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Background 

Soil is a material that covers most of the land surface and is composed of minerals, organic 
matter, water, air, and living organisms. Soil organic carbon refers to the carbon component 
of organic matter present in the soil, which is derived from decaying plant material, root 
deposits, and other organisms. Soil organic carbon is an important natural resource that 
sustains many ecosystem services, including nutrient cycling and food production, water 
filtration and storage, and global climate regulation (Trivedi et al. 2018a).  

The Intergovernmental Panel on Climate Change (IPCC) categorizes soil as either being 
organic or mineral in nature, based on the amount of organic carbon the soil stores as well 
as factors related to flooding and drainage. Organic soils contain high amounts of organic 
matter, storing more than 12% organic carbon by weight, and are developed under poorly 
drained conditions that limit decomposition. In contrast, mineral soils have lower amounts 
organic matter and usually occur under moderate to well drained conditions. Physical and 
chemical differences between these soil types requires unique methodological 
considerations; as such, they are treated separately in the IPCC framework. In California, 
organic soils are found in the Delta ecoregion, where they have mostly been drained for 
land use purposes (Deverel et al. 2020). However, organic soils are also found in coastal 
wetlands outside of the Delta, such as in coastal salt marsh ecosystems. The rest of the 
state’s land area sits on soil that is categorized as mineral.   

Across all soil types, soil stores more carbon than plants and the atmosphere combined, 
and exchanges carbon continuously and dynamically with both these reservoirs over time. 
Globally, 3,000 gigatons (Gt) of organic carbon is estimated to reside in the top 2 meters of 
soil, with approximately 716 Gt of that occurring in the top 30 cm (Trivedi et al. 2018a). In 
California, the 2018 NWL Carbon Inventory estimated that 2,750 MMT of organic carbon, or 
51% of carbon in the state’s land base, is stored in the top 30 cm of soil across all land types. 
The NWL Carbon Inventory also estimated that approximately 30 MMT of soil organic 
carbon was lost from California’s lands between 2001-2010 (CARB 2018a). Ongoing 
changes in this carbon stock can either threaten or enhance the provision of ecosystems 
services for Californians and impact progress toward achieving carbon neutrality by 2045, 
making accurate estimates of change critical.  

In addition to soil organic carbon, inorganic carbon stored in the form of calcium carbonate 
is also important in arid landscapes of California (Sharififar et al. 2023). However, assessing 
changes in soil inorganic carbon stocks remains beyond the scope of the NWL Carbon 
Inventory for this iteration. This is primarily because IPCC does not provide Tier 1 or 2 
methods for estimating change in soil inorganic C stocks, and a paucity of temporal data 
and limited model options makes the use of Tier 3 methods prohibitive. As the science, 
datasets, and models for soil inorganic carbon progress, the inclusion of this carbon pool 
may be reassessed.      



State of the Science 

Accurately quantifying how soil organic carbon (hereafter called ‘soil carbon’) stocks vary 
across space and time is critical for creating robust inventories of ecosystem carbon on 
natural and working lands. National greenhouse gas (GHG) inventories rely on standardized 
methods to estimate soil carbon stocks and stock change, which are often aligned with 
guidelines provided by the Intergovernmental Panel on Climate Change (IPCC). Following 
IPCC principles, these inventories use tiered approaches, with Tier 1 involving default 
emission factors and generalized soil and climate data, and Tiers 2 and 3 integrating 
country-specific data and higher-resolution models or monitoring systems for greater 
accuracy. Where possible, national GHG inventories attempt to incorporate land use and 
land cover change data, meteorological data, and management practices, offering a 
complete yet broad picture of soil carbon dynamics within jurisdictional boundaries. Such 
methods prioritize consistency and comparability but must often trade accuracy and 
precision for feasibility (Bellassen et al. 2022), especially in regions that rely on Tier 1 or Tier 
2 methods due to limited data access. For reference, Table 1 outlines the general approach 
used by four different national GHG inventories for mineral soils associated with six land 
types included in CARB’s NWL Carbon Inventory. Organic soils are almost always assessed 
using Tier 1 approaches due to limited data and model availability (Köck et al. 2013).   

