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Abstract 
We developed a spatiotemporal modeling framework based on a deep-forest algorithm to estimate 
daily concentrations of five major PM2.5 components—sulfate (SO₄²⁻), nitrate (NO₃⁻), elemental 
carbon (EC), organic carbon (OC), and mineral dust (DUST)—across the western United States 
from 2002 to 2019 at 1-km resolution. The framework first generated gap-free total PM2.5 fields 
using MAIAC aerosol optical depth (AOD) and ancillary predictors, then incorporated these 
estimates and CMAQ-speciated simulations, together with meteorological and land-use variables, 
to predict component concentrations. Cross-validation against ground observations showed strong 
performance (R² = 0.81, 0.89, 0.75, 0.66, and 0.75; RMSE = 0.30, 0.59, 0.26, 1.52, and 0.59 µg/m³ 
for SO₄²⁻, NO₃⁻, EC, OC, and DUST, respectively). The results reproduced realistic spatial and 
temporal patterns, capturing both long-term declines and episodic wildfire extremes. We extended 
the record for California to 2000–2020 by integrating MERRA-2 and MERRA-2 GMI reanalysis 
predictors for years without CMAQ data. Persistent exposure hotspots were identified in the Los 
Angeles Basin and San Joaquin Valley, dominated by OC and NO₃⁻. Population-weighted PM2.5 

exposure declined by about 20 % from 2000 to 2020, driven primarily by ~50 % reductions in NO₃⁻ 
and SO₄²⁻, while OC and EC decreased modestly and DUST remained nearly unchanged. Disparity 
analyses using CalEnviroScreen revealed that tracts with higher burdens of asthma, cardiovascular 
disease, low birth weight, and child populations consistently faced higher exposures to NO₃⁻ and 
OC (0.28–0.59 µg/m³ above low-burden tracts). Decomposition analyses indicated that 
meteorology contributed variably but weakly (<10 % of interannual variance for most species, 
except DUST at ~30–40 %), whereas wildfire smoke increasingly offset regulatory gains, 
especially in northern California and the Sierra Nevada. These high-resolution component datasets 
provide a valuable foundation for characterizing spatiotemporal exposure patterns, evaluating 
emission-control effectiveness, and informing equitable air-quality management strategies across 
California.  

  



 
 

Executive Summary 

Fine particulate matter (PM2.5) remains a major public health concern, yet most monitoring and 
regulation have focused on its total mass rather than chemical composition. Different PM2.5 species 
arise from distinct sources, display unique atmospheric behaviors, and exert varying health effects. 
Despite these differences, PM2.5 continues to be regulated on the basis of total mass, and most 
exposure assessments and health studies have examined associations with total PM2.5 rather than 
individual components. Although interest in and concern about PM2.5 components are increasing, 
variability in component-specific exposures and their health effects remains less well understood. 
To address this gap, this project developed high-resolution, long-term estimates of PM2.5 chemical 
components and examined their implications for exposure, policy effectiveness, and environmental 
justice in the western United States, with particular emphasis on California. 

Methodology 

This project developed the first high-resolution, long-term dataset of PM2.5 chemical components—
sulfate (SO₄²⁻), nitrate (NO₃⁻), elemental carbon (EC), organic carbon (OC), and mineral dust 
(DUST)—across the western United States (2002–2019) and California (2000–2020). The 2002-
2019 dataset across the western United States was generated by integrating multiple data sources 
within a two-stage advanced machine-learning framework. In the first stage, gap-free daily PM2.5 
total mass concentrations at 1-km resolution were derived from satellite aerosol optical depth 
(AOD) and ancillary predictors. In the second stage, these gap-free PM2.5 estimates and speciated 
PM2.5 fields from the Community Multiscale Air Quality (CMAQ) model were used as primary 
predictors, supplemented by meteorological variables, land cover, population density, and satellite-
based wildfire detections. Using these inputs, daily 1-km concentrations of the five components 
were estimated with spatiotemporal deep-forest models. The models achieved strong predictive 
performance (cross-validation R² = 0.66–0.89) and reproduced realistic spatial and temporal 
patterns consistent with ground observations. To extend the framework to California for 2000–
2020, MERRA-2 and MERRA-2 GMI reanalysis products were incorporated to replace unavailable 
CMAQ inputs before 2002 and after 2019, producing a continuous 21-year record of daily 1-km 
concentrations for all five PM2.5 components. Using the long-term high-resolution dataset across 
California, we conducted long-term trend, population-weighted exposure, and environmental 
disparity analyses, along with a two-stage decomposition to identify the drivers of observed trends. 
The decomposition first applied meteorological normalization to isolate emission-driven changes 
from meteorology-induced variability, followed by partitioning concentrations into fire and non-
fire components based on satellite-derived smoke plume observations serving as wildfire candidate 
gates. This framework enabled quantitative attribution of long-term PM2.5 and component changes 
to meteorological, wildfire, and anthropogenic emission influences. 

 



 
 

Key Findings 

Western U.S. (2002–2019): Spatiotemporal analysis of our model predictions showed that urban 
populations were exposed to 1.5–2 times higher concentrations of SO₄²⁻, NO₃⁻, EC, and OC 
compared with rural populations, while exposures to DUST were comparable. All five species 
exhibited declining trends over the study period, although patterns varied by season, region, and 
species. Wildfire events contributed sharp episodic increases, particularly in OC, NO₃⁻, and EC, 
superimposed on the broader downward trends. Day-to-day analysis of extreme events, such as the 
2018 Camp Fire, revealed that OC and NO₃⁻ exposures increased approximately sixfold during the 
fire period, demonstrating the models’ capability to capture both chronic and acute exposure 
patterns. 

California hotspots (2000–2020): From 2000 to 2020, concentrations of PM2.5 and its major 
components showed strong and persistent spatial concentration in the Los Angeles megaregion and 
the San Joaquin Valley (SJV), with secondary elevations in the San Francisco Bay Area and along 
inland transport corridors. OC and NO₃⁻ were the dominant contributors to these concentration 
hotspots, jointly accounting for nearly half of total PM2.5, while SO₄²⁻, and DUST played smaller 
yet region-specific roles. Population-weighted PM2.5 exposures decreased by about 20 % over two 
decades—from approximately 14.8 μg/m³ in 2000 to 11.9 μg/m³ in 2020. Statewide component 
averages declined most strongly for SO₄²⁻ and NO₃⁻ (≈50 %), reflecting effective fuel-sulfur and 
NOₓ controls, whereas OC and EC decreased more modestly (≈6–12 %) and DUST remained 
largely unchanged. However, the benefits were uneven: communities with high burdens of asthma, 
cardiovascular disease, child populations, or low-birth-weight prevalence consistently experienced 
higher exposures, especially to NO₃⁻ and OC, while elderly-dense tracts tended to face lower 
concentrations. These patterns reveal both the progress and the persistence of regional and 
demographic disparities in California’s PM2.5 burden. 

Decomposition and Policy Implications: Decomposition analyses separating meteorological, 
wildfire, and anthropogenic influences show that most long-term PM2.5 and component trends 
reflect emission reductions rather than weather variability, with meteorology explaining less than 
10% of the variance for most species but up to 30-40% for DUST. Wildfire smoke, dominated by 
OC and EC, emerges as an increasingly frequent episodic driver, particularly in northern California 
and Sierra Nevada mountain regions, while the chronic baseline in the SJV and Southern California 
remains governed by anthropogenic sources. After removing meteorological and fire effects, 
SO₄²⁻and EC exhibit strong historical declines followed by recent rebounds, NO₃⁻ persists as a 
concentrated hotspot in the SJV and coastal SoCAB, OC remains the dominant contributor in both 
urban and valley regions, and DUST shows high sensitivity to climatic drying and resuspension but 
minimal long-term change. Together, these findings confirm that California’s emission-control 
programs have achieved major and lasting reductions but also highlight emerging challenges—
plateauing progress in EC and SO₄²⁻, persistent NO₃⁻ and OC burdens, climate-linked DUST 



 
 

variability, and escalating wildfire smoke—that must be addressed to sustain and equalize future 
air-quality gains. 

 

Implications 

The decomposition of California’s PM2.5 record underscores both the effectiveness of past policies 
and the challenges that remain. Sharp reductions in SO₄²⁻and EC, particularly in Southern 
California, demonstrate the success of fuel sulfur regulations, diesel emission standards, and 
industrial controls, showing that technology-based policies can deliver rapid and large-scale 
benefits. However, persistently high NO₃⁻ and OC levels in the San Joaquin Valley reveal the limits 
of current strategies in ammonia-rich and secondary-organic-aerosol-prone environments, pointing 
to the need for targeted agricultural measures, better control of residential wood combustion, and 
reductions in aerosol precursors. DUST also remains problematic, with plateauing or rebounding 
trends in Fresno, Sacramento, and Los Angeles indicating that existing controls have been 
insufficient to curb agricultural and resuspended urban dust. Finally, the growing influence of 
wildfire smoke—dominated by OC and EC and concentrated in the northern Sacramento Valley 
and Sierra Nevada—presents a distinct and worsening challenge, emphasizing the need to link air 
quality management with forest and land management strategies. CalEnviroScreen-based analyses 
show census tracts with higher burdens of asthma, cardiovascular disease, and low birth weight 
consistently experience elevated exposures to NO₃⁻ and OC—the two dominant components in 
California’s most polluted regions—underscoring that the remaining PM2.5 burden 
disproportionately affects vulnerable populations. Addressing these disparities will require 
integrating air quality management with environmental justice initiatives, prioritizing emission 
reductions and clean-technology investments in disadvantaged communities. Together, these 
findings suggest that while California’s emission control programs have been broadly effective, 
sustaining progress will require a dual focus on reducing persistent anthropogenic sources, and 
mitigating wildfire smoke impacts. 



 
 

1. Introduction 
 

1.1 Motivation 
Fine particulate matter with an aerodynamic diameter smaller than 2.5 μm (PM2.5) is a complex 
mixture of chemical constituents, including sulfate (SO₄²⁻), nitrate (NO₃⁻), elemental carbon (EC), 
organic carbon (OC), and mineral dust (DUST). A growing body of toxicological and 
epidemiological evidence suggests that these constituents differ in their sources, atmospheric 
behavior, and potential to cause harm to human health. For example, EC—primarily emitted from 
combustion sources—is strongly associated with cardiovascular effects, while secondary inorganic 
aerosols such as NO₃⁻ and SO₄²⁻ have been linked to respiratory and systemic inflammation. OC, 
which can originate from both primary and secondary formation processes, contains various 
compounds of differing toxicity, some of which are highly oxidative and can trigger cellular stress. 
Consequently, certain PM2.5 species may be more harmful than others on an equal-mass basis, and 
their health impacts cannot be fully inferred from total PM2.5 concentrations alone. 
 
In addition to differing toxicities, these five major PM2.5 constituents often display greater spatial 
and temporal variability than total PM2.5 mass. This variability arises from differences in emission 
source distributions, atmospheric formation pathways, meteorological influences, and chemical 
reactivity. For instance, EC concentrations can vary sharply over short distances in urban areas due 
to localized traffic emissions, while secondary species such as SO₄²⁻ may have more regional 
patterns influenced by precursor transport and photochemical processes. Such heterogeneity means 
that monitoring only total PM2.5 mass may fail to capture important local-scale differences in 
exposure and risk. 
 
California presents a particularly critical case for advancing PM2.5 speciation research. The state 
continues to experience some of the highest PM2.5 levels in the United States, with persistent non-
attainment in regions such as the South Coast and San Joaquin Valley air basins. The spatial 
patterns of SO₄²⁻, NO₃⁻, EC, OC, and DUST in California are shaped by a complex interplay of 
urban traffic emissions, industrial activities, agricultural operations, wildfires, and long-range 
transport. However, the state’s ground-based PM2.5 speciation monitoring network is sparse—Los 
Angeles County, for example, has only two routine monitoring sites for chemical speciation—
limiting the ability to evaluate fine-scale exposure differences across communities. Given the 
environmental justice concerns in California, where disadvantaged populations often live closer to 
major emission sources, a high-resolution understanding of PM2.5 constituent concentrations is 
essential for effective and equitable air quality management. 
 



 
 

1.2 Research Objectives 
The overarching goal of this project is to generate high spatiotemporal resolution estimates of five 
key PM2.5 constituents—SO₄²⁻, NO₃⁻, EC, OC, and DUST—across California by integrating 
multiple data sources, including satellite remote sensing, chemical transport model outputs, 
meteorological reanalyses, land-use information, and ground-based measurements. This integrated 
modeling framework enables the quantification of constituent-specific patterns and trends over two 
decades, providing critical insights into spatial disparities and long-term progress in air quality 
improvement. 
 
The specific objectives are: 
(1). Quantify California’s local and regional ambient PM2.5 components1—SO₄²⁻, NO₃⁻, EC, OC, 
and DUST—for the period 2000–2020 by integrating multiple data sources, including ground-
based measurements, satellite observations, simulations, and reanalysis data. 
(2). Evaluate long-term trends in both total PM2.5 mass and its major chemical components, with 
particular focus on areas underrepresented in the existing monitoring network. 
(3). Assess spatial disparities in PM2.5 constituent concentrations across demographic and 
geographic subgroups in California. 
(4). Recommend pathways to refine PM2.5 mitigation strategies that account for constituent-specific 
patterns and incorporate environmental justice considerations. 
 
1.3 Hypotheses 
This study is guided by the following hypotheses: 
1. Greater spatial heterogeneity of constituents – The five major PM2.5 constituents—SO₄²⁻, NO₃⁻, 
EC, OC, and DUST—exhibit greater spatial variability than total PM2.5 mass, particularly in regions 
influenced by localized sources such as traffic corridors, industrial zones, and agricultural areas. 
 
2. Enhanced detection through high-resolution multi-source integration – Integrating multiple data 
sources, including satellite products, chemical transport model outputs, meteorological reanalyses, 
land-use variables, and ground-based measurements, will provide high spatiotemporal resolution 
estimates capable of revealing spatial and temporal patterns of SO₄²⁻, NO₃⁻, EC, OC, and DUST 
that are not captured by the existing ground monitoring network. 
 
3. Identification of disparities in constituent exposures – The improved high-resolution constituent 
data will uncover disparities in exposure to SO₄²⁻, NO₃⁻, EC, OC, and DUST among different 
demographic and geographic subgroups in California, providing evidence to inform more equitable 
and effective PM2.5 mitigation strategies. 
 
  

 
1 Throughout this report, the terms “component” and “species” are used interchangeably, both 
referring to the entities discussed under “speciation” in the project proposal. 



 
 

2. Literature Review and Preliminary Results 
 

2.1 Introduction 
Understanding the chemical composition of fine particulate matter (PM2.5) is a critical step toward 
improving air quality management and public health protection. PM2.5 comprises a mixture of 
components with distinct emission sources, atmospheric lifetimes, and physical and chemical 
properties (Hand et al. 2014; Seinfeld and Pandis 2016; WHO 2021). Among these, SO₄²⁻, NO₃⁻, 
EC, OC, and DUST are the most abundant constituents in many regions, contributing significantly 
to the mass and toxicity of PM2.5. Their individual spatial and temporal variations carry important 
implications for exposure assessment, source attribution, and targeted emission controls. However, 
their quantification at fine spatial and temporal resolution over long periods is challenging, as direct 
chemical speciation monitoring is sparse and infrequent, and no single data source provides the 
necessary combination of chemical accuracy, spatial continuity, and temporal completeness. In the 
following sections, we review existing data sources for PM2.5 components (Section 2.2) and recent 
developments in hybrid modeling approaches (Section 2.3), followed by a discussion of their 
implications for this study. 
 
2.2 Data sources available for PM2.5 components 
2.2.1 Monitoring networks 
Ground-based chemical speciation measurements are the foundation for PM2.5 component research, 
providing the most reliable data for model training and evaluation. In the United States, three 
nationwide monitoring networks form the backbone of these observations. The Chemical 
Speciation Network (CSN) focuses on urban and suburban sites, capturing population exposure in 
densely inhabited areas; the Interagency Monitoring of Protected Visual Environments 
(IMPROVE) network targets rural and remote locations, often within national parks and wilderness 
areas; and the Clean Air Status and Trends Network (CASTNET) primarily measures rural 
background air quality on a weekly basis (Solomon et al. 2014). These networks have generated 
long-term datasets—CSN since the late 1990s and IMPROVE since the late 1980s—that have been 
used extensively for trend analysis, regulatory assessments, and epidemiological studies (Hand et 
al. 2014; Malm et al. 2011). However, site density is limited to a few hundred stations across the 
continental U.S., with large gaps in mountainous, rural, and desert regions. Sampling intervals, 
typically every 1–6 days, further restrict their utility for daily mapping, particularly for species with 
high day-to-day variability. 
 
2.2.2 Satellite retrievals 
Satellite remote sensing has transformed air quality research by offering broad spatial coverage 
and, in some cases, fine spatial resolution. The Multi-Angle Implementation of Atmospheric 
Correction (MAIAC) algorithm applied to MODIS observations produces aerosol optical depth 
(AOD) retrievals at 1 km resolution, enabling near-global mapping of atmospheric aerosol loading 



 
 

(Li et al. 2020; He et al. 2023a). MAIAC’s high resolution makes it particularly valuable for 
capturing fine-scale gradients in urban and complex-terrain settings. However, AOD represents 
total columnar extinction rather than surface-level mass, and the relationship with ground-level 
PM2.5 components is nonlinear and modulated by atmospheric mixing, humidity, and aerosol 
composition (Franklin et al. 2017; Meng et al. 2018a). The Multi-angle Imaging SpectroRadiometer 
(MISR) fractional AOD offers additional information on particle size and composition at 4.4 km 
resolution, improving physical relevance for component estimation (Geng et al. 2020), but its 
coarse revisit time (global coverage every nine days) and reduced spatial footprint limit its capacity 
for continuous daily mapping. Both products are further constrained by retrieval gaps due to clouds, 
snow cover, or bright surfaces. 
 
2.2.3 Chemical transport models (CTMs) 
CTMs simulate the full life cycle of atmospheric particles by integrating emissions, chemical 
transformations, transport, and deposition, driven by meteorological data. The Community 
Multiscale Air Quality (CMAQ) model, developed by the U.S. EPA, provides species-resolved 
PM2.5 outputs at resolutions as fine as 12 km for regional applications (Appel et al. 2017). CMAQ 
has been widely used in research and regulatory contexts for its ability to generate physically 
consistent spatiotemporal patterns of PM2.5 components, including SO₄²⁻, NO₃⁻, EC, OC, and dust. 
However, uncertainties in emission inventories, parameterizations of secondary aerosol formation, 
and coarse resolution for large domains (often ≥12 km) can limit agreement with local observations, 
especially in heterogeneous regions such as the western U.S. Other CTMs, such as GEOS-Chem 
and WRF-Chem, have similar limitations, with typical long-term simulations conducted at even 
coarser spatial scales (≥25 km). 
 
2.2.4 Dispersion models 
Dispersion modeling approaches, including Gaussian plume (e.g., AERMOD) and Lagrangian 
particle tracking models, are designed to predict pollutant concentrations from specific sources 
given meteorological inputs (Gibson et al. 2013). They are effective for estimating near-source 
impacts and for regulatory permitting applications but are not suited to simulating regional-scale 
secondary aerosol formation or the broad range of chemical processes affecting PM2.5 components. 
 
2.2.5 Reanalysis datasets 
Atmospheric reanalysis products blend model simulations with multiple observational datasets, 
producing spatially and temporally complete fields of meteorological and chemical variables. 
MERRA-2 includes global, multi-decadal records of speciated aerosol concentrations (Randles et 
al. 2017). While reanalyses provide consistent, gap-free coverage and can extend component 
estimates into data-sparse regions, their coarse resolution (~0.5° × 0.625°) makes them insufficient 
for detailed exposure assessment, especially in urban and topographically complex environments. 



 
 

2.3 Review of PM2.5 component hybrid modeling approaches 
Estimating PM2.5 components at fine spatiotemporal resolution is inherently more complex than 
modeling total PM2.5, given their greater variability, shorter lifetimes, and localized sources (Amini 
et al. 2022; Donkelaar et al. 2019; He et al. 2023b). Hybrid modeling integrates complementary 
data sources to overcome the limitations of individual datasets. By combining chemically accurate 
ground observations, spatially extensive satellite retrievals, and mechanistically rich CTM 
outputs—together with meteorological, land use, and population data—these approaches enable 
broader coverage and more accurate predictions (Donkelaar et al. 2019; Amini et al. 2022). 
 
2.3.1 Statistical and machine-learning PM2.5 component models and limitations 
Hybrid models use diverse statistical and machine-learning frameworks to integrate multiple 
predictors. Land-use regression (Hoogh et al. 2013; Hsu et al. 2018) incorporates geographic 
covariates but is limited in temporal coverage. Geographically weighted regression (Donkelaar et 
al. 2024) improves spatial flexibility but is computationally demanding and sensitive to monitoring 
density. Nonlinear methods such as random forest (Geng et al. 2020) and backpropagation neural 
networks (Di et al. 2016) capture complex interactions among predictors but often rely on 
predictors at coarse resolution. For example, Meng et al. (2018b) estimated PM2.5 components using 
coarse-resolution GEOS-Chem reanalysis component data and auxiliary predictors at ~0.25° × 
0.3125°, demonstrating the feasibility of multi-source integration but also highlighting the need for 
high-resolution, physically relevant predictors. Ensemble approaches, such as those in Amini et al. 
(2022), stack multiple base learners to improve accuracy, achieving resolutions as fine as 50 m in 
urban areas at the annual scale. Despite these advances, most existing models achieve either high 
spatial resolution or high temporal resolution, but rarely both, due to resolution constraints in key 
predictors and computational costs. 
 
2.3.2 Challenges in estimating components in California 
California presents a particularly complex environment for PM2.5 component modeling due to its 
combination of diverse emission sources, frequent wildfire activity, complex terrain, and 
meteorological variability. The state’s urban areas, such as the Los Angeles–Long Beach–Anaheim 
metropolitan region, experience intense traffic emissions and industrial activities, contributing to 
elevated levels of NO₃⁻, OC, and EC. The San Joaquin Valley, bounded by mountains, suffers from 
poor dispersion conditions that exacerbate NO₃⁻ and carbonaceous aerosol accumulation. Episodic 
wildfire events—especially in northern and central California—introduce large, variable emissions 
of OC and EC, often overwhelming typical seasonal patterns. Additionally, DUST emissions in the 
southeastern deserts contribute significantly to DUST concentrations, especially under dry and 
windy conditions. Sparse monitoring coverage in mountainous and rural regions, combined with 
retrieval gaps in satellite AOD data due to cloud, smoke, or snow cover, further complicates 
modeling. Previous studies have consistently reported lower predictive performance for PM2.5 
components in western United States, particularly for California, compared to other parts of the 
United States (Meng et al. 2018b; Geng et al. 2020), underscoring the need for models capable of 



 
 

integrating high-resolution predictors that can resolve both the spatial heterogeneity of emission 
sources and the temporal variability driven by episodic events. 
 
2.4 Preliminary analysis  
2.4.1 Correlation coefficient analysis based on monitoring observation data 
Previous efforts to estimate PM2.5 component concentrations over large geographic areas have often 
been constrained by limited spatiotemporal resolution and suboptimal modeling accuracy, even 
when incorporating multiple data sources such as satellite AOD and CTM outputs. To inform the 
design of our modeling framework, we conducted a preliminary analysis examining the statistical 
relationship between observed total PM2.5 mass concentrations and observations of the five major 
components. 
The degree of linear association between total PM2.5 and each component was quantified using the 
Pearson correlation coefficient. As summarized in Table 2.1, the five target components are key 
chemical constituents of PM2.5 mass and exhibit moderate to strong correlations with total PM2.5 
concentrations (r = 0.33–0.85). These correlations reflect the shared influence of emission sources 
and atmospheric processes on both total PM2.5 and its components. Based on this evidence, total 
PM2.5 was selected as a primary predictor for component modeling. 
 
Table 2.1. Correlations between PM2.5 observations and species observations across the western U.S., 2000-2020. 

SO₄²⁻ NO₃⁻ EC OC DUST 
0.50 0.67 0.74 0.85 0.33 
 
In addition to its chemical relevance, total PM2.5 mass can be estimated at high spatial and temporal 
resolution. Specifically, daily, 1 km gap-free PM2.5 fields can be derived from satellite AOD and 
other auxiliary predictors, providing spatially continuous and temporally consistent coverage 
across the study domain. This dual advantage—strong chemical linkage to the components and 
high-resolution availability—positions total PM2.5 as an effective anchor variable for integrating 
other predictors, including CTM-speciated outputs, meteorological parameters, and land-use 
characteristics. 
 
2.4.2 Expanding modeling region 
During the implementation stage, we found that California’s PM2.5 component monitoring network 
contains only a limited number of stations, particularly for speciated measurements (Figure 2.1). 
The sparse spatial coverage limits the representativeness of the training and validation data if 
modeling were restricted solely to California. To enhance model robustness and capture a broader 
range of emission source types, meteorological regimes, and terrain features, we expanded the 
modeling domain to encompass the entire western United States. This larger study area (Figure 2.1) 
includes additional monitoring sites from the CSN and IMPROVE networks, increasing both the 
diversity and volume of training data. Expanding the domain also helps the model learn from 



 
 

regions with similar pollution characteristics and transport patterns to California, ultimately 
improving prediction accuracy within the state. 

