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Program Description 
This project reviews and summarizes empirical evidence for a selection of transportation and land use 

policies, infrastructure investments, demand management programs, and pricing policies for reducing 

vehicle miles traveled (VMT) and greenhouse gas (GHG) emissions. The project explicitly considers social 

equity (fairness that accounts for differences in opportunity) and justice (equity of social systems) for the 

strategies and their outcomes. Each brief identifies the best available evidence in the peer-reviewed 

academic literature and has detailed discussions of study selection and methodological issues. 

VMT and GHG emissions reduction is shown by effect size, defined as the amount of change in VMT (or 
other measures of travel behavior) per unit of the strategy, e.g., a unit increase in density. Effect sizes can 
be used to predict the outcome of a proposed policy or strategy. They can be in absolute terms (e.g., VMT 
reduced), but are more commonly in relative terms (e.g., percent VMT reduced). Relative effect sizes are 
often reported as the percent change in the outcome divided by the percent change in the strategy, also 
called an elasticity.

Summary 

Strategy Description 

Land-use mix (LUM) or mixed-use development 

can be defined as the practice of accommodating 

more than one type of function within a building, 

a set of buildings, or a specific local area. These 

functions can be delineated in categories such as 

residential, office, retail, and personal services, as 

well as parks and open space.  

Widely advocated as a key principle of sustainable 

development, LUM is central to such major urban 

planning and design concepts as smart growth, 

New Urbanism, and transit-oriented development 

(Manaugh and Kreider, 2013). Measured at the 

neighborhood scale, LUM is considered necessary 

for or even implicitly equivalent to local 

accessibility; by bringing trip origins and 

destinations closer together, mixed-use 

neighborhoods and buildings can facilitate walking, 

biking, and transit use, while shortening car trips, 

in turn reducing vehicle miles traveled (VMT) and 

greenhouse gas emissions (Ewing and Cervero, 

2010).  

The most common LUM measure employed in 

research is the entropy index, which measures the 

balance of land uses in a neighborhood based on 

the variety of different land use types and level of 

mixing compared to an ideally balanced mix (often 

considered for the urban area as a whole). Entropy 

values range from 0 (one land use only), to 1 (all 

land-use categories proportionally represented as 

in the benchmark measure). 
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Researchers have not reached consensus about a 

“correct” or optimal geographic scale for 

measuring LUM impacts, and LUM can affect 

travel behavior across multiple scales, from local 

to regional. Few studies have experimented with 

scale variation in LUM measurement, but the 

studies that have done so find different effects at 

different scales. 

Measurement of LUM has come under criticism 

for the widespread inconsistencies in methods 

seen across studies, including in scale and 

measurement of boundaries employed, in the 

way land uses of interest are identified and 

categorized, and in the computation formula 

employed (see Manaugh and Kreider, 2013). 

Some scholars argue that the basic problem with 

LUM modeling traces to a lack of adequate 

theoretical foundations, and empirical validity 

testing and comparison, of results using 

alternative measures (Manaugh an Kreider, 2013; 

Song et al., 2013; Gehrke and Clifton, 2019). 

These scholars question the basic starting 

assumption that greater “balance” of land use 

types in any given locale constitutes a better 

condition than a less balanced locale. Few 

studies, however, go beyond evaluating diversity 

and balance of general land use types in a local 

area to also consider the relative attractiveness 

(quality), complementarity, and sufficiency of 

precise land uses. But while current LUM 

modeling may have significant shortcomings, the 

development and application of more 

sophisticated measures can require significant 

commitment of resources, such as for fine-

grained data collection. 

