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Background 

California’s croplands are an intensively managed landscape serving as an important source 
of food, economic livelihood, and other co-benefits. Croplands cover 9.5 million acres and 
include a mix of annual (planted each year) and perennial (producing for multiple years) 
crops (Landfire, 2013-2021). These crops provide over a third of all vegetables and two-
thirds of the fruits and nuts in the United States and make California a global leader in 
agriculture (State of California, 2020). California’s croplands are managed to produce 
nutritious foods, myriad fibers, and nursery plants which are essential to food security, 
public health, art and quality of life for all Californians while simultaneously being a key 
economic driver in our rural communities. 

According to the Intergovernmental Panel on Climate Change (IPCC), Croplands consist of 
“arable and tillable land, rice fields, and agroforestry systems where vegetation structure 
falls below thresholds” used for the forest land category (Eggleston et al., 2006). Within 
croplands, the carbon inventory focuses on two main pools of carbon: woody orchard 
biomass and soil carbon. Woody orchard biomass (hereafter “biomass carbon”), the first 
main carbon pool, refers to the carbon stock stored in the roots, trunks, and branches of 
woody perennial crops. Annual crops have herbaceous biomass, but annual biomass is not 
included in the carbon inventory because it is typically removed from the landscape within a 
single year. Soil carbon, the second main carbon pool, refers to the organic carbon stock 
stored in the top 30 centimeters of soil.  

Biomass Carbon: Woody orchards play a significant role in California’s economy, land use, 
and carbon storage. Almonds, walnuts, pistachios, and citrus are some of the primary 
orchard crops, covering millions of acres. According to the United States Department of 
Agriculture (USDA), almond orchards alone accounted for over 1.6 million acres as of 
2022. Orchards are significant carbon reservoirs due to their woody biomass, which stores 
carbon over decades. However, orchards are subject to changing environmental, 
regulatory, and market dynamics that influence the extent and age of orchards among 
California’s croplands. 

Soil Carbon: Cropland soils are a key belowground carbon reservoir and offer an 
opportunity to store additional carbon if actively managed for carbon sequestration (Flint et 
al., 2018). The carbon in cropland soil, measured as soil organic carbon (SOC), is relatively 
resilient to risks from fire because croplands are heavily managed and generally irrigated 
landscapes. Despite this resilience, water availability, changes in agricultural practices, 
fallowing or crop replacement, and conversion to urban development all pose significant 
risks to the carbon stocks in California’s cropland soils. Additionally, farmers in California 
operate under resource constraints that make adopting new practices a challenge.  



State of the Science 

Biomass Carbon: Methods to quantify orchard biomass include field measurements, remote 
sensing data, and machine learning techniques, each with distinct advantages and 
limitations. Traditional methods include allometric equations which translate field-based 
tree measurements such as diameter at breast height (DBH) and canopy height to estimates 
of biomass carbon. Field measurements are time intensive and difficult to replicate over 
wider spatial extents. Field-derived allometric equations provide high accuracy for site-
specific estimates but require extensive field data for calibration across diverse orchard 
systems covering wide spatial extents (Bazrgar et al., 2024).   

Allometric equations can be integrated with advanced remote sensing methods, such as 
light detection and ranging (LiDAR) and satellite imagery, to scale carbon estimates to 
larger spatial extents (Xu et al., 2018). LiDAR provides detailed 3D information, allowing for 
precise biomass mapping and large-scale assessments. However, its high cost and lack of 
consist time series data limit its applicability for creating periodic temporal inventories. 
Common limitations of many satellite products include insufficient spatial resolution and 
temporal frequency. Additionally, many products are proprietary, so purchasing data can be 
cost-prohibitive. Despite these limitations, LiDAR and high-resolution satellite imagery, such 
as data from the National Agricultural Imagery Program (NAIP), are widely used to capture 
key tree structure and biomass-related variables, including height, canopy cover, and 
volume (Zhang et al., 2014). NAIP, in particular, offers a cost-effective solution with high 
spatial and temporal resolution, enabling consistent and repeatable measurements over 
time.  

Machine learning approaches utilize diverse datasets like field-based training data, remote 
sensing imagery, and climatic data to generalize carbon density predictions across different 
orchard types. Machine learning approaches are sophisticated and offer a means to capture 
the complexity and heterogeneity of carbon estimates across a cropland landscape. 
However, machine learning can be computationally intensive. These approaches often 
demand extensive training data and can suffer from issues with model interpretability (Chen 
et al., 2018).  

Soil Carbon: Carbon inventory methodology aims to capture the complex dynamics of the 
cropland landscape, but methodology is constrained by the state of the science, models, 
and data. Small scale assessments of soil organic carbon (SOC), such as in a plot or a field, 
rely on direct measurements of soil organic carbon sampled with the density and frequency 
sufficient to capture spatial and temporal variation (Post et al., 2001). This comprehensive 
methodology can be used to validate carbon offsets. Practice-based SOC estimates, such as 
using crop residue coverage in a no-till system as a proxy for SOC increases, are another 
carbon market methodology, but one with considerably more uncertainty (Conant et al., 
2011). Neither two approaches are sufficient for measuring cropland SOC at the statewide 
scale required for California’s Natural and Working Lands Carbon Inventory (Table 5).   