 
Figure 2.1. Study region and spatial distribution of PM2.5 component monitoring network used in this study. 

 
2.5 Summary 
Existing studies on PM2.5 component estimation have significantly advanced our understanding of 
spatial and temporal patterns, yet datasets offering both high spatial and high temporal resolution 
remain exceptionally scarce. Most prior efforts have achieved either fine spatial detail, often limited 
to annual or seasonal averages, or daily to sub-daily resolution at much coarser spatial scales. As a 
result, no long-term, spatially continuous record currently exists for PM2.5 chemical components 
that simultaneously resolves fine-scale spatial variability and daily temporal dynamics across large 
and complex regions such as California. Two major limitations underlie this gap: 



 
 

 First, many hybrid models still depend on coarse-resolution predictors, such as CTM or 
reanalysis outputs at ≥12 km, which limit the ability to resolve fine-scale gradients in 
complex environments. Integrating high-resolution, physically and chemically relevant 
predictors—particularly daily, 1 km total PM2.5 estimates supplemented by CTM-speciated 
outputs and other covariates—can address this gap. 

 Second, many modeling algorithms are not optimized to capture both gradual seasonal 
variations and rapid changes from episodic events like wildfires. Employing advanced 
spatiotemporal modeling approaches—such as deep learning, deep forest, or stacking 
ensemble techniques—can better capture these dynamics, especially in data-sparse and 
heterogeneous regions. 

Through this exploratory analysis, we identified these two focal areas as potential improvement 
directions for developing more accurate, spatially resolved, and temporally continuous PM2.5 
component datasets for California and other regions with complex atmospheric environments. 
Therefore, we chose to develop a spatiotemporal deep-learning model where PM2.5 total mass 
serves as a primary predictor to estimate daily, gap-free PM2.5 SO₄²⁻, NO₃⁻, EC, OC, and DUST at 
a high spatial resolution of 1 km over the western United States. This approach addresses both 
identified gaps: (1) using high-resolution, gap-filled total PM2.5 as a chemically relevant predictor 
(correlation coefficients r = 0.33-0.85 with components), and (2) employing a spatiotemporal deep-
forest algorithm capable of capturing complex spatiotemporal patterns including episodic wildfire 
events. 
  



 
 

3. Data Sources and Preprocessing 
 

This project integrates a diverse suite of ground-based measurements, satellite remote sensing 
products, chemical transport model outputs, meteorological reanalysis datasets, and geographical 
variables to produce daily, gap-free estimates of five major PM2.5 components—SO₄²⁻, NO₃⁻, EC, 
OC, and DUST—at a 1-km spatial resolution across the western United States for the period 2000–
2020. In this section, we describe the data sources and preprocessing procedures used to harmonize 
datasets with varying spatial and temporal resolutions onto a uniform 0.01° (~1 km) grid, using 
satellite-derived AOD as the spatial reference. The modeling domain was expanded beyond the 
core study area for reasons detailed in Section 2.4.2. The resulting spatial extent, encompassing the 
western United States, is shown in Figure 3.1. 

 
Figure 3.1. Modeling region and spatial distribution of PM2.5 component monitoring network used in this study. 



 
 

 
 
3.1 Ground-level PM2.5 total mass and speciated measurements 
We obtained daily PM2.5 component concentrations from three major U.S. monitoring networks: 
(1). Chemical Speciation Network (CSN) – Operated by the U.S. Environmental Protection Agency 
(EPA) (https://www.epa.gov/amtic/chemical-speciation-network-csn). CSN sites are primarily 
located in urban and suburban areas. Sampling frequency: 1–6 days. 
(2). Interagency Monitoring of Protected Visual Environments (IMPROVE) – Managed by a 
federal-state partnership (https://vista.cira.colostate.edu/Improve/). IMPROVE sites are generally 
located in remote or rural locations, including national parks and wilderness areas. Sampling 
frequency: 1–3 days. 
(3). Clean Air Status and Trends Network (CASTNET) – Operated by EPA to monitor rural air 
quality (https://www.epa.gov/castnet). CASTNET measurements have weekly resolution and were 
used only for independent validation. 
 
In the modeling, CSN and IMPROVE measurements served as the training and cross-validation 
datasets, while CASTNET data provided independent evaluation of SO₄²⁻ and NO₃⁻ estimates. 
Measurements of SO₄²⁻ and NO₃⁻ are comparable between CSN and IMPROVE (Hand et al., 2012; 
Solomon et al., 2014) and were directly combined. EC and OC were harmonized following Malm 
et al. (2011) and Meng et al. (2018a) to correct for analytical differences. Specifically, for CSN EC 
and OC measurements, data processing differed by method. When analyzed using the Thermal 
Optical Reflectance (TOR) technique, blank corrections were applied directly to the measurements. 
For samples analyzed with the Thermal Optical Transmittance (TOT) method, EC concentrations 
were scaled by a factor of 1.3 to align with IMPROVE EC values. OC concentrations, on the other 
hand, were adjusted using Equation below (Malm et al., 2011). 

𝑂𝑂𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = ((𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 0.× 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)− 𝐴𝐴/𝑀𝑀 
 
The coefficients A and M used in this equation are provided in Table 3.1. The equation was derived 
from paired CSN and IMPROVE measurements of PM2.5 OC and EC at collocated sites during 
2005–2006. In this context, A accounts for the monthly positive artifact caused by filter adsorption 
of semivolatile organic compounds (SVOCs), while M represents the multiplicative negative 
artifact associated with volatilization losses of collected OC (Malm et al., 2011).  
 
Table 3.1. A and M values for CSN OC conversion. 

M (unitless) 1.2 
AJan (µg/m3) 1.1 
AFeb (µg/m3) 1.3 
AMar (µg/m3) 1.2 
AApr (µg/m3) 1.4 
AMay (µg/m3) 1.6 



 
 

AJun (µg/m3) 1.7 
AJul (µg/m3) 1.8 
AAug (µg/m3) 1.9 
ASep (µg/m3) 1.5 
AOct (µg/m3) 1.2 
ANov (µg/m3) 1.0 
ADec (µg/m3) 1.1 

 
 
DUST concentrations were calculated from elemental measurements using the IMPROVE formula: 

DUST = 2.20 × Al + 2.49 × Si + 1.63 × Ca + 2.42 × Fe + 1.94 × Ti 
 
 
Daily PM2.5 total mass concentrations from approximately 1,300 U.S. EPA monitoring sites (Figure 
3.2) were used as the target variable in the modeling of gap-free PM2.5 total mass, which served as 
a primary predictor for PM2.5 component estimation. To reduce edge effects associated with the 
spatial boundaries of PM2.5 estimates, the PM2.5 modeling domain was expanded beyond the 
component modeling region to include entire states along the western edge of the study area (Figure 
3.2). 



 
 

 
Figure 3.2. Spatial distribution of total PM2.5 observation sites used in this study with extended modeling region 
for total PM2.5 modeling. 

 
 
3.2 Satellite aerosol optical depth (AOD) and gap filling 
We used the MODIS Collection 6.1 MAIAC AOD product (MCD19A2) 
(https://lpdaac.usgs.gov/products/mcd19a2v061/) retrieved from the MODIS sensors aboard 
NASA’s Terra and Aqua satellites (1 km daily resolution over land). To address missing retrievals 
from clouds, snow, or bright surfaces (availability <50% in many areas; Figure S3), we 
reconstructed gap-free daily AOD using a random forest imputation framework described in 
Section 5.  
 
 
3.3 CMAQ speciated PM2.5 simulations 
We obtained weekly outputs from the Community Multiscale Air Quality (CMAQ) model 
(https://www.epa.gov/cmaq) at 12-km resolution for SO₄²⁻, NO₃⁻, NH₄⁺, EC, and OC. CMAQ 
explicitly simulates emissions, chemical transformation, and transport (Appel et al., 2017). These 
outputs were interpolated to the 1-km modeling grid via inverse distance weighting. 



 
 

 
 
3.4 Meteorological datasets 
Three sources of meteorological data were used: 
(1) Daily maximum (Tmax) and minimum (Tmin) temperature, shortwave radiation (SRAD), snow 
water equivalent (SWE), daylight duration (DayL), and water vapor pressure (WVP) were obtained 
from DayMet (1km × 1km) (Thornton et al. 2022); 
(2) daily maximum (Rmax) and minimum (Rmin), relative humidity, mean vapor pressure deficit 
(VPD), mean wind speed at 10 m (WS10M), and wind direction (WD) were obtained from 
gridMET (~4 km × 4 km) (Abatzoglou 2013);  
(3) planetary boundary layer height (PBLH), total cloud area fraction (CLDTOT), 2-m eastward 
(U2M) and northward (V2M) wind, surface air temperature (TLML), surface pressure (PS) and 
total precipitation (PRECTOT) were obtained from MERRA-2 GMI “Daily Average Diagnostics” 
(~55.5 km × 50 km) reanalysis data (https://acd-
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI).  
Datasets with spatial resolutions coarser than 1 km were downscaled to a 1-km grid using bilinear 
interpolation for MERRA2-GMI and inverse distance weighting for gridMET. 
 
3.5 Auxiliary data 
 
We incorporated multiple geospatial datasets: 
- We obtained 30-m resolution impervious surface and land cover data from the National Land 
Cover Database (NLCD) for years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 
(https://www.mrlc.gov). We then aggregated the 30-m data to our 1-km grid by calculating the 
fraction of road density (RD), developed areas of varying intensity (NLCD_D), forest (NLCD_F), 
grassland (NLCD_G), and wetlands (NLCD_W) within each 1-km grid cell.  
- Annual 1-km population (POP) data were downloaded from the LandScan Global database 
developed by Oak Ridge National Laboratory (https://landscan.ornl.gov/).  
- Elevation (ELE) data were sourced from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM) version 2 
(https://asterweb.jpl.nasa.gov/gdem.asp). From this database, to represent geographical 
topography, we calculated slope, aspect, hillshade (HS), roughness, and topographic position index 
(TPI) using ArcGIS 10.8 Spatial Analyst Tools. 
-  1-km resolution MODIS 16-day normalized difference vegetation index (NDVI) data 
(MOD13A2.061) were obtained to reflect vegetation surface changes.  
 
Recognizing the frequent occurrence of wildfires in the western United States, we also obtained 
fire point detection data from the Hazard Mapping System (HMS, 
https://www.ospo.noaa.gov/products/land/hms.html) at daily time resolution for years 2004 to 
2019. To integrate this dataset into our model, we applied Gaussian kernel density estimation to 

https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI
https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI
https://landscan.ornl.gov/


 
 

detected fires, generating daily spatially continuous fire intensity maps by estimating the density 
of fire points within a 1-km radius. The bandwidth was set automatically based on standard 
deviation and sample size of the data. 
 
3.6 Summary 
This section focused on data sources used for project. All datasets, their sources, resolutions, and 
preprocessing steps are summarized in Table 3.2. 
 
Table 3.2. Data sources used in this project and spatiotemporal information. 

Variable source Variable Abbreviation Spatia
l scale 

Tempora
l scale 

Time 
span  

Preprocess
ing method 

MODIS C61 
MAIAC aerosol 
product  
(MCD19A2) 

Aerosol optical depth AOD* 0.01°×
0.01° 

daily 2002
-
2019 

---- 

CMAQ EC EC_CMAQ 12×12 
km 

weekly 2002
-
2019 

IDW 
NH4 NH4_CMAQ 
NO3 NO3_CMAQ 
OC OC_CMAQ 
SO4 SO4_CMAQ 

Daymet  
(https://daymet.
ornl.gov/overvie
w) 

Day length DayL 1km daily 2002
-
2019 

 

Precipitation 
 

Shortwave SRAD 
Snow water 
equivalent 

SWE 

Maximum air 
temperature 

Tmax 

Minimum air 
temperature 

Tmin 

Water vapor pressure WVP 
Daily total radiation Trad Eq. S1 

gridMet 
(https://www.cli
matologylab.org
/gridmet.html) 

Precipitation amount 
 

0.0416
°×0.04
16° 

Daily 2000
-
2020 

IDW 
Maximum relative 
humidity 

Rmax 

Minimum relative 
humidity 

Rmin* 

Wind direction WD 
Mean vapor pressure 
deficit 

VPD 

Wind speed WS10M* 



 
 

MERRA-2 GMI  
"Daily Average 
Diagnostics"  
(https://acd-
ext.gsfc.nasa.go
v/Projects/GEO
SCCM/MERRA
2GMI) 

Total cloud area 
fraction 

CLDTOT* 0.5°×0
.625° 

Daily 2000
-
2020 

BR 

Planetary boundary 
layer height 

PBLH* 

Total precipitation PRECTOT* 
Surface air 
temperature 

TLML* 

Surface pressure PS* 
2-Meter eastward 
wind 

U2M 

2-Meter northward 
wind 

V2M 

National Land 
Cover Database 
(NLCD) 
(https://www.mr
lc.gov)  

Developed, Open 
Space and 
Low/Meduim/High 
Intensity land cover 

NLCD_D* 
   

Extracting 
fraction of 
each class 
based on 
area Deciduous forest, 

Evergreen Forest, 
Mixed Forest, and 
Shrub/Scrub  

NLCD_F* 

Herbaceous and 
Hay/Pasture 

NLCD_G* 

Woody wetlands and 
Emergent herbaceous 
wetlands 

NLCD_W* 

Primary, Secondary, 
Tertiary, and Thinned 
road land cover 

RD 

Urban impervious 
surfaces 

UMS     

ASTER DEM 
(https://doi.org/1
0.5067/ASTER/
ASTGTM.003) 

Elevation ELE* 30m ---- ---- Resampling 
Slope 

    
Spatial 
Analyst in 
ArcGIS 
10.8 based 
on 
elevation 

Aspect 
    

Hillshade HS* 
   

Roughness 
    

Topographic position 
index 

TPI* 
   

MODIS Terra 
16-day 
vegetation 

Normalized 
difference vegetation 
index 

NDVI* 1km 16-day 2002
-
2019 

 



 
 

product 
(MOD13A2.061
) 
LandScan 
Global 
(https://landscan
.ornl.gov/) 

Population density POP* 1km 1 years 2002
-
2019 

 

Hazard Mapping 
System Fire 
Detection 
(https://www.os
po.noaa.gov/pro
ducts/land/hms.
html) 

Active fire detection fireKD* Points Daily 2003
-
2019 

Kernel 
density 
estimation 

Trad =(srad (W/m2) × dayl (s/day)) / l,000,000; IDW: inverse distance weighted interpolation: BR: 
bilinear resampling. * indicates this variable is used for modeling total PM2.5. 
 
  



 
 

4. Effect of Incorporating MISR Fractional AOD on PM2.5 
Component Estimation 

 

4.1 Introduction 
Previous research has demonstrated the potential of MISR (Multi-angle Imaging 
SpectroRadiometer) fractional aerosol optical depth (AOD) to improve PM2.5 chemical component 
estimation by providing size-resolved aerosol properties linked to different chemical species (Meng 
et al., 2018a; Geng et al., 2020). MISR’s unique multi-angle viewing geometry allows retrieval of 
fractional AOD for multiple aerosol size bins, thereby offering additional microphysical 
information beyond bulk total AOD from other satellite instruments. Such information is 
particularly relevant for species discrimination, as it can help distinguish between sulfate-rich fine 
aerosols, coarse-mode dust, and carbonaceous particles. 
 
This section evaluates the influence of MISR fractional AOD on PM2.5 component modeling for 
the western United States during 2004–2019. We assessed MISR’s contribution both for (1) models 
developed only at locations and times where MISR fractional AOD is available (Section 4.3), and 
(2) gap-free high-resolution species modeling in which MISR data are combined with other 
predictors to fill missing coverage (Section 4.4). 
 
4.2 MISR Fractional AOD Data and Calculation Method 
The MISR instrument, aboard NASA’s Terra satellite, observes the atmosphere at nine along-track 
viewing angles in four spectral bands (blue, green, red, near-infrared). This multi-angle capability 
enables retrieval of aerosol microphysical properties, including fractional AOD for predefined 
aerosol components characterized by size, shape, and single-scattering albedo. 
 
In this study, we used the MISR Version 23 (V23) Aerosol Physical and Optical Properties product 
and focused on eight fractional AODs: AOD1, AOD2, AOD3, AOD6, AOD8, AOD14, AOD19, 
and AOD21. These correspond to aerosol components most relevant to dominant particle types in 
the western United States, such as sulfate-like fine aerosols, carbonaceous aerosols, and coarse-
mode dust. 
 
Fractional AOD values were calculated following Liu et al. (2007a, 2009): 
 
Fractional AODᵢ (i = 1–8)  
= (Σⱼ₌₁⁷⁴ α × AOD_mixtureⱼ × Fraction_component i in mixtureⱼ) / (No. of successful mixtures) 
 
where AOD_mixtureⱼ is the total AOD of mixture j at 558 nm, Fraction_component i in mixtureⱼ is 
the fractional contribution of component i to mixture j, and α = 1 if mixture j is successfully 
retrieved, otherwise α = 0. 



 
 

 
The calculated fractional AODs were reprojected and collocated to the 1-km modeling grid, and 
subsequently used in a series of experiments to evaluate their influence on PM2.5 component 
modeling. In these experiments, the fractional AODs were incorporated directly as predictors 
alongside meteorological, land cover, and other ancillary variables. 
 
4.3 PM2.5 Species Estimation Using MISR Fractional AODs 
For the MISR-available subset, two sets of species-specific models were developed: one including 
MISR fractional AOD variables and one excluding them, to evaluate the incremental contribution 
of MISR’s aerosol-type information. Both models used the same set of predictors to ensure a 
controlled comparison. Both models used the same non-MISR predictors, which comprised: 

• PM2.5 total mass concentration from the main component modeling framework (see Section 
6). 

• Meteorological variables: daily maximum temperature, snow water equivalent, vapor 
pressure, minimum relative humidity, planetary boundary layer height, total cloud area 
fraction, total precipitation, and horizontal wind components (U2M and V2M), as well as 
other atmospheric indicators derived from DayMet, gridMET, and MERRA-2. 

• Land-use and land-cover metrics: including fractions of selected National Land Cover 
Database (NLCD) classes such as open/developed areas, land cover changes, and 
vegetation indices (NDVI), and elevation. 

• Ancillary variables: day-of-year, and year. 
 
The details including data sources and preprocessing approaches are detailed in Section 3. 
Performance evaluation using 10-fold cross-validation (CV) is summarized in Table 4.1. Inclusion 
of MISR fractional AODs produced small but consistent gains for certain species. In sample-based 
CV, R² increased from 0.78 to 0.79 for SO₄²⁻, from 0.84 to 0.86 for NO₃⁻, and from 0.67 to 0.68 
for EC, while OC and DUST remained unchanged at 0.63 and 0.64, respectively. In site-based CV, 
which assesses spatial predictive skill, R² increased by 0.02 for SO₄²⁻ (0.68 to 0.70), NO₃⁻ (0.76 to 
0.78), EC (0.61 to 0.63), and DUST (0.46 to 0.48), with OC again showing no change (0.58). These 
results indicate that MISR fractional AODs enhance spatial discrimination of certain PM2.5 species, 
particularly those with distinct optical properties in MISR’s aerosol component set, though the 
magnitude of improvement remains modest given the strong baseline predictor set that already 
incorporates total PM2.5 concentration and multiple physical drivers. 
 
Table 4.1. The CV results of models with and without MISR fractional AODs as predictor across western U.S., 
2000-2020. 

Model Evaluation method SO₄²⁻ NO₃⁻ EC OC Dust 
Include MISR  Sample-based R2 0.79 0.86 0.68 0.63 0.64 

Site-based R2 0.70 0.78 0.63 0.58 0.48 
Exclude MISR  Sample-based R2 0.78 0.84 0.67 0.63 0.64 



 
 

Site-based R2 0.68 0.76 0.61 0.58 0.46 
 
4.4 Impact on gap-free, High-Resolution Modeling 
To assess MISR’s role in a gap-free, high-resolution daily species estimation framework, we 
designed two groups of experiments: 
(1). Combined-model approach: For MISR-available areas/dates, models used MISR fractional 
AODs together with the same other predictor set listed in Section 3.3; for MISR-unavailable 
areas/dates, models used CMAQ-simulated species concentrations together with the same predictor 
set. 
(2). CMAQ-only approach: For the entire study domain and all dates, models used CMAQ-
simulated species concentrations together with the same predictor set. 
 
Results for the 2004–2019 period (Table 4.2) show that the combined-model approach did not 
outperform the CMAQ-only approach. For example, for SO₄²⁻, the combined model achieved an 
R² of 0.82 with an RMSE of 0.29 μg/m³, compared to 0.83 and 0.28 μg/m³ for the CMAQ-only 
model. For NO₃⁻, both approaches achieved R² = 0.90 with RMSE differing by only 0.01 μg/m³ 
(0.57 vs. 0.56). Similar equivalence was observed for EC, OC, and dust. 
 
Table 4.2. Sample-based 10-fold CV results of models with and without MISR fractional AODs as predictors 

Model Metrics SO₄²⁻ NO₃⁻ EC OC Dust 
① Areas with MISR 
(MISR used as 
predictors) 

R2 0.80 0.86 0.66 0.65 0.67 
RMSE 0.36 0.68 0.34 1.49 0.80 
Sample No.  14716 14659 12604 12601 14599 

② Areas without 
MISR (CMAQ species 
used as predictors) 

R2 0.82 0.90 0.75 0.65 0.77 
RMSE 0.28 0.56 0.24 1.48 0.53 
Sample No.  236806 235851 211737 211625 235331 

Combined (①+②) R2 0.82 0.90 0.75 0.65 0.77 
RMSE 0.29 0.57 0.25 1.48 0.55 
Sample No. 251522 250510 224341 224226 249930 

Entire areas (CMAQ 
species used as 
predictors) 

R2 0.83 0.90 0.75 0.65 0.78 
RMSE 0.28 0.56 0.25 1.48 0.54 
Sample No.  251522 250510 224341 224226 249930 

 
The absence of performance gains is primarily due to MISR’s sparse observational coverage (<10% 
of daily samples across the study domain), which substantially reduces the effective sample size 
for the MISR-based portion of the combined model. Consequently, predictions in most of the 
domain are driven by the CMAQ-based model, and the limited MISR contribution does not 
materially change gap-free model accuracy. 
 



 
 

4.5 Summary 
In summary, MISR fractional AODs—derived from eight microphysically distinct aerosol 
components in the MISR V23 product—enhanced spatial predictive performance for SO₄²⁻, NO₃⁻, 
EC, and DUST in MISR-available samples when used together with total PM2.5 concentration and 
other meteorological and land surface predictors, improving sample-based CV R² by 0.01-0.02 for 
most species. However, their sparse spatiotemporal coverage (<10% of daily samples across the 
study domain) prevented these gains from improving gap-free, daily estimation. Consequently, 
MISR fractional AODs were excluded from the final gap-free, high-resolution species models in 
this project phase due to their limited contribution under current observational constraints. For 
future applications where continuous daily coverage is not required—such as episodic exposure 
assessments or validation studies—MISR fractional AODs may still provide valuable 
microphysical information for component discrimination. 
  



 
 

5. MAIAC AOD Imputation 
 

5.1 Introduction 
Producing accurate, high-resolution estimates of PM2.5 components requires complete daily PM2.5 
total mass data. This, in turn, depends on full-coverage aerosol optical depth (AOD) information 
because AOD is physically related to PM2.5: both measure aerosol loading in the atmosphere, and 
AOD captures the total column extinction of sunlight due to aerosols, which is strongly linked to 
surface-level PM2.5 through shared emission sources, transport, and removal processes. AOD is 
also available at a daily time step and fine spatial resolution (1 km), making it an essential input for 
our PM2.5 total mass modeling. However, these satellite aerosol retrievals contain large spatial and 
temporal gaps due to persistent cloud cover, snow, bright surfaces, and algorithm constraints. In 
the western U.S., more than half of daily grid cells lack valid retrievals (Fig 5.1). To ensure that 
PM2.5 total mass modeling has the required gap-free AOD inputs, this section focused on the 
development of an AOD imputation process for generating a complete, gap-free, high-resolution 
AOD dataset for 2000–2020.  

 
Figure 5.1. Spatial distribution of the availability proportion (%) of daily MAIAC AOD merged from Terra and 
Aqua observations across the western United States from 2002 to 2019.  

 
5.2 Data for Imputation 
The Multi-Angle Implementation of Atmospheric Correction (MAIAC) product provides high 
resolution (daily, 1-km) AOD retrievals from MODIS Terra and Aqua observations. We used the 



 
 

daily MAIAC AOD product (MCD19A2, Collection 6.1) from MODIS Terra and Aqua as the 
dependent variable in our imputation models. To maximize observational coverage, same-day Terra 
and Aqua retrievals were merged using a linear regression approach, following previous studies. 
The resulting merged MAIAC AOD dataset still contained gaps but provided greater coverage than 
either satellite alone. Figure 5.2 shows the spatial distribution of the multi-year mean merged 
MAIAC AOD across the western United States.  

 
Figure 5.2. Spatial distribution of daily mean MAIAC AOD merged from Terra and Aqua observations across 
the western United States from 2000 to 2020. 