Behavioral Effect Size  

A summary of findings from each of 14 individual 

studies that estimate the effect of LUM on VMT is 

presented in Table 1 (pp. 9–11), at the end of this 

report. The reported elasticities range widely, 

from a 0.0 to 0.35 percent decrease in VMT for 

each 1 percent increase in land-use mix (or an 

elasticity of 0.0 to -0.35). The discrepancies in 

results reflect in part the above-noted 

inconsistency in LUM measurement across 

studies. To narrow down findings to a comparable 

set of studies, we can consider results from only 

those studies that employed a LUM entropy index, 

and which followed the recommended approach of 

measuring land use mix within dynamic “sliding” 

buffers (measured for a radius of x distance from 

each study observation, e.g., a household or 

residence), rather than within fixed, bureaucratic 

boundaries, such as Census tracts. Among the 5 

studies in Table 1 that meet this description, the 

range of reported elasticities, with one exception, 

was between -0.04 to -0.10. These findings 

correspond closely to results from two widely cited 

meta-analyses of multiple land use-transportation 

studies from across the world, conducted by Ewing 

and Cervero (2010) and Stevens (2017); the first of 

these two analyses found that a 1 percent increase 

in land-use mix results in an average VMT 

decrease, across studies considered, of 0.09 

percent, while the second found an average 

decrease of 0.03 percent. 

Co-benefits and Synergies  

Perhaps the main co-benefit of mixed-use 

development is the encouragement of walking, 

bicycling, and use of transit and shared mobility 

services such as bikeshare. In addition to reducing 

vehicle emissions, walking and cycling as modes of 

transport are important from a public health 

perspective. Considering results from eight studies, 

Ewing and Cervero (2010) estimated that on 

average, walking trips increase 0.15 percent for 

each 1 percent increase in land-use entropy.  

Compactly built, mixed use, and walkable 

neighborhoods are also critical for transit to 

succeed (Suzuki and Cervero, 2013). For transit 

trips, Ewing and Cervero (2010) estimate the 

elasticity of LUM as a 0.12 percent increase in 

transit trips for a 1 percent increase in LUM. 

Transit usage is found to increase when both trip 

origins and destinations are located near transit 

stops, meaning that mixed uses along transit 

corridors and in multiple station areas can facilitate 

more ridership (Nasri and Zhang, 2019; Cui et al., 

2022; Wu et al., 2023).  
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Equity Considerations  

Since low-income people tend to drive less and 

use transit and walk more than higher-income 

people, they benefit from local accessibility 

facilitated through compact and mixed land uses. 

When walk access is measured in terms of 

physical street connectivity between origins and 

destinations, the research points to an overall 

overlap between highly walkable neighborhoods 

and areas where socially vulnerable (SV) 

populations live, reflecting historical conditions 

and events, such as redlining and exclusionary 

zoning, which constricted many SV households to 

urban core neighborhoods. However, if walkability 

is considered not just as physical access, but in 

relation to other micro-level and personal 

considerations including street greenery, sidewalk 

conditions, and other safety factors including 

exposure to crime threats, then SV populations, 

even when living in walkable neighborhoods, do 

not experience equitable conditions (Koschinsky et 

al., 2017; Conderino et al., 2021; Bereitschaft, 

2023). Some research finds furthermore that SV 

populations are disadvantaged in accessibility for 

certain trip purposes, including trips to shopping 

and supermarkets (Grengs, 2015).

 

Strategy Description 
Land-use mix (LUM) or mixed-use development 

can be defined as the practice of accommodating 

more than one type of function within a building, 

a set of buildings, or a specific local area. These 

functions are delineated to include categories 

such as residential, office, retail, and personal 

services, as well as parks and open space.  

LUM is widely advocated as a key principle of 

sustainable development, central to such major 

urban planning and design concepts as smart 

growth, New Urbanism, and transit-oriented 

development (Manaugh and Kreider, 2013). LUM 

measured at the neighborhood scale is 

considered necessary for or even implicitly 

equivalent to local accessibility; by bringing trip 

origins and destinations closer together, through 

policies such as mixed-use zoning, mixed-use 

neighborhoods and buildings can facilitate 

walking, biking, and use of transit and shared 

mobility options such as bikeshare, while 

shortening car trips and in turn reducing VMT and 

greenhouse gas emissions.  

