%) and summer (6.07%).

8.4.5 Organic carbon

OC shows the highest spatial extent among the carbonaceous species. The LA megaregion records
multi-year means above 4 pg/m?, while the South Sacramento Valley and southern SJV air basins
also show pronounced hotspots with similar concentration levels. The San Francisco Bay Area and
the southern California—western Arizona boundary have moderate OC levels, around 2.5 pg/m?.
The larger footprint compared to EC reflects both primary emissions and secondary organic aerosol
formation from VOC precursors.

Trend patterns for OC resemble those of EC but with stronger magnitudes. In the LA megaregion,
slopes typically range from —0.10 to —0.20 pg/m? per year (p < 0.05), indicating meaningful
reductions. However, in northern California and the central Sierra Nevada, increases of 0.04 to 0.12
ug/m? per year (p < 0.05) are observed, suggesting region-specific influences such as biomass

burning or changing precursor availability.

OC remains the dominant contributor to total PM; s, with a statewide mean OC-to-PM, s ratio of
29.60%. Seasonally, autumn (33.14%) and summer (32.44%) exhibit notably higher OC fractions
than winter (27.92%) and spring (21.62%). OC ranks as the leading component across nearly all
regions and seasons, except during winter in the Fresno region and spring—summer in the San Diego

megaregion, where other species (e.g., NOs~) become more influential.



8.4.6 Mineral dust

The DUST component shows the highest concentrations in the southwestern areas of California,
particularly along the border with Arizona, where most grid cells exceed 3 pg/m*. DUST levels in
southern California, especially across the southern SJV and San Bernardino County (mostly 1.2-2
ug/m?), are clearly higher than those in the northern part of the state, where most values remain
below 1.2 pg/m?.

Linear trend analysis shows the largest decreasing trends (below —0.03 pg/m? per year, p < 0.05)
along the southern state border, where the highest DUST concentrations are observed, and eastern
border areas. In contrast, increasing trends of 0.003—0.05 pg/m? per year (p < 0.05) are observed in
the southern SJV region.

The DUST component is the second-largest contributor to total PM» s statewide, with a dust-to-
PM, s ratio of 17.01%. Its contribution is larger in rural areas (17.79%) than in urban areas (8.70%),
and highest in spring (22.64%), compared with 12.30—17.12% in other seasons.

8.4.7 Discussion

The analysis of PM» 5 speciation across California reveals distinct spatial patterns, temporal trends,
and compositional characteristics that collectively inform understanding of the dominant
contributors to fine particulate pollution and their evolution over the past two decades. Total PM, s
concentrations remain highest in the LA megaregion and the SJV, both consistently exceeding
national air quality standards, although significant long-term declines are evident due to regulatory
and technological improvements.

Among the five major components, OC is the dominant contributor statewide, accounting for nearly
30% of total PM> 5, while EC is the smallest contributor statewide (5%). The carbonaceous fraction
(OC + EC) collectively represents a substantial portion of PMa,s mass, particularly in the LA
megaregion and urbanized areas, reflecting the influence of combustion sources and secondary
organic aerosol formation. In contrast, NOs™ is the second-largest contributor in urban areas (21%)
and during winter (25%), especially in the SJV and southern California, driven by low temperatures
and stagnant meteorology that promote ammonium NOs~ formation. SO+*~ contributions have
steadily decreased, consistent with long-term SO emission reductions, though localized dominance
in SD megaregion during summer highlights the continued influence of photochemical oxidation
and marine air. DUST remains an important contributor in rural areas (18%), particularly in the
southwestern border areas and southern region, where resuspension and agricultural activities play

key roles.

Spatially, PM»s composition exhibits strong regional differentiation—OC and NOs~ species
dominate in densely populated basins, while DUST is more pronounced in rural regions. Pixel-
level linear trend analysis (Fig. 8.3) reveals pronounced spatial heterogeneity in the magnitude and



direction of PM,s and species changes across California. Most grid cells in the LA metro
megaregion and the SJV show statistically significant (p < 0.05) decreases in total PM, s, generally
between —0.3 and —0.7 pg/m*/yr and —0.1 to —0.3 pg/m?/yr, respectively, reflecting sustained
emission reductions. SO+~ and NOs~ exhibit the strongest and most spatially coherent declines
statewide, consistent with long-term control of sulfur and nitrogen precursors. OC and EC also
decrease over most urban basins but with smaller magnitudes and localized reversals in parts of
northern California and the Sierra Nevada foothills, suggesting region-specific influence,
potentially linked to biomass burning, wildfire smoke, and changing precursor availability. Dust
shows weak or mixed trends, with slight decreases along the southern border and minor increases
in the southern SJV.

Overall, the compositional and trend analyses highlight that, despite substantial progress in
reducing PM> s mass, species-specific dynamics vary across regions and seasons. OC and NOs~
remain key targets for further mitigation, while the persistence of elevated levels or local increases
in EC and DUST emphasize the need for regionally tailored strategies that consider source profiles,
chemical regimes, and meteorological constraints.

8.5 Spatiotemporal patterns of population exposure to PM,s and its components

8.5.1 Long-term variation of total population exposures

From 2000 to 2020, the population-weighted mean PM> s concentration in California was 11.87
ug/m?. Annual exposure declined from approximately 14.8 ug/m? in 2000 to 11.9 ug/m? in 2020, a
reduction of about 20% (Fig. 8.5). Despite this long-term decrease, seasonal and interannual
variability remained substantial: exposures were highest in winter (13.52 ug/m?®) and lowest in
spring (9.46 ug/m?).

These seasonal patterns are largely driven by variations in component concentrations, particularly
OC and NOs". NOs™ exhibited the most pronounced long-term reduction, declining by about 52%
from 3.9 pg/m? in 2000 to 1.9 pg/m? in 2020. On average, NOs~ contributed ~2.6 pg/m? to total
PM: 5 but displayed sharp seasonality, with winter peaks often exceeding 6—7 pg/m? during stagnant
episodes. These peaks make NOs~ the single most important driver of PM,s seasonality in
California. SO+*" also showed substantial reductions, falling by nearly 50% from 2.2 pg/m? in 2000
to 1.1 pg/m? in 2020. Its average contribution (~1.6 pg/m?) is smaller than that of NOs~ or OC.
Seasonal variation is less pronounced, though concentrations tend to be slightly higher in summer
due to enhanced photochemical production. Importantly, sulfate’s decline is steady and spatially
consistent, reflecting effective controls on sulfur emissions. OC contributed the largest share of any
single species, averaging ~3.5 pg/m* over the study period. Its long-term decline was modest
(~6%), but year-to-year variability was high. Seasonal patterns showed clear winter (4.48 pg/m?)
and fall (4.16 pg/m?®) peaks, moderate summer levels (3.04 pg/m?), and pronounced summer—fall
surges from 2017 to 2020 associated with major wildfire episodes. These episodic events have
interrupted the otherwise gradual downward trend and highlight the growing role of wildfire



emissions in recent years. EC decreased modestly, from 1.23 pg/m? in 2000 to 1.08 pg/m? in 2020
(a 13% reduction). With an average contribution of ~1.0 ug/m?, EC plays a smaller role compared
with NOs~ or OC. Seasonal variation is weaker, though somewhat elevated levels occur in fall and
winter, consistent with combustion-related sources such as residential burning and on-road traffic.
DUST remained relatively stable, averaging ~0.9 pg/m? with little change over the two decades. It
consistently contributes the least among the five components, with limited seasonal variability
except for slightly higher concentrations in spring and fall, likely due to resuspension and natural
surface processes.
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Figure 8.5. Monthly population-weighted mean concentrations from 2000 to 2020.

Overall, population-weighted PM, s exposure in California decreased by about 20% from 2000 to
2020. As illustrated in the bar chart comparing 2000 and 2020 (Fig. 8.6), the relative reduction in
total PM» 5 exposure is driven most strongly by NOs™ and SO4*, both of which declined by roughly
half. NOs~ continues to dominate the pronounced wintertime peaks, while SO4>~ shows a steady
decline during summer. OC and EC exhibit relatively modest long-term decreases of approximately



12% and 6%, respectively, with OC trends further obscured by episodic wildfire-driven spikes in

recent years. In contrast, dust concentrations remain essentially unchanged.
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Figure 8.6. Average population-weighted mean concentrations of PMzs and its five components in 2000 vs. 2020
over California.

These spatiotemporal variations in exposure reflect the combined influence of emission controls,
changing atmospheric conditions, and episodic wildfire events. However, the patterns are complex
and not fully explained by emissions alone, underscoring the need for further decomposition of the
roles of meteorology, wildfires, and human emissions. Such decomposition analysis will be
presented in Section 9.

8.5.2 Exposure risk patterns of vulnerable populations

8.5.2.1 Spatial patterns of vulnerable populations by CalEnviroScreen

Figure 8.7 presents six vulnerability parameters: total population (TotPop19), children under 10
(Child_10), elderly adults 65+ (Elderly65), and three health outcome indicators—asthma
emergency department visits (Asthma), cardiovascular emergency department visits (Cardiovas),
and low birth-weight births (LowBirthWt). TotPop19 indicates that densely populated tracts cluster
in the major metropolitan areas—most prominently the LA megaregion, the SF Bay Area, and
portions of the SJV. Tracts with higher counts of children under 10 are likewise concentrated in
metropolitan corridors and the SJV, whereas elderly populations show an inverse pattern, with
higher densities in parts of the western/northern mountain and foothill regions.

The three health indicators display distinct but partially overlapping spatial patterns that are
consistent with the maps shown. Asthma emergency department (ED) visits are elevated in portions
of the LA basin, along the SJV corridor, and in pockets of the Inland Empire, reflecting known
respiratory burdens in these regions. Cardiovascular ED visits show a broader inland footprint, with
higher values across much of the SJV, the LA megaregion, and scattered rural tracts elsewhere.
Low birth-weight prevalence is more heterogeneous, with elevated rates in selected tracts of the SF



Bay Area, across segments of the Central Valley, and in southern California, including parts of
greater LA.

Taken together, these patterns indicate that vulnerable populations are not confined to a single
geography: different indicators highlight different at-risk groups across both urban and rural
California. This spatial diversity underscores the importance of overlaying these vulnerability
layers with PM, s and species-specific exposures to pinpoint tracts where pollution burden and
population sensitivity coincide most strongly, thereby guiding targeted mitigation and health-
protection strategies.
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Figure 8.7. Spatial distributions of CalEnviroScreen scores for Total population (TotPop19), populations with
ages below 10 (Child_10), populations older than 65 (Elderly65), Asthma, Cardiovas, and low birth weight
(LowBirtWwt).

8.5.2.2 Exposure patterns of vulnerable populations to PM;.5s components

To assess population vulnerability to PM2.5 component exposures, we examined spatial variation
in total PM, s and its five major species relative to six CalEnviroScreen 4.0 indicators (TotPop19,
Child 10, Elderly65, Asthma, Cardiovas, LowBirthWt). Figures 8.8 identifies tracts where high
pollution burdens coincide with high vulnerability. Because tracts with high PM, s (total and by
component >75th percentile) are concentrated in southern California, overlaid hotspots occur
primarily in southern California such as the LA metro and Fresno urban clusters.
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Figure 8.8. Spatial distributions of PM: s total mass and component concentrations over census tracts where
both the selected CalEnviroScreen parameter scores and pollutant concentrations are at or above the 75th
percentile during the 2000-2020 period.