For imputing missing MAIAC AOD values, we used multiple publicly available datasets as 
explanatory variables. These included satellite aerosol products, reanalysis meteorological fields, 
and static geophysical data, each with defined spatial and temporal resolutions. Aerosol data:  
 MERRA-2 GMI AOD from the 'Aerosol Diagnostics' product (~0.5° × 0.625° spatial 

resolution, daily). 
 Meteorological data (from MERRA-2 GMI 'Daily Average Diagnostics'): 

  - 2-m air temperature (daily, ~0.5° × 0.625°) 
  - 2-m specific humidity (daily, ~0.5° × 0.625°) 
  - 2-m eastward wind component (u-wind, daily, ~0.5° × 0.625°) 
  - 2-m northward wind component (v-wind, daily, ~0.5° × 0.625°) 
  - Total cloud fraction (daily, ~0.5° × 0.625°) 

 Land surface and geophysical data: 
  - NDVI from MODIS/Terra vegetation indices (MOD13A2), 1 km resolution, 16-day 
interval; monthly composites were used. 



 
 

- Elevation from ASTER GDEM (30 m native resolution, aggregated to 1 km). 
  - Longitude and latitude of each 1-km grid cell centroid. 
  - Time index (continuous daily count from the start of the study period). 

The data sources and preprocess are detailed in Section 3. 
 
5.3 Modeling Approach and Validation 
The overall methodologies followed previous studies (He et al. 2023a; Li et al. 2020). 
Previous studies have shown that monthly AOD patterns are promising predictors for representing 
the spatial and long-term trends of AOD variability in high-resolution imputation (Li et al., 2020). 
Therefore, where available, the monthly mean MAIAC AOD was included as a predictor to provide 
additional context on broader temporal patterns. This variable was only available for pixels meeting 
the >50% valid-day criterion within a given month. Two model branches were therefore 
implemented: 
(1). mAOD models — used for grid cells with valid monthly MAIAC AOD, including 12 predictors 
(MERRA-2 GMI AOD, meteorological variables, NDVI, elevation, coordinates, time index, and 
monthly MAIAC AOD). 
(2). non-mAOD models — used for grid cells without valid monthly MAIAC AOD, excluding the 
monthly AOD predictor. 
 
We applied a spatiotemporal random forest modeling approach for each day from 2000 to 2020. A 
time-stratified sampling method was employed to help each imputation model capture short-term 
variations in AOD. The model was trained on the 1 km × 1 km grid using three rolling-day samples, 
with the middle day as the target day. A temporal dummy variable, coded as [1, 2, 3], was used to 
indicate the position of each day within the three-day window. We did not use a larger wind since 
previous study tested models using five- and seven-day rolling windows (with the third or fifth day 
as the target), but sensitivity analyses showed that these did not improve performance and increased 
computation time.  
 
Approximately 20% of valid daily merged MAIAC AOD retrievals were withheld for hold-out 
validation, ensuring that performance metrics reflected the ability of the models to generalize to 
unseen data.  
 
5.4 Results 
The AOD imputation models performed well throughout the 2000–2020 period. In hold-out 
validation, the correlation coefficient (r) between predicted and observed MAIAC AOD ranged 
from 0.861 to 0.997, with an average of 0.938 (Fig. 5.3). These results demonstrate that the model 
accurately reconstructed daily AOD patterns across diverse spatial and temporal contexts. 
 



 
 

 
Figure 5.3. Time series of validated R2 of AOD imputation models from 2000 to 2020. 

 
Spatially, the imputed full-coverage AOD fields closely matched the original merged MAIAC 
retrievals where available, while filling in large areas with missing data due to cloud cover, snow, 
or retrieval algorithm limitations. Figure 5.4 compares the merged MAIAC retrievals and our 
imputed full-coverage AOD for a representative day. This comparison illustrates that our 
imputation process effectively extends the original retrievals to produce a continuous, high-
resolution dataset, while preserving the fine-scale spatial structure of aerosol distributions. 

 
Figure 5.4. Terra-Aqua merged AOD (left) and modeled full-coverage AOD (right) on 02 Jan. 2016. 

 
To construct the final fused AOD dataset, we began with the merged MAIAC retrievals and 
replaced all missing values with their corresponding imputed estimates. This ensured that observed 
retrievals were preserved where available, and modeled values were only used to fill gaps. The 
resulting fused dataset provides a complete, daily 1-km AOD time series for the entire 2000–2020 
period (Fig. 5.5), forming a consistent and physically meaningful satellite-based predictor for 
subsequent PM2.5 total mass modeling. 



 
 

 
Figure 5.5. Spatial distribution of imputed full-coverage AOD across the western United States from 2000 to 
2020. 

 
5.5 Summary 
While MAIAC AOD retrievals remain incomplete, they are far more abundant than surface PM2.5 
observations. This makes AOD imputation inherently easier than PM2.5 total mass modeling 
(achieving higher modeling R2 of 0.861-0.997 in Fig. 5.3), as the model can be trained on a much 
larger number of valid samples. In contrast, PM2.5 total mass modeling is limited by the relatively 
small number of ground-based measurements, which constrains the model’s ability to learn detailed 
spatial and temporal patterns. Through the integration of multi-source aerosol, meteorological, and 
geophysical data in a spatiotemporal random forest framework, we generated a gap-free, daily 1-
km MAIAC AOD dataset for 2000–2020 across the western United States. The inclusion of both 
spatial and temporal context, along with monthly AOD climatology where available, enabled the 
model to achieve high accuracy in hold-out validation while maintaining the observed spatial and 
temporal variability of AOD. This fused AOD dataset, combining observed MAIAC retrievals with 
model-imputed values to ensure complete coverage, served as a critical input to the PM2.5 total 
mass modeling in this project. By providing continuous, high-resolution aerosol information over 
two decades, the dataset supports more accurate and consistent estimation of PM2.5 total mass and 
its chemical components, enabling robust assessments of spatial patterns, temporal trends, and 
potential exposure risks. 
 
 
  



 
 

6. PM2.5 Component Modeling during 2002-2019 
 

6.1 Introduction 
The major components of PM2.5 exhibit substantial differences in their formation mechanisms, 
emission sources, and atmospheric lifetimes, which lead to strong spatiotemporal heterogeneity. 
Accurately estimating their concentrations requires integrating multiple data sources and advanced 
spatiotemporal modeling techniques. As discussed in Section 2, it is necessary to first obtain gap-
free daily PM2.5 total mass estimates at high spatial resolution to help the model quantify the 
spatiotemporal variability of major PM2.5 components. In this section, we first generated daily, 1-
km total PM2.5 concentrations across the western United States as a foundational predictor for 
modeling five components. Our component modeling approach therefore followed a two-stage 
framework: first estimating total PM2.5 from satellite-derived aerosol optical depth (AOD), 
meteorology, and land cover data, and then using these estimates with CMAQ outputs and 
additional meteorological variables, and geographical features to predict individual components. 
Since we only obtain CMAQ-speciated outputs from 2002 to 2019, this section models components 
from this period.  The predictor data, estimation modeling approach, evaluation method and 
modeling results and discussions are shown in this section. 
 
6.2 Data and Preprocessing 
The modeling relied on multiple datasets (Section 3 and Table 3.1), harmonized to a 1-km 
resolution across the 2002–2019 study period. PM2.5 and speciated component measurements were 
obtained from CSN, IMPROVE, and CASTNET networks (Fig. 3.1), with CSN and IMPROVE 
data used for model training/validation and CASTNET reserved for independent evaluation of 
SO₄²⁻ and NO₃⁻ estimates. Measurement harmonization steps included adjustments for EC and OC 
differences between networks, and calculation of DUST from elemental composition following 
IMPROVE protocols. 
 
Satellite AOD was derived from the MODIS MAIAC product and gap-filled to full coverage using 
a random forest–based imputation approach (detailed in Section 5). CMAQ simulations provided 
weekly speciated PM2.5 concentrations at 12-km resolution, interpolated to 1 km. Additional 
meteorological data were drawn from DayMet, gridMET, and MERRA-2 GMI; land cover and 
population from NLCD and LandScan; and topographic metrics from ASTER GDEM. Wildfire 
activity was represented using daily HMS detections processed with kernel density estimation. 
 
6.3 Modeling PM2.5 Components 
The modeling framework is outlined in Fig. 6.1 and detailed below. 



 
 

 
Figure 6.1. Modeling framework of high-resolution PM2.5 constituent modeling. 

 
6.3.1 AOD-based Total PM2.5 Estimation 
Our approach for modeling total PM2.5 mass concentrations (PM2.5_est) was to train annual 
XGBoost models on the daily PM2.5 concentrations measured at EPA monitoring sites with imputed 
AOD as the primary predictor, alongside meteorological and land cover covariates. XGBoost 
(Extreme Gradient Boosting) (Chen and Guestrin 2016) is an efficient and scalable implementation 
of gradient boosting decision trees, widely used for structured data modeling due to its high 
predictive accuracy, ability to handle missing data, and built-in regularization to prevent overfitting. 
Unlike the deep learning algorithm employed for component modeling, XGBoost was chosen here 
for its computational efficiency in handling large datasets while maintaining comparable model 
performance. The dataset for total PM2.5 was approximately ten times larger than that of an 
individual PM2.5 component due to the EPA sampling schedule. Our preliminary analyses using 
convolutional neural networks and insights from previous studies (Yang et al. 2022) indicated that 
deep learning models would not yield significantly better predictions but would substantially 
increase computational costs. Additionally, preliminary analyses indicated that training models on 
annual data outperformed a single multi-year model, likely because yearly models better account 
for year-specific trends and intra-annual variations in emissions, meteorology, and other 
influencing factors. To mitigate edge effects caused by the spatial boundaries of PM2.5 estimates, 
we expanded the PM2.5 modeling area beyond the study region, including entire states along the 



 
 

western edge of the study domain (Fig. 3.2). The model incorporates 18 variables detailed in Table 
3.1: the imputed gap-free, 1 km AOD; seven meteorological parameters; and 10 auxiliary variables. 
Since the HMS fire data were only available from April 2003 onward, the fire density variable was 
included only in annual models for 2004–2019. We also added an indicator variable for day of the 
year to help capture day-to-day variations. We also constructed a temporal dummy variable, day of 
year, to indicate the seasonal variations in the data. 
 
A Bayesian optimization approach was used to tune five key hyperparameters for each model: 
n_estimators, max_depth, learning_rate, subsample, and colsample_bytree. To mitigate overfitting, 
optimal hyperparameters were selected based on spatial cross-validation performance. 
Additionally, early stopping was implemented during training using a 30% validation subset, 
terminating training when validation performance no longer improved. Final model performance 
was assessed using 10-fold cross-validation. The XGBoost for total PM2.5 yielded a 10-fold CV R² 
of 0.81 and an RMSE of 3.43 μg/m3 across the study period (Fig. 6.2). These results indicate that 
total PM2.5 mass concentration estimates (referred to as PM2.5est hereafter) align well with 
monitoring measurements, thus providing confidence in their use as a predictor in PM2.5 component 
models. 

 
Figure 6.2. Sample-based 10-fold cross validation results for PM2.5 total mass concentration modeling. 

 



 
 

6.3.2 Feature Selection 
We applied Pearson correlation analysis to remove redundant predictors with high intercorrelation 
(|r| > 0.6 for meteorological/geographical variables and |r| > 0.8 for CMAQ outputs) but weak 
correlation with observed component concentrations. This process resulted in 21 predictors in the 
models for SO₄²⁻, NO3−, OC, and DUST, and 20 predictors for EC. The predictors included: five 
CMAQ species outputs, 17 meteorological variables, and five geographical features. The specific 
predictor variables used for each model are provided in Table 6.1. 
 
Table 6.1. The final set of features used for each component modeling and their correlations with ground-level 
observations. 

Category 

Feature 

SO₄²⁻ 

obs Feature 

NO₃⁻ 

obs Feature 

EC 

obs Feature 

OC 

obs Feature 

DUST 

obs 

Total PM2.5 PM2.5 est 0.467 PM2.5 est 0.636 PM2.5 est 0.716 PM2.5 est 0.728 VPD 0.416 

CMAQ SO4_CMAQ 0.596 NO3_CMAQ 0.606 EC_CMAQ 0.576 EC_CMAQ 0.347 SO4_CMAQ 0.200 

NH4_CMAQ 0.413 EC_CMAQ 0.416 NO3_CMAQ 0.357 OC_CMAQ 0.305 EC_CMAQ 0.095 

EC_CMAQ 0.336 SO4_CMAQ 0.225 OC_CMAQ 0.251 NO3_CMAQ 0.214 OC_CMAQ 0.065 

OC_CMAQ 0.186 OC_CMAQ 0.158 SO4_CMAQ 0.231 SO4_CMAQ 0.155 NH4_CMAQ 0.059 

Meteo-

rological  

& geo-

graphical 

variables 

Tmin 0.369 NLCD_D 0.352 NLCD_D 0.454 NLCD_D 0.254 PM2.5 est 0.309 

ELE -0.288 ELE -0.247 ELE -0.236 TLML 0.185 SRAD 0.296 

NLCD_D 0.278 PBLH -0.194 WS10M -0.162 ELE -0.158 PBLH 0.283 

Trad 0.246 WS10M -0.158 Tmax 0.137 WS10M -0.140 CLDTOT -0.189 

CLDTOT -0.167 DayL -0.125 PBLH -0.109 CLDTOT -0.086 PRECTOT -0.144 

WS10M -0.164 NDVI -0.090 NLCD_G -0.097 Rmin -0.082 NLCD_D 0.140 

PRECTOT -0.151 NLCD_G -0.072 DayMet_swe -0.081 PRECTOT -0.074 NDVI -0.122 

Rmin -0.135 PRECTOT -0.065 PRECTOT -0.073 SWE -0.073 V2M 0.083 

SWE -0.102 SWE -0.060 U2M -0.060 NDVI 0.059 U2M 0.077 

V2M 0.074 Rmin 0.060 WVP 0.056 Trad 0.055 NLCD_G -0.061 

PBLH 0.062 NLCD_W -0.049 CLDTOT -0.052 U2M -0.051 WVP 0.061 

NDVI -0.054 Tmin 0.020 NLCD_W -0.050 PBLH -0.044 SWE -0.054 

NLCD_G -0.048 U2M -0.018 WD -0.035 NLCD_G -0.043 ELE -0.051 

NLCD_W -0.044 WD -0.012 NDVI -0.030 NLCD_W -0.031 WS10M -0.024 

U2M 0.020 CLDTOT -0.010 V2M -0.025 V2M -0.027 NLCD_W -0.020 

WD -0.004 V2M -0.010   WD -0.008 WD 0.001 

 
6.3.3 Spatiotemporal deep-forest model for PM2.5 Component estimation 
Our PM2.5 component estimation framework employs a spatiotemporal deep-forest model. Deep 
forest (Zhou and Feng 2019) is a decision tree-based deep learning algorithm having a layered 
structure of decision forests. This approach merges the benefits of traditional ensemble methods, 
like random forests, with a multi-level hierarchical design. Unlike neural network-based deep 



 
 

learning models, which often demand extensive hyperparameter tuning, deep forest delivers strong 
predictive performance with much less tuning required. Given the substantial heterogeneity in 
PM2.5 components due to their complex sources and variations relative to total PM2.5, along with 
the high computational demands posed by the large spatial domain, the long study period, and the 
high spatiotemporal resolution, we employed deep forest for its powerful, effective, and efficient 
data-mining capabilities. Comparisons with other models, including random forest and related 
ensemble methods, are provided in Section 6.5.2. To enhance the model’s spatial and temporal 
predictive power, we constructed additional spatiotemporal heterogeneity features, obtaining the 
spatiotemporal deep-forest model. Spatial constructed features included Haversine distances—
which measure the great-circle distance between two points on a sphere based on their latitude and 
longitude—from each grid cell to the upper-left (HavdLU), upper-right (HavdRU), lower-left 
(HavdLD), lower-right (HavdRD), and central points (HavdC) of the study region (see the detailed 
equations for those constructed features in previous studies (Wei et al. 2020). Temporal variability 
was accounted for by including the year and day of the year (DOY) as additional features. 
 
We trained a spatiotemporal deep-forest model for each PM2.5 component using measured PM2.5 
component concentrations from the CSN and IMPROVE networks as the dependent variables and 
AOD-derived PM2.5 and CMAQ speciation outputs as the primary predictors, along with 
meteorological variables and geographical features. Each PM2.5 component model was trained on 
samples from all years combined, rather than individually for each year, as the sample size from a 
single year was insufficient to build a robust model. The hyperparameters were automatically 
adjusted by the built-in self-adaptive mechanism during training (Zhou and Feng 2019).  
 
6.3.4 PM2.5 Component Modeling Evaluation 
Model evaluation employed random (sample-based), spatial (site-based), and temporal (day-based) 
10-fold CV (Table 6.2). For each CV type, all samples, sites, or days were randomly and equally 
divided into 10 subsets. In each iteration, data from 9 subsets were used for model training, while 
the remaining subset was used for validation. This process was repeated 10 times to ensure that all 
subsets were used for validation (see Table S4 for a summary of the three CV types). To assess 
model accuracy, we calculated the coefficient of determination (R²), root-mean-square error 
(RMSE), and mean absolute error (MAE) by comparing the model estimates (predictions) to the 
observed measurements. Additionally, to comprehensively assess model outputs, we used weekly 
measurements from the CASTNET network to independently validate SO₄²⁻ and NO3− estimates. 
Daily estimates were averaged across the start and end days of the CASTNET sampling window 
(i.e., “DayON” and “DayOFF” fields) to obtain weekly-aggregated data. These three statistical 
indicators were calculated both for all estimate-measurement pairs and specifically for pairs at 
CASTNET sites not located near CSN and IMPROVE networks. 
 
Table 6.2. Summary of CV methods for constituent model validation. 

CV  approach Description 



 
 

Random CV or sample-
based 10-fold CV 

Site-day samples were randomly divided into 10 folds, with 9 folds used for model 
training and the remaining fold used for validation. 

Spatial CV or site-based 
10-fold CV 

Site-day samples were randomly grouped into 10 folds based on site ID, with 9 folds 
used for model training and the remaining fold used for validation. 

Temporal CV or day-
based 10-fold CV 

Site-day samples were randomly grouped into 10 folds based on date, with 9 folds used 
for model training and the remaining fold used for validation. 

 
6.3.5 Model Interpretation Using SHAP 
To interpret model predictions, Shapley Additive Explanations (SHAP) were applied, quantifying 
the magnitude and direction of each predictor’s contribution (Figs. 3, S8). PM2.5_est consistently 
ranked as the most influential predictor across all components, followed by the corresponding 
CMAQ species output and key meteorological variables such as temperature, planetary boundary 
layer height, and vapor pressure deficit. 
 
6.4 Results and Discussions 
6.4.1 Descriptive Statistics of Modeling Data 
Descriptive statistics of the concentrations measured at CSN and IMPROVE networks in the 
western United States from 2002 to 2019 are summarized in Table 6.3. The 18-year average 
concentrations across the study region were 0.67, 0.62, 0.25, 1.19, and 0.77 µg/m³ for SO₄²⁻, NO₃⁻, 
EC, OC, and DUST, respectively. Over time, concentrations exhibited decreasing trends, declining 
from 0.86, 0.91, 0.36, 1.66, and 0.96 µg/m³ in 2002 to 0.48, 0.49, 0.26, 0.91, and 0.64 µg/m³ in 
2019. In addition, the southwestern United States experienced relatively higher pollution levels, 
particularly in California, where NO₃⁻concentrations were approximately five times higher, and the 
other four components were 1.5 to 2 times higher compared to the northwest. 
 
Table 6.3. Descriptive statistics of PM2.5 component observations from CSN and IMPROVE networks in western 
United States from 2002 to 2019. 

Year SO₄²⁻ NO₃⁻ EC 
 

OC 
 

DUST 
Ave Std Ave Std Ave Std Ave Std Ave Std 

2002 0.86 0.88 0.91 2.67 0.36 0.64 1.66 3.42 0.96 1.46 
2003 0.81 0.80 0.72 1.87 0.36 0.58 1.60 3.05 0.83 1.48 
2004 0.88 1.02 0.85 2.25 0.35 0.59 1.39 2.51 0.76 1.07 
2005 0.90 0.97 0.79 2.24 0.41 0.66 1.41 2.15 0.70 1.13 
2006 0.77 0.79 0.70 2.00 0.39 0.67 1.43 2.35 0.85 1.19 
2007 0.81 0.85 0.78 2.27 0.23 0.51 1.16 2.23 0.82 1.25 
2008 0.76 0.70 0.63 1.69 0.20 0.43 1.11 2.53 0.89 1.36 
2009 0.72 0.70 0.65 1.79 0.22 0.55 1.09 2.59 0.84 1.20 
2010 0.61 0.58 0.54 1.44 0.14 0.26 0.74 1.27 0.74 1.27 
2011 0.65 0.60 0.56 1.67 0.15 0.28 0.82 1.60 0.71 1.19 
2012 0.62 0.54 0.50 1.38 0.16 0.33 1.01 2.46 0.89 1.28 



 
 

2013 0.61 0.55 0.63 2.04 0.14 0.28 0.81 1.55 0.74 1.17 
2014 0.55 0.51 0.51 1.63 0.13 0.24 0.77 1.31 0.76 1.17 
2015 0.53 0.48 0.49 1.42 0.14 0.33 1.04 2.52 0.62 0.83 
2016 0.45 0.47 0.42 1.25 0.18 0.35 0.95 1.55 0.65 0.88 
2017 0.50 0.47 0.47 1.50 0.26 0.63 1.60 4.68 0.67 0.93 
2018 0.48 0.46 0.52 1.53 0.30 0.69 1.52 4.01 0.80 1.12 
2019 0.48 0.45 0.49 1.27 0.26 0.44 0.91 1.06 0.64 0.96 
18 yrs 0.67 0.70 0.62 1.82 0.25 0.51 1.19 2.60 0.77 1.18 

 Ave and Std represent the mean and standard deviation, respectively. 
 
6.4.2 PM2.5 Component Modeling Results 
6.4.2.1 Cross-validation results 
Across the five PM2.5 components, there was a total of 255,691 to 283,206 site- and day-specific 
samples. Figure 6.3 presents the daily random, spatial, and temporal CV results for the five PM2.5 
components, along with maps showing model R2 and RMSE at each monitoring site based on the 
random CV results. Generally, the daily estimates aligned well with ground-level measurements, 
showing high sample-based CV R² values of 0.81, 0.89, 0.75, 0.66, and 0.75 and low RMSE values 
of 0.30, 0.59, 0.26, 1.52, and 0.59 μg/m³ for SO4

2−, NO3
−, EC, OC, and DUST, respectively. 

Approximately 78%, 63%, 66%, 82%, and 51% of stations demonstrated strong correlations with 
ground-level measurements, as indicated by random CV R² values exceeding 0.6 (Fig. 6.3b). 
Spatial and temporal CV results reveal similar error patterns as the random CV, though with 
decreased performance, particularly in spatial CV, where R² values dropped to 0.76, 0.85, 0.65, 
0.60, and 0.61 for the five components (Fig. 6.3a). We aggregated the three types of CV results 
over time for the five species. As shown in Table 6.4, the monthly- and yearly-aggregated CV 
results indicate that uncertainties in components estimates significantly decrease when estimates 
are aggregated: at the monthly scale, R² values increased (RMSE decreased) to 0.89–0.97 (0.11–
0.64 µg/m³) for random CV, 0.70–0.93 (0.20–0.95 µg/m³) for spatial CV, and 0.89–0.97 (0.11–
0.64 µg/m³) for temporal CV. 



 
 

 
 
Figure 6.3. Validation results for PM2.5 components models: (a) Scatterplots showing 10-fold CV results using 
random (sample-based), spatial (site-based), and temporal (day-based) partitions; (b) Spatial maps depicting the 
model performance (R2 and RMSE) based on daily PM2.5 component estimates compared to observations at 
each monitoring site over the period 2002–2019. 

 
Table 6.4. Summary statistics of time-aggregated validation results for constituent modeling  

10-fold cross-validation 
CV type Metric Monthly (Grid cell-month pairs) Yearly (Grid cell-year pairs) 

SO4
2− NO3

− EC OC DUST SO4
2− NO3

− EC OC DUST 
Random R2 0.95 0.97 0.94 0.89 0.91 0.95 0.99 0.98 0.97 0.97 

RMSE 0.13 0.25 0.11 0.64 0.27 0.10 0.10 0.05 0.20 0.12 
MAE 0.08 0.10 0.04 0.19 0.15 0.04 0.05 0.02 0.11 0.08 

Spatial R2 0.88 0.93 0.80 0.76 0.70 0.90 0.95 0.85 0.83 0.72 
RMSE 0.20 0.42 0.20 0.95 0.49 0.15 0.26 0.15 0.52 0.36 
MAE 0.11 0.19 0.09 0.37 0.28 0.08 0.14 0.08 0.30 0.22 

Temporal  R2 0.94 0.97 0.94 0.89 0.89 0.94 0.99 0.98 0.97 0.97 
RMSE 0.14 0.27 0.11 0.64 0.29 0.12 0.10 0.05 0.21 0.13 



 
 

MAE 0.08 0.11 0.05 0.20 0.16 0.04 0.05 0.03 0.11 0.08 
Pair size 32646 32350 28513 28501 32486 2814 2781 2454 2453 2796 

CASTNET-based independent validation at yearly level 

Metric R2 RMSE MAE 
 

Metric R2 RMSE MAE 
 

Pair size 
SO4

2− 0.81 0.09 0.06 
 

NO3
− 0.78 0.16 0.10 
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The regression lines between model estimates and observed concentrations from the three cross-
validation approaches suggest minor underestimation, particularly for SO₄²⁻ and NO₃⁻, with slopes 
of 0.81 and 0.88, respectively. The magnitudes of these slopes are comparable to those reported in 
other PM component modeling studies (Liu et al. 2022). To further assess whether the potential 
underestimation affects the fraction of total PM2.5 mass captured by the model, we compared the 
sum of our final predictions for the five targeted species with both (1) the sum of their observed 
concentrations (Fig. 6.4(a)) and (2) the total PM2.5 mass measured at monitoring sites (Fig. 6.4(b)). 
For reference, we also compared total PM2.5 observations with the sum of the five component 
observations, which yielded an R2 of 0.92, RMSE of 2.66 µg/m³, and a regression slope of 0.66 
(Fig. 6.4(c)). Our predicted component sum showed strong agreement with the observed component 
sum (R² = 0.98, RMSE = 0.62 µg/m³, slope = 0.99), and tracked total PM2.5 concentrations with 
comparable accuracy to the observed component sum (R² = 0.91 vs. 0.92, RMSE = 2.66 µg/m³ and 
slope = 0.66 in both cases), indicating that the model captures the expected fraction of total PM2.5 
accounted for by the five major components. These results indicate that the minor underestimation 
observed in individual species does not compound when components are aggregated, suggesting 
that our component models do not systematically underpredict total component mass. 