Research indicates that land use mix is especially 

influential on local travel through its impact on 

mode choice for local, generally non-work trips 

(Saelens and Handy, 2008; Gehrke and Clifton, 

2014). LUM has been found to be a more 

significant factor affecting non-commuting trips 

than commuting trips (Ding et al., 2017). By 

contrast, regional-scale accessibility (further 

discussed in the Regional Accessibility Policy Brief), 

often measured as access to jobs, is generally 

associated with commute trips by auto or transit, 

the modes most capable of facilitating longer-

distance travel in metro areas. 

Reflecting its importance for local accessibility, 

LUM information is central to the calculation of 

established measures of local accessibility, such as 

Walk Score, a metric widely used to evaluate 

effects of the built environment on walking 

behavior. Walk Score combines information on 

cumulative opportunities (available destinations), 

development density, and travel network 

connectivity using a gravity-based approach, which 

discounts destinations up to 2,400 meters based 

on their distances (Lussier-Tomaszewski and 

Boisjoly, 2021).  

Various measures have been used to capture the 

amount of land-use mixing at the neighborhood 

scale, including: 

• Variety and balance of land-use types within a 

neighborhood or buffer zone (entropy or 

dissimilarity indices); 

• Ratio of jobs to residents at the neighborhood 

level (e.g., census tracts, census block groups, 

or ¼ mile radius areas); and 
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• Number of destinations of a particular type 

(e.g., grocery stores) within a given distance 

of residences. 

The LUM measure used most commonly in 

research is the entropy index, which measures 

the balance of land uses in a neighborhood based 

on the variety of different use types and the level 

of mixing compared to an ideally balanced mix 

(often considered for the urban area as a whole). 

Entropy values range from 0 (one land use only), 

to 1 (all land-use categories proportionally 

represented in reference to the benchmark used).  

The basic equation for land-use entropy is: 

 

where ENT is the entropy value, N is the number 

of different types of land use in the region of 

interest, and Pj indicates the number of parcels or 

grids of j land use type. The entropy value ranges 

from zero (completely homogeneous land use) to 

one (perfectly balanced among all uses). 

Optimally, the value is normalized by dividing the 

measure for each unit of land by the log of the 

number of possible land use types measured 

across the wider area of interest, such as the city 

as a whole (Hajna et al., 2014).  

Scale of measurement (size of the geographic unit 

of analysis) is a critical concern given that most 

trips extend beyond localized neighborhood 

boundaries. Ewing et al. (2011) found that even 

for large-scale urban mixed-use developments 

(ranging in size from 100 to 400 acres), the 

average internal trip capture rate was 18%, 

meaning that approximately four-fifths of trips 

starting from these locations ventured outside.  

Researchers have not reached consensus about a 

“correct” or optimal geographic scale for 

measuring LUM impacts, because LUM can affect 

travel behavior across multiple scales. LUM 

measured at wider scales can logically be 

expected to be more diverse than LUM measured 

at smaller scales. LUM impacts for rural areas, 

which are often highly car-dependent, may 

especially require consideration at wider-than-local 

scales. 

Some research has found different LUM effects at 

different scales. For example, Chatman (2008) 

found that activity density measured at smaller 

radii were more highly correlated with walking 

frequency than with auto use frequency, but the 

opposite effect was observed at larger radii. Zhang 

and Kukadia (2005) found that an entropy index 

produced significant results only when measured 

at a ½-mile grid size or larger, while Gehrke and 

Clifton (2014) found that measuring land use mix 

at the tract level provided the best fit. However, 

few studies have experimented with scale variation 

in LUM measurement (Gehrke and Wang, 2020). 