Figures 8.9-8.10, together with the 2000-2020 time series shown in Figure 8.11, demonstrate
pronounced and systematic disparities in PM, s component exposures between census tracts in the
highest vulnerability quartile (>75%) and those in the lowest quartile (<25%). The magnitude and
direction of these disparities vary across vulnerability indicators and PM,s species. For total
population (TotPopl9), exposure differences between high- and low-vulnerability tracts are
generally small, with slightly higher NOs™ (+0.03 pg/m?®) and DUST (+0.01 pg/m?) but marginally
lower SO4*~ (—0.03 pg/m?®), EC (EC; —0.03 pg/m?), and OC (OC; —0.05 pg/m?) concentrations in
>75% tracts. In contrast, disparities are much larger for tracts with elevated asthma emergency
department (ED) visit rates, which are concentrated in the San Joaquin Valley (SJV), Los Angeles



Basin, and Inland Empire. These high-asthma areas experience substantially higher exposures to
NOs™ (+0.30 pg/m?), OC (+0.45 pg/m?®), EC (+0.10 pg/m?), and DUST (+0.14 pg/m?), with SO4>~
slightly lower (—0.04 pug/m?). Similar patterns are observed for cardiovascular ED visits, with
systematically elevated exposures in the >75% quartile across all major components: NOs~ (+0.41
pg/m?), OC (+0.59 pg/m?®), EC (+0.13 pg/m?®), DUST (+0.27 pg/m?®), and SO+* (+0.07 pg/m?).
Tracts with high prevalence of low birth weight likewise face consistently higher exposures to all
components, including NOs~ (+0.47 pg/m?®), OC (+0.42 png/m?®), EC (+0.16 ug/m?®), SO+ (+0.18
pg/m?), and DUST (+0.07 pug/m?). Children-dense areas (=75% for population under age 10) show
elevated NOs~ (+0.31 pg/m?), OC (+0.28 pug/m?), EC (+0.05 pg/m?®), and DUST (+0.15 pg/m?)
exposures, while SO+* concentrations are virtually identical between groups (1.54 pug/m?®). In
contrast to all other indicators, tracts with high proportions of older adults (=65 years) — often
located in more rural or northern California regions — experience significantly lower exposures
than their <25% counterparts across all components, with NOs™ (—0.75 pg/m?), OC (—0.68 pg/m?),
SO+ (—0.29 pg/m3), EC (—0.24 ug/m?), and DUST (—0.12 pg/m?) all markedly reduced.
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Figure 8.9. Spatial distributions of PM:s total mass and component concentrations over tracts with each selected
parameter’s CalEnvironSreen score percentile>=75% for the 2000-2020 period.
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Figure 8.10. Spatial distributions of PM2 s total mass and component concentrations over tracts with each
selected parameter’s CalEnvironSreen score percentile<=25% for the 2000-2020 period.
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Figure 8.11. Time series of PM2s component exposures (2000-2020) for census tracts in the highest (>75%) and
lowest (<25%) quartiles of CalEnviroScreen indicators, including asthma, cardiovascular disease, low birth
weight, children under 10, elderly population, and total population density. Colors indicate PM2.s components:
Colors represent PM2.s components: NOs~ (N, red), OC (O, green), EC (E, black), SO+ (S, blue), and DUST (D,
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Taken together, the results reveal that NOs~ and OC drive the largest disparities for most vulnerable
groups, particularly those defined by elderly, cardiovascular disease, and low birth weight
indicators. EC and DUST also show elevated exposures in these groups, though to a lesser degree.
In contrast, SO+ exhibits weaker disparities, and for asthma, children and total population
indicators, differences are negligible or reversed. Across CalEnviroScreen indicators, communities
defined by cardiovascular disease, child, and low birth weight vulnerabilities consistently
experienced higher PM,s component exposures in >75% tracts compared with <25% tracts,
whereas elderly-dense tracts showed a reversed pattern with lower exposures. Asthma-vulnerable
tracts displayed mixed disparities, with higher exposures for NOs~, OC, EC, and DUST but slightly
lower SO+~ concentrations. In contrast, total population indicators exhibited only negligible
differences. These findings underscore that exposure inequalities in California are primarily tied to
local combustion sources and wildfire episodes, rather than regional background pollutants.

8.6 Summary

Using long-term, high-resolution estimates spanning 2000—2020, this section examined the spatial
hotspots and temporal trends of PM, s and its five major components across California. Spatial
analyses revealed persistent hotspots in the SJV, the LA metropolitan area, and parts of the SF Bay
Area, where elevated concentrations of OC and NOs~ contributed strongly to the overall PMa ;s
burden. Pixel-level linear trend analysis showed substantial statewide declines in SO+~ and NOs~,
typically —0.05 to —0.10 ug/m*/yr (p < 0.05), while OC and EC decreased more modestly—about
—0.01 to —0.05 pg/m3/yr —with localized reversals in northern California and the Sierra Nevada



foothills. DUST exhibited weak or mixed trends, showing slight decreases along the southern

border and minor increases in the southern SJV.

Population-weighted exposure analyses revealed somewhat different spatial and temporal patterns
when pollutant estimates were overlaid with population distribution. Statewide PM» s exposure
declined by roughly 20 %, from 14.8 pg/m? in 2000 to 11.9 pg/m?* in 2020, with about half of this
reduction driven by decreases in NOs~ and SO4*". Seasonal cycles were evident, with NOs™ driving
winter peaks that often exceeded 6—7 pg/m* and OC dominating in summer and fall, frequently
amplified during wildfire years. When exposures were stratified by CalEnviroScreen vulnerability
indicators, clear disparities emerged: communities with higher burdens of asthma, cardiovascular
disease, child populations, or low birth weight experienced 0.28—0.59 pg/m? higher NOs~ and OC
exposures, whereas tracts with higher proportions of elderly residents showed lower exposures, and
differences by total population were minimal. These results highlight the uneven distribution of
pollution burdens among sensitive populations.

Overall, the analysis demonstrates that although air-quality improvements have substantially
reduced PM, s and its major components statewide over the past two decades, exposure inequalities
persist and remain most pronounced for nitrate- and carbon-related species in vulnerable
communities. The complexity of these spatiotemporal patterns underscores the need to further
decompose the drivers of variability—including the respective roles of meteorology, wildfires, and

anthropogenic emissions—which are examined in Section 9.



9. Unraveling Contributions of Meteorology and Wildfire Smoke to
PM:.s Components in California and Their Influence on Recent Trends

9.1 Introduction

Understanding the drivers of temporal and spatial variability in PM»s and its major chemical
components is fundamental for developing targeted mitigation strategies in California, where
complex interactions among anthropogenic emissions, meteorology, and wildfires lead to
substantial fluctuations in air quality. Unlike many other regions of the United States, California is
characterized by a unique combination of persistent urban and industrial emissions, intensive
agricultural activity, and frequent large-scale wildfires. These diverse sources contribute to both
chronic background pollution and acute episodic events, resulting in significant health and
environmental burdens. A particular challenge for assessing the effectiveness of air quality controls
in California is thus that both meteorological variability and wildfire smoke can obscure underlying
emission-driven trends. Meteorological conditions influence pollutant dispersion, chemical
transformation, and deposition, generating substantial interannual and seasonal variability
independent of emission changes. Wildfires, in contrast, produce abrupt but increasingly frequent
episodes of extreme particulate matter pollution—especially enriched in OC and EC—that can
mask or even offset improvements achieved through anthropogenic emission reductions. Without
explicitly accounting for these two influences, evaluations of long-term air quality trends risk

underestimating the benefits of emission controls or misattributing the sources of observed changes.

In Section 8, we identified the major spatial hotspots of PM> s and its components across California
and documented long-term declines in population-weighted exposures, particularly in SO+*~, NOs™,
EC, and OC. We also highlighted the growing role of wildfire events in shaping exposure extremes,
often offsetting some of the gains achieved through emission reductions. Building upon those
findings, the present section seeks to disentangle the underlying drivers of these observed patterns.
Specifically, we aim to quantify how much of the observed variability and trend in PM, 5 species
can be attributed to meteorological conditions versus wildfire smoke, and how much reflects long-
term changes in anthropogenic emissions. Therefore, separating the relative contributions of
meteorology, wildfire smoke, and human activities is critical for accurate attribution.

In this section, we employ the extended daily, high-resolution PM, s component dataset developed
in Sections 6 and 8, covering the 2000-2020 period, to conduct decomposition analyses that
partition observed variability into contributions from meteorology, wildfire smoke, and
anthropogenic emissions. By removing the confounding effects of weather and episodic fire events,
we obtain a clearer picture of long-term emission-driven trajectories in PM,s and its species.
Finally, we discuss the implications of these refined trends for emission-control policy and provide
recommendations for strategies that simultaneously address chronic and episodic particulate matter
sources in California.



9.2 Decomposing Meteorological and Wildfire Smoke Contributions to PM:s and Its Five
Components

To better interpret the drivers of PMa s variability and identify components most responsive to
emission control policies, we decomposed daily PM; s (and its major chemical species) into three
additive parts: meteorologically driven, wildfire-related, and anthropogenic residual components,
as below abstracted equation:
PMg; = Meteoy; + Smoke,; + Residual,;
L S —

Nt
(1) (2) (3

(1) Meteorological contribution: Meteorological effects were removed using the normalization
method described in Section 9.2.1, which predicts PM» s concentrations under a fixed reference
meteorological condition. The difference between observed and meteorology-normalized values
thus represents the contribution of short-term meteorological variability.

(2) HMS-based smoke on the met-normalized field: The HMS-based five-step procedure (Section
9.2.2-9.2.3) was applied to the meteorology-normalized PM, s and component fields to identify and
remove days and locations affected by wildfire smoke. This yielded estimates of wildfire-attributed
PM; s, as well as “clean” non-fire concentrations.

(3) Anthropogenic/policy-sensitive residual: Finally, we attributed the remaining portion after
accounting for meteorological and wildfire influences as the anthropogenic or policy-sensitive
residual, reflecting long-term changes primarily driven by emission sources and regulatory actions.
This residual component provides an empirical foundation for assessing emission-driven trends,
tracking sector-specific mitigation progress, and supporting policy considerations for sustained and
equitable air-quality improvements across California.

9.2.1 Meteorological effect decomposition

To isolate the effect of meteorological variability, we replaced daily meteorological inputs in the
modeling framework with “long-term stable” meteorology generated through a seasonal
resampling procedure. For each grid cell and day, 50 values were randomly drawn for each
meteorological variable (Table 6.1) from the same calendar month across the baseline period
(2000-2020). This approach preserves the seasonal cycle but removes interannual anomalies. For
example, meteorological inputs for 1 July 2018 were replaced with values randomly sampled from
all July records (1-31) across the 2000-2020 period. All other predictors, including emissions, land
use, and wildfire indicators, were held constant.

The model was rerun with the resampled meteorology to produce meteorology-normalized

concentrations. The contribution of meteorology was then calculated as:
PMygr(9,t) = PMori(g,t) — PMpeymer(9, 1)



where PM,,;(g,t) is the original estimate at location g and day t, and PMpgyr(g,t) is the
estimate under resampled meteorology. Positive values of PMypr(g,t) indicate meteorological
conditions that enhanced pollution, whereas negative values indicate conditions that favored
dispersion or removal.

9.2.2 Separating wildfire-smoke contribution

After meteorological normalization, we applied a five-step algorithm (Steps A-E) to separate
wildfire-related (“fire”) and background (“non-fire”) PMjs concentrations. This approach
integrates spatial smoke plume data with a robust statistical filtering framework to generate
spatially and temporally consistent estimates of both smoke-related and background PM, s across
California. This design quarantines smoke-driven extremes from the background, so that the
background (i.e., the anthropogenic-attributed residual after removing meteorology and wildfire)
is not inflated by smoke spikes, while the full wildfire signal is retained in dedicated smoke metrics.
Daily wildfire smoke plume information was obtained from the NOAA Hazard Mapping System
(HMS) smoke product, which provides daily polygons delineating smoke plume extents based on
satellite observations. As the HMS record is available only from mid-2005 onward, the wildfire-
related analysis period was therefore set to 2005-2020.

Step A. HMS-based candidate gate (source plausibility)

All datasets were reprojected to a standardized 1-km grid consistent with the high-resolution
PM: s component data spanning the land area of California. For each grid cell g and day t, a
candidate flag was assigned if the pixel intersected any HMS smoke plume polygon on that day.
This step defines all locations potentially influenced by wildfire emissions, serving as the initial
plausibility screen.

Step B. Baseline construction

For each grid cell g and day t, a baseline distribution of PM, s concentrations was established
using all non-fire days for the same day of year (DOY) during the 2005-2020 study period. To
ensure a sufficient number of valid values for calculating baseline statistics, we applied a small
DOY window: all days s satisfying [IDOY(s)—DOY (t)|<W were included, where W=1 by default
and expanded as needed.

Days already flagged as fire candidates in Step A were excluded for the baseline calculation.
From this baseline sample, we computed the upper quartile Q3(g,t) and the interquartile range
IQR(g,t)=Q3—Q1. If the baseline sample size was smaller than a minimum threshold (Nmin=10),
the window width W was expanded incrementally (e.g., 3-7 days) until sufficient samples were
obtained.

Step C. Robust exceedance test



Each grid cell and day were classified as smoke-impacted if:
PMg,t>Q3(g,t)+k-IQR(g,b),

where k=1.5 defines a robust-outlier threshold, following previous study (Wei et al. 2023).

To reduce false positives from isolated local anomalies, spatial coherence was imposed: a cell
remained flagged only if at least one neighboring pixel within a 3x3 window was also identified
as smoke-impacted.

Step D. Baseline refinement

After smoke-impacted pixels were identified, baseline statistics (i.e., median) were recomputed
using only non-fire days. This refinement step effectively “decontaminates” the baseline by
removing smoke influence, ensuring that the background levels represent true non-fire conditions.
For reproducibility, Step C was not rerun with the refined baselines.

Step E. Derivation of fire and non-fire PM s

To obtain daily non-fire concentrations, grid cells identified as fire-affected outliers (Step C) were
replaced with their corresponding background values. The background was defined as the DOY-
specific median from the meteorology-normalized dataset in Step D, thereby preserving seasonal
cycles while excluding fire anomalies. The resulting dataset represents daily spatial distributions
of non-fire concentrations (P My, fire (9, t)).
S o u {DOY_medianPMDEMET(g, t), if fire pixel,
Ranfaelad) PMpeyer(g,t),  if not fire pixel,
Fire-attributed concentrations were then calculated as the residual between the meteorology-
normalized dataset and the background dataset:
PMfire (g, t) = PMpgyer(g,t) — PMnonfire(g: t)
This procedure ensures that wildfire impacts are quantified relative to the expected seasonal
background under meteorology-normalized conditions.