 
Figure 6.4. Scatterplots showing (a) observed vs. predicted sum of the five targeted PM2.5 components, (b) 
observed total PM2.5 mass vs. predicted sum of the five targeted components, and (c) observed total PM2.5 mass 
vs. observed sum of the five targeted components. 

 
6.4.2.2 Independent validation results 
Figure 6.5 presents the independent validation results of daily SO₄²⁻ and NO3

− estimates against 
CASTNET measurements. For all estimate-measurement comparisons, including at CASTNET 
sites near (>25 km) CSN and IMPROVE locations, our estimates show good agreement, with R² 
and RMSE values of 0.89 and 0.19 µg/m³ for SO₄²⁻ and 0.62 and 0.34 µg/m³ for NO3

−, respectively 
(Fig. 6.5a). When considering only sites located at least 25 km from CSN and IMPROVE locations, 
our estimates still demonstrate reasonable agreement, with R² and RMSE values of 0.74 and 0.17 



 
 

µg/m³ for SO₄²⁻ and 0.43 and 0.36 µg/m³ for NO3
− (Fig. 6.5b). Time series plots of weekly estimates 

and measurements at selected monitoring sites—located at least 25 km from a CSN or IMPROVE 
site and spanning all study years—show similar temporal patterns, with a strong correlation 
(r=0.85) for SO₄²⁻ (Fig. 6.5c) and a lower correlation for NO3

− (r = 0.42). Compared to SO₄²⁻, the 
lower performance observed for NO3

− is primarily attributed to the greater discrepancies between 
CASTNET and CSN/IMPROVE measurements for this species. Since CASTNET data were not 
used for model training, inter-network differences likely contribute to the weaker validation results. 
The observed inter-network correlation coefficients are 0.92 for SO₄²⁻ and 0.83 for NO3

−, indicating 
larger inconsistencies for NO3−. Additionally, the lower model performance for NO3

− is partially 
due to its lower ambient concentrations (0.19 µg/m³ for NO₃⁻ vs. 0.44 µg/m³ for SO₄²⁻ in screened 
observations), which increases relative uncertainty in both measurements and estimates. At lower 
concentrations, the signal-to-noise ratio diminishes, making small deviations more impactful on 
correlation metrics. At the annual aggregated scale, observed and predicted concentrations exhibit 
strong agreement, with R² increasing to 0.81 for SO₄²⁻ and 0.78 for NO3

− and RMSE decreasing to 
0.09 µg/m³ and 0.16 µg/m³, respectively (Table 6.4). Overall, together with the CV results 
presented in Section 6.4.2.1, the validation results demonstrate that our PM2.5 components models 
robustly capture long-term variations in SO₄²⁻ and NO₃⁻ concentrations across diverse spatial 
contexts. 



 
 

 
Figure 6.5. Scatterplots comparing observed and estimated PM2.5 component concentrations (a) at all CASTNET 
monitoring sites and (b) at sites 25-km distant from CSN and IMPROVE networks; (c) Time series of observed 
versus estimated component concentrations at CASTNET sites located at least 25 km from CSN and IMPROVE 
networks. 

 
6.4.3 PM2.5 Component Modeling Results 
In Fig. 6.6, we present the SHAP values to illustrate both the local and average contributions of 
each predictor to each PM2.5 component. The predicted daily, high-resolution PM2.5 total mass 
consistently ranked first, showing the highest average contribution across all monitoring stations 
over the 18-year study period. Its SHAP values were generally positive at higher PM2.5 levels, 
indicating a strong positive influence. This was followed by the CMAQ species output 
corresponding to the target component; for example, the SO₄²⁻PM2.5 concentration from CMAQ 
ranked second. Meteorological parameters—especially temperature and planetary boundary layer 
height (PBLH)—are important predictors for mapping high-resolution PM2.5 component 
concentrations. Typically, temperature is particularly important for the SO₄²⁻ and OC components, 
where it is the most influential meteorological variable, ranking third and sixth in SHAP 
contributions, respectively. PBLH is the most important meteorological predictor for NO₃⁻ and EC, 



 
 

ranking fourth for both. VPD is especially important for the DUST component, with the second-
highest SHAP contribution. 

 
Figure 6.6. Local contribution of each predictor to each PM2.5 component, quantified using the SHAP method. 
Colors range from red to blue, representing high to low normalized values of each predictor, respectively. The 
full names corresponding to each abbreviation are detailed in Section 3 and also summarized in Table 3.1. 

 
6.5 Comparisons and advantages of the proposed PM2.5 component modeling 
6.5.1 Comparisons with prior studies 
We developed a spatiotemporal deep-forest model that produces the first PM2.5 component dataset 
for the western United States with both fine spatial (1 km) and temporal (daily) resolution over an 
extended period (2002–2019). The performance of our component models is superior to, or at least 
comparable with, those of existing models used in the U.S (Table 6.5). For example, the hybrid 
geoscience-statistical model by Donkelaar et al. (2024) reported 10-fold CV R2 values of 0.77, 0.76, 
and 0.48 for SO₄²⁻, NO₃⁻, and DUST, respectively, at the bi-weekly level over North America. 
Similarly, the ensemble machine-learning models by Amini et al. (2022) achieved test R² values of 
0.86–0.96 for SO₄²⁻, NO₃⁻, EC, and OC at a coarser temporal resolution of the annual level across 
the U.S. Geng et al. (2020) predicted daily ground-level PM2.5 SO₄²⁻, NO₃⁻, OC, and EC 
concentrations in California at a 1-km spatial resolution, reporting out-of-bag R2 values of 0.72, 
0.70, 0.68, and 0.70, respectively. Di et al. (2016) applied a backpropagation neural network to 
predict PM2.5 components at a 1 × 1 km resolution in the northeastern United States, achieving R2 
values around 0.70–0.80 for individual components. By comparison, even when modeling across 
the western United States—a region where previous studies have typically reported lower modeling 
accuracy (Donkelaar et al. 2019), our model produced estimates with simultaneously high spatial 
and temporal resolution (daily, 1-km resolution) and demonstrated improved accuracy at both the 
daily (CV R2 = 0.66–0.89; Fig. 6.3) and annual levels (CV R2 = 0.95–0.99; Table 6.4). Given 
differences in validation methods, modeling domains, and study periods between our work and 
prior studies, we find that our model is at least comparable in terms of estimation performance 
alone, though we while not claiming it definitively outperforms them. 
 
Table 6.5. Comparison of PM2.5 component modeling studies conducted in the United States 



 
 

Study Spatial 

Resolution 

Temporal 

Resolution 

Geographic 

Coverage 

Time Span Notes 

Donkelaar et al. 

(2024) 

1-km Bi-weekly North 

America 

2000-2022 10-fold CV R²: SO₄²⁻ (0.77), NO₃⁻ 

(0.76), DUST (0.48) 

Amini et al. 

(2022) 

50-m for 

urban, 1-km 

for rural 

Annual United States 2000-2019 Test R²: 0.86–0.96 for SO₄²⁻, NO₃⁻, 

EC, OC 

Geng et al. 

(2020) 

1 km Daily California 2005-2014 Out-of-bag R²: SO₄²⁻ (0.72), NO₃⁻ 

(0.70), OC (0.68), EC (0.70) 

Di et al. (2016) 1 km Daily Northeastern 

United States 

2000-2010 R² ≈ 0.70–0.80 for individual 

components 

Meng et al. 

2018a 

4.4 km Daily (global revisit 

every 9 days) 

Southern 

California 

2001–2015 GAMs explained 55–66% daily 

variability for SO₄²⁻, NO₃⁻, OC, EC 

Meng et al. 

2018b 

0.25º × 0.3125º Daily Conterminous 

United States 

2005–2015 Random forest; OOB R²: SO₄²⁻ (0.86), 

NO₃⁻ (0.82), OC (0.71), EC (0.75) 

Our study 1 km Daily Western 

United States  

2002–2019  Spatiotemporal deep-forest: 

random CV R2: SO₄²⁻ (0.81), NO₃⁻ 

(0.89), EC (0.75), OC (0.66), DUST 

(0.75); 0.95–0.98 at the annual level  

 
6.5.2 Advantages and comparisons with other machine-learning models 
A key reason for the improved performance of our species-level models lies in the physical and 
chemical relevance of the predictors, particularly the inclusion of total ground-level PM2.5 mass 
concentrations (PM2.5_est). PM2.5 is a chemically complex mixture composed of multiple species, 
and its total mass often covaries with these components through shared emission sources and 
atmospheric transformation processes (Hand et al. 2014). The high-resolution PM2.5_est, derived 
from satellite AOD and calibrated using an extensive ground monitoring network, directly captures 
surface-level aerosol mass and provides a chemically meaningful anchor for estimating the 
behavior of individual components, with moderate correlation coefficients ranging from 0.31 to 
0.73 (Table 2.1). In contrast, AOD reflects total column aerosol loading and lacks vertical 
specificity, resulting in weaker and less consistent associations with near-surface species 
concentrations. This is supported by model performance comparisons in Tables 6.4 and 6.6, where 
the inclusion of the imputed AOD alone provided only modest improvements (e.g., random CV R2 
increases of 0.1–0.5 across species). In contrast, replacing AOD with PM2.5_est resulted in 
consistently higher predictive accuracy, and SHAP analysis (Figs. 6.6) further confirms that 
PM2.5_est is the most influential predictor across all five components, contributing 24–37% of the 
model’s explanatory power. These findings validate our two-stage strategy of first estimating PM2.5 
total mass and then using it as a key predictor for species modeling. 
 
Table 6.6. Cross validation results of constituent models with various model structures. 



 
 

Model Metric SO42− NO3− EC OC DUST 

CV method Rd     Sp      Tp Rd     Sp      Tp Rd     Sp      Tp Rd     Sp      Tp Rd     Sp      Tp 

Ref 

+PM2.5est 

R2 0.81 0.76 0.78 0.89 0.85 0.88 0.75 0.65 0.72 0.66 0.60 0.65 0.75 0.61 0.71 

RMSE 0.30 0.34 0.33 0.59 0.70 0.63 0.26 0.31 0.27 1.52 1.65 1.55 0.59 0.74 0.63 

Ref 

+AOD 

R2 0.74 0.70 0.68 0.78 0.73 0.74 0.69 0.56 0.66 0.58 0.49 0.54 0.57 0.40 0.51 

RMSE 0.36 0.38 0.39 0.85 0.96 0.93 0.28 0.35 0.30 1.70 1.86 1.77 0.77 0.94 0.83 

Ref R2 0.73 0.69 0.67 0.76 0.70 0.71 0.67 0.53 0.63 0.53 0.44 0.48 0.57 0.40 0.51 

RMSE 0.37 0.39 0.40 0.90 1.01 0.99 0.30 0.36 0.31 1.79 1.97 1.88 0.78 0.94 0.83 

The Ref model incorporated meteorological predictors, CMAQ predictors, and spatiotemporally 
constructed features used for each constituent modeling. The specific predictors for each 
component model are detailed in Table 3.1. AOD is the imputed gap-free AOD. Rd, Sp, and Tp 
represent the random, spatial, and temporal CV, which is described in Section 6.3.4. The unit for 
RMSE is μg/m³. 
 
The CMAQ-speciated outputs further enhanced model performance by providing species-specific 
chemical information. In addition, CMAQ offers relatively high spatial resolution (~12 km), 
enabling finer spatial representation of species concentrations compared to MERRA-2 and GEOS-
Chem, which have coarser resolutions of 0.625° × 0.5° and 0.25° × 0.3125°, respectively, and were 
used in previous studies (e.g., Meng et al. 2018b). As shown in Table 6.7, incorporating CMAQ 
data improved validation R2 by 0.01–0.11 across species. SHAP analysis further reveals that the 
CMAQ species corresponding to the target component typically rank as the second most important 
predictors after PM2.5_est. These findings reinforce that model performance is closely tied to the 
physical and chemical alignment between predictors and target species. Interestingly, in the OC 
model, EC_CMAQ ranks higher than OC_CMAQ in SHAP importance, unlike the other species 
models where the corresponding CMAQ species is the dominant chemical predictor. This result 
likely reflects the co-emission of EC and OC from combustion sources, as well as CMAQ’s limited 
ability to capture secondary organic aerosol (SOA) formation processes (Appel et al. 2017; Woody 
et al. 2016). As a result, EC_CMAQ may serve as a stronger proxy for combustion-related OC 
variability than OC_CMAQ itself. SHAP results also highlight the importance of meteorological 
predictors that influence relevant atmospheric processes—particularly secondary formation and 
vertical mixing and geographical variables. As groups, meteorological conditions accounted for 8–
23% of the total predictive importance, with the significance of individual predictors within these 
groups varying considerably across models (Fig. 6.6). Temperature is particularly important for the 
SO₄²⁻ and OC components, ranking third and sixth in SHAP contributions, respectively. This likely 
reflects the strong temperature dependence of secondary aerosol processes: for SO₄²⁻, temperature 
influences photochemical reaction rates and gas–particle partitioning of sulfur species, while for 
OC, it affects both the volatility of semi-volatile organic compounds and the rate of secondary 
organic aerosol formation (Carlton et al. 2009). PBLH emerges as the most important 
meteorological predictor for NO₃⁻ and EC, consistent with its role in controlling vertical mixing 
and dilution. For NO₃⁻, a shallow boundary layer under cold, stagnant conditions enhances NO₃⁻ 



 
 

accumulation via gas–particle partitioning (Guo et al. 2017; Seinfeld and Pandis 2016). For EC, 
which is primarily from combustion sources, boundary layer dynamics strongly regulate surface 
concentrations by modulating the extent of dispersion. VPD is especially important for DUST, 
reflecting its link to surface dryness and soil moisture availability, both of which influence the 
emission potential of windblown DUST particles (Prospero and Lamb 2003). 
 
Table 6.7. Cross validation results of constituent models with various model structures. 

Model  Metric SO₄²⁻ NO₃⁻ EC OC DUST 

CV method Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp 

Ref R2 0.75 0.59 0.73 0.88 0.75 0.87 0.72 0.59 0.70 0.63 0.54 0.61 0.70 0.51 0.68 

RMSE 0.35 0.45 0.36 0.63 0.92 0.66 0.27 0.33 0.28 1.59 1.77 1.63 0.64 0.83 0.67 

Ref 

+ST 

R2 0.80 0.74 0.77 0.89 0.83 0.88 0.75 0.62 0.72 0.65 0.59 0.64 0.74 0.60 0.71 

RMSE 0.31 0.36 0.34 0.59 0.76 0.65 0.26 0.32 0.27 1.53 1.67 1.57 0.60 0.75 0.64 

Ref 

+CMAQ 

R2 0.79 0.70 0.76 0.89 0.84 0.88 0.73 0.64 0.71 0.65 0.59 0.63 0.72 0.55 0.69 

RMSE 0.32 0.38 0.34 0.61 0.73 0.64 0.27 0.31 0.28 1.55 1.67 1.58 0.62 0.80 0.66 

The Ref model incorporated the 1-km PM2.5 estimates and meteorological predictors used for each 
constituent modeling. ST represents the spatiotemporally constructed predictors and CMAQ 
represents the CMAQ species predictors. The other abbreviations are the same as Table 6.6. 
 
 
Another key factor contributing to the strong performance of our component modeling is the use 
of a spatiotemporal deep-forest algorithm, which effectively captures both spatial and temporal 
variability inherent in the data. Compared to traditional tree-based algorithms such as random forest 
and CatBoost, deep forest is better suited for complex tasks involving limited sample sizes and 
higher spatiotemporal heterogeneity—as is the case for PM2.5 chemical components, which are 
more variable and sparsely monitored than total PM2.5 mass. In our comparison, deep forest 
outperformed random forest and CatBoost, with average cross-validation R2 values higher by 0.06 
and 0.04, respectively, across various validation schemes (Table 6.8). Its performance is also 
comparable to more complex ensemble approaches like the stacking model used in Di et al. (2019). 
To enhance the model’s ability to generalize across space and time, we incorporated explicit 
spatiotemporal features—such as Haversine distances and day of year (DOY)—into the deep forest 
framework, ultimately developing a spatiotemporal deep-forest model (Section 6.3.3). This was 
particularly important given the sparse and infrequent nature of chemical speciation monitoring 
(sampling intervals ranging from 1 to 7 days). Sensitivity analyses confirmed the importance of 
these features: removing them led to a decline in spatial predictive performance, with spatial CV 
R2 values reduced by 0.03–0.15 (Table 6.7). Furthermore, we found that individual tree-based 
models such as XGBoost were prone to generating spatially erratic or unrealistic component 
predictions when spatial features like latitude, longitude, or Haversine distances were included, a 
phenomenon also reported in prior PM2.5 modeling studies (e.g., Yang et al. 2022). In contrast, the 
cascade structure of the deep forest model, which ensembles multiple layers of learners, helps 



 
 

alleviate this issue by introducing regularization and enabling hierarchical feature extraction. This 
design allows for more stable incorporation of spatial features and effectively reduces the risk of 
overfitting or abnormal predictions in our spatiotemporal deep-forest model. 
 
Table 6.8. The cross-validation results of component models with machine-learning algorithms 

Models Metric SO₄²⁻ NO₃⁻ EC OC DUST 

CV Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp Rd Sp Tp 

XGB R2 0.74 0.67 0.72 0.86 0.83 0.85 0.69 0.58 0.69 0.61 0.56 0.61 0.64 0.44 0.62 

RMSE 0.36 0.40 0.37 0.69 0.76 0.70 0.28 0.33 0.29 1.63 1.73 1.63 0.71 0.89 0.73 

CAT R2 0.76 0.69 0.74 0.87 0.83 0.87 0.72 0.62 0.70 0.63 0.57 0.62 0.67 0.55 0.66 

RMSE 0.34 0.39 0.36 0.65 0.74 0.67 0.27 0.32 0.28 1.59 1.71 1.61 0.68 0.79 0.69 

Two-

stage1 

R2 0.80 0.74 0.78 0.89 0.85 0.88 0.74 0.65 0.72 0.65 0.58 0.63 0.74 0.60 0.71 

RMSE 0.31 0.36 0.33 0.61 0.70 0.63 0.26 0.31 0.27 1.55 1.71 1.58 0.61 0.76 0.64 

Two-

stage2 

R2 0.78 0.74 0.77 0.86 0.85 0.85 0.69 0.70 0.70 0.66 0.66 0.64 0.67 0.62 0.66 

RMSE 0.33 0.35 0.34 0.69 0.71 0.70 0.28 0.28 0.28 1.53 1.53 1.57 0.68 0.73 0.68 

 XGB refers to the XGBoost model, and CAT represents the CatBoost model. Two-stage 1 is a 
stacking model where the first stage includes Random Forest, XGBoost, and CatBoost, and the 
second stage uses Random Forest. Two-stage 2 is another stacking model, with a first stage 
composed of Gradient Boosting, Neural Network, and Random Forest, followed by a second stage 
using a Generalized Additive Model (GAM), as described in Di et al. (2019). All other 
abbreviations are consistent with those used in Table 6.6. All models in this table were trained on 
the same sample dataset used for our deep-forest models to ensure a fair comparison. 
 
6.6 Limitation and Future Directions 
Despite advancements in modeling PM2.5 components, uncertainties and limitations remain. The 
much sparser ground-level PM2.5 composition monitoring network, compared to that of total PM2.5, 
provides less spatial representation, leading to relatively large uncertainties in unmonitored areas. 
Although independent validation against CASTNET measurements generally suggests reasonable 
accuracy, inter-network inconsistencies between CASTNET and CSN/IMPROVE may affect the 
interpretability of these results. Additionally, CASTNET provides measurements not for OC and 
EC, restricting the scope of external validation. Because our spatial resolution is set to 1 km and 
monitoring sites are scarce near high-emission areas in small-scale regions (e.g., roadsides), our 
component models are likely to underestimate extremely high concentrations. In addition, given 
that observational data for separating primary and secondary OC are limited, we did not disentangle 
them in our modeling process. Potential biases from CMAQ simulations may occur in areas with 
complex terrain or unique emission sources, and the model may struggle to fully capture extreme 
events or rapid PM2.5 component changes. Additionally, the CMAQ species dataset used in this 
study is limited to the period from 2002 to 2019 and is available only at a weekly resolution. Future 
work should focus on extending component estimates to more recent years, potentially by 
incorporating alternative reanalysis products when CMAQ data are unavailable. 



 
 

 
6.7 Summary 
This section developed a two-stage spatiotemporal deep-forest framework to estimate daily, 1-km 
concentrations of five major PM2.5 components across the western U.S. over 2002–2019. The 
models integrated gap-free AOD, CMAQ speciated outputs, meteorology, land cover, topography, 
wildfire activity, and spatiotemporal features. The framework achieved strong predictive 
performance (sample-based CV R² = 0.66-0.89), substantially outperforming alternative machine 
learning approaches including random forest and CatBoost, and producing estimates comparable 
to or better than previous studies while providing simultaneous high spatial (1-km) and temporal 
(daily) resolution. Validation demonstrated strong predictive performance, and SHAP analysis 
identified the estimated high-resolution PM2.5 total mass concentration (PM2.5_est) as the most 
influential predictor (accounting for 24-37% of model explanatory power) and chemically relevant 
CMAQ predictors as dominant influences. Independent validation against CASTNET 
measurements confirmed model generalizability, with yearly R² values of 0.81 for SO₄²⁻ and 0.78 
for NO₃⁻. The resulting dataset captures long-term trends, regional disparities, and episodic events 
such as wildfires, providing a valuable resource for exposure assessment and policy evaluation. 
  



 
 

7. Spatiotemporal Patterns of PM2.5 Components over Western US 
 
In this section, we analyze spatiotemporal patterns and population exposure for daily, 1‑km PM2.5 
total mass and five chemically resolved components across the western United States from 2002 to 
2019. We summarize multi‑year and seasonal spatial distributions, quantify long‑term trends using 
deseasonalized monthly anomalies, and assess exposure gaps between urban and rural populations 
using population‑weighted metrics. We also highlight short‑term dynamics via a wildfire case study 
(the 2018 Camp Fire) to elucidate day‑to‑day variability and species composition during extreme 
events. Results are presented as long‑term means and pixel‑level trends (Section 7.2), and regional 
exposure summaries (Section 7.3) and day-to-day variations (Section 7.4). 
 
7.1 Statistical analysis methods 
We conducted analyses at both the pixel level and the region-aggregated level. For the latter, we 
aggregated grid-cell estimates by predefined regions to construct time series and assess region-
specific trends. The western United States was divided into two subregions: (1) Northwestern U.S. 
— Washington, Oregon, Idaho, Montana, and Wyoming; (2) Southwestern U.S. — California, 
Nevada, Utah, Colorado, Arizona, and New Mexico. 
 
We also stratified the study area into urban and rural categories. Urban areas were defined 
according to the 2010 U.S. Census Bureau urbanized area boundaries (https://www.census.gov/cgi-
bin/geo/shapefiles/index.php), while rural areas encompassed all locations outside these 
boundaries.  
 
7.1.1 Seasonal and multi‑year summaries  
We computed multi‑year (2002–2019), annual, and seasonal means on the 1‑km grid. Seasons are 
defined as winter (December, January, February), spring (March, April, May), summer (June, July, 
August), and autumn (September, October, November).  
 
7.1.2 Long-term trend estimation  
To assess temporal changes at the local scale, we conducted pixel-level long-term trend analyses 
using monthly anomaly time series. Monthly anomalies were computed by subtracting the multi-
year mean for each calendar month from the corresponding monthly mean concentration, thereby 
removing the influence of the seasonal cycle. This approach ensures that the estimated slopes reflect 
genuine long-term changes rather than seasonal fluctuations. We then applied ordinary least squares 
to the anomaly series to estimate linear trends and their statistical significance (p < 0.05), following 
Weatherhead et al. (1998). Trends are reported as µg/m³ per year, and statistical significance was 
assessed at the p < 0.05 level. The resulting spatial maps of trends provide insight into both the 
magnitude and direction of change at the grid-cell level, allowing for direct comparison across 
pollutants and regions. 
 