The scientific literature relies on the equivalent of Tier 3 methodologies to explore and 
advance soil carbon inventory capabilities. Methods can generally be classified into either 
empirical or process-based approaches that aim to provide wall-to-wall assessment of 
carbon stocks across a landscape (Ugbaje et al. 2024; Singh 2018; Ogle et al. 2010). Both 
approaches have their own strengths and weaknesses (Table 1). Empirical modeling, 
commonly referred to as digital soil mapping, uses machine learning or other techniques to 
generate statistical relationships between measured soil carbon values and environmental 
or management factors (i.e., covariates) at point locations. These point-based relationships 
are then used to interpolate values across a map surface (McBratney et al. 2003). Digital soil 
mapping efforts initially centered on producing static maps representing soil carbon at a 
single point in time but have evolved in recent years to include space-time mapping 
techniques (Heuvelink et al. 2021). These advanced techniques integrate temporal data with 
spatial covariates, enabling soil carbon stocks to be estimated not just spatially, but 
temporally as well (Yang et al. 2022).   

In contrast to digital soil mapping, process-based modeling predicts soil carbon by 
simulating underlying physical, chemical, and biological processes (Wang et al. 2020; 
Dondini et al. 2018), rather than relying solely on statistical relationships between observed 
values and covariates. Many process-based models exist, reflecting the diversity of 
environmental conditions they aim to represent, the varying levels of complexity required to 
address specific research questions or objectives, and the scientific community’s evolving 
understanding of processes that govern soil carbon formation (Robertson et al. 2019). 
Process-based models can, but do not always, vary by land and soil type to account for 
differences in soil dynamics and management practices. For example, while the simplified 
process-based model RothC has been used to successfully model soil carbon in forests, 



grasslands, and croplands alike (Morais et al 2019), wetland soils cannot be modeled using 
RothC. Wetland soils behave very differently from non-wetland soils, as do organic soils 
from mineral soils (Smith et al. 2007). The scientific community has responded to these 
differences by developing and parameterizing models that capture the unique processes 
that govern carbon cycling under various conditions (e.g., Ward 2024). However, not all 
conditions are equally represented, with some (e.g., desert soils) requiring additional 
attention from the modeling community.  

Empirical and process-based models have unique strengths and limitations that must be 
considered when estimating spatial and temporal trends for inventory purposes (Table 1). 
For example, empirical modeling excels at capturing spatial variability and is designed for 
implementation across large scales. In contrast, process-based modeling excels at capturing 
temporal variability and excels at simulating systems in novel conditions. To leverage the 
unique advantages of both approaches, researchers have combined process-based 
modeling with empirical modeling in recent years (Bernardini et al. 2024). For example, Xie 
et al. (2022) incorporated RothC predictions into a digital soil mapping exercise to estimate 
soil carbon stocks in the southern Jiangsu Province of China. Others have explored this 
approach as well (Zhang et al. 2024; Xu et al. 2024), all demonstrating improved accuracy 
when the two approaches are combined. 

Table 1: Comparison of empirical and process-based modeling approaches for estimating soil carbon stocks 
in the primary literature. DNDC = Denitrification Decomposition model, MEMS 2.0 = Microbial Efficiency-
Matrix Stabilization model, PEPRMT = Peatland Ecosystem Photosynthesis Respiration and Methane Transport 
model.  

Attribute Empirical Modeling  Process-Based Modeling 
Spatial variability Excels at capturing spatial 

variability  
Encounters challenges when 
upscaling 

Temporal variability Encounters challenges related to 
insufficient data availability across 
time  

Excels at capturing temporal 
variability 

Ease of implementation across 
large scales 

Designed for implementation 
across large scales; lower 
computational requirements 

Depending on the method, can 
be computationally intensive 

Eligible covariates/Input 
parameters 

Can ingest any numerical (e.g., 
precipitation) or categorical (e.g., 
land use) variable that is dynamic 
or static 

Ingests numerical variables 
related to set parameters in the 
model 

Mechanistic Representation Does not simulate mechanisms; 
relies on correlations and patterns 
in data.   

Simulates mechanisms underlying 
the system. 

Novel Scenarios Can model systems for which it 
has data, but struggles in novel 
conditions and outside of these 
systems 

Can simulate systems in novel 
conditions and can approximate 
systems similar but outside areas 
on which it was trained 

Examples Machine learning algorithms such 
as random forest; Regression 
kriging  

DayCent, DNDC, RothC, PEPRMT, 
MEMS 2.0 

 



    

Table 2: Approaches used to assess soil organic carbon change for IPCC land types in the literature and select national GHG inventories. 
CWEM = Cohort Wetland Equilibrium model, DNDC = Denitrification Decomposition model, MEMS 2.0 = Microbial Efficiency-Matrix 
Stabilization model, MIMICS = Microbial-Mineral Carbon Stabilization model, PEPRMT = Peatland Ecosystem Photosynthesis Respiration and 
Methane Transport model. Note: the list of process-based models presented from the literature is not exhaustive. *Tier depended on forest 
type. 