9.2.3 Application to PM, s components

The smoke-filtering framework described above (Section 9.2) was further extended to quantify the
wildfire and non-wildfire contributions of five major PMa s components— SO4>~, NOs~, OC, EC,
and DUST—each available as daily 1-km estimates for the same domain and period (2005-2020).
Because total PM> s represents the combined signal of these species and exhibits the highest signal-
to-noise ratio, the Step C smoke mask derived from total PM, s was adopted as a common indicator
of smoke exposure for all components. This approach ensures consistency in the spatial and

temporal definition of fire events and facilitates cross-species comparisons.



For each species, we recomputed baseline statistics following the procedure in Step D but using the
species-specific concentration fields. All grid cells and days flagged as smoke-impacted in Step C
were excluded from these calculations, yielding “clean” DOY baselines that represent typical non-
fire conditions for each component. These species-specific baselines (median, Q1, Q3, and IQR)
were subsequently used to separate smoke and non-fire concentrations.

In analogy with Step D, smoke and non-fire concentrations for each species were derived. This
design maintains a coherent smoke definition across all PM» s components—ensuring that species
are evaluated under a shared exposure framework—while allowing each component to preserve its
own statistically independent baseline for replacement and analysis. The resulting species-specific
smoke and non-fire fields provide a consistent basis for inter-species comparison of wildfire

impacts, emission policies, and long-term compositional changes in PM; 5 across California.

9.2.4 Statistical analyses of the decomposed results

After generating the daily 1-km fields with meteorological and wildfire contributions decomposed,
we conducted spatiotemporal statistical analyses at both the pixel level and for region-aggregated
units. Our focus areas included the Southern California Air Basin (SoOCAB) and the San Joaquin
Valley (SJV), as well as urban areas (UA) in California defined by the 2010 U.S. Census Bureau
urbanized-area boundaries; rural areas (RA) were defined as the portions of California outside those
urban boundaries. To capture heterogeneity in sources and impacts, we further examined five major
metropolitan areas—San Francisco Bay Area (SF Bay), Los Angeles Metropolitan Area (LA),
Sacramento, Fresno, and San Diego (SD) (Fig. 9.1).
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Figure 9.1. Spatial distributions of the selected decomposition regions with the five major metropolitan areas

highlighted.

(1) Statistical analysis for meteorological decomposed data

We quantified the role of meteorology in explaining year-to-year variation using both the original
estimates and the meteorology-normalized results. For total PM,s and each component, we
constructed annual time series (2000-2020) of the ground-level concentrations without
decomposition (referring to PM,,s(g,t) hereafter), the meteorology-normalized concentrations
PMpruer(g,t), and the meteorological contribution PMypr(g,t). We calculated the sample
variance of PM,,¢(g,t) and PMygr(g,t) across years, and defined the meteorological share of
variance (VarShare) was then calculated as:

VarShare% = Var(PMugr(9,5) x 100
Var(PMyps(g.t)

This ratio expresses the fraction of observed interannual variability attributable to meteorology.
Values close to 0% indicate negligible meteorological influence, whereas values approaching or
exceeding 100% suggest that meteorology alone accounts for most or all of the observed variability.
To aid interpretation, we also reported the standard deviation (SD) of PM,;s (Obs SD), PMpgyer



(DEmet_SD), and PMy g+ (Met SD) to characterize the typical magnitude of variability, the
correlation coefficient between PMpygr(g,t) and PMg,s(g,t) to show how closely
meteorological fluctuations track observed concentrations, and long-term means of both originally
estimated (Mean_Obs) and meteorological (Mean_Met ) contributions.

(2) Statistical analysis for smoke and non-fire data

To evaluate spatial hotspots following the two-step decomposition, we calculated multi-year mean
concentrations of fire and non-fire PM 5 and its components. To assess the interannual variability
across selected subregions and further characterize the contribution of emission policies, we
decomposed the non-fire monthly time series into three components—Ilong-term trend, seasonal
cycle, and residuals—using a moving average (Kendall & Stuart, 1983). method. This approach
enables a clearer distinction between emission-driven changes, seasonal patterns, and short-term

fluctuations. Representative examples of this decomposition are shown in Figure 9.2.
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Figure 9.2. Decomposition of nitrate PM:s for urban area of California.

9.3 Changing roles of meteorology on PM:s and its five components trend
Table 9.1-9.12 summarized the predicted net PM; s total and the five component concentrations,
those with effects of meteorological changes removed and the differences in PM» s and component



concentrations associated with these meteorological changes (termed PM,,;, PMpgyEer, and
PMygr) by region and year. It is clear that the meteorological parameters show changing roles in

PM: 5 and its component long-term variation with significant regional difference.

9.3.1 PM; s (total mass)

Across regions, meteorology explains a modest share of interannual PM,s variability, with
VarShare averaging ~8.4% and ranging from ~3% (RA, CA statewide) to ~20% (SoCAB). Regions
with larger meteorological influence also show higher Met SD (e.g., SOCAB Met SD = 0.40
ug/m?; Fresno ~ 0.72 pg/m?), while statewide values remain small (Met SD = 0.21 ug/m?®). The
Obs—Met correlation is weak in magnitude and often slightly negative (e.g., SD = —0.29, UA =
—0.22, SF Bay ~ —0.12). Notably, the de-meteorologized variability (DEmet SD) is equal to or
modestly larger than Obs SD in several areas (e.g., SOCAB 1.05 vs 0.91; SD 1.83 vs 1.62; LA
metro 2.17 vs 2.12). Mean levels differ in intuitive ways—Mean_Obs is highest in UA and Fresno,
moderate in SJV and Sacramento, and lowest statewide and in RA—while Mean Met tends to be
slightly negative in sign for many regions.

Table 9.1. The predicted original total PMz.5, PM2.5 with meteorological changes removed (PM25pemeT), and the
changes in PM> 5 associated with the meteorological changes (PM25wmer) for different regions from 2000 to 2020
(unit: pg/m?). A positive PM25meT value (orange) indicates that the meteorological change is favorable to PMz.s
formation, while a negative value (blue) indicates unfavorable.

Region Indicator 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2011 2013 2014 2015 2016 2017 2018 2019 2020

CA PM25 7116 |6.649 7398 6531 6297 5887 6355 6475 (7.848 5901 (5.040 (5734 6335 6039 6192 5261 6701 7872 4698 10.093
PM2Speaey 7622  |7.080 (7487 6962 6553 6352 6767 6728 8048 6620 5.672 16.259 6.567 6220 6333 5514 7031 7.751 5.087 10.792
PM2S, g -0.506 -0431 -0.089 -0.431 -0.257 -0.465 -0412 -0253 -0200 -0.719 -0632 -0525 -0.233 -0.181 -0.141 -0.252 -0330 0120 -0389 -0.699

STV PM25 9.768 8645 9981 8444 8746 799 8799 8639 9986 7.875 6.597 7.690 8.159 7.551 8088 6855 8201 9.852 5995 12380

PM25ppyer 9593 8989 9.777 8894 8518 8382 9155 8839 10108 7.743 7249 7997 |7.%

PM25,:r 0174 -0344 0204 -0450 0228 -0386 -0.356 -0.180 -0.122 0132 -0651 -0307 - 0312 0095 0236 -0207 -0.037 0566 -0361 -0486
SoCAB PM25 8.667 |9.481 8.552 9.120 7.750 7846 7.864 3368 8223 7018 |6.617 7324 7069 7332 6555 6.669 7.38% 7464 5684 7.763

PM25ppyer 10.284 19.869 9.946 9385 8694 8322 8350 8592 8656 (8.148 (7.323 (7.898 |7.749 7511 7412 7.056 6.843 7.709 7668 6275 |8.579
-1617 -0388 -1394 -0265 -0.944 -0476 -0486 -0223 -0433 -1130 -0.706 -0574 -0362 -0.442 -0080 -0501 -0.179 -0320 -0204 -0591 -0815

7847 7456 7851 7062 8237 9285 16357 |12.866

UA 13.104 13.755 13.186 12470 11.632 11.193 11.001 11.432 11.740 10.286 9.325 10371 (9.582 10.063 9.705 9929 8828 9.852 10.804 7.746 11.484
ener 13.903 (13830 (13833 12581 12280 11469 11389 11511 11.883 10.520 |10.054 /10591 9.819 9887 9529 9362 8562 9841 10419 38262 12277

-0.798 -0.075 -0648 -0.111 -0.649 -0.276 -0388 -0.078 -0.143 -0234 -0729 -0220 -0237 0176 0.176 0567 -0.135 0010 0385 -0516 -0.794
RA 6792 |6264 7085 6209 6008 5599 6103 6207 7638 5664 4808 5482 (5860 6133 5840 5990 5068 6530 7713 4533 10.018
ener 282 6715 7143 6.657 6243 6074 6517 6469 7840 6409 5434 6024 6218 6388 6.040 6169 5327 6879 7607 4915 10.712

-0490 -0451 -0.059 -0.448 -0236 -0.475 -0.414 -0262 -0203 -0.745 -0627 -0542 -0358 -0255 -0200 -0.179 -0259 -0349 0.106 -0382 -0694
SF Bay 11.88% |11.53% 11.901 10.256 555 9.882 9.717 9.604 10463 9227 (§.068 (9.115 (7.995 9398 8280 9.087 7455 9218 10.884 7.092 11.116

PM25ppy ey 12.564 (12239 112.349 |10.792 10.371 10.236 9.898 10.693 9242 (3.816 [9.392 (8.471 8871 8333 8320 7936 9318 10.291 7.596 11.892
PM25,pr -0.675 -0.700 -0448 -0.536 -0.672 -0.489 -0.519 0294 0231 0015 0748 0277 -0476 0527 -0.053 0767 -0.481 -0.100 0593 -0503 -0.776
Sacramento PM25 11.873 (11546 12262 10686 10844 10106 10394 10743 12412 9986 8627 (9897 8709 9972 B8B8I0O 9967 7891 9333 12.167 7400 13.756
PM25pgyer 12.666 (11985 112372 11.153 11157 10556 10.809 10.798 12228 9.563 9.537 |10.019 9.135 9377 8849 899 8214 9512 11371 7.791 14.226
PM25,pr -0.793 -0439 -0.110 -0.467 -0.313 -0.450 -0.414 -0.055 0.184 0423 -0910 -0.122 -0426 0595 -0.038 0971 -0324 0179 079 -0391 -0470
Fresno PM25 17.170 |16.527 18.180 15070 14997 14.088 14585 16.943 16.711 14.787 13.055 15130 12846 14431 13038 14180 11562 13.130 14.621 9.588 17.730
PM2Sppy ey 16,479 (16.148  (17.103 15128 14254 14.024 14.090 15742 16401 13.126 13.302 14.041 12490 12618 11473 12.102 11.076 11.900 13.031 9.862 17.902
PM25, ey 0691 0379 1077 -0.057 0743 0.064 0494 1200 0309 1661 -0246 1089 0357 1813 1565 2077 0486 1230 1591 0274 0173
LA PM25 15.163 |17.110 15142 15280 13362 13096 12473 12995 12511 11288 10620 |11.602 10948 10583 11177 10627 9969 10622 10.755 8.520 10.987
PM25pper 16.179 (16564 16291 14874 14347 13151 12866 12988 12723 12178 11337 11873 11.031 10757 10838 10274 9917 10576 10602 9140 11983
PM25,pr -1.017 0546 -1.149 0405 -0.985 -0.055 -0.393 0.007 -0213 -0.890 -0.717 -0271 -0.084 -0.174 0339 0352 0052 0046 0.154 -0.620 -0.996
sD PM25 12.710 14092 12.060 13.064 11.128 11359 11151 11.631 11.146 9645 (9.197 (9.885 |9.672 9362 9372 9.112 8938 9160 09451 7.761 9.111
PM2Sppy ey 14.204 |14.539 (13.769 (13.172 12546 11889 11.684 12194 11.562 10.726 |10.197 10489 [9.791 9666 9456 9266 9085 9380 9451 8.385 9.891
PMOS, pr  -1493 -0447 -1710 -0.108 -1418 -0.530 -0.533 -0.564 -0416 -1082 -1000 -0.604 -0.119 -0.304 -0.084 -0.155 -0.147 -0221 0.000 -0624 -0.779

Table 9.2. PM2.5 total mass concentrations metrics for the 2000-2020 period by region.