Methods to quantify SOC at larger spatial scales are more relevant for the NWL Carbon 
Inventory. Two large-scale approaches include geostatistical upscaling and measurement-
based modeling (Conant et al., 2011).  Geostatistical upscaling quantifies relationships 
between measurements of SOC and covariates such as slope, parent bedrock, climate, and 
plant type and then spatially interpolates estimates of SOC based on maps of the covariates 
(Viscarra Rossel et al., 2014). The uncertainty in geostatistical upscaling is dependent on the 
extent and representativeness of underlying field measurements. Measurement-based 
modeling uses mechanistic models that simulate biogeochemical processes and respond to 
cropland dynamics like water availability and crop cover. Model calibration is conducted 
using field measurements of SOC, or measurements derived from peer-reviewed literature. 
Challenges of measurement-based modeling include model parameterization, validation, 
and establishing SOC baselines, depending on the extent of available SOC measurements. 
In general, these large-scale methodologies benefit from improvements in the resolution 
and frequency of satellite-derived spatial data, which capture geostatistical covariates and 
model input variables such as climate, topography, and vegetation.  

The choice in soil carbon quantification methodology often varies by soil type, according to 
the suitability of existing models. For example, the intergovernmental panel on climate 
change (IPCC) recommends differentiating cropland soils into two categories: mineral and 
drained organic. Mineral soils and the drained organic soils experience different 
biogeochemical and physical dynamics and are therefore quantified separately.  

SOC in cropland mineral soils is often estimated with prevalent process-based models such 
as The Denitrification-Decomposition (DNDC) model, the Carbon Ecosystem Nutrient 
Turnover Under Regimes Yielding (CENTURY) model, and the daily timestep CENTURY 
model, DayCent (Del Grosso et al., 2016; Ding et al., 2023; Lugato et al., 2014). These 
models can incorporate the biogeochemical processes underlying SOC as well as model 
the management practices common in agricultural land. DNDC models carbon, nitrogen 
dynamics, and trace gas emissions including NOx, NH3, and CH4 for cropping systems on 
short-term and long-term scales. CENTURY, and its daily counterpart, DayCent, models crop 
growth, carbon, nitrogen, phosophorus, sulfur, and soil water dynamics on time scales of 
decades to millennia. CENTURY and DayCent differ from DNDC in their conceptualization of 
nitrification and denitrification, which can lead to differences in the NOx emission 
predictions (Li et al., 2014). However, evidence shows both models estimate carbon yield 
well in nitrogen fertilized systems (Grant et al., 2016). 

Despite the application of these process-based models to mineral soils, these models are 
unable to model the biogeochemical processes of drained organic soils. Instead, these 
drained organic soils are considered purely emissive, and the carbon lost is quantified by 
multiplying land area by an IPCC emission factor. This IPCC emission factor framework, 
albeit simplified, is often implemented by national scale carbon inventories for drained 
organic soil (Liang et al., 2024).  



Primary Drivers of Change 

Biomass Carbon: In California, carbon stock changes in orchard woody biomass are driven 
by various biological and environmental factors. Orchard age and growth cycles play a 
primary role; as orchards mature, their carbon storage capacity increases, reaching its peak 
at full maturity when tree biomass is densest. However, growth rates slow over time, and 
aging orchards may experience higher mortality rates, which can lead to net carbon losses. 
Management practices also heavily impact carbon storage, with actions like pruning and 
thinning directly removing biomass and thereby temporarily reducing carbon stock, though 
these practices can lead to increased growth rates and improved long-term carbon storage 
potential. Additionally, the decision to remove or replant orchards as markets or 
environmental conditions change drives carbon in these systems.  

Land-use change, agricultural practices, and environmental stressors are additional drivers 
impacting biomass carbon in croplands. First, Land-use changes away from orchards, such 
as the conversion of orchards to urban areas, cause immediate losses in woody biomass and 
associated carbon stocks. Conversely, removal of old orchards that are replaced with newly 
planted orchards may increase long-term carbon storage but initially produce lower 
biomass levels, due to the higher planting density seen in recent years. Overall, the 
economic return on certain orchard crops has led to the expansion of orchard acreage in 
recent years (Bruno et al., 2021). Second, Healthy soils and regenerative agricultural 
practices can have a positive impact on woody biomass in orchards by improving soil 
health, enhancing tree growth, and increasing carbon sequestration. practices such as cover 
cropping, improve soil structure, and increase organic matter content. These factors 
contribute to better water retention, nutrient cycling, and overall tree health, allowing 
orchard trees to grow more vigorously and produce more biomass. Finally, Environmental 
stressors, including climate-induced drought, increases in soil salinity, extreme 
temperatures, and pest infestations, pose additional challenges, often reducing orchard 
health and leading to mortality or decreased growth rates (Medellín-Azuara et al., 2024). 
These three types of drivers collectively influence orchard carbon stock inventories, making 
dynamic and species-adaptive methodologies essential for accurately capturing changes 
across California’s orchard landscapes.  

Soil Carbon: Many of the dynamics influencing orchard woody biomass also impact soil 
carbon. The drivers of change to cropland soils are largely influenced by management 
practices including crop type, crop rotation, tillage, irrigation, and use of cover crops, 
fertilizer, and residual plant matter. Climatic factors such as temperature and precipitation 
also impact carbon dynamics but typically have a secondary effect compared to the 
influence of agricultural management (Wiesmeier et al., 2013). Carbon losses from soil are 
also caused by fire, soil loss, leaching, and harvest (Lorenz and Lal 2010).  

