
Natural and Working Lands Carbon 
Inventory: 
Grasslands 

Proposed 2025 Inventory Update Methods  
January 2025 

 

 
For more information, contact:  

nwl@arb.ca.gov 
Nature Based Strategies Section 

Industrial Strategies Division 
California Air Resources Board 



 

Table of Contents 
Background ......................................................................................................................................... 3 

State of the Science ........................................................................................................................ 3 

Primary Drivers of Change ............................................................................................................ 4 

Nature Based Solutions Targets ................................................................................................... 5 

2018 NWL Carbon Inventory Methods ............................................................................................ 5 

Methods Description...................................................................................................................... 5 

Benefits and Limitations ................................................................................................................. 6 

2025 NWL Carbon Inventory Update Proposed Methods ........................................................... 6 

Methods Description...................................................................................................................... 6 

Benefits and Limitations ................................................................................................................. 7 

Input and Validation Datasets ....................................................................................................... 8 

Alternative Method for 2025 Update ........................................................................................... 9 

Criteria Assessment ........................................................................................................................ 9 

References ......................................................................................................................................... 12 

 

  



Background 

For the NWL Carbon Inventory, grasslands are defined as ecosystems dominated by 
herbaceous plants, primarily grasses, grass-like plants (sedges and rushes), and forbs, with 
less than 10% tree/shrub cover. This includes areas that are actively managed to maintain or 
enhance the herbaceous plant community, areas that are used as rangeland and irrigated 
pasture, and areas that are managed with agroforestry practices, so long as they do not 
meet the definition of forest land. Highways and roads that run through grassland are 
counted as developed lands.   

Grasslands are an important part of California’s landscape, covering close to 10M acres and 
supporting critical ecosystem services. Most of the carbon in grasslands is stored 
belowground in the soil organic carbon (SOC) pool (Bai and Cotrufo 2022). Aboveground 
carbon is found primarily in a transient herbaceous biomass pool that is subject to growth 
and decomposition over annual timescales. Carbon stocks of grasslands are highly 
influenced by factors such as soil type and climate, creating strong variation across the 
landscape (Liu et al. 2021; Carey et al. 2020a). Interannual variation for aboveground carbon 
is also quite large (Larsen et al. 2015), while changes in soil carbon stocks tends to happen 
more slowly over time.  

State of the Science 

National greenhouse gas (GHG) inventories use a combination of Intergovernmental Panel 
on Climate Change (IPCC) tiers to estimate carbon stock changes for grassland remaining 
grasslands and grassland converted to/from other land types. For instance, the US GHG 
Inventory uses a Tier 3 Forest Inventory and Analysis (FIA) method to estimate aboveground 
biomass stock changes with forest land converted to grassland. The US GHG Inventory also 
uses a Tier 3 approach that relies on the DayCent biogeochemical model for soil carbon in 
most cases; in those cases where the Tier 3 approach is not applicable, such as when 
grasslands are converted to forest, a Tier 2 stock-change factor approach is used. The 
Canadian GHG Inventory also uses a Tier 3 Century model approach to estimate changes in 
soil carbon with conversion from grassland to cropland, but relies on a basic Tier 1 
approach for grassland remaining grassland. For the Australian GHG Inventory, grassland 
carbon stock changes are estimated using a Tier 3 Full Carbon Accounting Model (FullCAM) 
comprised of three submodels, including RothC for soil. Switzerland also uses RothC as a 
Tier 3 process-based model for soil carbon of mineral soils. As a final example, the United 
Kingdom uses a Tier 3 empirical model for aspatial soil carbon stock changes associated 
with mineral soils and a Tier 2 method for organic soils.  

