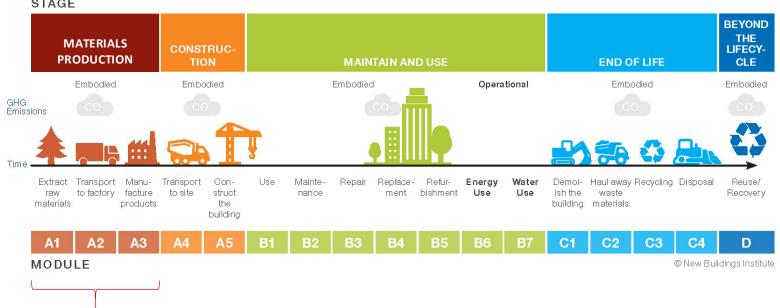
California Air Resources Board, Sacramento, CA

The role of Environmental Product Declarations (EPDs) in embodied carbon policies

Eric Masanet, Ph.D.

emasanet@ucsb.edu

Mellichamp Chair in Sustainability Science for Emerging Technologies


Head, Industrial Sustainability Analysis Laboratory

Faculty Scientist, Lawrence Berkeley National Laboratory

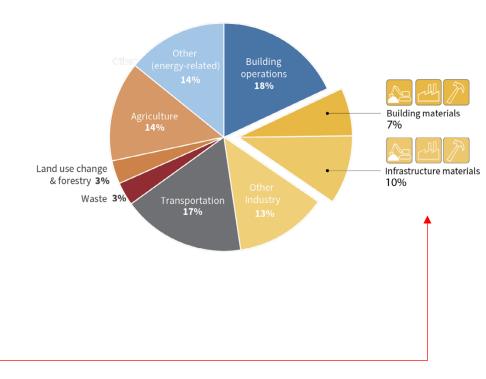
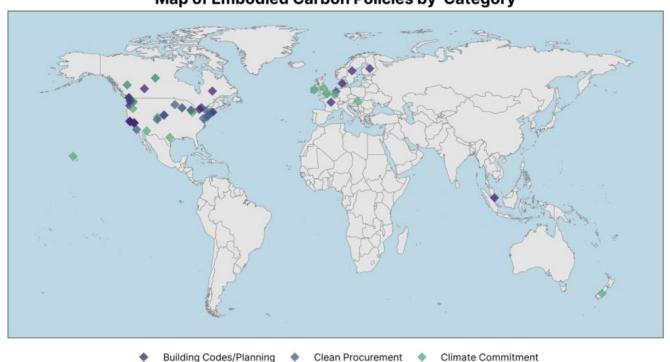
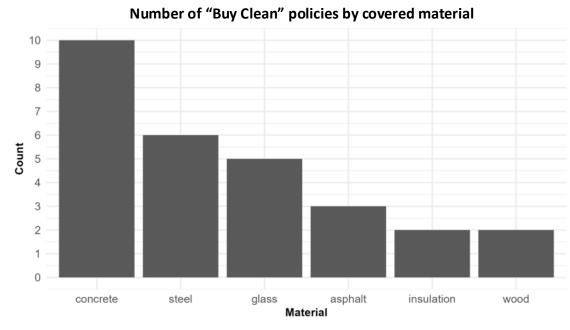