Nature Based Solutions Targets 

California's Nature-Based Solutions (NBS) targets aim to foster cropland resilience. Carbon 
sequestration may be a co-benefit from NBS implementation but is not necessarily the 



primary goal. Cropland NBS targets include a set of sustainable climate smart agricultural 
practices and environmental restoration goals (Table 1). For "Healthy Soils Practices," the 
plan seeks to implement a variety of soil-enhancing techniques across annual and perennial 
croplands, with specific acre targets of 140,000 acres per year by 2030, expanding to 
190,000 acres per year by 2038, and maintaining 190,000 acres per year by 2045. Practices 
under this approach include compost application, cover cropping, planting of hedgerows 
and riparian buffers, and no-till methods, which can improve soil health, increase organic 
carbon content, and reduce erosion. Techniques like whole orchard recycling also 
contribute by retaining biomass on-site, enhancing carbon storage, and improving soil 
fertility over the long term.   

The conservation aspect targets the protection of annual and perennial croplands, with the 
acreage conserved gradually increasing from 12,000 acres annually in 2030 to 19,500 acres 
by 2045. This measure aims to preserve carbon already stored in existing croplands while 
preventing land-use changes that might otherwise result in emissions. Additionally, the NBS 
targets include converting conventional croplands to organic systems, aiming for a gradual 
increase in adoption across croplands: 10% by 2030, 15% by 2038, and reaching 20% by 
2045. This shift to organic practices can further enhance soil health and carbon 
sequestration by reducing chemical inputs and promoting biodiversity within agricultural 
systems.  

In addition to cropland NBS targets, certain NBS targets in developed lands and wetlands 
will impact cropland areas. In developed lands, an NBS target aims to plant tree buffers 
between croplands and communities to increase access to greenspace and reduce 
exposure to agricultural chemicals (Rice et al., 2016; Prosser et al., 2020; Table 2). Wetland 
NBS targets aim to restore delta wetlands, which overlap with cropland area (Table 2). 
Rewetted delta cropland may be converted to wetland systems or managed as inundated 
rice cropland.  

Table 1: Nature-based solutions (NBS) targets for croplands established by AB1757. 

AB1757 Nature-Based 

Solutions (NBS) 

2030 Target 2038 Target 2045 Target 

Healthy soils practices 140K acres/yr 190K acres/yr 190K acres/yr 

Conservation 12K acres/yr 16K acres/yr 19.5K acres/yr 

Convert systems from conventional 
to organic 

10% 15% 20% 

 



Table 2: Select nature-based solutions (NBS) targets established by AB1757 for wetlands and developed lands 
which are anticipated to impact croplands. 

AB1757 Nature-Based 

Solutions (NBS) 

2030 Target 2038 Target 2045 Target 

Developed land: Afforestation 
between communities and 
croplands 

133 acres/yr 185 acres/yr 230 acres/yr 

Wetlands: Restoration 9.2 acres/yr 9.2 acres/yr 9.2 acres/yr 

2018 NWL Carbon Inventory Methods 

Methods Description 

Biomass Carbon: In the 2018 carbon inventory, California Air Resources Board’s (CARB) 
approach to estimating carbon stocks in cropland orchard biomass, categorized as an IPCC 
Tier 3 method, integrates ground-based data collection with remote sensing and statistical 
modeling techniques. A key component of CARB’s effort was producing species-specific 
allometric equations which translate orchard type and age to carbon density per area for 
key orchard species. Developing these allometric equations involved three steps. First, 
CARB used high-resolution WorldView satellite imagery alongside Google Street View to 
gather tree measurements, specifically diameter at breast height (DBH), a critical metric for 
biomass calculations. This data was paired with USDA allometric equations to estimate tree 
biomass based on DBH values, though these equations traditionally focus on DBH rather 
than tree age. Second, recognizing this limitation, CARB collaborated with the Wolfskill 
Experimental Orchards at UC Davis, where a variety of nut and fruit tree species with known 
ages allowed CARB staff to establish age-specific tree biomass measurements (CARB, 2018). 
Allometric equations were thus quantified at the tree-level according to the relationship 
between carbon and tree age. Third, carbon had to be scaled from the tree-level to the 
orchard field-level, in an estimate of carbon per area. Age-dependent orchard tree density 
is a critical metric that scales estimates of carbon from the tree-level to the orchard field-
level. CARB used high spatial resolution imagery in Google Earth Pro to measure tree 
density across a range of orchard types and ages. For each orchard age, CARB calculated 
the average number of trees per hectare, providing a reliable metric to scale biomass 
estimates from individual trees to larger orchard areas. These three steps produced species-
specific allometric equations of carbon per area for key orchard types of almonds, walnuts, 
pistachios, vineyards, and citrus. The equations, based on both age and tree species, enable 
more precise biomass calculations, reflecting the unique growth, orchard density, and 
carbon accumulation patterns of each species.  



A second key component of CARB’s effort was to develop an estimate of the acreage of 
each orchard type and the ages of each orchard in croplands statewide. These orchard type 
and orchard age acreage estimates are necessary to derive a biomass carbon estimate for 
croplands statewide using the species-specific allometric equations. The National 
Agricultural Statistics Service (NASS) census was used to derive the county level acreage of 
each orchard type. Second, CARB developed a method to classify orchard age, using a 
pixel-based approach that leverages Landsat time series and the NASS Cropland Data Layer 
(CDL) data. This orchard age classification captures orchard planting and disturbance 
history, which aids in determining the age of each orchard pixel. This approach was 
computationally intensive, so CARB was limited to producing an estimate of the distribution 
of orchard age based on a single year’s data; the distribution of orchard age was 
subsequently assumed to be static over time  (USDA NASS, 2023). Subsequent annual 
updates to estimates of biomass carbon in croplands maintained this static age distribution 
assumption and only factored changes in acreage derived from NASS census data (CARB, 
2018). These data inputs of orchard acreage and orchard age were coupled with the 
species- and age-specific allometric equations produced by CARB to produce an estimate 
of carbon for the key orchard species of almonds, walnuts, pistachios, oranges, and 
vineyards at the county level. 