The scientific literature takes an equally varied approach to estimating carbon stocks and 
stock changes in grasslands, but all methods would be considered Tier 3 in the IPCC 
framework. Aboveground biomass carbon is often determined through an empirical 
modeling approach whereby relationships between field biomass data and predictor 
variables are used to interpolate values across a landscape (Wang et al. 2022). Net primary 
productivity (NPP), which can help provide an estimate of aboveground biomass in 



grassland systems, is frequently reported using remote sensing products of NDVI or similar 
vegetation indices that are validated with field measurements. Soil carbon methods can be 
classified into either empirical or process-based approaches (Singh 2018). The empirical 
approach uses digital soil mapping to spatially predict carbon by establishing a statistical 
relationship between field/laboratory data and environmental covariates, which is then 
applied to interpolate values across a map surface (McBratney et al. 2003; Veloz et al. 2022). 
In contrast, a process-based model approach predicts carbon by simulating underlying 
physical, chemical, and biological processes (Wang et al. 2020), rather than relying solely on 
statistical relationships between observations and environmental covariates. Many process-
based models exist for soil carbon, ranging from models that represent coupled plant-soil 
dynamics (e.g., Daycent) to those that represent simplified soil organic matter dynamics 
(e.g., RothC). While these models are often deployed at the project or field scale, they can 
be scaled up using various approaches for regional and national estimates (Jordon et al. 
2022; Morais et al. 2019). 

Primary Drivers of Change 

Primary controls on aboveground and belowground carbon dynamics are tightly coupled 
and depend on the scale of interest (Bai and Cotrufo 2022; Singh et al. 2018). Across 
California grasslands, spatial and temporal variation in net primary productivity (NPP) is 
most strongly influenced by climate. Specifically, the amount and timing of precipitation as 
well as minimum and maximum values of air temperature have been shown to be 
particularly important (Alexander et al. 2023; Lui et al. 2021; Lui et al. 2022). Variables of 
moderate but lesser importance include topographic and edaphic properties such as 
available water holding capacity (Lui et al. 2021). Grazing management also has a moderate 
influence; seminal work by Bartolome et al. (2007) demonstrates the critical role of grazing 
management in shaping interannual variation in NPP through its effects on residual dry 
matter (RDM). Other management practices that are often much smaller in scale, such as 
compost addition and oak plantings, have varied effects on aboveground productivity of 
grasslands at the state level (Carey et al. 2020b).  

Variability of soil carbon across California’s grasslands is strongly influenced by climate and 
soil mineralogy, with minimum air temperature and pedogenic pools of iron/aluminum 
identified as lead drivers (Wilson et al. 2024; Veloz et al. 2022; Carey et al. 2020a). 
Vegetation dynamics, such as perennial grass cover, invasion by exotic annuals, and 
encroachment by woody shrubs, are known to influence soil carbon as well, with the 
magnitude varying depending on the context (Carey et al. 2020a; Koteen et al. 2011). In 
California’s semi-arid climate, contemporary management practices such as prescribed 
grazing and compost amendments are not expected to drive strong per acreage 
sequestration rates (Booker et al. 2013; Biggs et al. 2021); still, healthy soils practices can 
protect and, in some cases, restore soil carbon (Matzek et al. 2020), with larger effects 
occurring in more mesic areas containing higher clay content and iron/aluminum oxides 
(Wilson et al. 2024; Carey et al. 2020b). While many grasslands in the western US 
experience ongoing overuse, with considerable consequences for bare ground, erosion, 
and thus soil carbon, California’s grasslands tend to have low amounts of bare ground as 



well as low erosion potential (USDA 2018; Salls et al. 2018). Spatial and temporal patterns of 
soil carbon are, however, likely influenced by past land use given that many grasslands were 
previously tilled for flax or other crops. The degree to which legacy effects of cultivation 
produce signals across the landscape has yet to be determined.     

Nature Based Solutions Targets 

In April 2024, the Governor’s Office released a set of ambitious nature-based solution 
targets to strategically harness the power of California’s lands to fight the climate crisis. 
Nature-based solutions are land management practices that increase the health and 
resilience of natural systems, which supports their ability to serve as a durable carbon sink. 
Five of the 81 targets released include action on California’s grasslands (Table 1), and it is a 
goal of the NWL Carbon Inventory to be able to be sensitive to these interventions going 
forward. 

Table 1: Nature-Based Solution Targets for grasslands as defined in California’s Nature-Based Solutions 
Climate Targets. Acreage targets for beneficial fire and other fuels reduction activities are shared among 
grasslands, shrublands, and forests.   