 
 

7.1.3 Population-weighted exposures 
We adopted the conventional population-weighted mean concentration approach to quantify 
exposure hotspots. Specifically, for each grid cell, we multiplied the pollutant concentration by the 
concurrent population from the 1-km LandScan dataset. The total weighted sum across a given 
region was then divided by the total population of that region to obtain the population-weighted 
mean concentration.  

C̄_pop = ( Σ_{i=1}^n (C_i × P_i) ) / ( Σ_{i=1}^n P_i ) 
Where: 
C̄_pop = population-weighted mean concentration for the region; 
C_i = pollutant concentration in grid cell i; 
P_i = population in grid cell i; 
n = number of grid cells in the region. 
 
7.2 Spatial distribution and long-term trends 
Figure 7.1 presents the spatial distributions of multi-year average concentrations of the five derived 
components, alongside observed values at corresponding grid cells, demonstrating good agreement 
between model estimates and measurements. The multi-year estimated concentrations are 0.78, 
0.44, 0.22, 1.31, and 1.33 µg/m³ for SO₄²⁻, NO₃⁻, EC, OC, and DUST, respectively, with substantial 
spatial variability. DUST is predominantly concentrated along the southern California and western 
Arizona boundary, an arid and semi-arid region frequently affected by dust events (Aryal and Evans 
2022). The other four components— SO₄²⁻, NO3

−, EC, and OC—show high concentrations in the 
urbanized southern California region, centered in the Los Angeles–Long Beach–Anaheim 
metropolitan area, a densely populated urban agglomeration with intensive human activity. NO3

−, 
OC, and EC also show elevated levels in California’s Central Valley, particularly in the San Joaquin 
Valley, a region notorious for consistently exceeding federal particulate pollution standards due to 
a combination of complex anthropogenic emissions, frequent wildfires, and unfavorable 
topographical conditions that limit pollutant dispersion (Casey et al. 2024; P et al. 2022). 
Additionally, high EC and OC concentrations are observed in parts of the northwestern U.S., 
including areas of Washington and Oregon. 



 
 

 
Figure 7.1. Spatial distribution of multi-year mean PM2.5 and its components for 2002-2019 over western United 
States, shown alongside monitoring observations. 

 
Seasonal patterns in total PM2.5 concentrations across the study region revealed distinct peaks in 
summer and autumn, with average levels reaching 6.34 µg/m³ and 4.58 µg/m³, respectively. These 
seasonal peaks were primarily driven by elevated concentrations of OC (1.99 µg/m³ in summer and 
1.40 µg/m³ in autumn), DUST (1.30 µg/m³ and 0.85 µg/m³), and SO₄²⁻ (0.83 µg/m³ and 0.61 µg/m³) 
(Figure 7.2). In contrast, winter exhibited the lowest average PM2.5 concentration at 3.36 µg/m³, 
with OC (0.77 µg/m³) and NO3

− (0.70 µg/m³) contributing to the total mass. During winter, EC is 
a significant contributor in regions such as Southern California, urban areas of western Washington, 
the Central Valley, and central Arizona, where transportation emissions and episodic biomass 
burning are dominant sources (Faraz Enayati Ahangar 2021; Sorooshian et al. 2011). 



 
 

 
Figure 7.2. Seasonal average total and compositional PM2.5 concentrations for 2002-2019. 

 
As shown in the pixel-level trend figure, from 2002 to 2019, steady declines were observed in the 
concentrations of total PM2.5 and the five major components across the western U.S., with 
significant spatial variations (Fig. 7.3). The statistically significant decline in total PM2.5 (slope <-
0.05 µg/m³/year, p < 0.05) is most pronounced in the southwestern U.S. and northwestern coastal 



 
 

areas, particularly in southern California’s urban regions and Central Valley, which exhibited 
steeper negative trends (slope <-0.20 µg/m³/year, p < 0.05). Similarly, EC and OC had comparable 
declining patterns, though with smaller magnitudes (slope < -0.003 µg/m³/year for EC and slope <- 
0.02 µg/m³/year for OC, p < 0.05). SO₄²⁻ and NO3

− also exhibited widespread declines across the 
study region, with steeper trends in southern California’s urban areas (slope <- 0.045 µg/m³/year 
for SO₄²⁻ and slope < -0.15 µg/m³/year for NO3

−, p < 0.05). These substantial reductions over 
densely populated areas can be largely attributed to significant decreases in anthropogenic 
emissions, driven by diesel emission controls, vehicle NOx standards, and industrial regulations 
under major air quality policies such as the Clean Air Act amendments and California Air 
Resources Board (CARB) PM Reduction Programs (Kotchenruther 2020; Mailloux et al. 2022). 
DUST also shows a widespread declining trend, except in areas with higher levels, such as the 
southern California and western Arizona boundary, which warrant greater attention and targeted 
mitigation measures.  

 
Figure 7.3. (a) Spatial distribution of annual mean total PM2.5 mass and its components, and (b) pixel-specific 
long-term trends of monthly anomalies for the period 2002-2019 across the western United States. 

 
 



 
 

7.3 Population exposure variations 
Figure 7.4 illustrates regional variations in population-weighted exposure to PM2.5 and its species 
from 2002 to 2019, revealing substantial spatial heterogeneity. On average, urban populations 
experienced ~1.5 times higher exposure than rural populations for SO₄²⁻ (1.24 vs. 0.84 µg/m³) and 
OC (2.97 vs. 2.01 µg/m³), ~2 times higher for NO₃⁻ (1.83 vs. 0.93 µg/m³) and EC (0.87 vs 0.41 
µg/m³), and comparable levels for DUST (1.09 vs. 1.08 µg/m³) (Figure 7.4(a)). Monthly 
population-weighted mean concentrations based on CMAQ-simulated species also showed that EC 
and NO₃⁻ levels were substantially higher in urban areas compared to rural areas, ranging from 0.73 
to 1.84 µg/m³ versus 0.31 to 1.29 µg/m³, respectively. In the northwestern U.S., the average 
monthly population-weighted mean PM2.5 slightly decreased from 8.28 µg/m³ in 2002–2004 to 7.23 
µg/m³ in 2017–2019 (Figure 7.4(a)). The month with the highest concentration of total PM2.5 in this 
region varies annually, occurring primarily in winter but sometimes in August. These peaks in total 
PM2.5 are largely driven by the OC component. In contrast, the southwestern U.S. experienced a 
significant decrease in PM2.5 concentrations, with average monthly population-weighted means 
declining from 12.32 µg/m³ in 2002-2004 to 9.03 µg/m³ in 2017-2019, primarily due to reductions 
in OC and NO3

− levels, partly driven by tailpipe emission regulations. 
 

 
Figure 7.4. Regional variation in population-weighted exposure to PM2.5 and its five components from 2002 to 
2019 across various time scales. PM2.5 total (black), SO42− (red), NO3− (orange), EC (yellow), OC (light blue), 
DUST (blue), and ‘other’ (green, defined as the difference between total PM2.5 and the sum of the five target 
species) are represented by color: (a) Monthly population-weighted mean concentrations from 2002 to 2019; (b) 
Proportions of each species versus total PM2.5 for 2013–2019, with the black line showing cumulative 
proportions of the population exposed to each PM2.5 level (this time frame was selected because the last U.S. 
national air quality standard for annual PM2.5 was set at 12 µg/m³ in 2012); (c) Annual population-weighted 
concentrations of species exceeding the 2024 U.S. national annual PM2.5 mass concentration limit (9 µg/m³), with 
the black line indicating the percentage of the population exceeding the annual limit.  

 
Figure 7.4(b) concentrations within the context of the 2012 regulatory framework. Similar to 
patterns observed across North America (Donkelaar et al. 2019), the relative contribution of the 
DUST component decreased significantly as PM2.5 levels increase across the four regions (Fig. 



 
 

7.4(b)). In the southwest, NO3
− has a minor contribution at low PM2.5 levels but becomes a major 

contributor at higher levels, which is in line with previous studies (Donkelaar et al. 2019). In the 
northwest, OC was the largest contributor among the five target species, with its relative 
contribution increasing as total PM2.5 levels rose, though the population exposed to elevated levels 
was very small. Figure 7.4(c) illustrates the annual changes in population exposure to PM2.5 levels 
exceeding the latest 2024 U.S. National Ambient Air Quality Standard (annual average 
concentration of 9 µg/m³). The northwestern is approaching compliance with the stricter standard, 
with the proportion of the population exposed to non-compliant PM2.5 levels remaining around 1% 
in many years since 2010. However, the southwestern region remains far from meeting the new 
standard, with a large proportion of the population (~24% in 2019) still exposed to above-standard 
levels, despite significant improvements over time. The impact of wildfires is evident across the 
study region, with seasonal OC enhancements varying annually. This effect was particularly 
pronounced in 2017 and 2018, when substantially elevated OC and total PM2.5 levels were 
observed, highlighting the influence of wildfire events during these years. 
 
7.4 Day-to-day variability 
Our estimates effectively captured daily variations in PM2.5 component concentrations, providing 
valuable insights into atmospheric pollution and chemical composition dynamics, supporting 
targeted environmental management, and aiding in the mitigation of health impacts from short-
term exposure. Using the Camp Fire—a severe wildfire in California from November 8–25, 2018—
as an example, our estimates show that population-weighted mean PM2.5 concentrations began 
rising on November 10, 2018, rapidly peaking at 77.55 µg/m³ the same day. Levels remained 
elevated until reaching a maximum of 110.41 µg/m³ on November 16, 2018, before subsequently 
decreasing to a background level (5.47 µg/m³) by November 22, 2018, following rainfall on 
November 21, 2018 (Fig. 7.5(a)). These trends align well with observed data (Fig. 7.5(c)), 
highlighting the accuracy of our daily-scale estimates.  
  



 
 

 

Figure 7.5. Population-weighted daily mean estimated (a) total PM2.5 and component concentrations and (b) 
proportions in California and (c) the corresponding concentration spatial distributions and true color Aqua 
images with active fire as red dots during the Camp Fire (November 8-24, 2018). 

 



 
 

The PM2.5 component estimates indicate that concentrations of OC and EC, direct emissions from 
biomass combustion, substantially increased, particularly over the Central Valley, closer to the fire 
source (Fig. 7.5(c) and Fig. 7.6). In contrast, NO3

− increases were primarily observed in the San 
Joaquin Valley, while SO4

2− and DUST showed only moderate increases. Overall, exposure to OC 
and NO3

− significantly increased across the Central Valley during the Camp Fire, with levels 
averaging ~6 times higher (18.9 and 9.2 µg/m³, respectively) compared to pre-fire levels (3.8 and 
1.5 µg/m³). Increases in EC exposure were also notable. Figure 7.5(b) illustrates that OC, the 
dominant component, does not scale proportionally with total PM2.5 during the Camp Fire, 
suggesting that other PM2.5 components, such as metals (e.g., lead and zinc), potassium ion (K⁺), 
and ammonium (CARB 2021), may have significantly increased. These other components, which 
spiked due to the burning of buildings and infrastructure, also should be a focus for environmental 
management due to their potential health and environmental impacts (Potter et al. 2021; Sicheng 
Li 2023).  

 
Figure 7.6. Spatial distributions of the five PM2.5 component concentrations before (upper panel), during (middle 
panel), and after (lower panel) Camp fire. 

 
7.5 Discussion 
Figure 7.7 displays component concentrations from 2002 to 2019 across the western U.S. based on 
monitoring data, revealing variation patterns consistent with those estimated by our component 
models at the monitored grid cells (Fig. 7.3). Figure 7.8 shows the annual concentrations of CMAQ-
simulated species and their long-term trends, derived using the same methodology as in Figure 7.3. 
Overall, the 12-km CMAQ outputs capture broad-scale trend patterns similar to our high-resolution 
estimates, indicating widespread declines across the study region, although differences in 
magnitude and spatial detail are evident. 
 



 
 

 
Figure 7.7. Spatial distribution of annual mean total PM2.5 mass and its components for the period 2002-2019 
across the western United States based on monitoring data.  

 



 
 

 
Figure 7.8. (a) Spatial distribution of annual mean total PM2.5 mass and its components, and (b) pixel-specific 
long-term trends of monthly anomalies for the period 2002-2019 across the western United States based on 
CMAQ-speciated simulation data. 

Although the CMAQ-simulated species exhibit broadly similar spatiotemporal patterns to our high-
resolution estimates, notable differences in magnitude and spatial detail are evident (Fig. 7.3 vs. 
7.8). Specifically, CMAQ tends to underestimate concentrations, particularly in high-concentration 
regions identified by our model. In addition, CMAQ shows increasing trends in NO₃⁻ over the 
northwestern part of the study region and in OC over central California—patterns not observed in 
either ground-based measurements (Fig. 7.7) or our estimates. In contrast, our model predictions 
align more closely with observed trends at monitoring sites, as demonstrated in Figs. 7.1, 7.3, and 
7.7. These discrepancies are likely due to the relatively lower estimation accuracy of CMAQ. 
Validation against CSN and IMPROVE observations (Fig. 7.9) confirms CMAQ’s lower accuracy, 
with R2 values of 0.39, 0.55, 0.40, and 0.16 and RMSEs of 0.53, 1.45, 0.41, and 2.36 µg/m³ for 
SO₄²⁻, NO₃⁻, EC, OC, respectively.  



 
 

 
Figure 7.9. Scatterplots comparing observed and CMAQ-speciated weekly PM2.5 component concentrations 
from 2002 to 2019. 

 
 
We further observed that CMAQ-based population-weighted concentrations tend to underestimate 
exposure levels, with underestimation patterns varying by species and between urban and rural 
settings (Figure 7.3 vs. 7.10). This underestimation is partly attributed to CMAQ’s coarse spatial 
resolution. Previous studies have shown that using coarse-resolution PM2.5 data can systematically 
underestimate exposure (He et al. 2021). SO₄²⁻ and NO₃⁻ components show greater underestimation 
in urban areas, likely due to limitations in resolving high-density emission sources and the more 
intense secondary formation processes driven by elevated precursor levels in urban environments. 
In contrast, EC underestimation is more pronounced in rural areas, likely reflecting missing or 
underestimated rural combustion sources such as residential biomass burning and wildfires. OC 
underestimation was relatively balanced between urban and rural areas, consistent with its mixed 
original from both primary emissions and secondary organic aerosol formation.  



 
 

 
Figure 7.10. Monthly population-weighted mean concentrations from 2002 to 2019 based on CMAQ-speciated 
data. 

 
7.6 Summary  
This section observed the spatiotemporal patterns of PM2.5 components using the high-resolution 
estimates generated in Section 6. Spatiotemporal analysis of the modeling results revealed that 
urban populations were exposed to 1.5–2 times higher concentrations of SO₄²⁻, NO₃⁻, EC, and OC 
compared to rural populations, with similar exposure levels for DUST. These trends exhibited 
consistent declines over time, accompanied by notable interannual variability, seasonal cycles, and 
regional differences. The influence of wildfires was particularly significant, with daily OC and 
NO₃⁻ concentrations increasing by approximately sixfold during the Camp Fire relative to non-fire 
periods. The estimated spatial patterns and long-term trends showed strong agreement with ground-
based observations and more realistic spatiotemporal variability than CMAQ-speciated 
simulations. The PM2.5 component modeling approach presented here demonstrates strong potential 
for application in other regions with ground-level PM2.5 chemical speciation monitoring networks. 
These results provide the foundation for subsequent analyses of California-specific patterns 
(Section 8) and decomposition of meteorological, wildfire, and anthropogenic drivers (Section 9).  



 
 

8. Exploring PM2.5 Component Exposure Hotspots in California and 
Their Trends 

 

8.1 Introduction 
Understanding the spatial and temporal behavior of PM2.5 and its major chemical components is 
critical for air quality management in California. The state’s diverse emission sources—from dense 
urban traffic corridors to agricultural ammonia in the Central Valley—combine with complex 
topography and meteorology to produce pronounced regional variability in both total PM2.5 mass 
and its chemical composition. These variations have important implications for public health, 
particularly for vulnerable populations such as children, the elderly, and individuals with pre-
existing respiratory or cardiovascular conditions. 
 
This section first extends the PM2.5 component modeling framework introduced in Section 6 to 
2000, 2001, and 2020 by substituting CMAQ predictors with MERRA-2 and MERRA-2 GMI 
reanalysis variables, ensuring coverage for the entire 2000–2020 period. With this extended dataset, 
we examine statewide spatiotemporal patterns for total PM2.5 and its five components. We identify 
long-term exposure hotspots (areas with persistently high multi-year mean concentrations) and 
quantify linear trends over two decades. Finally, we integrate these results with Census tract 
boundaries and CalEnviroScreen data to compare concentration distributions between high- and 
low-vulnerability communities, highlighting environmental disparity considerations. The 
remainder of this section is organized as follows: Section 8.2 describes the modeling for 2000, 
2001, and 2020 and the integrated performance assessment for 2000–2020. Section 8.3 describes 
the statistical analysis methods for exploring the spatiotemporal trends in PM2.5 and its component 
exposure. Section 8.4 presents spatial hotspot maps and linear trend analyses for total PM2.5 and 
each component. Section 8.5 examines population exposure patterns, contrasting high- and low-
vulnerability communities. 
 
8.2 Modeling PM2.5 Component Estimates over California for 2000, 2001, and 2020 
8.2.1 Data and modeling   
To generate daily, 1-km gap-free estimates of SO₄²⁻, NO₃⁻, EC, OC, and DUST for 2000, 2001, 
and 2020—years without available CMAQ-speciated simulations—we applied the deep-forest 
modeling framework described in Section 6, with a key modification: CMAQ predictors were 
replaced by species mass concentrations from the MERRA-2 and MERRA-2 GMI reanalysis 
products. The selected reanalysis predictors were: 

• BCSMASS – Black carbon surface mass concentration 
• DMSSMASS – Dry matter surface mass concentration from biomass burning aerosol 
• DUSMASS25 – Dust surface mass concentration for particles with diameter < 2.5 μm 
• OCSMASS – Organic carbon surface mass concentration 
• SO2SMASS – Sulfur dioxide surface mass concentration 



 
 

• SO4SMASS – Sulfate aerosol surface mass concentration 
• SSSMASS25 – Sea salt surface mass concentration for particles with diameter < 2.5 μm 

These reanalysis fields were bilinearly resampled to the 1-km grid. Following resampling, we 
performed component-specific screening to decide which reanalysis variables to keep in each 
model: for every component, we computed correlations with observations and removed predictors 
that were weakly associated with the target or highly collinear with other candidates. The ultimately 
retained MERRA-2 / MERRA-2 GMI variables therefore differ by component; Table 8.1 lists the 
retained fields for each component together with their correlation coefficients against the 
corresponding observations. All other predictors and modeling settings mirrored those in the main 
framework: AOD-derived total PM2.5 (the primary predictor), meteorological and 
land-use/population covariates, and explicit spatiotemporal features. We evaluated performance 
with 10-fold random (sample-based), spatial (site-based), and temporal (day-based) 
cross-validation. 
 
Table 8.1. The final set of reanalysis predictors used for each component modeling and their correlations with 
ground-level observations (obs) for 2000, 2001, and 2020. 
 

SO₄²⁻ 
obs 

 

NO₃⁻ obs 

 
EC obs 

SO2SMASS 0.214 SO2SMASS 0.269 SO2SMASS 0.375 
SO4SMASS 0.397 SO4SMASS 0.172 SO4SMASS 0.221 
DMSSMASS 0.080 SSSMASS25 0.040 SSSMASS25 0.021 
SSSMASS25 0.061 DUSMASS25 -0.024 DMSSMASS -0.013 
DUSMASS25 0.060 DMSSMASS 0.008 DUSMASS25 -0.019  

OC obs 
 

DUST obs 
  

BCSMASS 0.469 DUSMASS25 0.352 
  

SO4SMASS 0.226 BCSMASS 0.145 
  

DMSSMASS -0.026 SSSMASS25 -0.088 
  

DUSMASS25 -0.011 SO4SMASS 0.081 
  

SSSMASS25 -0.001 DMSSMASS -0.065 
  

  
8.2.2 Model performance   
Model performance for the three modeled years was evaluated using sample-based (random), 
spatial, and temporal 10-fold cross-validation (CV). The CV R² values for 2000, 2001, and 2020 
(Table 8.2) ranged from 0.70–0.84 for the random CV, 0.65–0.74 for the spatial CV, and 0.53–0.81 
for the temporal CV, depending on species. NO₃⁻ consistently achieved the highest R² across all 
CV types, while EC and DUST showed relatively lower spatial predictive performance. These 
results indicate that, even without CMAQ-speciated inputs, the models retained strong predictive 
skill across species, comparable to that achieved for 2002–2019 using CMAQ data (Section 6.4.2). 
 
Table 8.2. CV R2 of PM2.5 component models across California for 2000, 2001, and 2020. 



 
 

CV type SO₄²⁻ NO₃⁻ EC OC DUST 

Random  0.71 0.84 0.70 0.77 0.74 

Spatial 0.66 0.74 0.68 0.73 0.65 

Temporal 0.66 0.81 0.53 0.72 0.64 

 
We then combined the three-year CV results with the 2002–2019 evaluation results summarized in 
Section 6. As shown in Table 8.3, the statewide day-level 2000–2020 CV ranges span 0.66–0.89 
(random), 0.60–0.85 (spatial), and 0.53–0.88 (temporal) across SO₄²⁻, NO₃⁻, EC, OC, and DUST. 
As in Section 6, aggregation further improves accuracy at monthly and annual scales. Taken 
together, the integrated 2000–2020 validation supports the use of these California estimates for 
subsequent spatiotemporal trend analyses and population-weighted exposure assessments. 
 
Table 8.3. Validation results of component modeling across CA for 2000-2020 

Species 10CV method R2 RMSE (µg/m³) 
DUST sample-based 0.6643 0.5540 
DUST spatial 0.5281 0.6707 
DUST temporal 0.6051 0.6002 
EC sample-based 0.7499 0.3638 
EC spatial 0.6595 0.4260 
EC temporal 0.7415 0.3699 
NO₃⁻ sample-based 0.8859 1.0394 
NO₃⁻ spatial 0.8386 1.2503 
NO₃⁻ temporal 0.8688 1.1141 
OC sample-based 0.7158 1.8352 
OC spatial 0.6387 2.0788 
OC temporal 0.6989 1.8890 
SO₄²⁻ sample-based 0.8086 0.4452 
SO₄²⁻ spatial 0.7491 0.5112 
SO₄²⁻ temporal 0.7816 0.4755 

 
8.3 Statistical analysis methods 
To investigate long-term spatial patterns and temporal changes in PM2.5 and its major components 
across California, we performed three complementary statistical analyses: hotspot identification, 
trend estimation, and population exposure assessment, including a focus on vulnerable 
communities. All analyses were conducted using the daily, 1-km resolution dataset covering 2000–
2020, which integrates the modeled estimates for 2000, 2001, and 2020 (Section 8.2) with the 
previously developed 2002–2019 fields from Section 6. Beyond the pixel-level analysis, we also 
performed a regional analysis distinguishing between urban and rural areas, with urban areas 
defined according to the 2010 U.S. Census Bureau urbanized area boundaries 



 
 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php). This analysis further examined five 
representative megacity regions—San Francisco Bay (SF Bay), Sacramento, Fresno, Los Angeles 
(LA metro), and San Diego (SD) megaregions—as shown in Fig. 8.1. 
 

 
Figure 8.1. Spatial distributions of urban areas with the five major metropolitan areas highlighted. 

 
8.3.1 Hotspot identification 
We first calculated the spatial distribution of the multi-year mean daily concentrations for total 
PM2.5 and each of the five components over the 21-year period. The multi-year mean maps for each 
pollutant were examined to identify long-term hotspots, defined here as areas with persistently 
elevated concentrations that stand out from their surroundings in spatial distribution. 
 
8.3.2 Trend analysis 
The trend estimation method follows that was detailed in Section 7.1.2. Overall, to evaluate 
long‑term changes while removing seasonality, we formed monthly anomalies at each grid cell by 
subtracting the corresponding 18‑year monthly mean. We then applied ordinary least squares to the 



 
 

anomaly series to estimate linear trends and their statistical significance (p < 0.01, p < 0.05, and 
p<0.1), following Weatherhead et al. (1998). Trends are reported as µg/m³ per year. 
 
8.3.3 Population exposure assessment 
We quantified population exposure to total PM2.5 and each component at the statewide and regional 
scales. Monthly total population exposure was calculated following the approach described in 
Section 7.1.3, using annual LandScan 1-km population data to match the resolution of our 
concentration fields.  
 
To assess environmental exposure risks among vulnerable populations, we conducted an additional 
exposure analysis at the census tract level. Total PM2.5 and component estimates were overlaid with 
California census tract boundaries, and mean concentrations for each tract were calculated using 
zonal statistics. We then joined these tract-level concentrations to CalEnviroScreen 4.0 data, which 
provides indicators of population vulnerability, including rates of children under age 10, elderly 
over age 65, asthma emergency department visits, heart attack emergency department visits, and 
low birth-weight births. This allowed us to compare exposures between communities in the highest 
vulnerability quartile (>75%) and those in the lowest quartile (<25%) of CalEnviroScreen scores. 
The comparison focused on differences in average exposures, interquartile ranges, and the spatial 
distribution of elevated exposure burdens. 
 