 Literature United States GHG 
Inventory 

Canada GHG Inventory Australia GHG 
Inventory 

Switzerland GHG 
Inventory 

Forest land remaining 
Forest land 
(mineral soil) 

Digital soil mapping; 
process-based models 
(Century, RothC) 

Tier 2 (Country-specific 
change factors) 

Tier 3 (CBM-CFS3) Tier 3 (FullCAM 
model with RothC 
submodel), Tier 2 & 
Tier 1* 

Tier 2 (Country-
specific change 
factors), Tier 3 for 
productive forest 
categories (Digital 
soil mapping) 

Grassland remaining 
Grassland  
(mineral soil) 

Digital soil mapping; 
process-based models 
(DayCent, RothC, MEMS 
2.0) 

Tier 3 (Daycent) except 
for gravelly, cobbly soils 
that used Tier 2 

Tier 1 (Default change 
factors) 

Tier 3 (FullCAM 
model with RothC 
submodel) 

Tier 3 (RothC) 

Cropland remaining 
Cropland 
(mineral soil) 

Digital soil mapping; 
process-based models 
(DayCent, RothC, 
DNDC; MIMICS, MEMS 
2.0) 

Tier 3 (Daycent) for the 
majority of annual 
crops, Tier 2 for 
remaining crops and 
gravelly, cobbly soils 

Tier 2 (Century to 
determine country-
specific change factors) 

Tier 3 (FullCAM 
model with RothC 
submodel) 

Tier 3 (RothC) 

Developed lands 
remaining Developed 
lands 
(mineral soil) 

Digital soil mapping Not assessed  Not assessed Tier 2 (Country-
specific change 
factors) 

Tier 1 (Assumes 
stocks and change 
equal zero) 

Other land remaining 
Other land 
(mineral soil) 

Digital soil mapping Not assessed  Not assessed  Not assessed Tier 1 (Assumes 
stocks and change 
equal zero) 

Wetland remaining 
Wetland 
(mineral soil) 

Digital soil mapping; 
process-based models 
(CWEM, PEPRMT, 
WARMER-2, SUBCALC) 

Tier 1 (Default emission 
factors) for peatlands, 
Tier 2 (County-specific 
emission factors) for 
vegetated coastal 
wetlands 

Tier 2 (Country-specific 
emission factors) 

Tier 2 (Country-
specific emission 
factors) 

Tier 1 (Assumes 
change equals zero) 

All land types 
(organic soil) 

Digital soil mapping; 
process-based models 
(ECOSSE) 

Tier 1, Tier 2 Tier 1 Tier 1 Tier 1 



Primary Drivers of Change 

Like elsewhere, soil carbon storage across California’s diverse landscapes is shaped by the 
factors of soil formation—climate, organisms, topography, parent material, and time (Jenny 
1941). Which factor predominates will depend on the scale of interest. Climate is a 
dominant driver of soil carbon storage across the state, with temperature and precipitation 
influencing plant productivity and decomposition, resulting in arid regions like deserts 
storing less soil carbon compared to wetter regions like forests. Organisms, including 
vegetation and soil biota, play a role in capturing and cycling carbon within soils (Trivedi et 
al. 2018b; Jackson et al. 2007). This creates differences in soil carbon storage between 
vegetation types that can be distinguished from climate and seen at smaller scales 
(Waterhouse et al. 2024). Topography affects soil carbon by dictating the microclimate, 
water retention, and erosion across sites, with flatter areas often accumulating more carbon 
compared to steep terrains that are prone to runoff. In addition, parent material provides 
the mineral foundation that interacts with organic matter and influences carbon stabilization, 
with volcanic soils in some regions exhibiting higher carbon storage potential (Wilson et al. 
2024). Time reflects the cumulative effects of these processes, with older, highly weathered 
soils often exhibiting greater carbon storage. Superimposed on these factors are human 
activities such as agriculture, urban development, and forest management, along with 
climate-driven disturbances like wildfires, which can further influence soil carbon dynamics 
across space and time. 

Nature Based Solutions Targets 

See land type reports for specific AB 1757 Nature-Based Solution targets.  

2018 NWL Carbon Inventory Methods 

Methods Description 

With the exception of croplands remaining croplands, carbon stocks for mineral soils across 
all land types and conversion scenarios were estimated in the 2018 NWL Carbon Inventory 
using an IPCC Tier 2 approach (CARB 2018b). Briefly, initial soil carbon values were 
estimated based on SoilGrids (2017) and stock change factors (Table 17 in CARB 2018b) 
were applied to different land conversion scenarios following standard IPCC equations (Eqn 
20, 21, and 22 in CARB 2018b). This resulted in annualized and total estimates for carbon 
stock change over the inventory period (2001-2010). Changes in soil carbon stocks for 
croplands remaining croplands were estimated using the Denitrification Decomposition 
(DNDC) model (Li et al. 1992).   