AB 1757 Nature-Based Solution (NBS) 2030 Target  2038 Target  2045 Target  
Restoration (incl. healthy soils practices) 55.1K acres/yr 55.1K acres/yr 55.1K acres/yr 
Conservation 33K acres/yr 33K acres/yr 33K acres/yr 
Beneficial Fire 800K acres/yr 1.2M acres/yr 1.5M acres/yr 
Other fuels reduction activities 700K acres/yr 800K acres/yr 1M acres/yr 
Oak woodland afforestation 52.9K acres/yr 52.9K acres/yr 52.9K acres/yr 

2018 NWL Carbon Inventory Methods 

Methods Description 

In the CARB 2018 NWL Inventory, grasslands were mapped using Landfire EVT vegetation 
classifications for 2001 and 2010 (CARB 2018).  

Biomass Carbon: Aboveground biomass carbon for grasslands was estimated using a Tier 3 
method. MODIS annual NPP data (2000–2010) was determined at a 1 km spatial resolution 
using the MOD17A3 product, which was calibrated with field measurements by NASA. 
Above- and belowground biomass was estimated from the NPP values using a root-to-shoot 
ratio of 4.224 paired with a biomass carbon constant. To quantify uncertainty in carbon 
stock changes, Monte Carlo methods were used as described in Gonzales et al. (2015).  

Soil Carbon: Grassland soil carbon stocks were previously estimated using an IPCC Tier 2 
approach. For mineral soils, which underlie most grasslands statewide, initial soil carbon 
values were estimated based on SoilGrids (2017) and stock change factors (Table 17 in 
CARB 2018) were applied to different land conversion scenarios following standard IPCC 
equations (Eqn 20, 21, and 22 in CARB 2018). This resulted in annualized and total estimates 
for carbon stock change over the inventory period (2001-2010). For drained organic soils, 

https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Expanding-Nature-Based-Solutions/Californias-NBS-Climate-Targets-2024.pdf
https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Expanding-Nature-Based-Solutions/Californias-NBS-Climate-Targets-2024.pdf


which were constrained to grasslands in the Delta Ecoregion, soils were assumed to be 
purely emissive. Losses in carbon over time were determined using global “emission” 
factors from IPCC using a Tier 1 standard IPCC equation. Results for mineral and drained 
organic soils were combined for final estimates and extrapolated from 2001-2010 through 
2014.  

Benefits and Limitations  

Biomass Carbon: The prior methodology was straightforward and easy to implement. It 
offered high temporal resolution with moderate spatial resolution. However, grassland 
productivity can vary greatly within small spatial scales, which the MODIS-based imagery 
would have struggled to detect (Liu et al. 2019).   

Soil Carbon: The prior use of Tier 2 methodology for mineral soils allowed for the 
development of carbon inventory estimates despite CARB staff being limited by information 
and resources. This is a benefit. In addition, using a Tier 2 approach allowed for conceivably 
greater accuracy than a Tier 1 approach, which would have used a global reference carbon 
stock value as input rather than more localized initial stock estimates from SoilGrids. 
However, Tier 2 methods are inherently broadscale and generalized, and thus do not allow 
for contextualized estimates of change over time. Moreover, the methods employed 
previously only captured land use change, and were not able to estimate management or 
disturbance effects within grasslands over the inventory period. For drained organic soils, 
which used a Tier 1 approach, the same general benefits and drawbacks hold.           

2025 NWL Carbon Inventory Update Proposed Methods 

Methods Description 

Biomass Carbon: CARB proposes to estimate aboveground biomass carbon using a remote 
sensing approach following methods of Liu et al. 2021. First, to take advantage of 
complementary resolutions of different satellites, MODIS and Landsat images will be fused 
using a spatial and temporal adaptive reflectance fusion model (STARFM; Goa et al. 2006). 
CARB staff will then apply a LUE model previously used on California grasslands to quantify 
absorbed photosynthetically active radiation accumulated during the growing season 
(cumulative APAR; Liu et al. 2021). Cumulative APAR values will be compared with field-
based biomass clipping data to estimate net primary productivity (NPP). This will allocate 
the fraction of NPP that goes into aboveground biomass from the rest that goes to roots and 
exudates. Finally, estimates of NPP will be validated using eddy covariance flux towers 
stationed at various grassland sites throughout California. Above- and belowground carbon 
will be partitioned using allometric equations from Gao et al. (2024).   