Decarbonizing construction materials is key to a net-zero future

FIGURE 1: LIFECYCLE STAGES Data source: BS EN 15978:2011

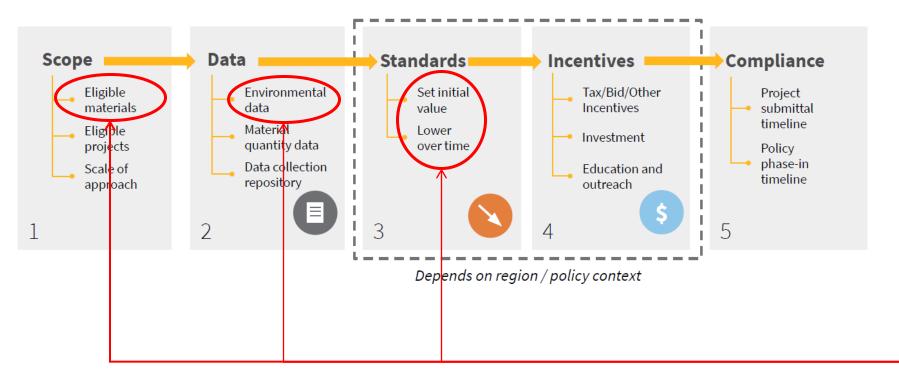
STAGE

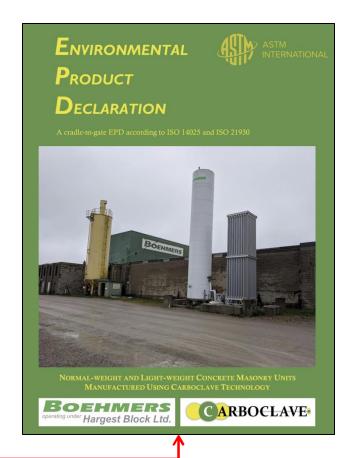

Global GHG emissions by sector (2019)



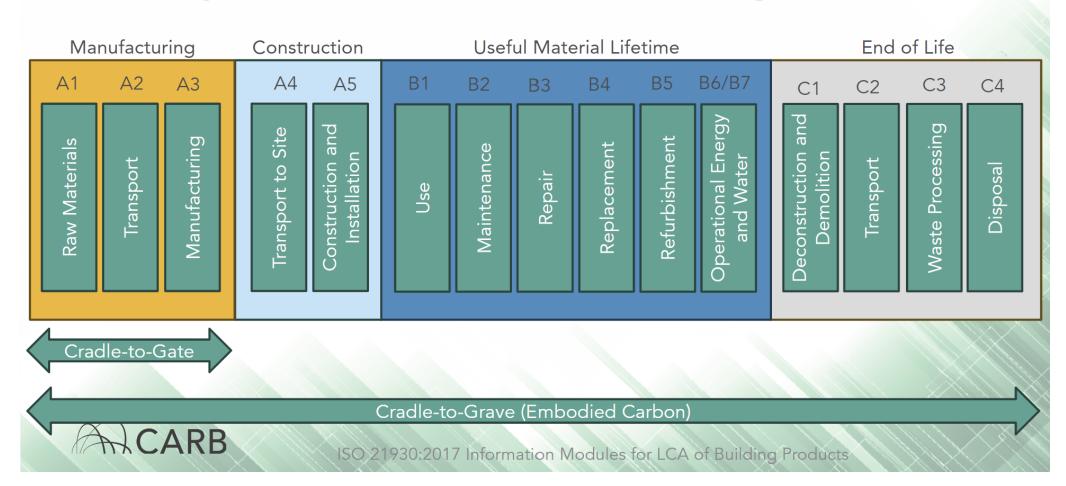
Sources: Carbon Leadership Forum (2024). Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101-v2/ and Benke, B., Roberts, M., Shen, Y., Carlisle, S., Chafart, M., and Simonen, K. (2024). The California Carbon Report: An Analysis of the Embodied and Operational Carbon Impacts of 30 Buildings. Carbon Leadership Forum, University of Washington. Seattle, WA. http://hdl.handle.net/1773/51287; adapted from New Buildings Institute (2024). https://newbuildings.org/code_policy/embodied-carbon/

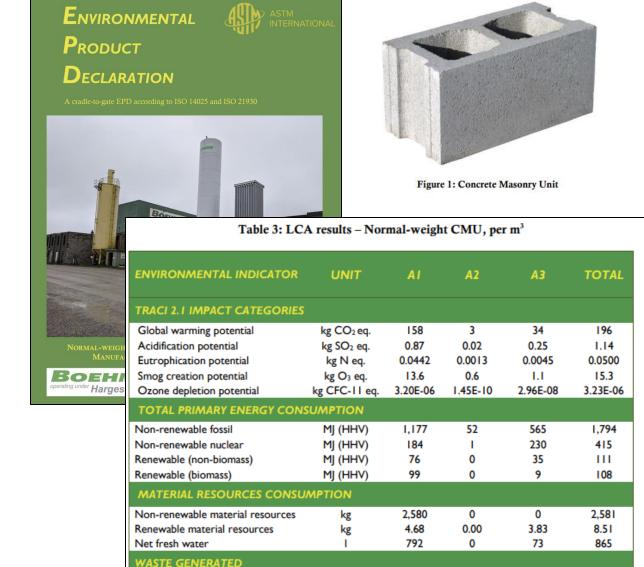
Policies are emerging worldwide to tackle "embodied carbon" ...