Region Obs SD Met SD DEmet SD VarShare% Corr Obs Met Mean Obs Mean Met
CA 1.16 0.21 1.16 3.19 0.07 6.50 -0.35
SIv 1.41 0.32 1.38 5.20 0.22 8.45 -0.11
SoCAB 0.91 0.40 1.05 19.63 -0.15 7.63 -0.58
UA 1.51 0.38 1.64 6.16 -0.22 10.83 -0.22
RA 1.17 0.21 1.17 3.08 0.09 6.26 -0.36




SF Bay
Sacramento
Fresno

LA

SD

1.39
1.61
2.10
2.12
1.62

0.44
0.49
0.72
0.53
0.50

1.51
1.62
2.15
2.17
1.83

10.16
9.30
11.76
6.15
9.34

-0.12
0.12
0.11
0.02
-0.29

9.65

10.35
14.68
12.13
10.43

-0.29
-0.14
0.77

-0.27
-0.59

9.3.2 Sulfate

Interannual variability in SO4>~ is only weakly explained by meteorology. VarShare values are
uniformly small (=0.15-0.44%), with the highest shares in Fresno (~0.44%) and SF Bay (~0.35%),
and the lowest in UA (~0.15%) and SD (~0.16%). Consistent with this, Met SD magnitudes are an
order of magnitude smaller than Obs_SD in every region (e.g., CA: Met_SD = 0.008 vs Obs_SD =
0.177; LA: 0.029 vs 0.674). Obs—Met correlations are weakly negative across most regions (= —0.08

to —0.48). De-meteorologized variability (DEmet_SD) is similar to or slightly larger than Obs_SD.

Table 9.3. The predicted original sulfate PMz s, sulfate PM2.5 with meteorological changes removed
(Sulfatepemer), and the changes in sulfate PM:2s associated with the meteorological changes (Sulfatemer) for
different regions from 2000 to 2020 (unit: pg/m°).

Region Indicator 2000 2001 @ 2002 | 2003 2004 | 2005 2006 2007 2008 2009 2010 2011 | 2012 2013 2014 | 2015 2016 | 2017 @ 2018 2019 2020
CA Sulfate 1.128 1.120 1.079 1.055 1.000 0989 0955 0946 0955 0822 0729 0794 0.767 0.770 0.731 0695 0.623 0650 0.664 0.580 0.654
Sulfatepper 1153 1127 1.107 1.065 1016 0992 0972 0968 0987 0840 0743 0810 0.784 0793 0738 0695 0634 0655 0674 0589 0673
Sulfate,zr 0024 -0.008 -0.028 -0.009 -0.016 -0.003 -0.016 -0.022 -0.028 -0.018 -0.014 -0.016 -0.017 -0.023 -0.007 0001 -0.011 -0.006 -0.010 -0.009 -0.019
sV Sulfate 1.345 1.289 1.366 1314 1278 1252 1247 1.160 1192 1023 0905 0994 0906 0924 0884 0876 0765 0792 o082 0714 03810
Sulfatepger 1371 1298 1397 1333 1305 1258 1267 1198 1229 1.047 05911 1.007 0934 0963 0899 0878 0779 0805 0845 0.726 0829
Sulfate,zr 0026 -0.009 -0.032 -0.019 -0.027 -0.006 -0.020 -0.038 -0.038 -0.023 -0.006 -0.013 -0.028 -0.040 -0.015 -0.002 -0.014 -0.013 -0.023 -0.012 -0.019
SoCAB Sulfate 1.851 2.005 1.658 1.725 1.529 1.582 1479 1481 1.401 1.198 1.054 1.115 1.062 1013 09% 0876 0871 0897 089 0.787 0934
Sulfatepmer 1903 2019 1.689 1.737 1.539 1580 1502 1503 1448 1221 1.085 1150 1.087 1.043 0995 0371 0879 08% 089% 0791 0.979
Sulfate,e;  -0.053 -0.014 -0.031 -0013 -0010 0002 -0.024 -0022 -0.048 -0023 -0.031 -0.035 -0025 -0030 -0.005 0005 -0008 0002 0003 -0004 -0.045
UA Sulfate 1985 2097 2.003 1976 1834 1.826 1706 1675 1.599 1.397 1192 1240 1121 1.085 1.061 1.008 0934 0950 0568 0.861 1031
Sulfatepmer 2041 2124 2043 2.001 1.848 1833 1743 1705 1.657 1430 1229 1287 1159 L146 1.075 1.012 0.948 0965 0978 0872 1071
Sulfate;r  -0056 -0028 -0.040 -0025 -0.014 -0007 -0.037 -0.031 -0.058 -0032 -0037 -0.047 -0038 -0051 -0014 -0004 -0.013 -0015 -0.010 -0.011 -0.040
RA Sulfate 1.082 1067 1.029 1006 0955 094 0915 0906 0925 0791 0704 0770 0748 0.752 0.713] 0678 0607 0634 0647 0565 0.634
Sulfatepmer 1104 1073 1.056 1.014 0971 0947 0930 0928 0951 0808 0717 0784 0764 0774 0720 0677 0617 0639 0658 0574 0.652
Sulfate,zr  -0023 -0007 -0.028 -0.008 -0016 -0003 -0.015 -0.022 -0026 -0017 -0012 -0.014 -0016 -0022 -0.006 0001 -0010 -0.005 -0.011 -0.009 -0018
SF Bay Sulfate 1.397 1.386 1.525 1.428 1.396 1.383 1321 1245 1323 1.169 1.002 1.045 0926 0920 0907 089 0.781 0.796 0838 0.736 0816
. Sulfatepm et 1446 1414 1.568 1474 1447 1408 1366 1302 1387 1.211 1.024 1094 09564 0988 0930 0914 0.797 0834 0866 0.760 0.837
Sulfate,zr 0050 -0.028 -0.043 -0.045 -0.052 -0.025 -0.046 -0.056 -0.064 -0.042 -0.023 -0.050 -0.038 -0.068 -0.023 -0.015 -0.017 -0.037 -0.029 -0.023 -0.021
Sacramento  Sulfate 1253 1.249 1.249 1220 1181 1.143 1.088 1.068 1.061 0.561 0862 0918 0817 0816 0793 0.785 0.653 0665 0688 0614 0744
Sulfatepper 1.287 1265 1301 1.248 1221 1178 1114 1107 1102 0994 03877 0948 0.849 0867 03805 079 0672 0689 0722 0.635 0.765
Sulfate,zr 0034 -0.016 -0.051 -0.028 -0.040 -0.035 -0.026 -0.039 -0.041 -0.033 -0.015 -0.030 -0.032 -0.051 -0.012 -0.006 -0.018 -0.024 -0.034 -0.021 -0.021
Fresno Sulfate 1632 1.600 1.734 1654 1573 1.542 1486 1445 1.438 1274 1158 1.280 1.092 1089 1032 1113 0.917 0971 1.007 0.868 1029
Sulfatepger  1.664 1619 1772 1695 1.612) 1554 1528 1508 1473 1300 1167 1295 1146 1161 1.052 1.102 0950 099 1037 0.892 1055
Sulfate,er 0032 -0.020 -0.038 -0.041 -0.038 -0.012 -0.042 -0.063 -0.034 -0.026 -0.009 -0.015 -0.054 -0.072 -0.021 0011 -0.032 -0.025 -0.030 -0.024 -0.026
LA Sulfate 2708 2959 2813 2798 2542 2543 2320 2303 2093 1.821 1.499 1.536 1.384 1329 1297 L179 1.142 1.165 1175 1.051 1.289
Sulfatepper  2.783 2,997  2.854) 2822 2525 2533 2362 2316 2172 1.857 1560 1.604 1434 1.386 1313] 1.186 1.155 1174 1169 1.053 1350
Sulfate,zr  -0075 -0038 -0.041 -0023 0017 0009 -0.042 -0012 -0.079 -0036 -0.062 -0.068 -0.051 -0.057 -0.015 -0.007 -0.013 -0008 0005 -0.003 -0.062
SD Sulfate 2838 3104 2497 2548 2304 2332 2244 2252 2103 1.730 1478 1510/ 1388 1330 1262 1136 1131 112 1141 1032 1346
Sulfatepmer 2.926  3.141  2.526) 2555 2290 2338 2276 2257 2148 1.748 1537 1.567 1414 1353 1272] 1137 1138 1127 1132 1031 1.400
Sulfate,;;  -0.088 -0038 -0029 -0007 0014 -0006 -0.032 -0005 -0045 -0019 -0058 -0.057 -0027 -0023 -0010 -0001 -0.007 -0.006 0010 0002 -0.053
Color coding follows the scheme described in Table 9.1.
Table 9.4. Sulfate component concentrations metrics for the 2000-2020 period by region.
Region Obs SD Met SD DEmet SD VarShare% Corr Obs Met Mean Obs Mean Met
Fresno 0.28 0.02 0.28 0.44 -0.14 1.28 -0.03
SF Bay 0.26 0.02 0.27 0.35 -0.48 1.11 -0.04
Sacramento  0.22 0.01 0.23 0.30 -0.42 0.94 -0.03
SoCAB 0.37 0.02 0.37 0.22 -0.29 1.26 -0.02



UA

0.43

0.02

0.43

0.15

-0.29

1.41

-0.03

9.3.3 Nitrate
For NOs~, meteorology plays a modest but more noticeable role than for SO+*, with VarShare

generally between ~0.5% and ~2.3%. The largest meteorological shares occur in Fresno (~2.34%),

Sacramento (~2.01%), and SJV (~1.58%). Obs—Met correlations are consistently positive and

moderate (~0.37—-0.61 across regions). Despite this, Met SD remains substantially smaller than
Obs_SD (e.g., Fresno: 0.12 vs 0.77 pg/m?; LA: 0.09 vs 1.17 ug/m?®), and DEmet_SD stays close to
or below Obs_SD. Mean NOs™ levels are highest in Fresno and UA, moderate in LA/SJV/SD, and
lowest statewide and in RA; mean meteorological terms (Mean_Met) are slightly negative relative

to the chosen reference climate.

Table 9.5. The predicted original nitrate PM: s, nitrate PM2 5 with meteorological changes removed
(Nitratepemer), and the changes in nitrate PMz.s associated with the meteorological changes (Nitratemer) for
different regions from 2000 to 2020 (unit: pg/m°).