Soil Carbon: We propose a unified framework for space-time mapping of soil carbon across 
all land types, which is described in detail in the Soil Methods Document. For grasslands 
specifically, we propose to use the RothC model (Coleman et al. 1996) to generate point-
based estimates of soil carbon over time that will be integrated into this framework. RothC is 



well-suited for simulating soil carbon dynamics in semi-arid grassland soils (Farina et al. 
2013; Martí-Roura et al. 2011), accounting for decomposition processes and organic matter 
turnover under varying conditions. Briefly, the model partitions soil organic matter into 
distinct pools, each with different turnover rates, and uses inputs such as climate, soil 
texture, and management information to predict changes in soil carbon stocks over time. 
The model will be calibrated to account for the effects of grazing management (livestock 
density) and fire (presence/absence) by adjusting model parameters based on observed 
data at representative sites. Model parameter and input data uncertainty will be estimated 
via Monte Carlo simulations.  

Once the RothC model is appropriately calibrated and used to generate location-specific 
estimates across California’s diverse grasslands, the resulting dataset will be combined with 
other land types in the machine learning approach described in the Soil Methods 
Document. In addition to traditional environmental covariates, grassland-specific 
anthropogenic covariates for the machine learning portion of the framework will be 
incorporated, starting with a gridded layer for livestock density (Robinson et al. 2014) as well 
as an annually updated spatial map of fire (CalFIRE Historical Wildland Fire Perimeters).  

Benefits and Limitations 

Biomass Carbon: Light-use efficiency models are frequently used for estimating plant 
productivity and biomass via remote sensing of grasslands (Wang et al. 2022; Clementini et 
al. 2020). In California, the fusion remote sensing LUE approach has precedence (Liu et al. 
2021), and it complements prior inventory methods used by CARB (CARB 2018; Gonzales et 
al. 2015). This approach also takes advantage of complementary resolutions of different 
satellites, offering improved spatial resolution from the last inventory. Importantly, it allows 
NPP to be accurately estimated in grazed landscapes, which constitute most grasslands 
statewide. MODIS derived NPP, however, has limitations in capturing productivity in dry 
regions and under drought conditions. This may lead to an underestimation of 
aboveground biomass in dry regions and years. 

Soil Carbon:  See the Soil Methods Document for benefits and limitations of the unified soil 
inventory framework. The RothC model used for grasslands in this framework offers its own 
benefits and drawbacks, which will be discussed here. RothC is an open-source 
biogeochemical model that performs comparatively well against its competitors despite its 
simplified structure (Smith et al. 1997). It’s a model that has been widely used to predict soil 
carbon in many land types across the world (Batlle-Aguilar et al. 2011), including grasslands, 
and is able to represent grassland management regimes. It is well-suited for regional 
applications (Falloon et al. 2006) and was successfully applied as the soil carbon model in 
both Australia’s and Switzerland’s national GHG inventory. The benefits of RothC’s simplistic 
structure may also create limitations, as it is unable to capture complex feedbacks with other 
system components like plant growth or nitrogen availability. It is also not widely used in the 
United States, with scientists and practitioners alike commonly opting for the more complex 
DayCENT model.  



Input and Validation Datasets 

The input data for the proposed remote sensing approach for estimating biomass carbon 
include both satellite and field-based measurements (Table 2). 

Table 2: Remote sensing input data and proposed data sources based on Liu et al. 2021.  

Category Input Data Proposed Source 
Satellite 
Imagery 

Red and near-infrared 
reflectance layers 

MODIS (Vermote & Wolfe 2021) and Landsat 
(EROS 2021)  

Field 
Measurements 

Grass biomass clippings  Literature estimates and UCANR collaborators 

Input data required to run the RothC model can be adjusted to simulate management 
factors by altering organic matter inputs and climate variables (Table 3). For example, 
irrigation can be simulated by modifying rainfall or evaporation values to reflect increased 
soil moisture, and grazing and fire can be represented by changing the quality and quantity 
of organic matter inputs from above and belowground (i.e., root) sources.  

Table 3: RothC input parameters and proposed data sources. The RothC model will be calibrated at point 
locations associated with long-term experimental or monitoring sites. Site-specific data collected from field 
measurements will be used for model input where possible. *Evaporation = open pan evaporation, which can 
be derived from dividing potential evapotranspiration by 0.75.  