Entropy measures of LUM have come under 

increasing criticism among scholars. Researchers 

often use jobs by type as a proxy for land uses 

(e.g., retail versus office employment), because 

this approach makes entropy indexes easy to 

compute, such as from Census data. But 

widespread inconsistencies in methods are evident 

across studies, including in scale and measurement 

of boundaries employed, in the way land uses of 

interest are identified and categorized, and even in 

the computation formula employed (see Manaugh 

and Kreider (2013) for an in-depth discussion 

about these concerns). 

Disparate methods and findings across LUM 

studies make it difficult for scholars and 

practitioners to interpret results. Some scholars 

argue that the basic problem with LUM modeling 

traces to a lack of adequate theoretical 

foundations, and empirical validity testing, of 

alternative measures (Manaugh and Kreider, 2013; 

Song et al., 2013; Gehrke and Clifton, 2019). These 

scholars question the basic starting assumption 

that greater “balance” of land use types in any 

given locale constitutes a better condition than a 

less balanced locale. Few studies go beyond 

evaluating diversity and balance of land use types 

in a local area to also consider the relative 

attractiveness (quality), complementarity, and 

sufficiency of precise land uses – e.g., in 

considering the importance of one grocery store 
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located nearby for inducing walking trips, as 

opposed to considering lumped-up retail as a 

broader category measured at a wider scale. 

Some scholars argue that advocating for a 

uniform dispersal of similar land uses throughout 

an urban area is neither feasible nor desirable, 

because organizing some land uses hierarchically 

can better facilitate transport efficiency 

(Mouratidis, 2024).  

Thus, even though LUM is widely viewed as a 

critical aspect of the built environment for 

influencing travel behavior, given its role in 

enhancing accessibility through proximity, 

consensus is lacking on how it should be 

measured and optimized. In response to such 

concerns, some scholars argue for improving LUM 

modeling through more careful measurement of 

quality, sufficiency, intensity, complementarity, 

and integration of proximate land uses, rather 

than just considering aggregate balance among 

broad land use types (ibid; Elldér et al., 2022). 

Gehrke and Clifton (2019) developed and 

employed a novel LUM measure of this sort 

aimed at capturing, in addition to diversity, also 

fine-grained intensity and spatial integration of 

land use types, and found that their measure was 

a significantly more effective predictor of walk 

mode choice and home-based walk trip 

frequency, when operationalized at three 

geographic scales, than a traditional entropy-

based index. However, while current LUM 

modeling may have significant shortcomings, the 

development and application of more 

sophisticated measures often entails a significant 

commitment of resources, such as for data 

collection at a fine-grained scale. 

Other measures of land-use mix employed in 

research besides the entropy index include 

dissimilarity indexes, defined by Cervero and 

Kockelman (1997) as the fraction of abutting 

parcels or grids with different land uses from the 

parcel or grid of interest, with possible values 

ranging from zero (all abutting uses the same as 

the central area) to one (all abutting uses 

different from the central area). Cervero and 

Kockelman (1997) consider that an advantage of 

the dissimilarity index over an entropy index is its 

its usefulness in studying finely grained land use 

mixing – down to the parcel level. Those aspects 

also mean this approach can be laborious to 

employ, helping explain why relatively few studies 

do so. 

For further description and discussion of these and 

additional LUM measures, see Song et al. (2013) 

and Iannillo and Fasolino (2021). 

Strategy Effect 

Theoretical concerns and inconsistencies in 

measurement and definition of LUM, such as those 

described above, mean that LUM and local 

accessibility remain “elusive” concepts whose 

precise impacts are hard to discern (Vale et al., 

2016; Manaugh and Kreider, 2013). However, most 

research studies evaluating the impact of LUM on 

VMT, measured locally using an entropy index, 

have found small but still significant effect sizes. 