Region Indicator 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
CA Nitrate 1303 1201 1309 1.098 1.075 (1016 0970 1006 0937 0819 0734 0818 0734 0793 0.701 0744 0632 0698 0766 0569 0787
Nitratepgyer 1.309 1.218 1.307 1.108 1.092 1.007 098 1032 0.968 0835 0736 0819 0765 0821 0.735 0771 0.660 0733 0.798 0598 0.900
Nrrateapr <0006 -0.018 0002 -0.009 -0.017 0009 -0016 -0.026 -0.031 -0.016 -0.002 -0.001 -0.031 -0.028 -0.034 -0.026 -0.028 -0.035 -0.032 -0.029 -0.113
sV Nitrate 2218 1.881 2418 1.509 2.020 1.860 1.873 1882 1.720 1568 1350 1591 1322 1.579 1.296 1500 1181 1332 1.487 1016 1354
Nitratepper 2-186  1.904 2406 (1519 2.044 |1.854 1.873 1903 1748 1576 1.347 1572 |1.367 1606 (1.352 1518 1219 1377 13529 1.07% 1543
Nitrate,zr 0032 -0023 0012 -0010 -0025 0005 -0001 -0021 -0028 -0008 0003 0019 -0045 -0027 -0056 -0018 -0038 -0045 -0042 -0063 -0189
SoCAB Nitrate 2.608 2.863 23% 2301 1.911 1.961 1.765 1.855 1.592 1.385 1.367 1.406 1.303 1.207 1.201 1.104 1072 1.134 1.189 0953 1.265
Nitratepper 2631 2839 2345 2298 1926 (1902 1799 1903 1684 1423 1362 1424 (1359 (1275 1258 (1164 (1122 1190 1225 0974 1452
Nitrate,z+  -0.022 0.024 0.050 0.003 -0.015 0060 -0.033 -0.047 -0.091 -0.038 0005 -0.018 -0.055 -0.068 -0.057 -0.061 -0.050 -0.055 -0.036 -0.021 -0.186
UA Nitrate 3531 |3.737 (3558 (3152 (2.834 2779 2543 2656 2297 2103 1937 2114 (1.783 1.876 1703 1777 |1.504 1660 1.784 1351 1756
Nitrateppygr 3-527 3.700 3.4%6 3131 2848 2712 2563 2690 237 2125 1923 2119 1.835 1.940 1.756 1830 1552 1.701 1.793 1381 1982
Nirate,zr  0.004  0.037 0.062 0021 -0014 0.067 -0.020 -0.034 -0.074 -0.022 0014 -0.006 -0.053 -0.065 -0.053 -0.052 -0.048 -0.042 -0.009 -0.030 -0.227
RA Nitrate 1183 1063 1188 (0587 0980 (0520 0885 0916 0863 0749 0665 0748 0677 0734 0646 0688 0585 0646 0711 0526 0735
Nitratepgyer 1.189 1.084 1188 |(0.998 0997 0915 0900 0942 0892 0.765 0672 0.748 0707 0760 |0.679 0.713 0612 0681 0.744 0555 0.842
Nmrate,zr  -0.007 -0021 -0.001 -0.011 -0.017 0.006 -0.016 -0.026 -0.029 -0.016 -0.003 -0.001 -0.030 -0.026 -0.033 -0.025 -0.027 -0.035 -0.033 -0.029 -0.107
SF Bay Nitrate 2532 2400 2771 2261 (2.303 2.187 1.992 1946 1.927 1.767 1.506 1.708 1.346 1.741 1371 1600 1189 1424 1643 1149 1447
Nitratepmeer 2.545 2406 2745 2263 (2342 (2191 2.005 1970 1.949 1762 1497 1719 (1374 1766 |1.39%6 (1.607 1221 1468 1622 1199 1.601
Nirateyzr  -0.013 -0.005 0.026 -0.002 -0.040 -0.004 -0.013 -0.024 -0.022 0.005 0009 -0010 -0.028 -0.025 -0.024 -0.007 -0.032 -0.043 0.022 -0.050 -0.154
Sacramento  Nitrate 2.138 1.947 2.406 1.953 1.974 1.813 1.756 1.795 1.619 1522 1.361 1.622 1.226 1438 1208 1446 1.078 1.202 1.396 1.031 1.264
Nitratepper 2097 1973 2407 1544 2006 1.821 1767 1871 1.678 1.565 1342 1.653 1.299 1616 1273 1500 |1.128 1.298 1453 1100 1460
Niwate,zr  0.041  -0.026 -0.002 0.009 -0.033 -0.007 -0011 -0.075 -0.059 -0.043 0019 -0.031 -0.073 -0.128 -0.064 -0.055 -0.050 -0.095 -0.056 -0.069 -0.196
Fresno Nitrate 4682 4349 5283 (3.990 4.050 3987 3.904 4590 3.655 3573 3159 3910 2967 3616 (3212 3369 2565 3.079 3.157 19% 2718
Nitratepmer 4569  4.356 5219 4001 4089 (3927 38% 4584 3682 31564 3135 3877 3044 3630 3173 3383 2659 3121 3178 2162 3194
Nmrateyer  0.112 -0.007 0064 -0011 -0039 0.060 0009 0006 -0027 0.009 0024 0033 -0.077 -0014 0039 -0014 -0.094 -0042 -0.022 -0.166 -0.476
LA Nitrate 4897 5586 4841 4499 3.745 3748 3320 3473 2847 2572 2463 2580 2244 2061 2.054 1.991 1.792 1827 2045 1625 2.101
Nitratepg,gr 4.892 5473 4729 4453 3741 3.606 3.353 3519 299 2617 2445 2590 2312 2170 2139 2084 1.851 1966 2.046 1614 2.386
Nitrate,zr  0.005 0.112 0.112 0.046 0004 0142 -0.034 -0.046 -0.143 -0.045 0018 -0.010 -0.079 -0.109 -0.085 -0.093 -0.059 -0.039 -0.001 0011 -0.286
sD Nitrate 3972 4327 3426 |3471 (2.875 (2865 2746 2889 2511 2131 2062 2096 2003 (1855 (1749 1.720 1635 1744 1838 1507 1955
Nitratepper 4028 4324 3366 (3423 2873 (2810 2820 2936 2580 2147 2054 2123 (2013 1892 |1.814 1.799 1.708 1.76% 1853 1526 2167
Nitate,zr  -0.055 0004 0060 0048 0002 0055 -0073 -0.047 -0069 -0016 0008 -0028 -0.010 -0.037 -0.065 -0079 -0073 -0.025 -0.014 -0.019 -0212
Color coding follows the scheme described in Table 9.1.
Table 9.6. Nitrate component concentrations metrics for the 2000-2020 period by region.
Region Obs SD Met SD DEmet SD VarShare% Corr Obs Met Mean Obs Mean Met
CA 0.21 0.02 0.21 1.30 0.40 0.89 -0.02
Fresno 0.77 0.12 0.71 2.34 0.60 3.61 -0.03
LA 1.17 0.09 1.12 0.65 0.61 2.97 -0.03
RA 0.19 0.02 0.18 1.46 0.37 0.81 -0.02
SD 0.81 0.06 0.79 0.53 0.37 2.45 -0.03
SF Bay 0.45 0.04 0.44 0.64 0.40 1.82 -0.02
NIAY 0.35 0.04 0.33 1.58 0.53 1.64 -0.03
Sacramento 0.37 0.05 0.34 2.01 0.57 1.58 -0.05



SoCAB
UA

0.55
0.72

0.05
0.06

0.52
0.69

0.88
0.70

0.54
0.58

1.61
231

-0.03
-0.03

9.3.4 Organic carbon

For OC, meteorology explains a small but non-negligible fraction of interannual variability.
VarShare ranges from ~0.21% (RA) to about 2.16% (SD) and 1.94% (SF Bay), with most regions
below ~1.5%. Obs—Met correlations are positive (generally 0.25-0.55; statewide ~ 0.52), consistent

with OC’s sensitivity to temperature/oxidant regimes and stagnation that promote secondary

organic aerosol formation. Even so, Met_SD remains much smaller than Obs_SD (e.g., CA: 0.023
vs 0.484 pg/m3; LA: 0.070 vs 0.769), and DEmet_SD is slightly below Obs SD in most regions.
Mean OC is highest in Fresno and LA/UA, intermediate in SJV/Sacramento/SD/SF Bay, and lower
statewide and in RA; Mean_Met is near zero to slightly negative.

Table 9.7. The predicted original OC PMa2.5, OC PM..s with meteorological changes removed (OCpemer), and
the changes in OC PM: s associated with the meteorological changes (OCwmer) for different regions from 2000 to
2020 (unit: pg/m?).

Region Indicator 2000 2001 (2002 2003 2004 2005 2006 2007 2008 2009 2010 (2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
CA oc 1817 1655 2481 2.061 1886 1.704 1950 1902 2603 1651 1312 1.544 1682 1767 1652 1.819 1407 2203 278 1272 3146
OCpmgr 1877 1702 2481 2109 1921 1.738 1984 1907 2606 1664 1356 1573 1692 1.755 1658 1.832 1432 2207 2748 1286 3.143
OCyuer -0.060 -0047 0001 -0047 -0.036 -0033 -0.034 -0005 -0.002 -0.013 -0044 -0029 -0010 0012 -D005 -0013 -0.025 -0.005 0037 -0.014 0002
SIV oc 2556 2321 (3404 2786 2707 2386 2748 2629 3233 2303 1824 2211 2046 2444 (2149 2391 1983 2797 3488 1.768 4200
OCoener 2612 2346 (3420 2834 2746 (2436 2781 2614 3225 2308 1886 2244 2 056 2378 2122 2394 2001 2755 3348 1757 4.156
OCyer -0.056 -0025 -0.016 -0.048 -0.039 -0.050 -0.034 0.015 0008 -0.005 -0.062 -0033 -0.009 0066 0026 -0.003 -0.019 0.042 0140 0010 0.044
SoCAB oc 2035 2122 2536 2676 2236 2209 23%1 2570 23% 2035 1.768 1.946 1920 1.806 1.783 1.613 1624 1.909 1894 1367 2287
OCpmrzr 2 099 2.199 2.576 2.722 2.278 12.257 2412 2.557 2375 2.039 1.810 1.966 1.929 1.806 1.800 1.638 1.657 1.911 1914 1.413 2326
OCyer -0.063 -0.077 -0.040 -0.046 -0.042 -0.048 -0022 0.013 0.021 -0004 -0042 -0.020 -0.009 0.000 -0.017 -0.025 -0.033 -0.002 -0.020 -0.047 -0.039
vA oc 3346 3407 4241 3905 3674 3478 3634 3760 3847 3302 2829 3158 2900 3042 2768 (2807 2437 2906 3194 2186 3421
OCpmgr 3370 3462 4270 3.973 3.731 3.560 3647 3.708 3785 3283 2907 3.152 2892 2965 2771 12839 (2501 2903 3132 2241 3472
OCyzr -0.025 -0055 -0.029 -0.068 -0.057 -0.082 -0.013 0052 0062 0020 -0.077 0006 0008 0076 -0.004 -0032 -0.064 0003 0063 -0055 -0051
RA oc 1734 1.560 2386 1.961 1.789 1608 1859 1.801 2536 1561 1230 (1457 1616 1698 1392 1.765 (1351 2165 2763 1223 3131
OCpmr 1796 1607 2384 2008 1823 1639 1894 1809 2542 1576 1272 1487 1627 1690 1597 1.777 1374 2170 2727 1234 3126
OCyzr -0062 -0047 0002 -0046 -0035 -0031 -0035 -0008 -0.006 -0015 -0042 -0031 -0011 0008 -0.006 -0012 -0023 -0005 0036 -0011 0005
SF Bay oc 3081 2961 (3618 (3053 3030 2758 2792 2769 3038 2583 2165 2515 (2138 2673 (2208 2427 1953 2749 3073 1953 3500
OCpmzr 3095  3.002 3605 3098 3057 (2812 2814 2735 2979 2572 2245 2490 (2162 2339 2200 2440 1997 2671 2880 1972 3480
OCyer -0.014 -0041 0013 -0.045 -0.028 -0.054 -0.022 0.033 0.059 0012 -0.079 0025 -0.023 0.134 0008 -0.013 -0.044 0079 0.193 -0020 0.020
Sacramento  OC 31621 3.536 4814 3955 3862 3475 3652 3735 4375 3440 2803 3385 2926 3579 3051 3in 2615 31384 4465 2589 4342
OCoener 3602 3.523 (4812 4092 3950 3594 3731 3711 4372 3453 2945 3407 2954 3447 3025 3404 2693 3401 4220 2615 4382
OCyer 0.019 0013 0003 -0.136 -0.087 -0.119 -0078 0024 0004 -0013 -0.142 -0022 -0.028 0.133 0.026 -0.033 -0.077 -0.017 0245 -0.026 -0.039
Fresno oc 4966 4943 5594 4602 4297 3881 4268 4606 4741 39% 3395 3912 3385 3871 3296 (3704 3154 3834 4413 2685 5554
OCpmer  4.905 4.802 9 4.646 4.366  4.036 4.295 4516 4778 4.012 3.540  3.960 3421 3.738 3.328 3.743 3.168 3764 419 2699 5.610
OCyer 0.061 0140 0065 -0044 -0.069 -0.155 -0.027 009 -0.037 -0017 -0.145 -0049 -0035 0133 -0.032 -0039 -0015 0070 0217 -0.014 -0.036
LA oc 3650 3927 4842 4846 4516 4420 4632 4862 4553 409 3572 3837 3604 3371 3284 3014 2754 2967 2953 233% 3132
OCpmer 3.695  4.033 4920 4919 43570 4511 4600 4.759 4423 4044 3640 3818 3565 3311 3299 3065 2848 3004 3000 2438 3230
OCygr -0.045 -0.106 -0.077 -0.073 -0.054 -0091 0032 0102 0129 0050 -D0O68 0018 0039 0060 -0015 -0051 -0.094 -0036 -0047 -0.101 -0097
SD oc 3056 3205 13335 (3.573 3092 3131 3218 3336 3276 2963 2726 2923 (2804 (2692 2582 249 2306 2453 488 2.067 2441
OCpmzr 3066 3301 3420 3619  3.197 225 3258 3.368 3203 2920 2761 2882 2769 2659 (2585 2534 2385 2505 555 7 2580
OCyer -0011 -0095 -0.085 -0046 -0.105 -0095 -0.040 0018 0073 0043 -0035 0041 0035 0033 -0003 -0038 -0.080 -0.052 -0066 -0.105 -0.139
Color coding follows the scheme described in Table 9.1.
Table 9.8. OC component concentrations metrics for the 2000-2020 period by region.
Region Obs SD Met SD DEmet SD VarShare% Corr Obs Met Mean Obs Mean Met
CA 0.48 0.02 0.47 0.23 0.52 1.92 -0.02
Fresno 0.77 0.09 0.74 1.44 0.31 4.15 0.00
LA 0.77 0.07 0.75 0.83 0.36 3.77 -0.03
RA 0.50 0.02 0.48 0.21 0.55 1.85 -0.02
SD 0.41 0.06 0.39 2.16 0.25 2.87 -0.04
SF Bay 0.46 0.06 0.45 1.94 0.28 2.72 0.01
SJV 0.60 0.05 0.58 0.64 0.43 2.59 0.00
Sacramento 0.60 0.09 0.57 2.12 0.34 3.57 -0.02



SoCAB 0.34 0.02 0.34 0.51 0.06 2.05 -0.03
UA 0.51 0.05 0.50 0.93 0.12 3.25 -0.02

9.3.5 Elemental carbon

Similar to OC, interannual EC variability is also weakly influenced by meteorology. VarShare is
uniformly small—typically < ~2.25%, with the upper end in Fresno (~2.25%) and Sacramento
(~2.06%), and <1% elsewhere (e.g., CA = 0.10%, SJV = 0.25%). Consistent with this, Met_SD is
much smaller than Obs SD across regions (e.g., LA: 0.021 vs 0.231 pg/m?; SF Bay: 0.013 vs
0.174), and DEmet_SD is essentially similar to or slightly below Obs_SD. Obs—Met correlations
are near zero to modestly positive (statewide =~ 0.02; many regions 0.19-0.61). Mean EC levels are
highest in LA, UA, and Fresno, moderate in SD/SF Bay/Sacramento/SJV, and lower statewide and
in RA; Mean_Met hovers near zero.