Category Input Data Proposed Source 
Climate Precipitation (mm) Site-specific or Cal-Adapt  
Climate Temperature (C) Site-specific or Cal-Adapt  
Climate Evaporation* (mm) Site-specific or Cal-Adapt  
Soil Clay content (%) Site-specific or gNATSGO  
Soil Initial soil carbon stock (t C 

ha-1) 
Site-specific or gNATSGO  

Organic Matter 
Inputs 

Plant residue input (t C ha-

1) 
Site-specific or 
MODIS/Landsat 
fusion model 

Organic Matter 
Inputs 

Plant residue 
decomposability   

Site-specific or literature 
estimates 

Organic Matter 
Inputs 

Manure input (t C ha-1) IPCC excretion factors 
based on  
livestock density 

Organic Matter 
Inputs 

Soil cover (binary) Site-specific or 
MODIS/Landsat 
fusion model 

Input data needed for the digital soil mapping portion of the unified soils framework is 
described in Soil Methods Document.  



Calibration and validation datasets have yet to be secured for grasslands. However, there 
are numerous long term experimental sites, monitoring sites, and published datasets that 
will be considered and pursued for calibration/validation of the NPP biomass estimates, the 
RothC model, as well as the digital soil map. These include those from UC Reserves 
(McLaughlin, Jepson Prairie, Sedgwick, Hastings) as well as: the Ameriflux Network, Sierra 
Foothill Research and Extension Center, Loma Ridge Global Change Experiment, Jasper 
Ridge Global Change Experiment, San Joaquin Experimental Range, Hopland Research and 
Extension Center, Pepperwood Preserve, Swanton Pacific Ranch, Land Trusts (Peninsula 
Open Space Trust, Big Sur Land Trust, Santa Lucia Conservancy, Sonoma Land Trust, TNC, 
MALT), and private lands.  

Alternative Method for 2025 Update 

Biomass Carbon: The alternative method for aboveground carbon will use the Rangeland 
Analysis Platform that is managed by the USDA Agricultural Research Service (ARS). This 
tool uses Landsat to provide 16-day and annual aboveground biomass estimates for 
rangeland ecosystems in the United States, including grasslands (Jones et al. 2021).   

Soil Carbon: The alternative method for soil carbon will be the same as the prior inventory 
methods.  

Criteria Assessment 

All decisions regarding proposed updates to the NWL Carbon Inventory were made in 
relation to standardized criteria set forth by CARB (Table 4). These criteria help to ensure 
that the methods and data CARB uses are appropriate to meet the goals of the NWL Carbon 
Inventory, are as rigorous and comprehensive as possible, and are reproducible for others.    

  



Table 4: Criteria used to assess methodological updates for the 2025 NWL Carbon Inventory.  

Category Criteria Assessment 
Spatial scale 

• Have accuracy optimized to statewide scales while also providing 
sufficient accuracy at the county scale  

• Ensure wall-to-wall coverage with no double counting 

These methods will be done at the statewide scale and 
is appropriate for county scale aggregation and will 
include all grasslands in California. 

Temporal scale  
• Go back as far in time as possible, at least to 2001  
• Be as up to date as possible 

These methods will go back to at least 2001 and will 
provide estimates through as close to present as 
possible, likely 2023 or one of the surrounding years. 

Spatial resolution  
• Be as spatially explicit as possible, at least to the resolution of 

ecosystem boundaries  
• Permit analysis at different stratifications, such as by ownership, 

management action type, land type, or ecoregion  

These methods will provide a spatial resolution well 
beyond the resolution of ecosystem boundaries, 
between 30m-250m resolution, depending on the 
carbon pool. It will allow for various categorical 
analyses.  

Temporal resolution  
• Produce annualized values that can be reported very 3-5 years 

These methods will produce annual values that can be 
updated and reported every 3-5 years.  

Thematic resolution  
• Include as many carbon pools and fluxes as possible 
• Capture at minimum aboveground biomass carbon  
• Be generally consistent with IPCC GHG inventory guidelines 

These methods capture the primary pools of carbon in 
grasslands, including aboveground biomass carbon. 
They are consistent with IPCC GHG inventory guidance.  

Sensitivity  
• Be sufficiently sensitive to quantify changes as a result of 

management and other major drivers of change, including 
climate change 

• Prioritize assessing directionality and general magnitude of 
change through time 

These methods are able to quantify changes in carbon 
through time that result from management or other 
major drivers of change.  