The final component of CARB’s approach to estimating carbon stocks in cropland orchard 
biomass was to produce an uncertainty estimate. Uncertainty was quantified using a Monte 
Carlo analysis, addressing potential errors from measurements of tree height, DBH, density, 
and allometric variability. This approach allowed CARB to systematically assess and quantify 
uncertainties, resulting in robust, spatially refined carbon stock estimates for California’s 
perennial croplands.  

Soil Carbon: In the 2018 carbon inventory, mineral soil within croplands was quantified with 
a blend of tier 2 and tier 3 approaches, using the process-based Denitrification-
Decomposition (DNDC) model. DNDC was used to simulate biogeochemical processes 
according to climate, soil, vegetation, and crop management practices, which served as 
model input parameters. The model was initialized with a two-year model spin-up and an 
initial SOC value derived from SoilGrids, which is a 250 m resolution map of SOC (ISRIC, 
2018). Stock change for croplands remaining croplands was derived from the difference in 
DNDC-simulated SOC between inventory time point 1 and time point 2. For cropland 
changing to a different land type or vice versa, DNDC-derived SOC change was calculated 
for the cropland half of the period only. SOC change for the other half of the period was 
calculated using a modified IPCC stock change factor according to the transitioning land 
type. These IPCC stock change factors were modified according to initial SOC values 
derived from SoilGrids and thus considered a tier 2 methodology.  

In the 2018 carbon inventory, drained organic soils within croplands, or delta soils, were 
quantified using a tier 1 approach. Like many process-based soil models, DNDC was not 
suitable for modeling the biogeochemical processes of drained organic soils. Instead, 
drained organic soils are considered purely emissive, modulated somewhat by climate and 



land use. Accordingly, the change in SOC was quantified by multiplying the drained organic 
soil land area by a land type-specific IPCC emission factor, which was 10 tonnes Carbon per 
hectare per year for cropland. For cropland changing to a different land type or vice versa, 
land type-specific emission factors were used for the appropriate corresponding half of the 
inventory time period. Although IPCC just recommends quantifying the carbon emitted 
from drained organic soils, the remaining carbon stock can be estimated from subtracting 
the carbon emitted from an initial SOC estimate derived from SoilGrids (ISRIC, 2018).     

Changes in SOC for both mineral and drained organic soils were reported for croplands by 
each crop type for each county. In aggregate, mineral soil covers ~4.5 million hectares, or 
97% of California’s total cropland area according to the 2023 landfire classification data. The 
remaining 3% of cropland area consists of drained organic soil, or delta soil. In terms of 
cropland soil organic carbon (SOC), the top 30 cm of mineral soil contains 245.09 Million 
Metric Tonnes (MMT) of SOC, quantified in the 2018 NWL carbon inventory. In comparison, 
the top 30 cm of drained organic soil in the delta is estimated to contain 24.47 MMT of SOC, 
quantified using an IPCC rate of emission. 

Benefits and Limitations 

Biomass Carbon: CARB’s method for estimating carbon stocks in orchard biomass presents 
both strengths and limitations. A primary benefit is its use of high-resolution remote sensing 
combined with ground-truth data, which allows for a refined, orchard-specific 
understanding of biomass at a regional scale. This approach enables more accurate 
assessments of carbon stocks that reflect California’s unique orchard characteristics, such as 
species types, tree ages, and planting densities, which are critical for Tier 3 inventories. The 
use of field data from sources like UC Davis’s experimental orchards strengthens the 
reliability of allometric equations for common species, allowing more precise biomass 
estimates.  

CARB’s carbon stock estimation method has several limitations primarily due to data 
spatiality and temporal assumptions. First, while CARB relies on crop acreage data from the 
USDA’s National Agriculture and Statistics Service (NASS), these census datasets lack spatial 
specificity. The NASS census and survey programs provide detailed crop information, but 
their data is presented as aggregate summaries rather than spatially explicit maps. This 
aggregation includes California’s five most common perennial crops—grapes, almonds, 
walnuts, pistachios, and oranges—while grouping the remaining perennial crops into a 
single category. As a result, CARB's estimates for carbon stocks, which depend heavily on 
NASS data, lack the spatial resolution necessary for precise, location-based assessments. 
Additionally, the census data is only updated every 5 years and often lacks temporal 
continuity which makes time series using this data difficult.  

Additionally, CARB’s approach assumes that orchard tree age distribution remains 
consistent across analysis years. This assumption simplifies the classification process but 
does not reflect the real-world variability in orchard age distribution over time. By applying 



the same age distribution across multiple years, CARB may inadvertently overlook important 
shifts in orchard age structure.  

Finally, since CARB combines USDA acreage statistics with a non-spatial age distribution, 
the resulting carbon stock maps also lack spatial detail. Without spatially explicit data on 
orchard locations and ages, CARB's final maps present only generalized carbon stock 
estimates, which can limit their utility for applications requiring fine-scale resolution, such as 
localized carbon management or targeted climate action planning.  

Soil Carbon: A benefit to the previous method used to quantify carbon in mineral soils is the 
ability of DNDC to simulate carbon and nitrogen biogeochemical processes according to 
parameterized climate, soil characteristics, crop type, and management variables. However, 
the DNDC model does not satisfy the California Air Resources Board (CARB)’s open access 
requirements, because the source code for the model is unavailable and therefore cannot 
be modified or replicated. Due to this limitation, DNDC can no longer be used for the 
statewide carbon inventory. Additionally, the version of DNDC used by CARB was primarily 
designed to estimate nitrous oxide emissions and does not include a robust system for 
quantifying soil carbon through time. 