Behavioral Effect Size 

Ewing and Cervero (2010) used meta-analysis to 

determine, based on findings from a range of high-

quality studies from across the world, that a one 

percent increase in land-use mix results in an 

average VMT decrease of 0.09 percent, 

representing the VMT benefit that might be 

expected from policies designed to increase mixing 

of land uses. A second meta-analysis by Stevens 

(2017) found an average VMT decrease of 0.03 

percent across the studies considered from a one 

percent increase in LUM. 

A summary of the findings from each of 14 

individual studies that estimate the effect of LUM 

on VMT is presented in Table 1. Eleven of the 

studies were included in the Ewing/Cervero and 

Stevens meta-analyses; these were studies 

conducted in North America after 2000. An 

additional three studies shown in Table 1 were not 

included in the meta-analyses: those from Salon et 

al., 2015; Zhang and Zhang, 2018; and Lee and Lee, 

2020.  
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The elasticities estimated for LUM from the 

studies shown in Table 1 indicate a wide range of 

effect sizes, from a 0.0 to 0.36 percent decrease 

in VMT for each 1 percent increase in LUM (or an 

elasticity of 0.0 to -0.36). The wide range of 

results reflects the inconsistency in LUM 

measurement methods discussed above. 

Most of the studies shown in Table 1 employ an 

entropy index, but other discrepancies are 

evident. One clear discrepancy is in whether the 

studies utilized fixed, bureaucratic boundaries, 

such as Census tracts, in which LUM entropy 

index values were calculated, or instead used 

dynamic “sliding” buffers (measured for a radius 

of x distance from each study observation, e.g., a 

household or residence). Sliding buffers are 

recommended by scholars as a more precise and 

consistent measure of LUM surrounding 

particular households than fixed bureaucratic 

boundaries. More than half the studies shown in 

Table 1 used fixed, bureaucratic boundaries to 

measure LUM in the areas in which sample 

households resided.  

Except for one extreme outlier (the study on 

Montreal by Zahabi et al., 2015), the studies from 

Table 1 that employed a LUM entropy index, 

measured using dynamic buffers, found 

elasticities that ranged from -0.04 to -0.10, a fairly 

close range; however, even this subset cannot be 

considered strictly comparable because the 

studies did not employ the same land use 

categories in constructing the index. Another 

discrepancy, for those studies that utilized 

dynamic buffers, concerns the size of buffers 

used, which range in the studies shown from 

¼ mile to 1 mile. 

One notable large-sample study from California, 

by Salon (2015), calculated the effect on work- 

and non-work VMT of a LUM entropy index 

measured at the Census tract level, while also 

controlling for four other commonly tested built-

environment variables (density, destination 

accessibility, distance to transit, and street 

design), as well as for self-selection bias (which 

occurs when people choose a residential location 

based on their transportation preferences). This 

study found an elasticity of -0.05 for non-work trips 

and -0.07 for commute trips, similar to the findings 

just described from the studies which used an 

entropy index with sliding buffers. 

Co-benefits and Synergies  

Perhaps the main co-benefit of mixed-use 

development is the facilitation of walking, 

bicycling, and transit use. Studies have generally 

shown that the impact of LUM is greater for 

inducing walking trips than for VMT reduction; 

Ewing and Cervero (2010) estimate that on 

average, walking trips increase 0.15 percent for 

each 1 percent increase in land-use entropy.  

In addition to reducing vehicle emissions, walking 

and cycling as modes of transport are important 

from a public health perspective. Increased 

physical activity is associated with various positive 

outcomes, such as reducing obesity 

(Nieuwenhuijsen, 2020). The health benefits of 

walking and cycling can benefit rural, not just 

urban households, for example in providing access 

to recreational areas. 

While cities with low motorized mobility rates are 

associated with health gains (e.g., diabetes, 

cardiovascular disease, respiratory disease, and 

lifespan), some trade-offs can occur in terms of 

greater road trauma for cyclists and pedestrians 

(Stevenson et al., 2016). This situation points to 

the need for policies to ensure the provision of 

safe walking and cycling infrastructure. 