Practical criteria  
• Generate transparent, repeatable methods that use free or low-

cost tools 
• Prioritize base data that has reasonable expectation of 

sustainment and openness for use by state staff 
• Use models that are publicly available and open source 
• Use base data that require as little pre-processing for state staff as 

possible 
• Use base data that have a proven basis in reality and, where 

applicable, are validated with error or accuracy 

In most cases, these methods use open-source, free 
datasets and tools that have reasonable expectation of 
sustainment and openness for use by state staff and 
others. However, some calibration/validation datasets 
may have privacy considerations that will be honored to 
the extent permitted by the law. Base data requires 
minimal pre-processing and is vetted by data 
developers. 

For grassland soils, a process-based model is being proposed as part of the unified soil 
framework. Because of this, additional criteria were considered by CARB staff for model 
selection specifically. These criteria encompass the broader inventory requirements that are 
tailored to consider model specifications and support model selection (Table 5).    

Many of the prevailing process-based models for grassland soil are not open source, which 
restricted options for the NWL Carbon Inventory to a more limited list. Model options which 
were either open-source or potentially open-source, including MEMS 2.0 and Roth-C, were 
evaluated for this proposal. We provide a comparison with DayCent, a widely adopted 
process-based models for grasslands in the US, to add further context.  

  



Table 5: Process-based model candidates for quantifying soil organic carbon (SOC) in grassland mineral soils, 
evaluated according to California Air Resources Board (CARB) model criteria. 

Model Name RothC DayCent MEMS 2.0 
Must fit context of specific landscape 
type (grasslands) 

Yes Yes Yes 

Is the model scalable?  Yes Yes Yes 
Can this model do future projections 
needed for scoping plan?  

Yes Yes Yes 

Does the model include the major drivers 
of change in this system and key 
ecosystem processes?  

Yes, minus 
coupled nutrient 
dynamics 

Yes Yes 

Is this model sensitive to climate 
change?  

Yes Yes Yes 

Can this model estimate the impacts of 
management/NBS actions?  

Yes, simplified Yes Not all 

Does the model output carbon stocks 
and/or GHGs?  

Yes, C stocks Yes, both Yes, C stocks 

Is the model validated and have a basis 
in reality?  

Yes Yes Yes 

Can this model be run on a regular basis 
to develop updates and incorporate 
improvements?  

Yes No due to lack 
of publicly 
available source 
code 

No due to lack 
of publicly 
available 
source code 

Is this an open-source model that we can 
modify and share without restriction?  

Yes No No 

Is this a mature model with a scientific 
track record?  

Yes Yes Emerging 

Are people currently using this model 
and is there a current user base?  

Yes Yes Limited 

Will this model require a lot of work to 
make usable for CARB’s purposes, or is it 
ready off the shelf?  

Ready off the 
shelf, requires 
calibration 

Ready off the 
shelf, requires 
calibration 

Not off the 
shelf ready, 
could require 
model 
development 

Do we have sufficient off the shelf data to 
parameterize, calibrate, validate (w/ 
uncertainty statistics) and run this model 
through time, or will this require new or 
highly processed data by CARB staff?  

Yes, simplified 
parameterization 
requirements 

Yes, 
parametrization 
is complex 

No, soil 
organic matter 
fractionation 
data required 

Can CARB staff run this model within our 
current timeframe for deliverables  

Yes Yes No 



References 

Alexander, J. D., McCafferty, M. K., Fricker, G. A., & James, J. J. (2023). Climate seasonality 
and extremes influence net primary productivity across California’s grasslands, shrublands, 
and woodlands. Environmental Research Letters, 18(6), 064021. 

Bai, Y., & Cotrufo, M. F. (2022). Grassland soil carbon sequestration: Current understanding, 
challenges, and solutions. Science, 377(6606), 603-608. 

Bartolome, J. W., Jackson, R. D., Betts, A. D. K., Connor, J. M., Nader, G. A., & Tate, K. W. 
(2007). Effects of residual dry matter on net primary production and plant functional groups 
in Californian annual grasslands. Grass and Forage Science, 62(4), 445-452. 