A benefit to the previous method used to quantify carbon in drained organic soils is 
consistency with IPCC recommendations. However, the limitation of the IPCC approach is 
that the simplified quantification of carbon emission is inherently broadscale and 
generalized. Contextualized estimates incorporating land use and management 
heterogeneity are not reflected over time.  

2025 NWL Carbon Inventory Update Proposed Methods 

Methods Description 

Biomass Carbon: The proposed method for quantifying carbon in cropland biomass builds 
on the previous approach but introduces several key improvements to enhance the 
accuracy and spatial specificity of carbon stock estimates for California’s orchards. The core 
concept remains the same: relying on species-specific allometric equations that use tree 
age, tree density by orchard age, and orchard acreage data as key inputs. However, the new 
approach replaces aspatial National Agricultural Statistics Service (NASS) crop acreage data 
with more recent and spatially explicit data from the California Department of Water 
Resources (DWR) crop mapping layer (DWR & LandIQ, 2022). The DWR crop mapping layer 
is available for the years 2014, 2016, 2018, 2019, and 2020-2022. The shift to this data 
enhances the spatial accuracy of the acreage estimates and reflects a more robust and up-
to-date understanding of land use patterns in California's orchards.  

A significant change to the updated methodology is the replacement of the previous tree 
age distribution model with more precise data on tree age from the DWR orchard age layer. 
For analysis years where DWR’s age data is available (2020-2022 and eventually 2023), this 
layer will be directly used (DWR & LandIQ, 2022). For years when DWR age data is 



unavailable or incomplete, CARB plans to develop its own in-house age layers based on 
available data sources and predictive modeling techniques. CARB plans to incorporate the 
2023 data once it is released, further refining the spatial and temporal resolution of carbon 
stock estimates.    

Additionally, CARB has expanded its scope to estimate carbon stocks in orchard types 
previously excluded from the analysis. The previous methodology concentrated on only five 
orchard crops—almonds, walnuts, pistachios, citrus, and grapes—which together accounted 
for approximately 91% of the acreage in 2020, according to DWR crop mapping data (DWR 
& LandIQ, 2023). The updated approach, however, incorporates a wider variety of orchard 
species, providing a more comprehensive assessment of carbon storage across California’s 
agricultural landscape.   CARB has evaluated several options and plans to assess additional 
datasets and methods that could potentially be used to estimate the carbon stock of newly 
added orchards. Current evaluations include canopy height data from META, carbon stock 
density maps (if deemed suitable for California orchards), and, as a final option, the use of 
proxy tree species with similar characteristics or functional tree groupings to estimate 
carbon density.  

Overall, the integration of these enhanced data layers reduces reliance on outdated or 
spatially coarse data sources. CARB’s proposed update to quantifying carbon in cropland 
biomass provides more accurate, timely, and comprehensive carbon stock estimations for 
California’s orchards.  

Soil Carbon: The proposed method for belowground carbon quantification is tier 3 and 
incorporates process-based modeling and digital soil mapping. First, in mineral soils, the 
open-source, process-based model Roth-C will be used to create a temporal sequence of 
SOC from 2001 to 2024 at locations which correspond to empirical data points. The 
empirical data will be measurements of SOC coupled with site characteristics, collected 
from various academic, private, and non-profit research efforts across the state. Efforts to 
solicit data are ongoing. Roth-C is also used to model SOC in grasslands and developed 
land mineral soil, but cropland Roth-C incorporates agriculturally specific inputs. Roth-C will 
be parameterized with available data on crop cover, crop rotation, climate, soil, and 
management parameters (Table 3). Inputs such as irrigation, decomposability, and plant 
biomass inputs according to management recommendations for each corresponding crop 
type. Roth-C modeling has been shown to be sensitive to changes in climate and 
management; model parameters can be adjusted to reflect management activity including 
no-till, cover cropping, and compost application. In drained organic soil, there is no open-
source process-based model, so annual SOC will be derived from the IPCC emission factor 
using empirical measurements as a baseline. The drained organic soil method is not 
sensitive to management changes other than land use change and therefore offers an 
opportunity for improvement in future iterations of the NWL carbon inventory. 



Second, digital soil mapping will be performed statewide, across all inventory land types, 
using a knowledge guided machine learning framework. The machine learning process will 
create a predictive relationship between spatial data of soil forming factors, (e.g. vegetative 
cover, slope, etc.), disturbance and management factors (e.g. pavement, irrigation, etc.), 
and the empirically-based temporal sequences of soil organic carbon produced by each 
land type’s soil carbon quantification methodology (i.e. Roth-C for developed lands and 
croplands, stock change factors for other land types). The output will be a spatially explicit 
distribution of SOC statewide annually from 2001 to 2024, including through cropland. 
More details can be found in the proposed update to Natural and Working Lands Carbon 
Inventory: Soil Methods.  