Benefits of LUM relate not just to physical activity. 

Destination accessibility has also been associated 

with social cohesion, for example (Mombelli et al., 

2025). Proximity to supermarkets and health food 

stores is associated with improved diet patterns 

and weight status (Popkin et al., 2005; Cummins 

and Macintyre, 2006). Low-income neighborhoods, 

however, often lack access to high-quality 

resources. 

Compactly built, mixed use, and walkable 

neighborhoods are also critical for transit to 

succeed (Suzuki and Cervero, 2013). For transit 
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trips, Ewing and Cervero (2010) estimate the 

elasticity of LUM as a 0.12 increase in transit trips 

for a 1 percent increase in LUM. Transit usage is 

found to increase when both trip origins and 

destinations are located near transit stops, 

meaning that mixed uses along transit corridors 

and in multiple station areas can facilitate more 

ridership (ibid; Nasri and Zhang, 2019; Cui et al., 

2022; Wu et al., 2023).    

Equity Considerations  

Since low-income people tend to drive less and 

use transit and walk more than higher-income 

people, they benefit from local accessibility 

facilitated through compact and mixed land uses.  

Some research has directly investigated whether 

socially vulnerable (SV) populations have 

equitable access to walkable and transit-

accessible neighborhoods (Koschinsky et al., 

2017; Conderino et al., 2021; Bereitschaft, 2023). 

When walk access is measured in terms of 

physical street connectivity between origins and 

destinations, the research points to an overall 

overlap between SV and highly walkable 

neighborhoods in many cities, albeit with 

significant variability. This finding reflects the fact 

that due to historical conditions and events, such 

as redlining and exclusionary zoning, many SV 

households live in urban core neighborhoods. 

However, if walkability is considered not just as 

physical access, but in relation to other salient 

micro-level and personal considerations including 

street greenery, sidewalk conditions, and other 

safety factors including exposure to crime threats, 

then SV populations, even when living in walkable 

neighborhoods, do not experience equitable 

conditions (ibid). Furthermore, some research 

finds that while socially vulnerable groups, 

including African Americans, Hispanics, low-

income households, and households in poverty, 

experience greater physical accessibility than 

more privileged groups for several trip purposes, 

including convenience stores, childcare facilities, 

religious organizations, and hospitals, vulnerable 

groups are disadvantaged in accessibility to 

shopping and supermarkets (Grengs, 2015). 

Confidence in Evidence 

Quality 
The studies shown in Table 1 have various 

methodological discrepancies described earlier, 

which help explain the wide variance in results. For 

that reason, we focused on findings from studies 

that used similar measurement techniques 

(entropy indexes and sliding buffers).  

All of the studies in Table 1 used models that 

control for the effects of other variables that could 

impact VMT, in particular individual and/or 

household demographic characteristics such as 

income, household size, and automobile 

ownership. As delineated in Table 1, the studies 

also controlled for various other aspects of the 

built environment, such as development density, 

street design, and transit access, usually measured 

at the local neighborhood scale. In addition, these 

studies use individual and household-level data 

rather than aggregated data for geographical 

areas. These qualities strengthen the reliability of 

the evidence.  

Few of the studies shown in Table 1 considered 

wider-than-local land use characteristics. Most of 

the studies measured LUM effects across urban 

and metro areas without distinguishing how 

impacts vary between highly urban, suburban, and 

rural contexts. Furthermore, few of the studies 

considered land use factors measured at a regional 

or sub-regional scale. Research on travel impacts 

increasingly considers built environment variables 

measured at regional and sub-regional scales (e.g., 

centeredness, population-weighted density, jobs-

housing balance, and job accessibility within a 

certain time or distance), in addition to locally 

measured ones. While most of the studies shown 

in Table 1 controlled for “destination accessibility,” 

generally measured at a sub-regional scale as job 

access within a certain time or distance, they did 

not control for a range of other region-scale 

development factors. 
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Only a few of the studies included in Table 1 