Batlle-Aguilar, J., Brovelli, A., Porporato, A., & Barry, D. A. (2011). Modelling soil carbon and 
nitrogen cycles during land use change. A review. Agronomy for Sustainable 
Development, 31, 251-274. 

Biggs, N. B., & Huntsinger, L. (2021). Managed grazing on California annual rangelands in 
the context of state climate policy. Rangeland Ecology & Management, 76, 56-68. 

Booker, K., Huntsinger, L., Bartolome, J. W., Sayre, N. F., & Stewart, W. (2013). What can 
ecological science tell us about opportunities for carbon sequestration on arid rangelands 
in the United States?. Global Environmental Change, 23(1), 240-251. 

California Air Resources Board (CARB) (2018). Technical support document for the natural & 
working lands inventory. Accessed at: https://ww2.arb.ca.gov/nwl-inventory 

Carey, C. J., Weverka, J., DiGaudio, R., Gardali, T., & Porzig, E. L. (2020a). Exploring 
variability in rangeland soil organic carbon stocks across California (USA) using a voluntary 
monitoring network. Geoderma Regional, 22, e00304. 

Carey, C. J., Gravuer, K., Gennet, S., Osleger, D., & Wood, S. A. (2020b). Supporting 
evidence varies for rangeland management practices that seek to improve soil properties 
and forage production in California. California Agriculture, 74(2). 

Clementini, C., Pomente, A., Latini, D., Kanamaru, H., Vuolo, M. R., Heureux, A., ... & Del 
Frate, F. (2020). Long-term grass biomass estimation of pastures from satellite data. Remote 
Sensing, 12(13), 2160. 

Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3-A Model for the turnover of carbon in 
soil. In Evaluation of soil organic matter models: Using existing long-term datasets (pp. 237-
246). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Earth Resources Observation and Science (EROS) Center. (2021). Landsat 4-9 US Analysis 
Ready Data, Collection 2 [dataset]. U.S. Geological Survey.  

Falloon, P., Smith, P., Bradley, R. I., Milne, R., Tomlinson, R., Viner, D., ... & Brown, T. (2006). 
RothCUK–a dynamic modelling system for estimating changes in soil C from mineral soils at 
1‐km resolution in the UK. Soil use and management, 22(3), 274-288.  

https://ww2.arb.ca.gov/nwl-inventory


Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for 
simulations of soil organic C dynamics in dryland regions. Geoderma, 200, 18-30. 

Gao, X., Koven, C. D., & Kueppers, L. M. (2024). Allometric relationships and trade‐offs in 11 
common M editerranean‐climate grasses. Ecological Applications, 34(4), e2976. 

Gonzalez, P., Battles, J. J., Collins, B. M., Robards, T., & Saah, D. S. (2015). Aboveground live 
carbon stock changes of California wildland ecosystems, 2001–2010. Forest Ecology and 
Management, 348, 68-77. 

Jones, M. O., Robinson, N. P., Naugle, D. E., Maestas, J. D., Reeves, M. C., Lankston, R. W., & 
Allred, B. W. (2021). Annual and 16-day rangeland production estimates for the western 
United States. Rangeland Ecology & Management, 77, 112-117. 

Jordon, M. W., Smith, P., Long, P. R., Bürkner, P. C., Petrokofsky, G., & Willis, K. J. (2022). 
Can Regenerative Agriculture increase national soil carbon stocks? Simulated country-scale 
adoption of reduced tillage, cover cropping, and ley-arable integration using 
RothC. Science of the Total Environment, 825, 153955. 

Koteen, L. E., Baldocchi, D. D., & Harte, J. (2011). Invasion of non-native grasses causes a 
drop in soil carbon storage in California grasslands. Environmental Research Letters, 6(4), 
044001. 

Larsen, R., Striby, K., & Horney, M. (2015). Fourteen years of forage monitoring on the 
California Central Coast shows tremendous variation. Gen. Tech. Rep. PSW-GTR-251. 
Berkeley, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research 
Station: 273-281, 251, 273-281. 

Liu, H., Dahlgren, R. A., Larsen, R. E., Devine, S. M., Roche, L. M., O’Geen, A. T., ... & Jin, Y. 
(2019). Estimating rangeland forage production using remote sensing data from a small 
unmanned aerial system (sUAS) and planetscope satellite. Remote Sensing, 11(5), 595. 