Benefits and Limitations 

Biomass Carbon: CARB’s updated methodology offers several benefits, including improved 
spatial accuracy, more precise tree age data, expansion of orchard types, and the inclusion 
of a Monte Carlo uncertainty analysis. First, spatial accuracy is improved by replacing the 
previously used NASS crop acreage data with a spatially explicit crop map. This new 
approach provides more precise data on orchard acreage. The data enables more accurate 
carbon stock estimates at regional and local scale, improving the overall reliability of the 
carbon stock mapping. Second, tree age is more accurately estimated by replacing the 
previously used estimated tree age distribution with an orchard age map, significantly 
reducing uncertainty. Improved orchard age data better captures an important cropland 
dynamic in which orchards increase their carbon storage over time. Third, the inclusion of 
additional orchard species—beyond just almonds, walnuts, pistachios, citrus, and grapes—
ensures a more comprehensive estimation of carbon storage across California’s agricultural 
landscape. Finally, the Monte Carlo Uncertainty Analysis will be retained from the previous 
methodology. This approach accounts for uncertainties in tree height, diameter, density, 
and age estimations. The Monte Carlo simulations will also consider errors in allometric 
equations and spatial uncertainties in area estimates. This uncertainty analysis will ensure 
transparency in the anticipated error from CARB’s updated methodology.   

CARB’s updated methodology to quantify cropland biomass carbon also has several 
limitations, including a lack of field-level data, inability to account for all climate impacts, and 
an insensitivity to particular management actions. First, estimates of carbon biomass will not 
be based on actual field-level data, but are instead derived from orchard type and age. The 
implication of this approach is that fields with the same age and orchard type will have 
identical carbon density, regardless of their location. Any regional heterogeneity in the 
carbon densities of a particular orchard type and age will not be modeled. Second, the 
current approach does not directly account for the impact of climate change, as allometric 
equations are held constant and climate variables are not incorporated into the model. 
Future work to produce periodic updates to allometric equations may be an opportunity to 
incorporate the effects of climate change into future methodological updates. Finally, the 
proposed method is not sensitive to management activities that might enhance other 



biomass carbon stocks within orchards, such as from alley and cover cropping, and planting 
windbreaks and hedgerows. 

Soil Carbon: The process-based model Roth-C has several benefits. Of the models 
assessed, Roth-C is the most long-standing model with decades of applications across 
different cropland and climate scenarios. While Roth-C emphasizes carbon inputs at the 
expense of more complex, updated processes captured by MEMS 2.0 and DNDC, a 
strength of Roth-C is its simplified design and inputs, the latter of which can be populated 
entirely using readily-available data. All models were also assessed for sensitivity to cover 
crop rotation, no and reduced till, and compost application. Roth-C can be sensitive to 
management changes by management-derived modifications to inputs. For example, 
rotational cover cropping can be incorporated by changing monthly biomass inputs. Roth-C 
has also been specifically calibrated in mediterranean climates. Additionally, Roth-C 
methodology is used in the grasslands and developed lands components, fostering model 
consistency throughout the NWL carbon inventory.  

The blend of process-based modeling via Roth-C and digital soil mapping via the machine 
learning framework leverages the strengths of each approach. Process-based modeling 
incorporates biogeochemical processes into the estimation of SOC and is sensitive to 
changes in management (e.g. compost application). Digital soil mapping interpolates 
empirical data points using known drivers of SOC heterogeneity, facilitating data-driven 
estimates of SOC statewide, despite inconsistencies in data availability between land type. 
Finally, the statewide implementation of the belowground methodology unifies the SOC 
analysis across land types and fosters inventory consistency. 

The limitations of the current version of Roth-C include its simplicity and inability to model 
all NBS strategies. For example, Roth-C utilizes a simplified understanding of soil carbon 
dynamics by splitting carbon pools into groups based on their relative decomposability. 
Similarly, Roth-C does not incorporate nitrogen cycling dynamics, which limits the model’s 
ability to reflect changes in fertilizer application. Despite this limitation, Roth-C can be 
calibrated to improve accuracy at larger spatial scales. Additionally, Roth-C will not 
necessarily be sensitive to the implementation of hedgerows and riparian buffers, although 
this limitation applies to all models assessed.  

The digital soil mapping process also has limitations, such as the need for significant 
computational resources and expertise in machine learning. Another limitation will be a lack 
of empirical SOC measurements in certain systems. If certain crop types or management 
approaches are undersampled compared to others, drivers of change may not be well 
represented in the machine learning algorithm. Despite these limitations, the hybrid 
approach has the potential to provide high-resolution spatio-temporal maps of SOC in 
California, integrating and assessing the effects of NBS Implementation. Further analysis of 
the benefits and limitations of soil carbon quantification methodology can be found in the 
proposed update to Natural and Working Lands Carbon Inventory: Soil Methods.  



Input and Validation Datasets 

Biomass Carbon: The input and validation datasets for CARB's updated orchard carbon 
stock estimation method are designed to incorporate both remote sensing data and 
ground-based measurements. Input datasets are well defined and selected to enhance the 
accuracy and spatial resolution of carbon stock predictions (Table 3). Validation datasets are 
still being vetted and compiled. Several candidate validation dataset sources have been 
identified and are listed below. 

Biomass Carbon Input Datasets: Biomass carbon input datasets include the DWR Crop 
Cover Data, the DWR Orchard Age layer, and CARB’s orchard allometric equations. The 
DWR Crop Cover dataset replaces the previous NASS crop acreage data. The California 
Department of Water Resources (DWR) crop mapping data provides detailed, spatially 
explicit information on orchard crops across California for the years 2014, 2016, 2018, and 
2019-2022. This data helps map out orchard acreage and species, offering higher precision 
for carbon stock estimations compared to the broader NASS statistics. The DWR Orchard 
Age layer data is CARB’s shift from using a generalized tree age distribution model to 
relying on actual orchard age data from the DWR orchard age layer, available for 2020-
2022. This layer provides more accurate information on the age of orchards, which is a 
critical parameter for carbon modeling. When DWR data is not available, CARB plans to 
develop its own orchard age layer in-house. Finally, the orchard allometric equation data 
are species-specific allometric equations of carbon per orchard area were developed by 
CARB in previous iterations of the NWL carbon inventory (CARB, 2018).  