8.4 Spatial hotspots and their changes of PM2.5 and its components 
Across California, multi-year mean maps (Fig. 8.2) for 2000–2020 reveal that the highest 
concentrations of both total PM2.5 and several components are concentrated in the Los Angeles 
(LA) megaregion and the San Joaquin Valley (SJV). These areas are affected by dense emission 
sources, frequent stagnation episodes, and meteorological conditions that inhibit dispersion. 
Outside these hotspots, concentrations are generally lower but still elevated in other urban centers, 
such as the San Francisco Bay Area, and along certain inland transport corridors. Linear trend 
analysis (Fig. 8.3) reveals substantial spatial and compositional variations in PM2.5 and its 
components over the past two decades, with the magnitude—and in some cases, even the 
direction—of change differing markedly by location and species, although an overall decline in 
PM2.5 and most components over the two decades. The component-to-PM2.5 ratio analysis (%) for 
the five species (Fig. 8.4) further indicates that OC was the dominant component across California, 
particularly in the Sacramento and Los Angeles metropolitan regions. The analysis also highlights 
pronounced seasonal variations in species composition. 



 
 

 
Figure 8.2. Spatial distributions of multi-year mean PM2.5 and its five component concentrations (μg/m³) across 
California from 2000 to 2020. 

 
 

 

Figure 8.3. Spatial distributions of linear trends of PM2.5 and its five components across California from 2000 to 
2020. 



 
 

 
Figure 8.4. Bar plots of component-to-PM2.5 ratios (%) of PM2.5 and its five components across California and 
typical regions from 2000 to 2020. 

 
8.4.1 PM2.5 total mass 
The spatial distribution of multi-year mean total PM2.5 shows extremely high concentrations in the 
LA megaregion, where most grid cells record annual means between 12 and 17 μg/m³. These levels 
place the entire metropolitan area well above the last U.S. National Ambient Air Quality Standard 
(NAAQS) of 12 μg/m³ for annual PM2.5. The central SJV emerges as another major hotspot, with 
extensive areas also exceeding 12 μg/m³, reflecting the combined effects of heavy agricultural 
activity, wintertime ammonium NO₃⁻ formation, and limited atmospheric mixing due to valley 
topography. When the latest NAAQS annual standard of 9 μg/m³ is applied—compared to the 
previous 12 μg/m³ threshold—the exceedance area expands considerably. In addition to the LA 
megaregion and central SJV, large portions of the broader Central Valley, the San Francisco Bay 
Area, and the southern California–western Arizona boundary surpass this level.  
 



 
 

Pixel-level long-term linear trends reveal pronounced decreases in many of these high-
concentration areas. In the LA megaregion, the majority of grid cells exhibit slopes between −0.3 
and −0.7 μg/m³ per year (p < 0.05), indicative of substantial reductions over two decades. The SJV 
also shows notable declines, though generally smaller in magnitude, with slopes between −0.1 and 
−0.3 μg/m³ per year (p < 0.05). In contrast, parts of northern California and along the central Sierra 
Nevada Mountain range display increasing trends exceeding 0.1 μg/m³ per year (p < 0.05), 
suggesting localized influences or source shifts that offset statewide improvements. 
 
8.4.2 Sulfate 
SO₄²⁻ concentrations are highest in the LA megaregion, where multi-year means typically range 
from 1.8 to 2.5 μg/m³. Elevated SO₄²⁻ also extends into the Central Valley, the San Francisco Bay 
Area, and the southern California–western Arizona boundary, with most concentrations in these 
areas between 1.2 and 1.6 μg/m³.  
 
Trend analysis shows a consistent downward trajectory across the state. The most substantial 
declines are concentrated in the LA megaregion, where most slopes are less than −0.10 μg/m³ per 
year (p < 0.05). The Central Valley and the southern California–western Arizona corridor also show 
widespread decreases, with typical slopes between −0.03 and −0.06 μg/m³ per year (p < 0.05).   
 
The sulfate-to-PM2.5 ratio is relatively low, averaging 12.97% statewide and ranging from 9.45% 
in winter to 16.84% in spring. The ratios are nearly identical between urban (12.92%) and rural 
(12.98%) areas. However, SO₄²⁻ become the dominant contributor to total PM2.5 in summer within 
the San Diego region. 
 
 
8.4.3 Nitrate 
NO₃⁻ exhibits a spatial footprint similar to total PM2.5, with very high concentrations in the LA 
megaregion (generally 3–5 μg/m³) and extensive elevated areas in the SJV, particularly in its 
southern portion where many grid cells exceeded 4 μg/m³. The San Francisco Bay Area also showes 
moderately high NO₃⁻ concentrations of (2–3 μg/m³).  
 
Linear trends show marked decreases statewide, with the steepest declines in the LA megaregion, 
where most slopes fall between −0.20 and −0.30 μg/m³ per year (p < 0.05). The Central Valley also 
records broad decreases, typically −0.05 to −0.10 μg/m³ per year (p < 0.05), reflecting the combined 
effect of NOₓ emission controls and changes in atmospheric chemistry. 
 
 The component ratio analysis further indicates that NO₃⁻ contributions are substantially higher in 
urban areas than in rural regions (21.12% vs. 13.00% statewide), with particularly elevated ratios 
in the Fresno (24.77%), Los Angeles (24.05%), and San Diego (23.01%) megaregions. In addition, 



 
 

wintertime NO₃⁻ fractions (24.84%) were markedly higher than those in other seasons (7.80–
13.81%). 
 
8.4.4 Elemental carbon 
EC hotspots are concentrated in the LA megaregion, where multi-year means typically range from 
1.2 to 1.5 μg/m³. Other elevated areas include the Central Valley and San Francisco Bay Area, 
generally around 0.8 μg/m³.  
 
Trend maps reveal only modest decreases in EC, with the LA megaregion showing slopes between 
−0.01 and −0.05 μg/m³ per year (p < 0.05). Notably, increases are observed in parts of northern 
California and along the central Sierra Nevada, with slopes of 0.02 to 0.05 μg/m³ per year (p < 
0.05). 
 
Among the five major PM2.5 species, EC contributes the least to total PM2.5 mass, with a statewide 
mean EC-to-PM2.5 ratio of 5.20%. Over rural areas, the ratio varies only slightly across seasons 
(3.86–5.87%). However, over urban areas, EC fractions are substantially higher in autumn (8.24%) 
and winter (9.42%) than in spring (6.49%) and summer (6.07%).  
 
8.4.5 Organic carbon 
OC shows the highest spatial extent among the carbonaceous species. The LA megaregion records 
multi-year means above 4 μg/m³, while the South Sacramento Valley and southern SJV air basins 
also show pronounced hotspots with similar concentration levels. The San Francisco Bay Area and 
the southern California–western Arizona boundary have moderate OC levels, around 2.5 μg/m³. 
The larger footprint compared to EC reflects both primary emissions and secondary organic aerosol 
formation from VOC precursors. 
 
Trend patterns for OC resemble those of EC but with stronger magnitudes. In the LA megaregion, 
slopes typically range from −0.10 to −0.20 μg/m³ per year (p < 0.05), indicating meaningful 
reductions. However, in northern California and the central Sierra Nevada, increases of 0.04 to 0.12 
μg/m³ per year (p < 0.05) are observed, suggesting region-specific influences such as biomass 
burning or changing precursor availability. 
 
OC remains the dominant contributor to total PM2.5, with a statewide mean OC-to-PM2.5 ratio of 
29.60%. Seasonally, autumn (33.14%) and summer (32.44%) exhibit notably higher OC fractions 
than winter (27.92%) and spring (21.62%). OC ranks as the leading component across nearly all 
regions and seasons, except during winter in the Fresno region and spring–summer in the San Diego 
megaregion, where other species (e.g., NO₃⁻) become more influential.  
 



 
 

8.4.6 Mineral dust 
The DUST component shows the highest concentrations in the southwestern areas of California, 
particularly along the border with Arizona, where most grid cells exceed 3 μg/m³. DUST levels in 
southern California, especially across the southern SJV and San Bernardino County (mostly 1.2–2 
μg/m³), are clearly higher than those in the northern part of the state, where most values remain 
below 1.2 μg/m³. 
 
Linear trend analysis shows the largest decreasing trends (below −0.03 μg/m³ per year, p < 0.05) 
along the southern state border, where the highest DUST concentrations are observed, and eastern 
border areas. In contrast, increasing trends of 0.003–0.05 μg/m³ per year (p < 0.05) are observed in 
the southern SJV region. 
 
The DUST component is the second-largest contributor to total PM2.5 statewide, with a dust-to-
PM2.5 ratio of 17.01%. Its contribution is larger in rural areas (17.79%) than in urban areas (8.70%), 
and highest in spring (22.64%), compared with 12.30–17.12% in other seasons. 
 
8.4.7 Discussion 
The analysis of PM2.5 speciation across California reveals distinct spatial patterns, temporal trends, 
and compositional characteristics that collectively inform understanding of the dominant 
contributors to fine particulate pollution and their evolution over the past two decades. Total PM2.5 
concentrations remain highest in the LA megaregion and the SJV, both consistently exceeding 
national air quality standards, although significant long-term declines are evident due to regulatory 
and technological improvements. 
 
Among the five major components, OC is the dominant contributor statewide, accounting for nearly 
30% of total PM2.5, while EC is the smallest contributor statewide (5%). The carbonaceous fraction 
(OC + EC) collectively represents a substantial portion of PM2.5 mass, particularly in the LA 
megaregion and urbanized areas, reflecting the influence of combustion sources and secondary 
organic aerosol formation. In contrast, NO₃⁻ is the second-largest contributor in urban areas (21%) 
and during winter (25%), especially in the SJV and southern California, driven by low temperatures 
and stagnant meteorology that promote ammonium NO₃⁻ formation. SO₄²⁻ contributions have 
steadily decreased, consistent with long-term SO₂ emission reductions, though localized dominance 
in SD megaregion during summer highlights the continued influence of photochemical oxidation 
and marine air. DUST remains an important contributor in rural areas (18%), particularly in the 
southwestern border areas and southern region, where resuspension and agricultural activities play 
key roles. 
 
Spatially, PM2.5 composition exhibits strong regional differentiation—OC and NO₃⁻ species 
dominate in densely populated basins, while DUST is more pronounced in rural regions. Pixel-
level linear trend analysis (Fig. 8.3) reveals pronounced spatial heterogeneity in the magnitude and 



 
 

direction of PM2.5 and species changes across California. Most grid cells in the LA metro 
megaregion and the SJV show statistically significant (p < 0.05) decreases in total PM2.5, generally 
between −0.3 and −0.7 µg/m³/yr and −0.1 to −0.3 µg/m³/yr, respectively, reflecting sustained 
emission reductions. SO₄²⁻ and NO₃⁻ exhibit the strongest and most spatially coherent declines 
statewide, consistent with long-term control of sulfur and nitrogen precursors. OC and EC also 
decrease over most urban basins but with smaller magnitudes and localized reversals in parts of 
northern California and the Sierra Nevada foothills, suggesting region-specific influence, 
potentially linked to biomass burning, wildfire smoke, and changing precursor availability. Dust 
shows weak or mixed trends, with slight decreases along the southern border and minor increases 
in the southern SJV.  
 
Overall, the compositional and trend analyses highlight that, despite substantial progress in 
reducing PM2.5 mass, species-specific dynamics vary across regions and seasons. OC and NO₃⁻ 
remain key targets for further mitigation, while the persistence of elevated levels or local increases 
in EC and DUST emphasize the need for regionally tailored strategies that consider source profiles, 
chemical regimes, and meteorological constraints.  
 
8.5 Spatiotemporal patterns of population exposure to PM2.5 and its components 
8.5.1 Long-term variation of total population exposures 
From 2000 to 2020, the population-weighted mean PM2.5 concentration in California was 11.87 
ug/m³. Annual exposure declined from approximately 14.8 ug/m³ in 2000 to 11.9 ug/m³ in 2020, a 
reduction of about 20% (Fig. 8.5). Despite this long-term decrease, seasonal and interannual 
variability remained substantial: exposures were highest in winter (13.52 ug/m³) and lowest in 
spring (9.46 ug/m³).  
 
These seasonal patterns are largely driven by variations in component concentrations, particularly 
OC and NO₃⁻. NO₃⁻ exhibited the most pronounced long-term reduction, declining by about 52% 
from 3.9 μg/m³ in 2000 to 1.9 μg/m³ in 2020. On average, NO₃⁻ contributed ~2.6 μg/m³ to total 
PM2.5 but displayed sharp seasonality, with winter peaks often exceeding 6–7 μg/m³ during stagnant 
episodes. These peaks make NO₃⁻ the single most important driver of PM2.5 seasonality in 
California. SO₄²⁻ also showed substantial reductions, falling by nearly 50% from 2.2 μg/m³ in 2000 
to 1.1 μg/m³ in 2020. Its average contribution (~1.6 μg/m³) is smaller than that of NO₃⁻ or OC. 
Seasonal variation is less pronounced, though concentrations tend to be slightly higher in summer 
due to enhanced photochemical production. Importantly, sulfate’s decline is steady and spatially 
consistent, reflecting effective controls on sulfur emissions. OC contributed the largest share of any 
single species, averaging ~3.5 μg/m³ over the study period. Its long-term decline was modest 
(~6%), but year-to-year variability was high. Seasonal patterns showed clear winter (4.48 μg/m³) 
and fall (4.16 μg/m³) peaks, moderate summer levels (3.04 μg/m³), and pronounced summer–fall 
surges from 2017 to 2020 associated with major wildfire episodes. These episodic events have 
interrupted the otherwise gradual downward trend and highlight the growing role of wildfire 



 
 

emissions in recent years. EC decreased modestly, from 1.23 μg/m³ in 2000 to 1.08 μg/m³ in 2020 
(a 13% reduction). With an average contribution of ~1.0 μg/m³, EC plays a smaller role compared 
with NO₃⁻ or OC. Seasonal variation is weaker, though somewhat elevated levels occur in fall and 
winter, consistent with combustion-related sources such as residential burning and on-road traffic. 
DUST remained relatively stable, averaging ~0.9 μg/m³ with little change over the two decades. It 
consistently contributes the least among the five components, with limited seasonal variability 
except for slightly higher concentrations in spring and fall, likely due to resuspension and natural 
surface processes. 
 

 
Figure 8.5. Monthly population-weighted mean concentrations from 2000 to 2020. 

 
Overall, population-weighted PM2.5 exposure in California decreased by about 20% from 2000 to 
2020. As illustrated in the bar chart comparing 2000 and 2020 (Fig. 8.6), the relative reduction in 
total PM2.5 exposure is driven most strongly by NO₃⁻ and SO₄²⁻, both of which declined by roughly 
half. NO₃⁻ continues to dominate the pronounced wintertime peaks, while SO₄²⁻ shows a steady 
decline during summer. OC and EC exhibit relatively modest long-term decreases of approximately 



 
 

12% and 6%, respectively, with OC trends further obscured by episodic wildfire-driven spikes in 
recent years. In contrast, dust concentrations remain essentially unchanged.  

 
Figure 8.6. Average population-weighted mean concentrations of PM2.5 and its five components in 2000 vs. 2020 
over California. 

 
These spatiotemporal variations in exposure reflect the combined influence of emission controls, 
changing atmospheric conditions, and episodic wildfire events. However, the patterns are complex 
and not fully explained by emissions alone, underscoring the need for further decomposition of the 
roles of meteorology, wildfires, and human emissions. Such decomposition analysis will be 
presented in Section 9. 
 
8.5.2 Exposure risk patterns of vulnerable populations  
8.5.2.1 Spatial patterns of vulnerable populations by CalEnviroScreen 
Figure 8.7 presents six vulnerability parameters: total population (TotPop19), children under 10 
(Child_10), elderly adults 65+ (Elderly65), and three health outcome indicators—asthma 
emergency department visits (Asthma), cardiovascular emergency department visits (Cardiovas), 
and low birth-weight births (LowBirthWt). TotPop19 indicates that densely populated tracts cluster 
in the major metropolitan areas—most prominently the LA megaregion, the SF Bay Area, and 
portions of the SJV. Tracts with higher counts of children under 10 are likewise concentrated in 
metropolitan corridors and the SJV, whereas elderly populations show an inverse pattern, with 
higher densities in parts of the western/northern mountain and foothill regions. 
 
The three health indicators display distinct but partially overlapping spatial patterns that are 
consistent with the maps shown. Asthma emergency department (ED) visits are elevated in portions 
of the LA basin, along the SJV corridor, and in pockets of the Inland Empire, reflecting known 
respiratory burdens in these regions. Cardiovascular ED visits show a broader inland footprint, with 
higher values across much of the SJV, the LA megaregion, and scattered rural tracts elsewhere. 
Low birth-weight prevalence is more heterogeneous, with elevated rates in selected tracts of the SF 



 
 

Bay Area, across segments of the Central Valley, and in southern California, including parts of 
greater LA. 
 
Taken together, these patterns indicate that vulnerable populations are not confined to a single 
geography: different indicators highlight different at-risk groups across both urban and rural 
California. This spatial diversity underscores the importance of overlaying these vulnerability 
layers with PM2.5 and species-specific exposures to pinpoint tracts where pollution burden and 
population sensitivity coincide most strongly, thereby guiding targeted mitigation and health-
protection strategies. 
 

 
Figure 8.7. Spatial distributions of CalEnviroScreen scores for Total population (TotPop19), populations with 
ages below 10 (Child_10), populations older than 65 (Elderly65), Asthma, Cardiovas, and low birth weight 
(LowBirtWt).  

 
8.5.2.2 Exposure patterns of vulnerable populations to PM2.5 components 
To assess population vulnerability to PM2.5 component exposures, we examined spatial variation 
in total PM2.5 and its five major species relative to six CalEnviroScreen 4.0 indicators (TotPop19, 
Child_10, Elderly65, Asthma, Cardiovas, LowBirthWt). Figures 8.8 identifies tracts where high 
pollution burdens coincide with high vulnerability. Because tracts with high PM2.5 (total and by 
component ≥75th percentile) are concentrated in southern California, overlaid hotspots occur 
primarily in southern California such as the LA metro and Fresno urban clusters. 
 



 
 

 
Figure 8.8. Spatial distributions of PM2.5 total mass and component concentrations over census tracts where 
both the selected CalEnviroScreen parameter scores and pollutant concentrations are at or above the 75th 
percentile during the 2000–2020 period.  

Figures 8.9–8.10, together with the 2000–2020 time series shown in Figure 8.11, demonstrate 
pronounced and systematic disparities in PM2.5 component exposures between census tracts in the 
highest vulnerability quartile (≥75%) and those in the lowest quartile (≤25%). The magnitude and 
direction of these disparities vary across vulnerability indicators and PM2.5 species. For total 
population (TotPop19), exposure differences between high- and low-vulnerability tracts are 
generally small, with slightly higher NO₃⁻ (+0.03 μg/m³) and DUST (+0.01 μg/m³) but marginally 
lower SO₄²⁻ (−0.03 μg/m³), EC (EC; −0.03 μg/m³), and OC (OC; −0.05 μg/m³) concentrations in 
≥75% tracts. In contrast, disparities are much larger for tracts with elevated asthma emergency 
department (ED) visit rates, which are concentrated in the San Joaquin Valley (SJV), Los Angeles 



 
 

Basin, and Inland Empire. These high-asthma areas experience substantially higher exposures to 
NO₃⁻ (+0.30 μg/m³), OC (+0.45 μg/m³), EC (+0.10 μg/m³), and DUST (+0.14 μg/m³), with SO₄²⁻ 
slightly lower (−0.04 μg/m³). Similar patterns are observed for cardiovascular ED visits, with 
systematically elevated exposures in the ≥75% quartile across all major components: NO₃⁻ (+0.41 
μg/m³), OC (+0.59 μg/m³), EC (+0.13 μg/m³), DUST (+0.27 μg/m³), and SO₄²⁻ (+0.07 μg/m³). 
Tracts with high prevalence of low birth weight likewise face consistently higher exposures to all 
components, including NO₃⁻ (+0.47 μg/m³), OC (+0.42 μg/m³), EC (+0.16 μg/m³), SO₄²⁻ (+0.18 
μg/m³), and DUST (+0.07 μg/m³). Children-dense areas (≥75% for population under age 10) show 
elevated NO₃⁻ (+0.31 μg/m³), OC (+0.28 μg/m³), EC (+0.05 μg/m³), and DUST (+0.15 μg/m³) 
exposures, while SO₄²⁻ concentrations are virtually identical between groups (1.54 μg/m³). In 
contrast to all other indicators, tracts with high proportions of older adults (≥65 years) — often 
located in more rural or northern California regions — experience significantly lower exposures 
than their ≤25% counterparts across all components, with NO₃⁻ (−0.75 μg/m³), OC (−0.68 μg/m³), 
SO₄²⁻ (−0.29 μg/m³), EC (−0.24 μg/m³), and DUST (−0.12 μg/m³) all markedly reduced.  
 



 
 

 
Figure 8.9. Spatial distributions of PM2.5 total mass and component concentrations over tracts with each selected 
parameter’s CalEnvironSreen score percentile>=75% for the 2000-2020 period. 



Figure 8.10. Spatial distributions of PM2.5 total mass and component concentrations over tracts with each 
selected parameter’s CalEnvironSreen score percentile<=25% for the 2000-2020 period.  



 
 

 
Figure 8.11. Time series of PM2.5 component exposures (2000–2020) for census tracts in the highest (≥75%) and 
lowest (≤25%) quartiles of CalEnviroScreen indicators, including asthma, cardiovascular disease, low birth 
weight, children under 10, elderly population, and total population density. Colors indicate PM2.5 components: 
Colors represent PM2.5 components: NO₃⁻ (N, red), OC (O, green), EC (E, black), SO₄²⁻ (S, blue), and DUST (D, 
orange). 

 
Taken together, the results reveal that NO₃⁻ and OC drive the largest disparities for most vulnerable 
groups, particularly those defined by elderly, cardiovascular disease, and low birth weight 
indicators. EC and DUST also show elevated exposures in these groups, though to a lesser degree. 
In contrast, SO₄²⁻ exhibits weaker disparities, and for asthma, children and total population 
indicators, differences are negligible or reversed. Across CalEnviroScreen indicators, communities 
defined by cardiovascular disease, child, and low birth weight vulnerabilities consistently 
experienced higher PM2.5 component exposures in ≥75% tracts compared with ≤25% tracts, 
whereas elderly-dense tracts showed a reversed pattern with lower exposures. Asthma-vulnerable 
tracts displayed mixed disparities, with higher exposures for NO₃⁻, OC, EC, and DUST but slightly 
lower SO₄²⁻ concentrations. In contrast, total population indicators exhibited only negligible 
differences. These findings underscore that exposure inequalities in California are primarily tied to 
local combustion sources and wildfire episodes, rather than regional background pollutants. 
 
8.6 Summary 
Using long-term, high-resolution estimates spanning 2000–2020, this section examined the spatial 
hotspots and temporal trends of PM2.5 and its five major components across California. Spatial 
analyses revealed persistent hotspots in the SJV, the LA metropolitan area, and parts of the SF Bay 
Area, where elevated concentrations of OC and NO₃⁻ contributed strongly to the overall PM2.5 
burden. Pixel-level linear trend analysis showed substantial statewide declines in SO₄²⁻ and NO₃⁻, 
typically −0.05 to −0.10 µg/m³/yr (p < 0.05), while OC and EC decreased more modestly—about 
−0.01 to −0.05 µg/m³/yr —with localized reversals in northern California and the Sierra Nevada 



 
 

foothills. DUST exhibited weak or mixed trends, showing slight decreases along the southern 
border and minor increases in the southern SJV. 
 
Population-weighted exposure analyses revealed somewhat different spatial and temporal patterns 
when pollutant estimates were overlaid with population distribution. Statewide PM2.5 exposure 
declined by roughly 20 %, from 14.8 µg/m³ in 2000 to 11.9 µg/m³ in 2020, with about half of this 
reduction driven by decreases in NO₃⁻ and SO₄²⁻. Seasonal cycles were evident, with NO₃⁻ driving 
winter peaks that often exceeded 6–7 µg/m³ and OC dominating in summer and fall, frequently 
amplified during wildfire years. When exposures were stratified by CalEnviroScreen vulnerability 
indicators, clear disparities emerged: communities with higher burdens of asthma, cardiovascular 
disease, child populations, or low birth weight experienced 0.28–0.59 µg/m³ higher NO₃⁻ and OC 
exposures, whereas tracts with higher proportions of elderly residents showed lower exposures, and 
differences by total population were minimal. These results highlight the uneven distribution of 
pollution burdens among sensitive populations. 
 
Overall, the analysis demonstrates that although air-quality improvements have substantially 
reduced PM2.5 and its major components statewide over the past two decades, exposure inequalities 
persist and remain most pronounced for nitrate- and carbon-related species in vulnerable 
communities. The complexity of these spatiotemporal patterns underscores the need to further 
decompose the drivers of variability—including the respective roles of meteorology, wildfires, and 
anthropogenic emissions—which are examined in Section 9. 
  