Liu, H., Jin, Y., Roche, L. M., T O’Geen, A., & Dahlgren, R. A. (2021). Understanding spatial 
variability of forage production in California grasslands: delineating climate, topography 
and soil controls. Environmental Research Letters, 16(1), 014043. 

Liu, H., Jin, Y., Roche, L. M., T O’Geen, A., & Dahlgren, R. A. (2022). Regional differences in 
the response of California’s rangeland production to climate and future 
projection. Environmental Research Letters, 18(1), 014011. 

Martí-Roura, M., Casals, P., & Romanyà, J. (2011). Temporal changes in soil organic C under 
Mediterranean shrublands and grasslands: impact of fire and drought. Plant and Soil, 338, 
289-300. 

Matzek, V., Lewis, D., O’Geen, A., Lennox, M., Hogan, S. D., Feirer, S. T., ... & Tate, K. W. 
(2020). Increases in soil and woody biomass carbon stocks as a result of rangeland riparian 
restoration. Carbon balance and management, 15, 1-15. 



McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 
117(1-2), 3-52.  

Morais, T. G., Teixeira, R. F., & Domingos, T. (2019). Detailed global modelling of soil 
organic carbon in cropland, grassland and forest soils. PloS one, 14(9), e0222604. 

USDA Natural Resources Conservation Service. (2018). National Resource Inventory 
Rangeland Resource Assessment. Accessed at: RangelandReport2018_0.pdf . 

Robinson, T. P., Wint, G. W., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., ... & 
Gilbert, M. (2014). Mapping the global distribution of livestock. PloS one, 9(5), e96084. 

Salls, W. B., Larsen, R., Lewis, D. J., Roche, L. M., Eastburn, D. J., Hollander, A. D., ... & 
O'Geen, A. T. (2018). Modeled soil erosion potential is low across California's annual 
rangelands. California Agriculture, 72(3). 

Singh, B. (Ed.). (2018). Soil carbon storage: modulators, mechanisms and modeling. 
Academic Press. 

Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & 
Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models 
using datasets from seven long-term experiments. Geoderma, 81(1-2), 153-225. 

Wang, Z., Ma, Y., Zhang, Y., & Shang, J. (2022). Review of remote sensing applications in 
grassland monitoring. Remote Sensing, 14(12), 2903. 

Wang, J., Li, Y., Bork, E. W., Richter, G. M., Eum, H. I., Chen, C., ... & Mezbahuddin, S. (2020). 
Modelling spatio-temporal patterns of soil carbon and greenhouse gas emissions in grazing 
lands: Current status and prospects. Science of the Total Environment, 739, 139092. 

Wilson, S.G., Foster, E.J., O’Neill, F., Banuelos, A., Cook, A., Paustian, K., Pressler, Y., & 
Carey, C.J. (2024). Soil mineralogy describes distribution of soil organic carbon and 
response to oak planting conservation practice in California rangelands. SSRN Preprint.  

Veloz, S., Elliot, N., Porzig, L. & Carey. C. (2022). Statewide soil carbon technical report. Point 
Blue Conservation Science. Accessed at: Statewide-
SoilCarbon_TechnicalReport_8.30.22_FINAL-5.pdf.  

Vermote, E., Wolfe, R. (2021). MODIS/Terra Surface Reflectance Daily L2G Global 1km and 
500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive 
Center. Accessed 2025-01-24 from https://doi.org/10.5067/MODIS/MOD09GA.061 

https://www.nrcs.usda.gov/sites/default/files/2022-10/RangelandReport2018_0.pdf
https://www.pointblue.org/wp-content/uploads/2022/09/Statewide-SoilCarbon_TechnicalReport_8.30.22_FINAL-5.pdf
https://www.pointblue.org/wp-content/uploads/2022/09/Statewide-SoilCarbon_TechnicalReport_8.30.22_FINAL-5.pdf

	Background
	State of the Science
	Primary Drivers of Change
	Nature Based Solutions Targets

	2018 NWL Carbon Inventory Methods
	Methods Description
	Benefits and Limitations

	2025 NWL Carbon Inventory Update Proposed Methods
	Methods Description
	Benefits and Limitations
	Input and Validation Datasets
	Alternative Method for 2025 Update
	Criteria Assessment

	References