Biomass Carbon Valiadtion Datasets: Biomass carbon validation datasets may include 
ground-truth measurements, remote sensing validation, and comparisons to past carbon 
stock estimates. For ground-truth measurements, validation of the carbon estimates will rely 
on ground-based measurements of tree DBH, height, and other structural characteristics. 
This data comes from field surveys conducted by CARB staff in previous inventory methods, 
including the use of tools like tree diameter tapes and hypsometers, as well as the 
established tree age data from sources like the UC Davis Wolfskill Experimental Orchards. 
For remote sensing validation, CARB can cross-reference the output of their carbon stock 
predictions with independent remote sensing data, such as high-resolution satellite imagery 
like Google Earth and Landsat. These images can be used to assess the accuracy of tree 
density and orchard age and crop classification. Finally, comparisons to past carbon stock 
estimates can be used to validation the model output against historical carbon stock 
estimates from the older CARB methodology, which relied more heavily on USDA data and 
less accurate static age assumptions. This allows CARB to assess improvements in model 
accuracy and spatial resolution.   

  



Table 3: Input datasets used for the quantification of woody orchard biomass. 

Dataset Developer Temporal 
Resolution 

Spatial 
Resolution 

Citation 

Crop cover and 
orchard age 

Department of 
Water 
Resources 
(DWR) 

Annual or every 
2 years 

Object-based (DWR & LandIQ, 
2022) 

Orchard 
allometric 
equations 

California Air 
Resources 
Board (CARB) 

Once Aspatial (CARB, 2018) 

Canopy height 
2020 

Meta & World 
Resources 
Institute (WRI) 

Once 1 m (Meta & WRI, 
2023) 

 

Soil Carbon Input Datasets: The input datasets for soil carbon quantification will be used to 
parameterize the Roth-C model and scale soil carbon estimates throughout croplands 
statewide through the digital soil mapping described in the proposed update to Natural 
and Working Lands Carbon Inventory: Soil Methods (Table 4). Climate data used to 
parameterize Roth-C will be derived from Cal-Adapt and aligned with the data used across 
different land types (Thomas, 2018).  

Soil Carbon Validation Datasets: Roth-C will also be calibrated using empirical data. 
Empirical data will consist of measurements of SOC coupled with site characteristics, 
collected from various academic, private, and non-profit research efforts across the state. 
Efforts to solicit data are ongoing.  

  



Table 4. Input datasets used to for quantification of soil carbon. 

Dataset Developer Temporal 
Resolution 

Spatial 
Resolution 

Citation 

Crop cover Department of 
Water 
Resources 
(DWR) 

Annual Object-based (DWR & 
LandIQ, 2022) 

Spatial CIMIS, 
Reference ET 

DWR Daily 2 km (DWR, 2024) 

Lit review: plant 
residue and 
decomposability, 
compost 
application 

Various authors Varied Likely aspatial TBD 

Management 
recommendations: 
Irrigation, 
compost 
application 

DWR; 
University of 
California 
Cooperative 
Extension 
(UCCE); Various 
authors 

Varied Likely aspatial  TBD 

gNATSGO: % clay 
and initial soil 
organic carbon  

Natural 
Resources 
Conservation 
Service (NRCS) 

Single map 
produced from 
temporally 
variable 
samples 

10 m or 30 m (Soil Survey 
Staff, 2023) 

 

Alternative Method for 2025 Update 

Biomass Carbon: The alternative method for quantifying biomass carbon is to use the 
National Agricultural Statistics Service (NASS) cropland data layer to derive orchard type 
and acreage along with a static estimation of the distribution of orchard age (USDA NASS, 
2023). This orchard age distribution was previously calculated by CARB staff for a single 
year based on a time series of satellite imagery coupled with manually collected samples of 
orchard age (CARB, 2018). These data inputs would be coupled with CARB’s allometric 



equations to derive an estimate of carbon for the key orchard species of almonds, walnuts, 
pistachios, oranges, and vineyards at the county level. Additionally, the orchard species with 
undefined allometric equations will be estimated using allometric equations for proxy tree 
species with similar characteristics. This alternative methodology is anticipated to have 
higher error compared to the proposed updated methodology, so associated error will be 
reported to provide transparency.  

Soil Carbon: The alternative method for quantifying belowground carbon in mineral soils is 
to use a tier 2 method, applying the previously modified IPCC stock change factors to an 
initial SOC estimate derived from gNATSGO (Soil Survey Staff, 2023). The alternative 
method for drained organic soil is to use the tier 1 method, multiplying drained organic soil 
land area by the IPCC emission factor. The estimated carbon emission can then be 
subtracted from an initial SOC estimate derived from gNATSGO to yield the resulting SOC 
estimate.  

Criteria Assessment 

Biomass and Soil Carbon: All decisions regarding proposed updates to the NWL Carbon 
Inventory were made in relation to standardized criteria set forth by CARB (Table 5). These 
criteria help to ensure that the methods and data CARB uses are appropriate to meet the 
goals of the NWL Carbon Inventory, are as rigorous and comprehensive as possible, and are 
reproducible for others. 

  



Table 5: Criteria used to assess methodological updates for the 2025 NWL Carbon Inventory. 

Category Criteria Assessment 

Spatial scale 
• Have accuracy optimized to statewide scales while also 

providing sufficient accuracy at the county scale  
• Ensure wall-to-wall coverage with no double counting 

These methods will be done at the statewide scale and is 
appropriate for county scale aggregation and will include all 
croplands in California. 