account for residential self-selection. Self-

selection occurs when people choose a residential 

location based on their transportation 

preferences. For example, people who wish to 

drive less may move into dense, mixed-use 

neighborhoods that allow them to use their car 

less or use non-car modes of transportation more 

easily. Studies that do not account for self-

selection may overstate the effect of land-use mix 

on VMT. However, research has indicated that 

self-selection bias does not pose an 

insurmountable hurdle to establishing viable 

results. Cao, Mokhtarian and Handy (2009) 

reviewed 38 empirical studies that controlled for 

self-selection, determining that virtually all 

exhibited significant built environment impacts 

even after controlling for self-selection. However, 

it seems likely that if residential self-selection were 

accounted for, the effect sizes noted in Table 1 

would be lower. This factor introduces additional 

uncertainty into how much of the reported effects 

from previous studies can be attributed to the 

land-use mix alone.  
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Table 1. Relationship of VMT and Land Use Mix1 

Study 

Survey data location & 
year; number of 
observations; dependent 
variable 

Specification of diversity 
(land use mix, a.k.a. 
LUM) measure 

Elasticity (change for 1% 
increase in LUM) Other "D" variables included in study 

as independent variables, measured 

locally

Density 

Other "D" variables included in study 

as independent variables, measured 

locally

Destination 
accessibility 

Other "D" variables included 

in study as independent 

variables, measured locally

Distance 
to 

transit 

Other "D" variables 

included in study as 

independent variables, 

measured locally

Street 
design 

Control for 
self-selection? 

Boarnet et 
al., 2004 

Portland, OR, 1994; 6,154 
observations; non-work 
daily VMT per person 

Density of retail and 
total employment at 
tract level 

All jobs = 0.03; retail = -0.02 x x x No 

Chapman & 
Frank, 2004 

Atlanta, 2001-02; 8,069 HH 
observations; VMT per 
person 

LUM entropy index 
within 1 km for 
residential, commercial, 
and office 

-0.04 x x No 

Chatman, 
2008 

San Diego and SF-Oakland-
San Jose regions, 2003-04; 
527 observations; non-
work VMT per person 

Number of retail jobs/ 
developed acre 

-0.19 x No 

Ewing et al., 
2013 

Six US regions, 1991 to 
2001; 35,877 trip ends 
to/from 239 mixed-use 
developments (MXDs); per 
person VMT for 
work/nonwork 

LUM entropy and 
job/population balance 
w/in MXD2 

For LUM, 0.0 for both work 
and non-work trips; for job-
population balance, 0.0 for 
work trips, -0.08 for other 
trips 

x x No 

Ewing et al., 
2015 

15 US regions (inc. Sacra-
mento), 2005 to 2012; 
62,011 observations; VMT 
per HH 

Job-population balance 
w/in 1/4 mi; LUM 
entropy w/in 1 mi for 
uses as per Ewing et al., 
2013 

job-population = -0.03; 
entropy = -0.10 

x x x No 

Frank et al., 
2009 

King County, Puget Sound, 
2006; 2,697 observations; 
VMT per household 

LUM entropy index 
within 1 km for SF/MF 
residential; retail; 
office; civic/educ; and 
entertainment 

-0.04 x x x No 

1 Abbreviations: HH, household; LUM, land use mix. 
2 LUM = entropy calculation within MXD is for net acreage in residential, commercial, industrial, and institutional 

Other "D" variables included in study as 
independent variables, measured locally 
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Study 

Survey data location & 
year; number of 
observations; dependent 
variable 

Specification of diversity 
(land use mix, a.k.a. 
LUM) measure 

Elasticity (change for 1% 
increase in LUM) Other "D" variables included in study 

as independent variables, measured 

locally

Density 

Other "D" variables included in study 

as independent variables, measured 

locally

Destination 
accessibility 

Other "D" variables included 

in study as independent 

variables, measured locally

Distance 
to 

transit 

Other "D" variables 

included in study as 

independent variables, 

measured locally

Street 
design 

Control for 
self-selection? 