 
 

9. Unraveling Contributions of Meteorology and Wildfire Smoke to 
PM2.5 Components in California and Their Influence on Recent Trends 

 

9.1 Introduction 
Understanding the drivers of temporal and spatial variability in PM2.5 and its major chemical 
components is fundamental for developing targeted mitigation strategies in California, where 
complex interactions among anthropogenic emissions, meteorology, and wildfires lead to 
substantial fluctuations in air quality. Unlike many other regions of the United States, California is 
characterized by a unique combination of persistent urban and industrial emissions, intensive 
agricultural activity, and frequent large-scale wildfires. These diverse sources contribute to both 
chronic background pollution and acute episodic events, resulting in significant health and 
environmental burdens. A particular challenge for assessing the effectiveness of air quality controls 
in California is thus that both meteorological variability and wildfire smoke can obscure underlying 
emission-driven trends. Meteorological conditions influence pollutant dispersion, chemical 
transformation, and deposition, generating substantial interannual and seasonal variability 
independent of emission changes. Wildfires, in contrast, produce abrupt but increasingly frequent 
episodes of extreme particulate matter pollution—especially enriched in OC and EC—that can 
mask or even offset improvements achieved through anthropogenic emission reductions. Without 
explicitly accounting for these two influences, evaluations of long-term air quality trends risk 
underestimating the benefits of emission controls or misattributing the sources of observed changes. 
 
In Section 8, we identified the major spatial hotspots of PM2.5 and its components across California 
and documented long-term declines in population-weighted exposures, particularly in SO₄²⁻, NO₃⁻, 
EC, and OC. We also highlighted the growing role of wildfire events in shaping exposure extremes, 
often offsetting some of the gains achieved through emission reductions. Building upon those 
findings, the present section seeks to disentangle the underlying drivers of these observed patterns. 
Specifically, we aim to quantify how much of the observed variability and trend in PM2.5 species 
can be attributed to meteorological conditions versus wildfire smoke, and how much reflects long-
term changes in anthropogenic emissions. Therefore, separating the relative contributions of 
meteorology, wildfire smoke, and human activities is critical for accurate attribution.  
 
In this section, we employ the extended daily, high-resolution PM2.5 component dataset developed 
in Sections 6 and 8, covering the 2000–2020 period, to conduct decomposition analyses that 
partition observed variability into contributions from meteorology, wildfire smoke, and 
anthropogenic emissions. By removing the confounding effects of weather and episodic fire events, 
we obtain a clearer picture of long-term emission-driven trajectories in PM2.5 and its species. 
Finally, we discuss the implications of these refined trends for emission-control policy and provide 
recommendations for strategies that simultaneously address chronic and episodic particulate matter 
sources in California. 



 
 

 
9.2 Decomposing Meteorological and Wildfire Smoke Contributions to PM2.5 and Its Five 
Components 

To better interpret the drivers of PM2.5 variability and identify components most responsive to 
emission control policies, we decomposed daily PM2.5 (and its major chemical species) into three 
additive parts: meteorologically driven, wildfire-related, and anthropogenic residual components, 
as below abstracted equation:   

 

(1) Meteorological contribution: Meteorological effects were removed using the normalization 
method described in Section 9.2.1, which predicts PM2.5 concentrations under a fixed reference 
meteorological condition. The difference between observed and meteorology-normalized values 
thus represents the contribution of short-term meteorological variability. 

(2) HMS-based smoke on the met-normalized field: The HMS-based five-step procedure (Section 
9.2.2-9.2.3) was applied to the meteorology-normalized PM2.5 and component fields to identify and 
remove days and locations affected by wildfire smoke. This yielded estimates of wildfire-attributed 
PM2.5, as well as “clean” non-fire concentrations. 

(3) Anthropogenic/policy-sensitive residual: Finally, we attributed the remaining portion after 
accounting for meteorological and wildfire influences as the anthropogenic or policy-sensitive 
residual, reflecting long-term changes primarily driven by emission sources and regulatory actions. 
This residual component provides an empirical foundation for assessing emission-driven trends, 
tracking sector-specific mitigation progress, and supporting policy considerations for sustained and 
equitable air-quality improvements across California.  
 
9.2.1 Meteorological effect decomposition 
To isolate the effect of meteorological variability, we replaced daily meteorological inputs in the 
modeling framework with “long-term stable” meteorology generated through a seasonal 
resampling procedure. For each grid cell and day, 50 values were randomly drawn for each 
meteorological variable (Table 6.1) from the same calendar month across the baseline period 
(2000–2020). This approach preserves the seasonal cycle but removes interannual anomalies. For 
example, meteorological inputs for 1 July 2018 were replaced with values randomly sampled from 
all July records (1–31) across the 2000–2020 period. All other predictors, including emissions, land 
use, and wildfire indicators, were held constant. 
The model was rerun with the resampled meteorology to produce meteorology-normalized 
concentrations. The contribution of meteorology was then calculated as: 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔, 𝑡𝑡) = 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔, 𝑡𝑡) − 𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔, 𝑡𝑡) 



 
 

where 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔, 𝑡𝑡) is the original estimate at location g and day t, and 𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔, 𝑡𝑡) is the 
estimate under resampled meteorology. Positive values of 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔, 𝑡𝑡) indicate meteorological 
conditions that enhanced pollution, whereas negative values indicate conditions that favored 
dispersion or removal. 
 
9.2.2 Separating wildfire-smoke contribution  
After meteorological normalization, we applied a five-step algorithm (Steps A–E) to separate 
wildfire-related (“fire”) and background (“non-fire”) PM2.5 concentrations. This approach 
integrates spatial smoke plume data with a robust statistical filtering framework to generate 
spatially and temporally consistent estimates of both smoke-related and background PM2.5 across 
California. This design quarantines smoke-driven extremes from the background, so that the 
background (i.e., the anthropogenic-attributed residual after removing meteorology and wildfire) 
is not inflated by smoke spikes, while the full wildfire signal is retained in dedicated smoke metrics. 
Daily wildfire smoke plume information was obtained from the NOAA Hazard Mapping System 
(HMS) smoke product, which provides daily polygons delineating smoke plume extents based on 
satellite observations. As the HMS record is available only from mid-2005 onward, the wildfire-
related analysis period was therefore set to 2005–2020. 

Step A. HMS-based candidate gate (source plausibility) 

All datasets were reprojected to a standardized 1-km grid consistent with the high-resolution 
PM2.5 component data spanning the land area of California. For each grid cell g and day t, a 
candidate flag was assigned if the pixel intersected any HMS smoke plume polygon on that day. 
This step defines all locations potentially influenced by wildfire emissions, serving as the initial 
plausibility screen. 

Step B. Baseline construction 

For each grid cell g and day t, a baseline distribution of PM2.5 concentrations was established 
using all non-fire days for the same day of year (DOY) during the 2005-2020 study period. To 
ensure a sufficient number of valid values for calculating baseline statistics, we applied a small 
DOY window: all days s satisfying ∣DOY(s)−DOY(t)∣≤W were included, where W=1 by default 
and expanded as needed. 

Days already flagged as fire candidates in Step A were excluded for the baseline calculation. 
From this baseline sample, we computed the upper quartile Q3(g,t) and the interquartile range 
IQR(g,t)=Q3−Q1. If the baseline sample size was smaller than a minimum threshold (Nmin=10), 
the window width W was expanded incrementally (e.g., 3-7 days) until sufficient samples were 
obtained. 

Step C. Robust exceedance test 



Each grid cell and day were classified as smoke-impacted if: 

PMg,t>Q3(g,t)+k⋅IQR(g,t), 

where k=1.5 defines a robust-outlier threshold, following previous study (Wei et al. 2023). 
To reduce false positives from isolated local anomalies, spatial coherence was imposed: a cell 
remained flagged only if at least one neighboring pixel within a 3×3 window was also identified 
as smoke-impacted. 

Step D. Baseline refinement 

After smoke-impacted pixels were identified, baseline statistics (i.e., median) were recomputed 
using only non-fire days. This refinement step effectively “decontaminates” the baseline by 
removing smoke influence, ensuring that the background levels represent true non-fire conditions. 
For reproducibility, Step C was not rerun with the refined baselines. 

Step E. Derivation of fire and non-fire PM2.5 

To obtain daily non-fire concentrations, grid cells identified as fire-affected outliers (Step C) were 
replaced with their corresponding background values. The background was defined as the DOY-
specific median from the meteorology-normalized dataset in Step D, thereby preserving seasonal 
cycles while excluding fire anomalies. The resulting dataset represents daily spatial distributions 
of non-fire concentrations (𝑃𝑃𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑔𝑔, 𝑡𝑡)). 

Fire-attributed concentrations were then calculated as the residual between the meteorology-
normalized dataset and the background dataset: 

𝑃𝑃𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑔𝑔, 𝑡𝑡) = 𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔, 𝑡𝑡) − 𝑃𝑃𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑔𝑔, 𝑡𝑡) 
This procedure ensures that wildfire impacts are quantified relative to the expected seasonal 
background under meteorology-normalized conditions. 

9.2.3 Application to PM2.5 components 
The smoke‐filtering framework described above (Section 9.2) was further extended to quantify the 
wildfire and non-wildfire contributions of five major PM2.5 components— SO₄²⁻, NO₃⁻, OC, EC, 
and DUST—each available as daily 1-km estimates for the same domain and period (2005–2020). 
Because total PM2.5 represents the combined signal of these species and exhibits the highest signal-
to-noise ratio, the Step C smoke mask derived from total PM2.5 was adopted as a common indicator 
of smoke exposure for all components. This approach ensures consistency in the spatial and 
temporal definition of fire events and facilitates cross-species comparisons. 



 
 

For each species, we recomputed baseline statistics following the procedure in Step D but using the 
species-specific concentration fields. All grid cells and days flagged as smoke-impacted in Step C 
were excluded from these calculations, yielding “clean” DOY baselines that represent typical non-
fire conditions for each component. These species-specific baselines (median, Q1, Q3, and IQR) 
were subsequently used to separate smoke and non-fire concentrations. 
 
In analogy with Step D, smoke and non-fire concentrations for each species were derived. This 
design maintains a coherent smoke definition across all PM2.5 components—ensuring that species 
are evaluated under a shared exposure framework—while allowing each component to preserve its 
own statistically independent baseline for replacement and analysis. The resulting species-specific 
smoke and non-fire fields provide a consistent basis for inter-species comparison of wildfire 
impacts, emission policies, and long-term compositional changes in PM2.5 across California. 
 
9.2.4 Statistical analyses of the decomposed results 
After generating the daily 1-km fields with meteorological and wildfire contributions decomposed, 
we conducted spatiotemporal statistical analyses at both the pixel level and for region-aggregated 
units. Our focus areas included the Southern California Air Basin (SoCAB) and the San Joaquin 
Valley (SJV), as well as urban areas (UA) in California defined by the 2010 U.S. Census Bureau 
urbanized-area boundaries; rural areas (RA) were defined as the portions of California outside those 
urban boundaries. To capture heterogeneity in sources and impacts, we further examined five major 
metropolitan areas—San Francisco Bay Area (SF Bay), Los Angeles Metropolitan Area (LA), 
Sacramento, Fresno, and San Diego (SD) (Fig. 9.1). 



 
 

 
Figure 9.1. Spatial distributions of the selected decomposition regions with the five major metropolitan areas 
highlighted. 

(1) Statistical analysis for meteorological decomposed data 
We quantified the role of meteorology in explaining year-to-year variation using both the original 
estimates and the meteorology-normalized results. For total PM2.5 and each component, we 
constructed annual time series (2000–2020) of the ground-level concentrations without 
decomposition (referring to 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔, 𝑡𝑡) hereafter), the meteorology-normalized concentrations 
𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔, 𝑡𝑡) , and the meteorological contribution 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔, 𝑡𝑡) . We calculated the sample 
variance of 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔, 𝑡𝑡) and 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔, 𝑡𝑡) across years, and defined the meteorological share of 
variance (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎) was then calculated as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎% = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔,𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑔𝑔,𝑡𝑡)

× 100  

 
This ratio expresses the fraction of observed interannual variability attributable to meteorology. 
Values close to 0% indicate negligible meteorological influence, whereas values approaching or 
exceeding 100% suggest that meteorology alone accounts for most or all of the observed variability. 
To aid interpretation, we also reported the standard deviation (SD) of 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 (Obs_SD), 𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 



 
 

(DEmet_SD), and 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  (Met_SD) to characterize the typical magnitude of variability, the 
correlation coefficient between 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔, 𝑡𝑡)   and 𝑃𝑃𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂(𝑔𝑔, 𝑡𝑡)  to show how closely 
meteorological fluctuations track observed concentrations, and long-term means of both originally 
estimated (Mean_Obs) and meteorological (Mean_Met ) contributions. 
 
(2) Statistical analysis for smoke and non-fire data 
To evaluate spatial hotspots following the two-step decomposition, we calculated multi-year mean 
concentrations of fire and non-fire PM2.5 and its components. To assess the interannual variability 
across selected subregions and further characterize the contribution of emission policies, we 
decomposed the non-fire monthly time series into three components—long-term trend, seasonal 
cycle, and residuals—using a moving average (Kendall & Stuart, 1983). method. This approach 
enables a clearer distinction between emission-driven changes, seasonal patterns, and short-term 
fluctuations. Representative examples of this decomposition are shown in Figure 9.2. 

 
Figure 9.2. Decomposition of nitrate PM2.5 for urban area of California. 

 
9.3 Changing roles of meteorology on PM2.5 and its five components trend 
Table 9.1-9.12 summarized the predicted net PM2.5 total and the five component concentrations, 
those with effects of meteorological changes removed and the differences in PM2.5 and component 



 
 

concentrations associated with these meteorological changes (termed 𝑃𝑃𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑃𝑃𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , and 
𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) by region and year. It is clear that the meteorological parameters show changing roles in 
PM2.5 and its component long-term variation with significant regional difference. 
 
9.3.1 PM2.5 (total mass) 
Across regions, meteorology explains a modest share of interannual PM2.5 variability, with 
VarShare averaging ~8.4% and ranging from ~3% (RA, CA statewide) to ~20% (SoCAB). Regions 
with larger meteorological influence also show higher Met_SD (e.g., SoCAB Met_SD ≈ 0.40 
µg/m³; Fresno ≈ 0.72 µg/m³), while statewide values remain small (Met_SD ≈ 0.21 µg/m³). The 
Obs–Met correlation is weak in magnitude and often slightly negative (e.g., SD ≈ −0.29, UA ≈ 
−0.22, SF Bay ≈ −0.12). Notably, the de-meteorologized variability (DEmet_SD) is equal to or 
modestly larger than Obs_SD in several areas (e.g., SoCAB 1.05 vs 0.91; SD 1.83 vs 1.62; LA 
metro 2.17 vs 2.12). Mean levels differ in intuitive ways—Mean_Obs is highest in UA and Fresno, 
moderate in SJV and Sacramento, and lowest statewide and in RA—while Mean_Met tends to be 
slightly negative in sign for many regions.  
 
Table 9.1.  The predicted original total PM2.5, PM2.5 with meteorological changes removed (PM25DEMET), and the 
changes in PM2.5 associated with the meteorological changes (PM25MET) for different regions from 2000 to 2020 
(unit: μg/m³). A positive PM25MET value (orange) indicates that the meteorological change is favorable to PM2.5 
formation, while a negative value (blue) indicates unfavorable. 

 
 
Table 9.2. PM2.5 total mass concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD DEmet_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 1.16 0.21 1.16 3.19 0.07 6.50 -0.35 
SJV 1.41 0.32 1.38 5.20 0.22 8.45 -0.11 
SoCAB 0.91 0.40 1.05 19.63 -0.15 7.63 -0.58 
UA 1.51 0.38 1.64 6.16 -0.22 10.83 -0.22 
RA 1.17 0.21 1.17 3.08 0.09 6.26 -0.36 



 
 

SF Bay 1.39 0.44 1.51 10.16 -0.12 9.65 -0.29 
Sacramento 1.61 0.49 1.62 9.30 0.12 10.35 -0.14 
Fresno 2.10 0.72 2.15 11.76 0.11 14.68 0.77 
LA 2.12 0.53 2.17 6.15 0.02 12.13 -0.27 
SD 1.62 0.50 1.83 9.34 -0.29 10.43 -0.59 

 
9.3.2 Sulfate 
Interannual variability in SO₄²⁻ is only weakly explained by meteorology. VarShare values are 
uniformly small (≈0.15–0.44%), with the highest shares in Fresno (~0.44%) and SF Bay (~0.35%), 
and the lowest in UA (~0.15%) and SD (~0.16%). Consistent with this, Met_SD magnitudes are an 
order of magnitude smaller than Obs_SD in every region (e.g., CA: Met_SD ≈ 0.008 vs Obs_SD ≈ 
0.177; LA: 0.029 vs 0.674). Obs–Met correlations are weakly negative across most regions (≈ −0.08 
to −0.48). De-meteorologized variability (DEmet_SD) is similar to or slightly larger than Obs_SD. 
 
Table 9.3.  The predicted original sulfate PM2.5, sulfate PM2.5 with meteorological changes removed 
(SulfateDEMET), and the changes in sulfate PM2.5 associated with the meteorological changes (SulfateMET) for 
different regions from 2000 to 2020 (unit: μg/m³).  

 
Color coding follows the scheme described in Table 9.1. 
 
Table 9.4. Sulfate component concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD DEmet_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 0.18 0.01 0.18 0.20 -0.37 0.84 -0.01 
Fresno 0.28 0.02 0.28 0.44 -0.14 1.28 -0.03 
LA 0.67 0.03 0.68 0.19 -0.08 1.85 -0.03 
RA 0.16 0.01 0.17 0.22 -0.36 0.81 -0.01 
SD 0.64 0.03 0.65 0.16 -0.30 1.80 -0.02 
SF Bay 0.26 0.02 0.27 0.35 -0.48 1.11 -0.04 
SJV 0.22 0.01 0.22 0.25 -0.30 1.04 -0.02 
Sacramento 0.22 0.01 0.23 0.30 -0.42 0.94 -0.03 
SoCAB 0.37 0.02 0.37 0.22 -0.29 1.26 -0.02 



 
 

UA 0.43 0.02 0.43 0.15 -0.29 1.41 -0.03 
 
 
9.3.3 Nitrate 
For NO₃⁻, meteorology plays a modest but more noticeable role than for SO₄²⁻, with VarShare 
generally between ~0.5% and ~2.3%. The largest meteorological shares occur in Fresno (~2.34%), 
Sacramento (~2.01%), and SJV (~1.58%). Obs–Met correlations are consistently positive and 
moderate (≈0.37–0.61 across regions). Despite this, Met_SD remains substantially smaller than 
Obs_SD (e.g., Fresno: 0.12 vs 0.77 µg/m³; LA: 0.09 vs 1.17 µg/m³), and DEmet_SD stays close to 
or below Obs_SD. Mean NO₃⁻ levels are highest in Fresno and UA, moderate in LA/SJV/SD, and 
lowest statewide and in RA; mean meteorological terms (Mean_Met) are slightly negative relative 
to the chosen reference climate. 
 
Table 9.5.  The predicted original nitrate PM2.5, nitrate PM2.5 with meteorological changes removed 
(NitrateDEMET), and the changes in nitrate PM2.5 associated with the meteorological changes (NitrateMET) for 
different regions from 2000 to 2020 (unit: μg/m³).  

 
Color coding follows the scheme described in Table 9.1. 
 
Table 9.6. Nitrate component concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD DEmet_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 0.21 0.02 0.21 1.30 0.40 0.89 -0.02 
Fresno 0.77 0.12 0.71 2.34 0.60 3.61 -0.03 
LA 1.17 0.09 1.12 0.65 0.61 2.97 -0.03 
RA 0.19 0.02 0.18 1.46 0.37 0.81 -0.02 
SD 0.81 0.06 0.79 0.53 0.37 2.45 -0.03 
SF Bay 0.45 0.04 0.44 0.64 0.40 1.82 -0.02 
SJV 0.35 0.04 0.33 1.58 0.53 1.64 -0.03 
Sacramento 0.37 0.05 0.34 2.01 0.57 1.58 -0.05 



 
 

SoCAB 0.55 0.05 0.52 0.88 0.54 1.61 -0.03 
UA 0.72 0.06 0.69 0.70 0.58 2.31 -0.03 

 
 
9.3.4 Organic carbon 
For OC, meteorology explains a small but non-negligible fraction of interannual variability. 
VarShare ranges from ~0.21% (RA) to about 2.16% (SD) and 1.94% (SF Bay), with most regions 
below ~1.5%. Obs–Met correlations are positive (generally 0.25–0.55; statewide ≈ 0.52), consistent 
with OC’s sensitivity to temperature/oxidant regimes and stagnation that promote secondary 
organic aerosol formation. Even so, Met_SD remains much smaller than Obs_SD (e.g., CA: 0.023 
vs 0.484 µg/m³; LA: 0.070 vs 0.769), and DEmet_SD is slightly below Obs_SD in most regions. 
Mean OC is highest in Fresno and LA/UA, intermediate in SJV/Sacramento/SD/SF Bay, and lower 
statewide and in RA; Mean_Met is near zero to slightly negative. 
 
Table 9.7.  The predicted original OC PM2.5, OC PM2.5 with meteorological changes removed (OCDEMET), and 
the changes in OC PM2.5 associated with the meteorological changes (OCMET) for different regions from 2000 to 
2020 (unit: μg/m³).  

 
Color coding follows the scheme described in Table 9.1. 
 
Table 9.8. OC component concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD DEmet_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 0.48 0.02 0.47 0.23 0.52 1.92 -0.02 
Fresno 0.77 0.09 0.74 1.44 0.31 4.15 0.00 
LA 0.77 0.07 0.75 0.83 0.36 3.77 -0.03 
RA 0.50 0.02 0.48 0.21 0.55 1.85 -0.02 
SD 0.41 0.06 0.39 2.16 0.25 2.87 -0.04 
SF Bay 0.46 0.06 0.45 1.94 0.28 2.72 0.01 
SJV 0.60 0.05 0.58 0.64 0.43 2.59 0.00 
Sacramento 0.60 0.09 0.57 2.12 0.34 3.57 -0.02 



 
 

SoCAB 0.34 0.02 0.34 0.51 0.06 2.05 -0.03 
UA 0.51 0.05 0.50 0.93 0.12 3.25 -0.02 

 
9.3.5 Elemental carbon 
Similar to OC, interannual EC variability is also weakly influenced by meteorology. VarShare is 
uniformly small—typically ≤ ~2.25%, with the upper end in Fresno (~2.25%) and Sacramento 
(~2.06%), and ≤1% elsewhere (e.g., CA ≈ 0.10%, SJV ≈ 0.25%). Consistent with this, Met_SD is 
much smaller than Obs_SD across regions (e.g., LA: 0.021 vs 0.231 µg/m³; SF Bay: 0.013 vs 
0.174), and DEmet_SD is essentially similar to or slightly below Obs_SD. Obs–Met correlations 
are near zero to modestly positive (statewide ≈ 0.02; many regions 0.19–0.61). Mean EC levels are 
highest in LA, UA, and Fresno, moderate in SD/SF Bay/Sacramento/SJV, and lower statewide and 
in RA; Mean_Met hovers near zero. 
 
 
Table 9.9.  The predicted original EC PM2.5, EC PM2.5 with meteorological changes removed (ECDEMET), and the 
changes in EC PM2.5 associated with the meteorological changes (ECMET) for different regions from 2000 to 2020 
(unit: μg/m³).  

 
Color coding follows the scheme described in Table 9.1. 
 
Table 9.10. EC component concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD DEmet_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 0.10 0.00 0.10 0.10 0.02 0.34 0.00 
Fresno 0.15 0.02 0.16 2.25 0.05 0.87 -0.01 
LA 0.23 0.02 0.22 0.85 0.41 1.08 0.00 
RA 0.10 0.00 0.10 0.08 0.04 0.31 0.00 
SD 0.16 0.02 0.15 1.52 0.61 0.83 0.00 
SF Bay 0.17 0.01 0.17 0.58 0.37 0.69 0.01 
SJV 0.13 0.01 0.13 0.25 -0.03 0.47 0.00 
Sacramento 0.16 0.02 0.16 2.06 0.24 0.81 0.01 
SoCAB 0.11 0.01 0.11 0.34 0.19 0.50 0.00 



 
 

UA 0.16 0.01 0.16 0.70 0.20 0.83 0.00 
 
 
9.3.6 Mineral dust 
Among the species, DUST shows the strongest meteorological imprint. VarShare is substantially 
higher than for SO₄²⁻/OC/EC—reaching ~40% in Fresno, ~33% in LA, ~31% in UA, and ~29% in 
Sacramento/SD; even statewide (CA) and in RA the shares are ~7–8%. This aligns with dust’s 
sensitivity to wind, precipitation, and soil moisture regimes. Obs–Met correlations are generally 
positive and moderate-to-strong (e.g., Fresno ≈ 0.90; SJV ≈ 0.68; SoCAB ≈ 0.66), and Met_SD can 
approach or exceed half of Obs_SD in high- DUST regions (e.g., Fresno 0.113 vs 0.180 µg/m³). 
Notably, DEmet_SD is often lower than Obs_SD. Mean DUST levels are highest in 
Fresno/LA/SoCAB, moderate in UA/SJV, and lower in SF Bay—a spatial pattern consistent with 
local resuspension, aridity, and basin meteorology. 
 
Table 9.11.  The predicted original DUST PM2.5, DUST PM2.5 with meteorological changes removed (DUST 
DEMET), and the changes in DUST PM2.5 associated with the meteorological changes (DUST MET) for different 
regions from 2000 to 2020 (unit: μg/m³).  

 
Color coding follows the scheme described in Table 9.1. 
 
Table 9.12. EC component concentrations metrics for the 2000-2020 period by region. 