For drained organic soils, which were constrained to land types in the Delta Ecoregion, soils 
were assumed to be purely emissive. Losses in carbon over time were determined using 
global “emission” factors from IPCC using a Tier 1 standard IPCC equation. Results for 
mineral and drained organic soils were combined for final estimates and extrapolated from 
2001-2010 through 2014.  



For wetlands, the prior inventory methodology estimated CO₂ and CH₄ emissions from 
three key wetland types: inland wetland mineral soils (IWMS), rewetted organic soils (ROS), 
and coastal wetlands. Emissions calculations used an IPCC Tier 1 approach, incorporating 
land cover data from the California Aquatic Resources Inventory (CARI) with global emission 
factors to produce final inventory estimates.  

Benefits and Limitations  

The prior use of Tier 2 methodology for mineral soils allowed for the development of 
carbon inventory estimates despite CARB staff being limited by information and resources. 
This is a benefit. In addition, using a Tier 2 approach allowed for conceivably greater 
accuracy than a Tier 1 approach, which would have used a global reference carbon stock 
value as input rather than more localized initial stock estimates from SoilGrids. However, 
Tier 2 methods are inherently broadscale and generalized, and thus do not allow for 
contextualized estimates of change over time. Moreover, the methods employed previously 
only captured land use change, and were not able to estimate management or disturbance 
effects on soil carbon over the inventory period. For drained organic and wetland soils, 
which used a Tier 1 approach, the same general benefits and drawbacks hold.  

The prior use of Tier 3 methodology for croplands remaining croplands offered an 
opportunity to assess soil carbon stock change using process-based modeling and region-
specific information. However, DNDC outputs required post-hoc harmonization with the rest 
of the inventory and, importantly, DNDC is not an open-source model.  

2025 NWL Carbon Inventory Update Proposed Methods 

Methods Description 

We propose a unified framework for space-time mapping of soil carbon across all land types 
(Figure 1). The framework aims to combine the strength of process-based models with 
machine learning algorithms, as has been demonstrated elsewhere (Xie et al. 2022; Zhang 
et al. 2024). Specifically, process-based models do well at approximating processes that 
govern temporal change in soil carbon, while machine learning does a good job of 
capturing spatial change (Ugbaje et al. 2024). Together, the complementary strengths can 
improve the accuracy of soil carbon predictions across spatial and temporal scales.  

The general idea is that this hybrid approach will use carbon estimates from process-based 
models as training data for digital soil mapping. The process-based model chosen will vary 
depending on the land type, but each will produce soil carbon estimates for inventory years 
from 2001-2023. These modeled outputs will fill temporal gaps and provide continuity in 
the training dataset for machine learning. Calibration of the process-based models will 
occur at representative sites, and calibrated models may be run on manually selected 
locations across known environmental/management gradients to address gaps in the 
machine learning training dataset.  



Once the training dataset is compiled, it will be combined with environmental and 
anthropogenic covariates in a machine learning model that will be developed and then 
applied to predict the spatial distribution of soil carbon across California. Covariates of 
interest include those foundational to digital soil mapping, namely soil forming factors 
(climate, vegetation, topography, parent material, time, and space), as well as 
anthropogenic factors known to influence soil carbon over time (e.g., land management and 
disturbance) (Ugbaje et al. 2024). Cross-validation and validation using independent data 
will be conducted to ensure robustness and generalizability of the model (see Input and 
Validation Data Section).    

 

 
Figure 1: Unified soil framework. The lefthand side shows the generation of training data from empirical data 
and two process-based models: RothC for grasslands, croplands, and forests and CWEM-PEPRMT for wetlands 
(Step 1). Those data will be combined with empirical data from other land types and appropriate 
environmental and anthropogenic covariates in a machine learning model that will be used to predict carbon 
across California’s land types for the inventory period (2001-2023) (Step 2).   

Benefits and Limitations 

The unified soil framework provides multiple benefits. It combines the strengths of process-
based modeling with the strengths of machine learning for digital soil mapping, and in so 
doing grounds itself in two well-founded approaches (Ugbaje et al. 2024; Zhang et al. 2024; 
Xie et al. 2022). The framework also allows all lands in California to benefit from a Tier 3 
approach, regardless of data availability, and allows for quantification of associated 
uncertainty. This approach also provides a consistent framework that can improve over time, 
and logistically, it minimizes issues with estimating Tier 3 land conversion effects across land 
types. However, overall accuracy of the final map is heavily dependent on the accuracy of 



the underlying process-based models, and their calibration/validation requires access to 
field-based measurements.  