Temporal scale  
• Go back as far in time as possible, at least to 2001  
• Be as up to date as possible 

These methods will go back to 2014 due to data limitation and 
will provide estimates through 2023. Alternate methodology will 
be used for estimates prior to 2001. 

Spatial resolution  
• Be as spatially explicit as possible, at least to the 

resolution of ecosystem boundaries  
• Permit analysis at different stratifications, such as by 

ownership, management action type, land type, or 
ecoregion 

These methods will provide a spatial resolution of 30m. It will 
allow for various categorical analyses. 

Temporal resolution  
• Produce annualized values that can be reported very 3-5 

years 
These methods will produce values for roughly every 2 years that 
can be updated and reported every 3-5 years, depending on data 
availability 

Thematic resolution  
• Include as many carbon pools and fluxes as possible 
• Capture at minimum aboveground biomass carbon  
• Be generally consistent with IPCC GHG inventory 

guidelines 

These methods capture the primary pools of carbon in croplands, 
including aboveground biomass carbon stored in orchards and 
vineyards. They are consistent with IPCC GHG inventory guidance. 

Sensitivity  
• Be sufficiently sensitive to quantify changes as a result of 

management and other major drivers of change, 
including climate change 

• Prioritize assessing directionality and general 
magnitude of change through time 

These methods quantify changes in carbon through time that 
result from management or other major drivers of change. The 
biomass carbon pool will be sensitive to changes in crop type and 
age and the soil carbon pool will be sensitive to management 
provided management tracking data is available 

Practical criteria  
• Generate transparent, repeatable methods that use free 

or low-cost tools 
• Prioritize base data that has reasonable expectation of 

sustainment and openness for use by state staff 
• Use models that are publicly available and open source 
• Use base data that require as little pre-processing for 

state staff as possible 
• Use base data that have a proven basis in reality and, 

where applicable, are validated with error or accuracy 

In most cases, these methods use open-source, free datasets and 
tools that have reasonable expectation of sustainment and 
openness for use by state staff and others. However, some 
calibration/validation datasets may have privacy considerations 
that will be honored to the extent permitted by the law. Base data 
requires minimal pre-processing and is vetted by data developers.  

Soil Carbon: For soil carbon in croplands, a process-based model is being proposed as a 
component of the unified soil framework. Because of this, additional criteria were 
considered by CARB staff for model suitability. These criteria encompass the broader 
inventory requirements but are tailored to evaluate model specifications (Table 6). Many of 
the prevailing models for cropland soil are not open source, which restricted options for the 
NWL inventory to a more limited list. Model options which were either open-source or 
potentially open-source, include MEMS 2.0 and Roth-C, and were evaluated for this 
proposal (Table 6). We provide the comparison of DNDC and DayCent to add further 
context. 



Table 6: Process-based model candidates for quantifying soil organic carbon (SOC) in cropland mineral soils. 

Model Name DNDC Roth-C MEMS2.0 DayCent 

Must fit context of 
specific landscape 
type 

Yes Yes Yes Yes 

Is the model 
scalable?  

Yes Yes Yes Yes 

Can this model do 
future projections 
needed for scoping 
plan?  

Yes Yes, minus coupled 
nutrient dynamics 

Yes Yes 

Does the model 
include the major 
drivers of change in 
this system and key 
ecosystem 
processes?  

Yes  Includes climate, 
soil, and plant type, 
but no nutrient 
cycling 

Yes Yes 

Is this model sensitive 
to climate change 

Yes Yes Yes Yes 

Can this model 
estimate the impacts 
of management/NBS 
actions? 

Yes Yes, simplified Some, not all Yes 

Does the model 
output carbon stocks 
and/or GHGs? 

Yes, both Yes, Carbon Yes, Caron Yes, both 

Is the model 
validated and have a 
basis in reality?  

Yes Yes Yes Yes 

Can this model be 
run on a regular basis 
to develop updates 
and incorporate 
improvements?  

No due to lack of 
publicly available 
source code 

Yes No due to lack 
of publicly 
available source 
code 

No due to lack of 
publicly available 
source code 



Is this an open-source 
model that we can 
modify and share 
without restriction?  

No  Yes No  No 

Is this a mature model 
with a scientific track 
record?  

Yes Yes Emerging Yes 

Are people currently 
using this model and 
is there a current user 
base?  

Yes Yes Limited Yes 

Will this model 
require a lot of work 
to make usable for 
CARB’s purposes, or 
is it ready off the 
shelf?  

Ready off the shelf; 
Requires 
GHG/carbon 
calibration; unable 
to be modified 

Ready off the shelf; 
Requires carbon 
calibration; 
modification 
possible 

Not off the shelf 
ready, could 
require model 
development; 
unable to be 
modified 

Ready off the shelf; 
Requires 
GHG/carbon 
calibration; unable 
to be modified 

Do we have sufficient 
off the shelf data to 
parameterize, 
calibrate, validate (w/ 
uncertainty statistics) 
and run this model 
through time, or will 
this require new or 
highly processed 
data by CARB staff?  

Yes, 
Parameterization is 
complex; 
Calibration and 
validation needed 

Yes, simplified 
parameterization 
requirements; 
Calibration and 
validation needed 

No, soil organic 
matter 
fractionation 
data required 

Yes, 
Parameterization is 
complex; 
Calibration and 
validation needed 

Can CARB staff run 
this model within our 
current timeframe for 
deliverables 

No, this would 
require a contract 

Yes No No, this would 
require a contract 
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