Table 9.9. The predicted original EC PM..s, EC PM:.s with meteorological changes removed (ECpemer), and the
changes in EC PM: s associated with the meteorological changes (ECwmer) for different regions from 2000 to 2020
(unit: pg/m?).

Region Indicator 2000 2001 2002 | 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 § 2013 2014 2015 2016 2017 2018 2019 2020
CA EC 0423 0370 0415 (0374 0352 0348 0371 0353 0402 0281 0233 0264 0262 (0276 0250 0266 0219 0315 0409 0223 0678
ECpaazr 0431 0379 0416 (0379 0358 0348 0372 0355 0401 0282 0238 0264 0266 0274 0255 0273 0224 0318 0407 0226 0.682
ECyzr -0.008 -0.010 -0.001 -0.004 -0.007 0000 -0.001 -0.001 0.001 -0.001 -0.005 0001 -0.004 0002 -0.005 -0.007 -0.005 -0.004 0002 -0.003 -0.004
STV EC 0607 0522 0560 (0498 0500 0484 0524 0451 0530 0407 0335 039 0344 0413 0346 0375 0318 0424 0528 0327 03888
ECperer 0616 0531 0.564 10.505 0.509 (0483 0.520 0488 0528 0405 0341 038 0349 0398 0350 0382 0323 0419 0519 0325 0889
ECher -0.009 -0.009 -0.003 -0.006 -0.008 0001 0003 0003 0002 0.001 -0.006 0007 -0.005 0015 -0.004 -0.007 -0.005 0004 0009 0.002 -0.001
SeCAB EC 0628 0629 0624 [0.657 0564 0596 0.629 0641 0574 0498 0438 0464 0435 (0406 0393 0360 0351 0403 0415 0333 054
ECparer 0632 0640 0628 [0.657 0579 0.595 0.624 0637 0566 0493 0444 0462 0437 0405 0399 0364 0360 0404 0417 0340 0561
ECher -0.004 -0.011 -0.003 0.000 -0.014 0000 0.006 0004 0008 0006 -0.006 0002 -0.003 0.001 -0.005 -0.004 -0.009 -0.002 -0.002 -0.007 -0.017
UA EC 1047 1037 0996 0973 0915 0540 0982 0982 0949 0849 0733 0796 0698 0730 0654 0655 0576 0658 0719 0609 0985
ECpangr 1041 1045 099 (0972 0933 0934 0961 0966 09525 0832 0742 0778 0699 0705 0.660 0659 0593 0.654 0709 0.611 0998
ECyer 0.006 -0.008 0000 0001 -0.018 0007 0.021 0016 0024 0017 -0.009 0018 -0001 0025 -0.006 -0.004 -0.017 0004 0010 -0.002 -0.013
RA EC 038% 0333 0383 (0342 0321 [0316 0338 0319 0372 0251 0206 0235 0238 0251 0228 0245 0.9 02% 0392 0202 0.661

ECpaxgr 0398 0343 0384 0347 0327 0316 0340 0321 0372 0253 0210 0236 0243 0251 0233 0252 0204 0300 0391 0205 0.665
ECyer -0.009 -0010 -0.001 -0.005 -0.006 0000 -0002 -0.002 0000 -0002 -0.004 0000 -0004 0001 -0.005 -0.007 -0.005 -0004 0001 -0003 -0.003

SF Bay EC 1.025 0966 0.845 0.765 0.788 0779 0.774 0.714 0.725 0.641 0539  0.617 0490 0.626 0485 0.531 0427 0.547 0615 0511 0.998
ECpmer 1013 0964 0831 0762 0782 0756 0750 0705 0702 0630 0544 0593 0500 (0.591 0495 0537 0441 0536 03593 0507 09%
ECyer 0012 0002 0014 0003 0006 0023 0024 0012 0022 0011 -0005 0024 -0010 0035 -0.010 -0.007 -0.015 0011 0022 0004 0007
Sacramento  EC 0954 0931 0897 0815 0818 0818 0837 0829 0853 0.763 0.639 0.755 0.631 0.78% 0647 0689 0566 0.675 0876 0800 1361
ECpmzr 0971 0954 0891 0835 0835 0811 0828 0813 080 0754 0660 0730 0638 0729 0645 0694 0580 0672 0825 0758 1335
ECier -0.017 -0023 0006 -0.020 -0018 0007 0010 0017 0003 0009 -0.021 0025 -0.007 0060 0001 -0.005 -0.014 0003 0051 0041 0026
Fresno EC 1.097 1.061 1.006 0943 0899 0922 1019 1028 0959 0862 0.731 0.846 0718 0845 0684 0723 0.631 0.763 0821 0640 1163
ECpmer 1117 1068 1020 0951 0936 0929 0988 0998 0971 0863 0762 0834 0723 0794 0704 0754 0652 0744 0820 0.643 1200
ECizr -0.020 -0.007 -0.014 -0.008 -0.037 -0007 0031 0030 -0.011 -0001 -0031 0012 -0005 0051 -0020 -0.031 -0.021 0019 0001 -0.003 -0.036
LA EC 1.264 1301 1319 1343 1.210 1275 1359 |13%0 1301 1.167 1.013 1.073 0962 0504 0873 0818 0734 0793 0817 0713 0987
ECpmer 1252 1317 1323 1330 1242 1268 1321 1365 1252 1137 1020 1051 0954 0884 0876 0817 0758 0791 0816 0723 1017
ECher 0.011 (-0016 -0.004 0013 -0.033 0008 0.037 0.025 0049 0.029 -0.007 0022 0.008 0020 -0.003 0001 -0.024 0002 0000 -0.008 -0.030
SD EC 1.041 1059 0955 1.008 0901 0951 096 1014 095712 0.891 03806 0811 0.731 0691 0648 0638 0359 0651 0678 0.608 0.746
ECpmer 1010 1040 0959 (1.006 0925 0950 0978 1000 0937 085 0804 0795 0732 0686 0660 0.646 0617 0655 0684 0.627 0.787
ECuer 0.031 0018 -0.004 0002 -0.024 0002 0018 0.014 0.036 0.035 0002 0016 -0001 0005 -0.011 -0.009 -0.022 -0.005 -0.006 -0.01% -0.041

Color coding follows the scheme described in Table 9.1.

Table 9.10. EC component concentrations metrics for the 2000-2020 period by region.

Region Obs SD Met SD DEmet SD VarShare%

Corr_Obs_Met

Mean_|

Obs Mean Met

CA 0.10
Fresno 0.15
LA 0.23
RA 0.10
SD 0.16
SF Bay 0.17
SIvV 0.13
Sacramento 0.16
SoCAB 0.11

0.00
0.02
0.02
0.00
0.02
0.01
0.01
0.02
0.01

0.10
0.16
0.22
0.10
0.15
0.17
0.13
0.16
0.11

0.10
2.25
0.85
0.08
1.52
0.58
0.25
2.06
0.34

0.02
0.05
0.41
0.04
0.61
0.37
-0.03
0.24
0.19

0.34
0.87
1.08
0.31
0.83
0.69
0.47
0.81
0.50

0.00
-0.01
0.00
0.00
0.00
0.01
0.00
0.01
0.00



UA 0.16 0.01 0.16 0.70 0.20 0.83 0.00

9.3.6 Mineral dust

Among the species, DUST shows the strongest meteorological imprint. VarShare is substantially
higher than for SO4*>/OC/EC—reaching ~40% in Fresno, ~33% in LA, ~31% in UA, and ~29% in
Sacramento/SD; even statewide (CA) and in RA the shares are ~7-8%. This aligns with dust’s
sensitivity to wind, precipitation, and soil moisture regimes. Obs—Met correlations are generally
positive and moderate-to-strong (e.g., Fresno = 0.90; SJV = 0.68; SOCAB = 0.66), and Met_SD can
approach or exceed half of Obs_SD in high- DUST regions (e.g., Fresno 0.113 vs 0.180 pg/m?).
Notably, DEmet SD is often lower than Obs SD. Mean DUST levels are highest in
Fresno/LA/SoCAB, moderate in UA/SJV, and lower in SF Bay—a spatial pattern consistent with
local resuspension, aridity, and basin meteorology.

Table 9.11. The predicted original DUST PM:2.5, DUST PM..s with meteorological changes removed (DUST
peMET), and the changes in DUST PM:.s associated with the meteorological changes (DUST mkr) for different
regions from 2000 to 2020 (unit: pg/m?).

Region OIndicator 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
cA DUST 1018 1106 1362 1142 |1.089 0986 1119 1180 1324 1084 0913 1008 1156 (1203 1143 1050 0967 1110 1177 0913 1127
DUSTpmer 1093 1147 1389 1194 1144 1069 1136 1182 1299 1099 0977 1068 1145 1180 1125 (1081 1002 1118 1189 0953 1120
DUST.zr  -0075 -0.041 -0028 -0.052 -0.055 -0.083 -0017 -0002 0025 -0015 -0064 -0060 0011 0023 0018 -0031 -0.035 -0.008 -0.012 -0.040 0.006
sV DUST 0752 0839 1071 095 0957 0883 0970 0983 1067 0910 0752 0810 0908 1010 0971 0899 0816 0901 0987 088 1118
DUSTpmpr 0843 0899 1120 1008 1007 0950 1010 0988 1041 094 083 098 0904 0954 092 0923 0851 0902 095 0842 1046
DUST.zr | -0.091 -0.040 -0.049 -0052 -0.050 -0.067 -0040 -0004 0027 -0024 -0081 -0098 0005 0036 0038 -0024 -0.036 -0.002 0028 0016 0072
SoCAB DUST 0988 1066 (1202 1167 1056 1016 1117 1223 1235 105 0921 1015 1117 1117 1131 0991 1012 1115 1130 0912 1047
DUSTpmer 1064 1159 1254 1243 (1126 1131 1139 1207 1208 1071 1021 1081 1122 (1102 1130 1030 1057 1119 1176 1002 1086
DUST.zr  -0076 -0.093 -0.052 -0.076 -0.070 -0.115 -0023 0016 0028 -0.015 -0.101 -0066 -0006 0015 0000 -0.039 -0.045 -0.004 -0.046 -0.089 -0.039
Ua DUST 0919 0990 1076 1019 0966 0909 0984 1008 1029 0939 0801 0858 0911 0967 0936 0.89 0850 0923 0946 0847 1077
DUSTpmer 1000 1085 1135 1080 (1033 0997 1004 1006 1006 0955 089 090 0916 091 098 0921 0891 0921 0954 08% 1071
DUST.er  (-0.081 -0.096 -0.059 -0.061 -0.067 -0.08% -0.020 0.002 0022 -0016 -0.098 -0.072 -0.004 0.035 0018 -0.025 -0.041 0.002 -0.008 -0.043 0.006
RA DUST 1023 1112 1377 1149 (109 0990 1126 1189 1340 1092 0919 1016 1169 1215 1154 1058 0973 1120 119 0917 1130
DUSTpmer 1098 1150 1403 1201 1150 1073 1143 1192 1315 1106 0981 1075 1157 1193 1136 1089 1008 1129 1202 0957 1123
DUST\er  -0.075 -0.038 -0.026 -0.052 -0.055 -
SF Bay DUST 0623 0703 0766 0695 0669
DUSTpmer 0662 0720 0776 0704 (0676
DUSTyer  -0.039 -0.017 -0.010 -0.009 -0.007 -

-0.017 -0.002 0025 -0015 -0062 -0059 0012 0022 0018 -0.031 -0.035 -0.009 -0.012 -0.040 0.006
0604 0588 0637 0565 0503 0534 0535 0620 0575 |0553 0494 0581 0593 0555 0703
0617 0597 0618 0576 0539 0569 0540 0579 (0550 (0.565 0518 0560 0579 0535 0679

-0.013 -0009 0019 -0011 -0.036 -0.035 -0.005 0041 0026 -0.013 -0.024 0021 0014 0021 0024
Sacramento DUST 0660 0809 0858 0760 0778 0747 0739 0798 0712 0619 0641 0708 0784 0732 0706 0626 0695 0777 0721 1.034