Heres-Del 
Valle & 
Niemeier, 
2011 

California, 2000-01; 7,666 
HH observations; HH daily 
VMT 

Business to housing 
ratios by zip code 

-0.043 x 
 

x 
 

Yes 

Kuzmyak et 
al., 2006 

Baltimore metro area, 
2001; 2,707 observations; 
daily weekday VMT per HH 

LUM entropy and walk 
opportunities indexes, 
both within 1/4 mi4 

entropy = -0.09; 
walk opportunities = -0.10 

x No 

Lee & Lee, 
2020 

2009 National 
Household Travel Survey 
(NHTS) data for 2009 for 
the 121 largest urban 
areas in the US; 56,373 
observations; annual 
household VMT 

LUM entropy index for 
Census tract5 

-0.03 x x x x No 

Nasri & 
Zhang, 2012 

Six US metro areas, 2006 
to 2009; 22,904 
observations; per person 
VMT 

LUM entropy index for 
TAZ/tract for 
residential; service; 
retail; other LU 

-0.06 x x x No 

Salon, 2015 California, 2000 to 2013; 
60,346 observations; 
weekday nonwork VMT; 
daily one-way commute 
VMT  

LUM entropy index at 
tract level for homes 
and jobs by industry 
(retail, office, industrial, 
public sector)  

non-work trips = -0.05; 
commute trips = -0.07 

x x x x Yes 

3 Elasticity = -0.04 on its own, without density or transit access, but e= 0.05 (positive sign) with density included; significant only when density not included 
4 Entropy index based on proportions of land for residential; commercial; public; offices and research sites; industrial; and parks and rec. Walk opportunities index is a distance- 
and importance-weighted measure of available destinations 
5 LUM entropy index is for residential, commercial, industrial, and offices (for which employment by industry is used as a proxy of non-residential land use and number of workers 
by residence as a proxy for residential land use) 

Other "D" variables included in study as 
independent variables, measured locally 
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Study 

Survey data location & 
year; number of 
observations; dependent 
variable 

Specification of diversity 
(land use mix, a.k.a. 
LUM) measure 

Elasticity (change for 1% 
increase in LUM) Other "D" variables included in study 

as independent variables, measured 

locally

Density 

Other "D" variables included in study 

as independent variables, measured 

locally

Destination 
accessibility 

Other "D" variables included 

in study as independent 

variables, measured locally

Distance 
to 

transit 

Other "D" variables 

included in study as 

independent variables, 

measured locally

Street 
design 

Control for 
self-selection? 

Zahabi et al, 
2015 

Montreal area, 2007; 
147,574 observations; "car 
distance" 

LUM entropy index in 
500x500m buffer6 

-0.36 x x Yes 

Zhang et al., 
2012 

Six US metro areas, 2006 
to 2009; 22,904 
observations; per person 
VMT 

LUM entropy index for 
TAZ/tract for 
residential; service; 
retail; other LU 

Baltimore = -0.08; 
Seattle = -0.16;  
Virginia = -0.01; Washington 
DC = -0.17 

x x x No 

Zhang & 
Zhang, 2018 

Austin, TX, 2005–2006; 
975 observations; daily per 
person VMT 

LUM entropy index 
(categories not 
described) for planning 
areas 

No pref = -0.35; 
With pref = -0.557 

x x x Yes 

6 LUM entropy index for residential; commercial; government; resource/industrial; and parks and recreation, with water and open space excluded 
7 The study employed survey information on residential preference as a control for self-selection distinguishing respondents who indicated preference for access and 
neighborhood amenities (including safety) (= self-selection group) vs. others (= non-self-selection group). 

Other "D" variables included in study as 
independent variables, measured locally 
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