Input and Validation Datasets 

Input datasets for the digital soil modelling include soil carbon training data, environmental 
covariates, and management/disturbance layers (Table 3). Validation data for the digital soil 
map will include observations from the World Soil Information Service database in addition 
to other sources, as available.   

Table 3: Input data and proposed sources for digital soil mapping. 

Category Input Data Proposed Source 
Training Data Direct field measurements Varied 
Training Data Process-based model carbon 

output 
RothC, CWEM-PEPRMT 

Environmental 
Covariates 

Climate: Precipitation, 
Temperature, Climatic Water 
Deficit  

Cal-Adapt 

Environmental 
Covariates 

Vegetation: Landcover, net 
primary productivity  

Landfire, MODIS/Landsat 

Environmental 
Covariates 

Topography: Slope aspect, 
elevation, topographic wetness 
index 

USGS Digital Elevation Model 

Environmental 
Covariates 

Parent Material: Soil order, soil 
texture, pH 

gNATSGO 

Management & 
Disturbance 
Covariates 

Fire CalFIRE Historical Wildland Fire 
Perimeter 

Management & 
Disturbance 
Covariates 

See individual writeups for 
land type specific management 
& disturbance layers 

See individual writeups for land 
type specific management & 
disturbance layers 

Alternative Method for 2025 Update 

The alternative methods for soil carbon are described in the individual land type 
documents.  

Criteria Assessment 

All decisions regarding proposed updates to the NWL Carbon Inventory were made in 
relation to standardized criteria set forth by CARB (Table 4). These criteria help to ensure 
that the methods and data CARB uses are appropriate to meet the goals of the NWL Carbon 
Inventory, are as rigorous and comprehensive as possible, and are reproducible for others.    



Table 4: Criteria used to assess methodological updates for the 2025 NWL Carbon Inventory.  

Category Criteria Assessment 
Spatial scale 

• Have accuracy optimized to statewide scales while 
also providing sufficient accuracy at the county scale  

• Ensure wall-to-wall coverage with no double 
counting 

This unified method will be done at the 
statewide scale and is appropriate for county 
scale aggregation and will include all land 
types in California.  

Temporal scale  
• Go back as far in time as possible, at least to 2001  
• Be as up to date as possible 

This unified method will go back to at least 
2001 and will provide estimates through as 
close to present as possible, likely 2023 or 
one of the surrounding years. 

Spatial resolution  
• Be as spatially explicit as possible, at least to the 

resolution of ecosystem boundaries  
• Permit analysis at different stratifications, such as by 

ownership, management action type, land type, or 
ecoregion  

This unified method will provide a spatial 
resolution that allows for ecosystem 
boundaries to be resolved. The exact 
resolution will depend on a number of 
factors but will be no greater than 250m and 
will allow for various categorical analyses.  

Temporal resolution  
• Produce annualized values that can be reported very 

3-5 years 

This unified method will produce annual 
values that can be updated and reported 
every 3-5 years.  

Thematic resolution  
• Include as many carbon pools and fluxes as possible 
• Capture at minimum aboveground biomass carbon  
• Be generally consistent with IPCC GHG inventory 

guidelines 

This unified method focuses on soil organic 
carbon and is consistent with IPCC GHG 
inventory guidance.  

Sensitivity  
• Be sufficiently sensitive to quantify changes as a 

result of management and other major drivers of 
change, including climate change 

• Prioritize assessing directionality and general 
magnitude of change through time 

This unified method is able to quantify 
changes in carbon through time that result 
from management or other major drivers of 
change.  

Practical criteria  
• Generate transparent, repeatable methods that use 

free or low-cost tools 
• Prioritize base data that has reasonable expectation 

of sustainment and openness for use by state staff 
• Use models that are publicly available and open 

source 
• Use base data that require as little pre-processing for 

state staff as possible 
• Use base data that have a proven basis in reality and, 

where applicable, are validated with error or 
accuracy 

In most cases, these methods use open-
source, free datasets and tools that have 
reasonable expectation of sustainment and 
openness for use by state staff and others. 
However, some calibration/validation 
datasets may have privacy considerations 
that will be honored to the extent permitted 
by the law. Base data requires minimal pre-
processing and is vetted by data developers. 
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