Region Obs_SD Met_SD Adj_SD VarShare% Corr_Obs_Met Mean_Obs Mean_Met 
CA 0.12 0.03 0.10 7.79 0.64 1.10 -0.03 
Fresno 0.18 0.11 0.09 39.93 0.90 1.26 -0.02 
LA 0.09 0.05 0.10 32.82 0.14 1.03 -0.05 
RA 0.12 0.03 0.10 7.25 0.65 1.11 -0.03 
SD 0.06 0.03 0.07 28.24 0.04 0.79 -0.05 
SF Bay 0.07 0.02 0.07 10.91 0.21 0.60 0.00 
SJV 0.10 0.05 0.08 23.14 0.68 0.93 -0.02 
Sacramento 0.09 0.05 0.07 28.79 0.62 0.74 -0.02 
SoCAB 0.09 0.04 0.07 21.10 0.66 1.08 -0.04 



 
 

UA 0.07 0.04 0.07 31.43 0.33 0.95 -0.03 
 
9.3.7 Summary and discussion 
The meteorological decomposition alone results show clear regional contrasts in the influence of 
meteorology on pollutant variability (Table 9.1-9.12). Across regions, meteorological influence is 
highly uneven. Fresno exhibits the strongest weather imprint overall, driven by a very large 
VarShare for dust, indicating that winds, aridity, and resuspension account for a substantial share 
of its year-to-year swings; NO₃⁻ shows a smaller but noticeable meteorological share consistent 
with cool-season partitioning sensitivity. SoCAB presents the highest VarShare in total PM2.5, with 
LA likewise showing elevated DUST VarShare; in both basins, SO₄²⁻, OC, and EC have small 
meteorological shares, and NO₃⁻ is modest, implying that most interannual variation in those 
species is not primarily weather-driven. In the SJV as a whole and Sacramento, total PM2.5 has a 
moderate meteorological imprint, DUST is again prominent, and NO₃⁻ is modestly weather-
sensitive; SF Bay and San Diego show nontrivial meteorological contributions to total PM2.5 and 
elevated DUST VarShare, while other species remain small to modest. Comparing spatial strata, 
urban areas display larger DUST VarShare than rural areas, whereas statewide and rural VarShare 
for total PM2.5 are small, suggesting that most statewide interannual variability, once meteorology 
is removed, arises from non-meteorological factors. Observed–meteorology correlations reinforce 
these patterns: they are typically positive for NO₃⁻, OC, and dust, indicating that years with 
meteorology conducive to secondary formation or resuspension tend to coincide with higher 
observations. 
 
 
Although the meteorology-only decomposition indicates that weather exerts its strongest influence 
in Fresno and SoCAB, across pollutants meteorology explains only a small share of interannual 
variability in PM2.5 total, SO₄²⁻, NO₃⁻, OC, and EC—generally on the order of ~2–10%, depending 
on species and region. These modest variance shares reflect that meteorological contributions often 
alternate in sign across years, with positive anomalies in some years offset by negative anomalies 
in others, yielding near-zero mean effects. In sharp contrast, DUST exhibits substantial 
meteorological dependence, with variance shares frequently exceeding ~30%, and especially high 
in Fresno and LA Metro. This pattern underscores that long-term changes in most PM2.5 
components are governed primarily by emissions and atmospheric chemistry, whereas meteorology 
remains a major modulator of interannual DUST variability. Because wildfire influences remain in 
the deweathered series at this stage, we treat these results as an intermediate diagnostic: they isolate 
the meteorological contribution and prepare the ground for subsequent smoke separation, after 
which the non-fire residual can be used to interrogate longer-term, non-meteorological drivers. 
These findings have important implications for trend attribution: the small meteorological variance 
shares (except for DUST) confirm that observed declines in SO₄²⁻, NO₃⁻, OC, and EC primarily 
reflect emission-control effectiveness rather than favorable weather patterns, lending confidence to 
policy impact assessments presented in Section 9.6. 



 
 

 
 
9.4 Spatial patterns of fire-attributed PM2.5 and its components 
Figure 9.4 maps multiyear mean fire-attributed PM2.5 and its components at 1-km resolution after 
meteorology and wildfire decomposition. The total smoke panel (upper left) shows two distinct 
hotspots: North Coast–Klamath hotspot and Central Sierra Nevada hotspot. These areas coincide 
with frequent large wildfires and prevailing downwind transport pathways, resulting in annual 
mean fire contributions exceeding 2.0 µg/m³ in some locations. A secondary elevated belt is evident 
along the northern Sierra/Feather River–southern Cascades shoulder (Plumas–Butte), adjacent to 
the North Coast–Klamath hotspot but at comparatively lower levels (commonly between 1-5 
µg/m³). In contrast, coastal southern California and much of the immediate urban coast appear 
relatively less affected in the multiyear mean (typically lower than 1 µg/m³). 
 
Across components, OC most closely mirrors the total smoke pattern, with pronounced 
enhancements over those hotspots with fire-attributed concentrations larger than 1 µg/m³. EC is 
generally weak but elevated spatially in the smoke signal, particularly in the northwestern wildfire 
hotspot. SO₄²⁻, NO₃⁻, and DUST remain low statewide in the fire-attributed means, with only faint, 
localized features. This compositional picture indicates that the multiyear average wildfire 
contribution is OC-dominated, with minor inorganic and DUST components. 
 
Taken together, these spatial patterns highlight the concentration of wildfire smoke influence in 
forested northern and interior mountain regions, with downwind enhancement onto adjacent 
valleys, while coastal and southern urban corridors exhibit comparatively lower multiyear smoke 
means. This contrast is consistent with the geography of large-fire occurrence and transport 
pathways over the study period. 



 
 

 
Figure 9.3. Spatial distribution of multiyear mean fire-attributed PM2.5 and its major components (2006–2020) 
across California, derived from meteorology- and wildfire-decomposed daily 1-km estimates.  

 
9.5 Spatial and temporal patterns of nonfire PM2.5 and its components  
This section examines the spatiotemporal patterns of PM2.5 total mass and its five major 
components after meteorological and wildfire decomposition during 2005–2020. Figure 9.5 
illustrates the spatial distribution of non-fire concentrations, revealing persistent hotspots for both 
total PM2.5 and individual species. Throughout the study period, the SJV and Southern California 
urban regions — dominated by NO₃⁻ and OC — remain the primary centers of non-fire PM2.5, while 
coastal, northern, and mountainous areas are comparatively clean. Figure 9.6 shows their long-term 
interannual evolution, characterized by substantial declines since 2005, particularly during the 
2000s, though notable differences across components and regions persist. Detailed component-
specific spatial contrasts and temporal trends are presented in the following subsections. 



 
 

 
Figure 9.4. Spatial distribution of multiyear mean nonfire PM2.5 and its major components (2006–2020) across 
California, derived from meteorology- and wildfire-decomposed daily estimates. 

  

 
Figure 9.5. Interannual trends (2005–2020) of total PM2.5 and its major components (SO₄²⁻, NO₃⁻, EC, OC, and 
DUST) across ten California regions. Trends are derived from meteorology- and wildfire-decomposed (nonfire) 
estimates using a moving-average method to isolate long-term changes.  

 
9.5.1 PM2.5 (Total) 
The long-term spatial pattern (2005–2020) shows three dominant hotspots: the SoCAB urban belt, 
the SJV corridor, the Imperial Valley region. Values along the Fresno–Bakersfield axis and 



 
 

LA/Imperial commonly fall in the ~9–14 µg/m³ range, with localized maxima across the LA urban 
cluster where many areas are ≳12 µg/m³. In contrast, the North/Central Coast, rural uplands, and 
higher elevations are typically ~3–6 µg/m³. Overall, the multi-year mean concentrations across 
California is 5.9 µg/m³. 
 
Complementing this, region-aggregated interannual time series (moving-average) reveal a broad 
statewide decline in non-fire PM2.5 over 2005–2020, with a sharper drop through ~2014 followed 
by a more gradual decrease thereafter. The broader UA also show elevated burdens, ~11.15 → 
~8.17 µg/m³, while RA remain consistently lower, ~6.07 → 4.76 µg/m³. Fresno and LA Metro 
begin the period with the highest concentrations (near 14.28 and 12.50 µg/m³, respectively) and, 
despite strong decreases to ~9–10 µg/m³ by 2020, remain the most polluted regions. The SF Bay 
starts near ~10 µg/m³ and declines to ~7.45 µg/m³, the lowest among the five major metropolitan 
regions. 
 
9.5.2 Sulfate 
SO₄²⁻ shows a clear south-basin emphasis, with higher burdens in SoCAB coastal corridors. By 
contrast, the SJV has only modest SO₄²⁻ compared with its NO₃⁻ and OC burdens, and northern 
California remains generally clean. The LA metro and San Diego megaregions contain the broadest 
elevated areas, with much of each region near 1.5–2.0 µg/m³. 
 
The interannual series indicates substantial statewide reductions from 2005 to 2020. LA metro and 
SD show the steepest declines (>1 µg/m³), while Sacramento decreases more gradually (≈0.4 
µg/m³) and falls below ~0.7 µg/m³ by 2020—the cleanest among the five urban clusters. SoCAB 
exhibits modest leveling in the late 2010s, with small rebounds in LA metro and SD. By 2020, 
SO₄²⁻ concentrations across regions converge to ~0.5–1.0 µg/m³. 
 
 
9.5.3 Nitrate 
NO₃⁻ hotspot is predominantly concentrated in the SJV, forming the largest continuous region of 
NO₃⁻ pollution in California, with concentrations commonly exceeding 2.0 µg/m³. Among the five 
major urban clusters, Fresno is the most polluted, with multi-year averages around 3.2 µg/m³, 
followed by LA Metro (2.3 µg/m³) and San Diego (2.0 µg/m³), while Sacramento remains the 
cleanest urban center (1.4 µg/m³). By contrast, northern and mountainous California are 
comparatively clean, generally below 1 µg/m³. 
 
The interannual trends further underscore NO₃⁻’s central role in the Valley. Fresno begins the 
period with the highest NO₃⁻ concentrations in the state—around 4.1 µg/m³—and, despite a 
substantial decrease to ~2.1 µg/m³ by 2020, it remains the most polluted region. LA Metro also 
starts high (near 3.3 µg/m³) and exhibits a gradual decline with signs of plateauing in recent years, 
while San Diego follows a similar trajectory (~2.8 → 1.7 µg/m³). Both the twp typical basins, SJV 



 
 

and SoCAB, show comparable downward trends, decreasing from approximately 1.8 µg/m³ to 1.1 
µg/m³ over the study period.  
 
 
9.5.4 Elemental carbon 
EC concentrations are generally the lowest among the five PM2.5 components (the statewide multi-
year mean = 0.3 µg/m³), with the highest levels observed in Southern California — particularly 
within the Los Angeles Basin, where heavy traffic, diesel emissions, and industrial activities are 
dominant sources. Secondary hotspots are evident in major urban centers such as SD, Fresno, 
Sacramento, and Bakersfield, while northern, mountainous, and coastal regions of the state remain 
comparatively clean. 
 
Long-term trends reveal a pronounced statewide decline in EC between 2005 and 2020. In the LA 
megaregion, concentrations decreased from approximately 1.32 µg/m³ in 2005 to about 0.8 µg/m³ 
by 2020, while San Diego experienced a reduction from ~0.9 µg/m³ to ~0.7 µg/m³ over the same 
period. All five major megaregions, however, exhibit signs of a rebound in recent years, particularly 
in the Sacramento and San Francisco Bay areas. On average, urban EC levels fell substantially from 
around 1.0 µg/m³ to 0.7 µg/m³, whereas rural areas started lower (~0.3 µg/m³) and declined more 
modestly to ~0.2 µg/m³.  
 
9.5.5 Organic carbon 
OC emerges as the dominant PM2.5 component in California (statewide multi-year mean = 1.5 
µg/m³), particular for the SJV and Southern California, with the highest levels observed in the LA 
Basin, where concentrations commonly exceed 4 µg/m³. In contrast, northern, mountainous, and 
coastal California remain comparatively clean.  
 
The interannual trends reveal substantial statewide declines in OC from 2005 to 2020, although 
with greater variability than observed for EC. The LA urban area begins the period with the highest 
concentrations, near 4.6 µg/m³, and despite decreasing to ~2.4 µg/m³ by 2020, it ranks as the third 
most polluted among the urban clusters. Fresno and Sacramento exhibit similar declining 
trajectories, starting from ~4.3 µg/m³ and 3.5 µg/m³, respectively, with smaller decreases observed 
between 2012 and 2018. San Diego and the SF Bay Area begin between 2.7 and 3.3 µg/m³ and fall 
to around 2.0 µg/m³ by 2020. Rural areas remain consistently lower, decreasing slightly from ~1.7 
to 1.2 µg/m³ over the study period. 
 
9.5.6 Mineral dust 
Spatial hotspots are largely confined to the southeastern desert regions near the Arizona border, 
where concentrations exceed 3 µg/m³, while SJV is only moderately elevated, with values 
commonly around 1.2 µg/m³. Urban centers such as SD, Sacramento, and the SF Bay Area remain 
comparatively clean, with DUST contributing only a minor share of total PM2.5 (multi-year mean 



 
 

<1 µg/m³). Notably, DUST is the only component for which concentrations in rural areas are higher 
than in urban areas (1.1 vs. 0.9 µg/m³ on a multi-year mean basis). 
 
The interannual trends reinforce this picture, showing consistently low baseline levels statewide, 
typically between 0.9 and 1.1 µg/m³. Unlike other components that exhibit clear decreasing 
trajectories, DUST concentrations show no significant long-term increase or decrease across any 
of the 10 focused regions. Among the five urban clusters, Fresno records the highest DUST levels, 
fluctuating from about 1.3 µg/m³ in 2005 to around 1.2 µg/m³ in recent years.  
 
9.5.7 Summary and discussion 
Overall, the long-term meteorology- and wildfire-decomposed results reaffirm well-established 
PM2.5 patterns in California while offering new insights into component-specific differences. The 
identification of the SJV and Southern California as persistent PM2.5 hotspots is consistent with 
decades of monitoring and prior studies, yet the decomposition clarifies the relative roles of 
individual species. SO₄²⁻ concentrations remain slightly higher in the SoCAB than in the SJV (1.07 
vs 0.93 µg/m³), reflecting stronger influences from port activity and industrial emissions. EC is 
most prominent in the Los Angeles megaregion, consistent with its combustion-heavy source mix, 
but both SO₄²⁻ and EC exhibit plateaus or rebounds after 2016–2018 in Sacramento and the San 
Francisco Bay Area. NO₃⁻ continues to dominate in Fresno, underscoring persistent secondary 
formation in the Valley; despite substantial declines during the study period, the anthropogenic 
residuals indicate that NO₃⁻ remains a major contributor to total PM2.5 in most urban areas as well 
as in the SJV and SoCAB basins. Although OC concentrations peak in the Los Angeles 
metropolitan area, the San Joaquin Valley also shows pronounced and persistent OC hotspots—an 
under-recognized feature given that the region’s PM2.5 pollution has traditionally been attributed 
mainly to agricultural and meteorological influences. Finally, DUST, while often highlighted in 
regulatory discussions, emerges as a relatively minor contributor across most populated regions. 
Together, these findings provide a more refined understanding of regional PM2.5 composition, 
revealing distinct chemical “fingerprints” associated with different source environments and 
reaffirming the dominant role of anthropogenic emissions in shaping long-term air-quality burdens 
across California. Importantly, because meteorological and wildfire influences have been removed, 
the observed challenges—such as the SO₄²⁻ and EC plateaus or rebounds after 2016–2018 in 
Sacramento and the SF Bay Area, and the persistent OC hotspot in the SJV—directly reflect 
anthropogenic emission dynamics and warrant closer examination of emerging or insufficiently 
regulated sources. 
 
9.6 Implications for Emission-Control Policy 
The “non-fire, de-meteorologized” concentrations represent the anthropogenic or policy-sensitive 
residual, so they can indeed serve as the empirical basis for discussing emission-control 
implications. In general, those results clarify that the sustained long-term declines in PM2.5 and its 
five major components across California are primarily attributable to reductions in anthropogenic 



 
 

emissions rather than favorable weather or changes in wildfire frequency. These findings offer 
several policy-relevant insights into source attribution and future control priorities. 
 
9.6.1 Reinforcing the effectiveness—and emerging limits—of past emission controls 
The decomposition results confirm that the sharp declines in SO₄²⁻ and EC through the mid-2010s 
primarily reflect the success of long-standing combustion and fuel-quality regulations. SO₄²⁻ 
reductions trace directly to the statewide transition to ultra-low-sulfur fuels, refinery 
desulfurization, and tighter industrial sulfur dioxide controls, while EC decreases follow diesel-
engine retrofits, fleet turnover, and cleaner fuels in urban basins. 
 
However, the non-fire interannual trends reveal a recent plateau and mild rebound of both species 
in several urban clusters—particularly Los Angeles, San Diego, Sacramento, and the San Francisco 
Bay Area—after years of steady decline. These reversals suggest that early emission gains are 
nearing saturation and that new or unregulated source sectors (e.g., port freight, construction 
machinery, off-road diesel, localized industrial activity) may now dominate the remaining EC and 
SO₄²⁻ burden. 
 
Maintaining progress therefore requires next-generation control strategies: continued diesel-fleet 
electrification, expanded zero-emission freight and drayage operations, refinery process 
optimization, and port-area sulfur and EC surveillance. Reinforcing these measures would prevent 
the observed rebounds from eroding two decades of air-quality gains and ensure sustained 
improvements in California’s most densely populated corridors. 
 
9.6.2 Nitrate as a persistent hotspot in the San Joaquin Valley 
After removing meteorological and wildfire influences, NO₃⁻ remains the most spatially 
concentrated PM2.5 component in California, forming the largest and most continuous hotspot along 
the Fresno–Bakersfield corridor of the SJV, with typical non-fire concentrations exceeding 2 µg/m³ 
and localized maxima above 3 µg/m³. This pattern reflects strong secondary NO₃⁻ formation in a 
basin characterized by high ammonia emissions from agriculture and confined livestock operations, 
coupled with stagnant winter meteorology that favors ammonium NO₃⁻ partitioning. 
 
While long-term NO₃⁻ levels have declined since 2005—particularly during the 2000s—the 
persistence of these hotspots indicates that current ammonia mitigation remains insufficient to 
complement ongoing NOₓ reductions from mobile-source and industrial controls. Further progress 
therefore depends on coordinated precursor management, including precision fertilizer use, 
improved manure handling, and emission-reduction incentives for dairies, alongside continued NOₓ 
control through transportation electrification and industrial combustion efficiency. Strengthening 
ammonia monitoring and incorporating agricultural NH₃ inventories into regional attainment 
planning would directly address the Valley’s remaining NO₃⁻ burden. 
 



 
 

9.6.3 Organic carbon as the dominant contributor in urban and valley regions 
OC emerges as the dominant PM2.5 component in both the SoCAB and the SJV, with concentrations 
commonly > 4 µg/m³ in the Los Angeles Basin and > 3–4 µg/m³ across the central Valley. These 
levels exceed those of NO₃⁻, SO₄²⁻, or EC, underscoring the substantial contribution of both primary 
combustion emissions and secondary organic aerosol formation from volatile organic compound 
(VOC) precursors. 
 
Statewide OC has declined markedly since 2005, but its sustained prominence in SoCAB and the 
SJV points to the need for integrated control of combustion and VOC sources. Strengthened 
measures targeting residential wood combustion, small-scale industrial processes, and evaporative 
VOC emissions from consumer products, coatings, and oil-and-gas activities could further reduce 
OC levels. Policies that jointly mitigate VOCs and NOₓ would deliver co-benefits for both PM2.5 
and ozone, helping to lower chronic exposure in California’s most populous and pollution-burdened 
basins. 
 
9.6.4 DUST management under changing climate conditions 
Although DUST contributes only a modest share to statewide PM2.5, its strong meteorological 
dependence and localized prominence—particularly in Fresno, the southern SJV, and the desert 
regions near the Arizona border—make it a growing concern under a warming, drier climate. The 
decomposition results show that DUST is the only component for which meteorology explains a 
substantial fraction of variability, indicating high sensitivity to wind, soil moisture, and land 
disturbance. 
 
Effective mitigation therefore hinges on adaptive land and soil management rather than traditional 
emission controls. Priority measures include maintaining soil moisture on fallow farmland, 
stabilizing unpaved roads, implementing windbreaks and vegetative buffers, and enforcing 
construction-site DUST suppression. Integrating these measures with California’s drought and 
land-conservation policies will help limit DUST resuspension and prevent climate-driven 
degradation of baseline air quality in agricultural and desert regions. 
 
9.6.5 Integrating wildfire and anthropogenic strategies 
The decomposition analysis highlights that wildfire smoke increasingly dominates episodic 
extremes, while the anthropogenic residual defines the chronic baseline exposure that determines 
long-term health risk. OC and EC in particular exhibit distinct “dual-source” behavior—wildfire-
driven spikes superimposed on persistent urban and valley backgrounds—underscoring the need 
for coordinated management across sectors. 
 
Sustaining progress thus requires policies that couple forest-fuel management and prescribed 
burning with continued urban and industrial emission reductions. Strategic alignment between 
CalFire, CARB, and regional air districts can ensure that fuel treatments and smoke management 



 
 

plans are optimized to minimize public exposure without undermining long-term air-quality gains. 
Enhanced satellite-based smoke monitoring and predictive modeling should be institutionalized to 
guide real-time public-health advisories and air-quality episode response. 
 
9.6.6 Regional prioritization and equity considerations 
 
The non-fire results reaffirm that the SJV and Southern California remain the most persistent PM2.5 
hotspots and coincide with areas of high social and environmental vulnerability. These regions face 
overlapping burdens: NO₃⁻ and OC dominance in the SJV, EC and OC in SoCAB, and recurring 
DUST contributions in the southern interior. 
 
Future emission-control policy should therefore adopt a regionally differentiated and equity-
centered approach. Priorities include enhancing ambient monitoring networks in disadvantaged 
communities, linking clean-air and clean-energy investments to local job creation, and expanding 
incentive programs for low-income residents to transition to cleaner technologies (e.g., electric 
vehicles, residential heating upgrades). Integrating exposure disparity metrics—such as 
CalEnviroScreen percentiles—into attainment planning will help ensure that emission reductions 
translate into tangible, equitable improvements in public health. 
 
Although this study focuses on the five major PM2.5 components, the decomposed statewide means 
indicate a residual ~1.5 µg/m³ unaccounted for by SO₄²⁻, NO₃⁻, OC, EC, and dust, relative to the 
total PM2.5 mean of ~5.9 µg/m³. This fraction likely reflects other minor or uncharacterized 
species—such as ammonium, trace metals, sea salt, and secondary organics—not explicitly 
resolved in the current dataset. While individually small, these components collectively contribute 
to overall mass closure and may play localized roles near industrial or coastal environments. Future 
extensions of this work could integrate these minor fractions to refine compositional closure and 
improve source attribution at finer scales. 
 
9.7 Summary 
This section disentangled the respective roles of meteorology, wildfire smoke, and anthropogenic 
emissions in shaping two decades of PM2.5 and component variability across California, providing 
a refined perspective on the sources of long-term air-quality change. 
 
The meteorological normalization analysis demonstrated that year-to-year weather variability 
explains only a small share (typically < 10 %) of total PM2.5, SO₄²⁻, NO₃⁻, OC, and EC fluctuations, 
confirming that most interannual and decadal trends are not meteorology-driven. The sole 
exception is dust, whose variability is strongly coupled to wind, precipitation, and soil-moisture 
conditions, with variance shares exceeding 30 – 40 % in the SJV and Southern California. These 
results establish that the dominant long-term declines observed statewide primarily reflect 
emission-control and policy impacts rather than favorable meteorology. 



 
 

 
After removing meteorological and wildfire influences, the residual fields revealed clear long-term 
patterns of anthropogenic influence. Persistent hotspots were observed in the SJV and Southern 
California, where OC and NO₃⁻ were the dominant components in both regions. Substantial 
declines occurred across all regions and species, with the steepest reductions during the mid-2000s 
and slower improvement thereafter. SO₄²⁻ and EC exhibited strong decreases in Southern 
California, reflecting the effectiveness of sulfur-content regulations and diesel-emission controls; 
however, SO₄²⁻ began to plateau or slightly rebound after 2016, and EC showed signs of rebound 
after 2018, particularly in the Sacramento and SF Bay areas. OC decreased markedly statewide—
from about 4–5 µg/m³ to ~2 µg/m³ in major basins—yet remained the largest contributor to total 
PM2.5, especially in the LA Basin and SJV, where both primary combustion and secondary organic 
aerosol formation persist. NO₃⁻ declined significantly in later 2000s and plateaued in recent years 
across most urban regions, underscoring the difficulty of controlling secondary formation in 
ammonia-rich and VOC-rich environments such as the Valley. DUST exhibited region-specific 
persistence, with relatively high levels in the Fresno urban cluster and southern desert areas. 
 
Together, these findings demonstrate substantial statewide improvements in air quality driven by 
past emission controls, yet persistent and emerging challenges remain. Despite major reductions in 
SO₄²⁻ and EC, both show signs of rebound in recent years, while NO₃⁻ and OC continue to dominate 
in key regions, DUST remains regionally persistent, and wildfire smoke has become an increasing 
episodic threat. Sustaining progress will require continued attention to these re-emerging and 
persistent sources to secure lasting and equitable air-quality improvements across California. 
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