DUSTpper 0.770 0858 0886 0.820 0.80%9 . 0.774 0755 0773 0739 06% 0719 0700 0720 0.703 0724 0666 0704 0739 0688 0950
DUSTyer [-0.110 -0.050 -0.028 -0.060 -0.031 -0.051 -0.027 -0.016 0.025 -0.026 -0072 -0.077 0008 0064 0028 -0.018 -0.040 -0.008 0.038 0033 0083
Fresno DUST 0.504 1117 1.253 1.189 1.165 1116 1263 1309 1436 1268 1070 1073 1274 1.445 1359 11273 1.151 1267 1466 1358 1.760
DUSTpeer 1054 1174 (1348 1278 [1272 1225 1316 1332 1405 1315 1239 1292 1279 1301 1258 1306 1215 1261 1328 1237 1539
DUSTyer [-0.150 -0.058 -0.095 -0.089 -0.107 -0.108 -0.053 -0.022 0031 -0.047 -0.169 -0218 -0005 0.145 0101 -0.033 -0.064 0006 0.138 0.121 0221
LA DUST 1.068 1092 1.148 1.142 1070 1029 1120 1149 1132 1049 0872 0945 0983 0999 1001 0953 0920 0987 0960 0855 1.161
DUSTpmer 1158 1262 1240 1212 (1153 1136 1132 LI135 1102 1058 0992 1011 0991 0977 0997 0977 0963 098 1005 0960 1203
DUST.er  -0.089 -0.171 -0.092 -0.070 -0.083 -0.106 -0.013 0.014 0030 -0.009 -0.120 -0.066 -0.008 0022 0.003 -0.024 -0.043 0001 -0.045 -0.105 -0.042
sD DUST 0873 0880 0892 092 0787 0804 0840 0858 0845 0787 069 0740 0738 0752 0768 (0760 0746 0781 0765 0695 0772
DUSTpmer 0923 0988 0968 05955 (0836 0879 0864 0864 0849 0805 0776 078% 0777 0774 0780 0.779 0779 0795 0811 0784 0861
DUST.er  -0.050 -0.109 -0.076 -0.053 -0.098 -0.075 -0.024 -0.006 -0.004 -0.018 -0086 -0.050 -0.039 -0.022 -0.012 -0.020 -0.033 -0.014 -0.045 -0.089 -0.089

Color coding follows the scheme described in Table 9.1.

Table 9.12. EC component concentrations metrics for the 2000-2020 period by region.

Region Obs SD Met SD Adj SD VarShare% Corr Obs Met Mean Obs Mean Met

CA 0.12 0.03 0.10 7.79 0.64 1.10 -0.03
Fresno 0.18 0.11 0.09 39.93 0.90 1.26 -0.02
LA 0.09 0.05 0.10 32.82 0.14 1.03 -0.05
RA 0.12 0.03 0.10 7.25 0.65 1.11 -0.03
SD 0.06 0.03 0.07 28.24 0.04 0.79 -0.05
SF Bay 0.07 0.02 0.07 10.91 0.21 0.60 0.00
NAY 0.10 0.05 0.08 23.14 0.68 0.93 -0.02
Sacramento  0.09 0.05 0.07 28.79 0.62 0.74 -0.02
SoCAB 0.09 0.04 0.07 21.10 0.66 1.08 -0.04



UA 0.07 0.04 0.07 31.43 0.33 0.95 -0.03

9.3.7 Summary and discussion

The meteorological decomposition alone results show clear regional contrasts in the influence of
meteorology on pollutant variability (Table 9.1-9.12). Across regions, meteorological influence is
highly uneven. Fresno exhibits the strongest weather imprint overall, driven by a very large
VarShare for dust, indicating that winds, aridity, and resuspension account for a substantial share
of its year-to-year swings; NOs~ shows a smaller but noticeable meteorological share consistent
with cool-season partitioning sensitivity. SOCAB presents the highest VarShare in total PM, s, with
LA likewise showing elevated DUST VarShare; in both basins, SO+*>", OC, and EC have small
meteorological shares, and NOs~ is modest, implying that most interannual variation in those
species is not primarily weather-driven. In the SJV as a whole and Sacramento, total PM, s has a
moderate meteorological imprint, DUST is again prominent, and NOs~ is modestly weather-
sensitive; SF Bay and San Diego show nontrivial meteorological contributions to total PM» s and
elevated DUST VarShare, while other species remain small to modest. Comparing spatial strata,
urban areas display larger DUST VarShare than rural areas, whereas statewide and rural VarShare
for total PM s are small, suggesting that most statewide interannual variability, once meteorology
is removed, arises from non-meteorological factors. Observed—meteorology correlations reinforce
these patterns: they are typically positive for NOs~, OC, and dust, indicating that years with
meteorology conducive to secondary formation or resuspension tend to coincide with higher
observations.

Although the meteorology-only decomposition indicates that weather exerts its strongest influence
in Fresno and SoCAB, across pollutants meteorology explains only a small share of interannual
variability in PM» s total, SO+*~, NOs~, OC, and EC—generally on the order of ~2-10%, depending
on species and region. These modest variance shares reflect that meteorological contributions often
alternate in sign across years, with positive anomalies in some years offset by negative anomalies
in others, yielding near-zero mean effects. In sharp contrast, DUST exhibits substantial
meteorological dependence, with variance shares frequently exceeding ~30%, and especially high
in Fresno and LA Metro. This pattern underscores that long-term changes in most PM;;s
components are governed primarily by emissions and atmospheric chemistry, whereas meteorology
remains a major modulator of interannual DUST variability. Because wildfire influences remain in
the deweathered series at this stage, we treat these results as an intermediate diagnostic: they isolate
the meteorological contribution and prepare the ground for subsequent smoke separation, after
which the non-fire residual can be used to interrogate longer-term, non-meteorological drivers.
These findings have important implications for trend attribution: the small meteorological variance
shares (except for DUST) confirm that observed declines in SO+*~, NOs~, OC, and EC primarily
reflect emission-control effectiveness rather than favorable weather patterns, lending confidence to
policy impact assessments presented in Section 9.6.



9.4 Spatial patterns of fire-attributed PM, s and its components

Figure 9.4 maps multiyear mean fire-attributed PM, s and its components at 1-km resolution after
meteorology and wildfire decomposition. The total smoke panel (upper left) shows two distinct
hotspots: North Coast—Klamath hotspot and Central Sierra Nevada hotspot. These areas coincide
with frequent large wildfires and prevailing downwind transport pathways, resulting in annual
mean fire contributions exceeding 2.0 pg/m? in some locations. A secondary elevated belt is evident
along the northern Sierra/Feather River—southern Cascades shoulder (Plumas—Butte), adjacent to
the North Coast—Klamath hotspot but at comparatively lower levels (commonly between 1-5
ug/m?). In contrast, coastal southern California and much of the immediate urban coast appear
relatively less affected in the multiyear mean (typically lower than 1 pg/m?3).

Across components, OC most closely mirrors the total smoke pattern, with pronounced
enhancements over those hotspots with fire-attributed concentrations larger than 1 pg/m?. EC is
generally weak but elevated spatially in the smoke signal, particularly in the northwestern wildfire
hotspot. SO+*, NOs~, and DUST remain low statewide in the fire-attributed means, with only faint,
localized features. This compositional picture indicates that the multiyear average wildfire

contribution is OC-dominated, with minor inorganic and DUST components.

Taken together, these spatial patterns highlight the concentration of wildfire smoke influence in
forested northern and interior mountain regions, with downwind enhancement onto adjacent
valleys, while coastal and southern urban corridors exhibit comparatively lower multiyear smoke
means. This contrast is consistent with the geography of large-fire occurrence and transport
pathways over the study period.
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Figure 9.3. Spatial distribution of multiyear mean fire-attributed PM..s and its major components (2006-2020)
across California, derived from meteorology- and wildfire-decomposed daily 1-km estimates.

9.5 Spatial and temporal patterns of nonfire PM: s and its components

This section examines the spatiotemporal patterns of PM,s total mass and its five major
components after meteorological and wildfire decomposition during 2005-2020. Figure 9.5
illustrates the spatial distribution of non-fire concentrations, revealing persistent hotspots for both
total PM, s and individual species. Throughout the study period, the SJV and Southern California
urban regions — dominated by NOs~ and OC — remain the primary centers of non-fire PM s, while
coastal, northern, and mountainous areas are comparatively clean. Figure 9.6 shows their long-term
interannual evolution, characterized by substantial declines since 2005, particularly during the
2000s, though notable differences across components and regions persist. Detailed component-
specific spatial contrasts and temporal trends are presented in the following subsections.
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Figure 9.4. Spatial distribution of multiyear mean nonfire PMz;s and its major components (2006-2020) across
California, derived from meteorology- and wildfire-decomposed daily estimates.
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9.5.1 PM;s (Total)
The long-term spatial pattern (2005-2020) shows three dominant hotspots: the SOCAB urban belt,
the SJV corridor, the Imperial Valley region. Values along the Fresno—Bakersfield axis and



LA/Imperial commonly fall in the ~9—14 pg/m? range, with localized maxima across the LA urban
cluster where many areas are 212 pg/m*. In contrast, the North/Central Coast, rural uplands, and
higher elevations are typically ~3—6 pg/m?3. Overall, the multi-year mean concentrations across
California is 5.9 pg/m?.

Complementing this, region-aggregated interannual time series (moving-average) reveal a broad
statewide decline in non-fire PM» s over 2005-2020, with a sharper drop through ~2014 followed
by a more gradual decrease thereafter. The broader UA also show elevated burdens, ~11.15 —
~8.17 ng/m?*, while RA remain consistently lower, ~6.07 — 4.76 pg/m?®. Fresno and LA Metro
begin the period with the highest concentrations (near 14.28 and 12.50 pg/m?, respectively) and,
despite strong decreases to ~9—10 pg/m? by 2020, remain the most polluted regions. The SF Bay
starts near ~10 pg/m?* and declines to ~7.45 pg/m?, the lowest among the five major metropolitan
regions.

9.5.2 Sulfate

SO4> shows a clear south-basin emphasis, with higher burdens in SOCAB coastal corridors. By
contrast, the SJV has only modest SO+*>" compared with its NOs~ and OC burdens, and northern
California remains generally clean. The LA metro and San Diego megaregions contain the broadest
elevated areas, with much of each region near 1.5-2.0 pg/m?.

The interannual series indicates substantial statewide reductions from 2005 to 2020. LA metro and
SD show the steepest declines (>1 pg/m?®), while Sacramento decreases more gradually (=0.4
ug/m?) and falls below ~0.7 pg/m* by 2020—the cleanest among the five urban clusters. SOCAB
exhibits modest leveling in the late 2010s, with small rebounds in LA metro and SD. By 2020,

SO4>~ concentrations across regions converge to ~0.5-1.0 pg/m?.

9.5.3 Nitrate

NOs™ hotspot is predominantly concentrated in the SJV, forming the largest continuous region of
NOs™ pollution in California, with concentrations commonly exceeding 2.0 pg/m®. Among the five
major urban clusters, Fresno is the most polluted, with multi-year averages around 3.2 pg/m?,
followed by LA Metro (2.3 ug/m?®) and San Diego (2.0 ug/m?®), while Sacramento remains the
cleanest urban center (1.4 pg/m3). By contrast, northern and mountainous California are
comparatively clean, generally below 1 pg/m®.

The interannual trends further underscore NOs’s central role in the Valley. Fresno begins the
period with the highest NOs~ concentrations in the state—around 4.1 pg/m*—and, despite a
substantial decrease to ~2.1 pg/m? by 2020, it remains the most polluted region. LA Metro also
starts high (near 3.3 pg/m?®) and exhibits a gradual decline with signs of plateauing in recent years,
while San Diego follows a similar trajectory (~2.8 — 1.7 pg/m®). Both the twp typical basins, STV



and SoCAB, show comparable downward trends, decreasing from approximately 1.8 pg/m? to 1.1
ug/m? over the study period.

9.5.4 Elemental carbon

EC concentrations are generally the lowest among the five PM» s components (the statewide multi-
year mean = 0.3 pg/m?®), with the highest levels observed in Southern California — particularly
within the Los Angeles Basin, where heavy traffic, diesel emissions, and industrial activities are
dominant sources. Secondary hotspots are evident in major urban centers such as SD, Fresno,
Sacramento, and Bakersfield, while northern, mountainous, and coastal regions of the state remain
comparatively clean.

Long-term trends reveal a pronounced statewide decline in EC between 2005 and 2020. In the LA
megaregion, concentrations decreased from approximately 1.32 pg/m? in 2005 to about 0.8 pg/m?
by 2020, while San Diego experienced a reduction from ~0.9 pg/m? to ~0.7 ug/m?® over the same
period. All five major megaregions, however, exhibit signs of a rebound in recent years, particularly
in the Sacramento and San Francisco Bay areas. On average, urban EC levels fell substantially from
around 1.0 pg/m? to 0.7 ug/m?, whereas rural areas started lower (~0.3 ug/m?®) and declined more
modestly to ~0.2 pg/m>.

9.5.5 Organic carbon

OC emerges as the dominant PM,s component in California (statewide multi-year mean = 1.5
ug/m?), particular for the SJV and Southern California, with the highest levels observed in the LA
Basin, where concentrations commonly exceed 4 pg/m?*. In contrast, northern, mountainous, and

coastal California remain comparatively clean.

The interannual trends reveal substantial statewide declines in OC from 2005 to 2020, although
with greater variability than observed for EC. The LA urban area begins the period with the highest
concentrations, near 4.6 pg/m?, and despite decreasing to ~2.4 pg/m? by 2020, it ranks as the third
most polluted among the urban clusters. Fresno and Sacramento exhibit similar declining
trajectories, starting from ~4.3 pg/m?® and 3.5 pg/m?, respectively, with smaller decreases observed
between 2012 and 2018. San Diego and the SF Bay Area begin between 2.7 and 3.3 pug/m? and fall
to around 2.0 pg/m? by 2020. Rural areas remain consistently lower, decreasing slightly from ~1.7
to 1.2 pg/m? over the study period.

9.5.6 Mineral dust

Spatial hotspots are largely confined to the southeastern desert regions near the Arizona border,
where concentrations exceed 3 pg/m?® while SJV is only moderately elevated, with values
commonly around 1.2 ug/m3. Urban centers such as SD, Sacramento, and the SF Bay Area remain
comparatively clean, with DUST contributing only a minor share of total PM2 s (multi-year mean



<1 png/m?). Notably, DUST is the only component for which concentrations in rural areas are higher

than in urban areas (1.1 vs. 0.9 pg/m* on a multi-year mean basis).

The interannual trends reinforce this picture, showing consistently low baseline levels statewide,
typically between 0.9 and 1.1 pg/m?®. Unlike other components that exhibit clear decreasing
trajectories, DUST concentrations show no significant long-term increase or decrease across any
of the 10 focused regions. Among the five urban clusters, Fresno records the highest DUST levels,
fluctuating from about 1.3 pg/m?* in 2005 to around 1.2 pg/m? in recent years.

9.5.7 Summary and discussion

Overall, the long-term meteorology- and wildfire-decomposed results reaffirm well-established
PM 5 patterns in California while offering new insights into component-specific differences. The
identification of the SJV and Southern California as persistent PM> s hotspots is consistent with
decades of monitoring and prior studies, yet the decomposition clarifies the relative roles of
individual species. SO+*~ concentrations remain slightly higher in the SOCAB than in the SJV (1.07
vs 0.93 pg/m?), reflecting stronger influences from port activity and industrial emissions. EC is
most prominent in the Los Angeles megaregion, consistent with its combustion-heavy source mix,
but both SO+* and EC exhibit plateaus or rebounds after 20162018 in Sacramento and the San
Francisco Bay Area. NOs~ continues to dominate in Fresno, underscoring persistent secondary
formation in the Valley; despite substantial declines during the study period, the anthropogenic
residuals indicate that NOs™ remains a major contributor to total PM» s in most urban areas as well
as in the SJV and SoCAB basins. Although OC concentrations peak in the Los Angeles
metropolitan area, the San Joaquin Valley also shows pronounced and persistent OC hotspots—an
under-recognized feature given that the region’s PM, s pollution has traditionally been attributed
mainly to agricultural and meteorological influences. Finally, DUST, while often highlighted in
regulatory discussions, emerges as a relatively minor contributor across most populated regions.
Together, these findings provide a more refined understanding of regional PM, s composition,
revealing distinct chemical “fingerprints” associated with different source environments and
reaffirming the dominant role of anthropogenic emissions in shaping long-term air-quality burdens
across California. Importantly, because meteorological and wildfire influences have been removed,
the observed challenges—such as the SO+ and EC plateaus or rebounds after 2016-2018 in
Sacramento and the SF Bay Area, and the persistent OC hotspot in the SJV—directly reflect
anthropogenic emission dynamics and warrant closer examination of emerging or insufficiently

regulated sources.

9.6 Implications for Emission-Control Policy

The “non-fire, de-meteorologized” concentrations represent the anthropogenic or policy-sensitive
residual, so they can indeed serve as the empirical basis for discussing emission-control
implications. In general, those results clarify that the sustained long-term declines in PM» 5 and its
five major components across California are primarily attributable to reductions in anthropogenic



emissions rather than favorable weather or changes in wildfire frequency. These findings offer
several policy-relevant insights into source attribution and future control priorities.

9.6.1 Reinforcing the effectiveness—and emerging limits—of past emission controls

The decomposition results confirm that the sharp declines in SO+*~ and EC through the mid-2010s
primarily reflect the success of long-standing combustion and fuel-quality regulations. SO.*"
reductions trace directly to the statewide transition to ultra-low-sulfur fuels, refinery
desulfurization, and tighter industrial sulfur dioxide controls, while EC decreases follow diesel-

engine retrofits, fleet turnover, and cleaner fuels in urban basins.

However, the non-fire interannual trends reveal a recent plateau and mild rebound of both species
in several urban clusters—particularly Los Angeles, San Diego, Sacramento, and the San Francisco
Bay Area—after years of steady decline. These reversals suggest that early emission gains are
nearing saturation and that new or unregulated source sectors (e.g., port freight, construction
machinery, off-road diesel, localized industrial activity) may now dominate the remaining EC and
SO4+* burden.

Maintaining progress therefore requires next-generation control strategies: continued diesel-fleet
electrification, expanded zero-emission freight and drayage operations, refinery process
optimization, and port-area sulfur and EC surveillance. Reinforcing these measures would prevent
the observed rebounds from eroding two decades of air-quality gains and ensure sustained

improvements in California’s most densely populated corridors.

9.6.2 Nitrate as a persistent hotspot in the San Joaquin Valley

After removing meteorological and wildfire influences, NOs;~ remains the most spatially
concentrated PM» s component in California, forming the largest and most continuous hotspot along
the Fresno—Bakersfield corridor of the SJV, with typical non-fire concentrations exceeding 2 ng/m?
and localized maxima above 3 pg/m?. This pattern reflects strong secondary NOs~ formation in a
basin characterized by high ammonia emissions from agriculture and confined livestock operations,

coupled with stagnant winter meteorology that favors ammonium NOs™~ partitioning.

While long-term NOs~ levels have declined since 2005—particularly during the 2000s—the
persistence of these hotspots indicates that current ammonia mitigation remains insufficient to
complement ongoing NOy reductions from mobile-source and industrial controls. Further progress
therefore depends on coordinated precursor management, including precision fertilizer use,
improved manure handling, and emission-reduction incentives for dairies, alongside continued NOx
control through transportation electrification and industrial combustion efficiency. Strengthening
ammonia monitoring and incorporating agricultural NHs inventories into regional attainment

planning would directly address the Valley’s remaining NOs~ burden.



9.6.3 Organic carbon as the dominant contributor in urban and valley regions

OC emerges as the dominant PM, s component in both the SOCAB and the SJV, with concentrations
commonly >4 pg/m? in the Los Angeles Basin and > 3—4 pg/m? across the central Valley. These
levels exceed those of NOs~, SO+, or EC, underscoring the substantial contribution of both primary
combustion emissions and secondary organic aerosol formation from volatile organic compound

(VOC) precursors.

Statewide OC has declined markedly since 2005, but its sustained prominence in SOCAB and the
SJV points to the need for integrated control of combustion and VOC sources. Strengthened
measures targeting residential wood combustion, small-scale industrial processes, and evaporative
VOC emissions from consumer products, coatings, and oil-and-gas activities could further reduce
OC levels. Policies that jointly mitigate VOCs and NO would deliver co-benefits for both PM: s
and ozone, helping to lower chronic exposure in California’s most populous and pollution-burdened
basins.

9.6.4 DUST management under changing climate conditions

Although DUST contributes only a modest share to statewide PM; s, its strong meteorological
dependence and localized prominence—particularly in Fresno, the southern SJV, and the desert
regions near the Arizona border—make it a growing concern under a warming, drier climate. The
decomposition results show that DUST is the only component for which meteorology explains a
substantial fraction of variability, indicating high sensitivity to wind, soil moisture, and land
disturbance.

Effective mitigation therefore hinges on adaptive land and soil management rather than traditional
emission controls. Priority measures include maintaining soil moisture on fallow farmland,
stabilizing unpaved roads, implementing windbreaks and vegetative buffers, and enforcing
construction-site DUST suppression. Integrating these measures with California’s drought and
land-conservation policies will help limit DUST resuspension and prevent climate-driven
degradation of baseline air quality in agricultural and desert regions.

9.6.5 Integrating wildfire and anthropogenic strategies

The decomposition analysis highlights that wildfire smoke increasingly dominates episodic
extremes, while the anthropogenic residual defines the chronic baseline exposure that determines
long-term health risk. OC and EC in particular exhibit distinct “dual-source” behavior—wildfire-
driven spikes superimposed on persistent urban and valley backgrounds—underscoring the need

for coordinated management across sectors.

Sustaining progress thus requires policies that couple forest-fuel management and prescribed
burning with continued urban and industrial emission reductions. Strategic alignment between

CalFire, CARB, and regional air districts can ensure that fuel treatments and smoke management



plans are optimized to minimize public exposure without undermining long-term air-quality gains.
Enhanced satellite-based smoke monitoring and predictive modeling should be institutionalized to
guide real-time public-health advisories and air-quality episode response.

9.6.6 Regional prioritization and equity considerations

The non-fire results reaffirm that the SJV and Southern California remain the most persistent PM> s
hotspots and coincide with areas of high social and environmental vulnerability. These regions face
overlapping burdens: NOs;~ and OC dominance in the SJV, EC and OC in SoCAB, and recurring
DUST contributions in the southern interior.

Future emission-control policy should therefore adopt a regionally differentiated and equity-
centered approach. Priorities include enhancing ambient monitoring networks in disadvantaged
communities, linking clean-air and clean-energy investments to local job creation, and expanding
incentive programs for low-income residents to transition to cleaner technologies (e.g., electric
vehicles, residential heating upgrades). Integrating exposure disparity metrics—such as
CalEnviroScreen percentiles—into attainment planning will help ensure that emission reductions

translate into tangible, equitable improvements in public health.

Although this study focuses on the five major PM» s components, the decomposed statewide means
indicate a residual ~1.5 pg/m? unaccounted for by SO+>-, NOs~, OC, EC, and dust, relative to the
total PM,s mean of ~5.9 ug/m?3. This fraction likely reflects other minor or uncharacterized
species—such as ammonium, trace metals, sea salt, and secondary organics—not explicitly
resolved in the current dataset. While individually small, these components collectively contribute
to overall mass closure and may play localized roles near industrial or coastal environments. Future
extensions of this work could integrate these minor fractions to refine compositional closure and

improve source attribution at finer scales.

9.7 Summary

This section disentangled the respective roles of meteorology, wildfire smoke, and anthropogenic
emissions in shaping two decades of PM> s and component variability across California, providing
a refined perspective on the sources of long-term air-quality change.

The meteorological normalization analysis demonstrated that year-to-year weather variability
explains only a small share (typically <10 %) of total PM.s, SO+*", NOs~, OC, and EC fluctuations,
confirming that most interannual and decadal trends are not meteorology-driven. The sole
exception is dust, whose variability is strongly coupled to wind, precipitation, and soil-moisture
conditions, with variance shares exceeding 30 — 40 % in the SJV and Southern California. These
results establish that the dominant long-term declines observed statewide primarily reflect
emission-control and policy impacts rather than favorable meteorology.



After removing meteorological and wildfire influences, the residual fields revealed clear long-term
patterns of anthropogenic influence. Persistent hotspots were observed in the SJV and Southern
California, where OC and NO;~ were the dominant components in both regions. Substantial
declines occurred across all regions and species, with the steepest reductions during the mid-2000s
and slower improvement thereafter. SO+>~ and EC exhibited strong decreases in Southern
California, reflecting the effectiveness of sulfur-content regulations and diesel-emission controls;
however, SO4* began to plateau or slightly rebound after 2016, and EC showed signs of rebound
after 2018, particularly in the Sacramento and SF Bay areas. OC decreased markedly statewide—
from about 4-5 pg/m? to ~2 pg/m?® in major basins—yet remained the largest contributor to total
PMz s, especially in the LA Basin and SJV, where both primary combustion and secondary organic
aerosol formation persist. NOs~ declined significantly in later 2000s and plateaued in recent years
across most urban regions, underscoring the difficulty of controlling secondary formation in
ammonia-rich and VOC-rich environments such as the Valley. DUST exhibited region-specific
persistence, with relatively high levels in the Fresno urban cluster and southern desert areas.

Together, these findings demonstrate substantial statewide improvements in air quality driven by
past emission controls, yet persistent and emerging challenges remain. Despite major reductions in
SO+>~ and EC, both show signs of rebound in recent years, while NOs~ and OC continue to dominate
in key regions, DUST remains regionally persistent, and wildfire smoke has become an increasing
episodic threat. Sustaining progress will require continued attention to these re-emerging and
persistent sources to secure lasting and equitable air-quality improvements across California.
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