Map of Embodied Carbon Policies by Category



... many of which require EPDs for compliance and implementation


Major stages and elements of "Buy Clean"/embodied carbon policies


Understanding the nomenclature

Life-Cycle Assessment of Building Materials

What is an EPD?

- EPDs communicate standardized environmental information about a product
- Subject to international life-cycle assessment (LCA) standards
- For building materials, current reporting is mostly limited to "cradle to gate" (A1-A3)
- Subject to third-party review and verification
- May contain additional information at the producer's discretion

kg

0.3

0.006

Non-hazardous waste generated

Hazardous waste generated

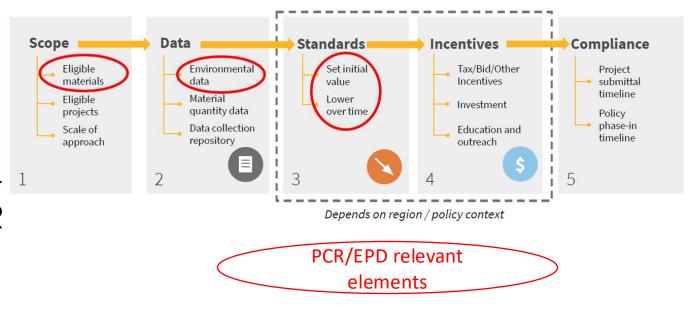
40.6

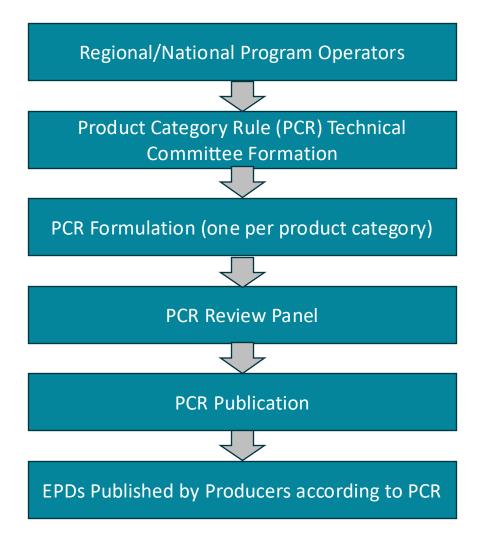
0.111

41.0

0.117

0.0


0.000


PCRs/EPDs are proliferating, but can they be improved?

Key research questions

- How up-to-date are the "embodied carbon" values reported in an EPD?
- 2. How clearly is data quality communicated?
- 3. How often are production practices reported?
- 4. What is the role of regulator and/or policymakers in PCR development?
- 5. What are best practices for future EPD requirements?

Major stages and elements of "Buy Clean" / embodied carbon policies

Regional/National Program Operators

Dozens of Program Operators worldwide

AENOR

Industry: Building & Construction Materials Location: Spain

Website

Bau-EPD

Industry: Building & Construction Materials Location: Austria

Website

Construction Materials Location: UK

Website

DAP Habitat

Industry: Building & Construction Materials Location: Portugal

Website

EPD Belge

Industry: Building and Construction materials Location: Belgium

Website

EPD Italy

Industry: Building and Construction materials Location: Italy

AFNOR

Industry: Building & Construction Materials Location: France

Website

BRE

Industry: Building &

DAPCO

Industry: Building & Construction Materials Location: Chili

Website

EPD Denmark

Industry: Building and Construction materials Location: Denmark

Website

EPD Norge

Industry: Building and Construction materials Location: Norway

ASTM

Industry: Building & Construction Materials Location: USA

Website

Forum

Carbon Leadership

Industry: Building & Construction Materials

Location: USA

Website

EDF Taiwan

Industry: B&C, machinery & equipment, transport Location: Taiwan

Website

EPD India

Industry: Building and Construction materials Location: India

Website

EU PEF

Industry: Multiple Location: EU

Australasia EPD

Industry: Uses Environdec Location: Australia/NZ

Website

CSA

Industry: Building & Construction Materials Location: USA

Website

Environdec

Industry: B&C, Food and beverage, Electricity, other Location: Sweden

Website

EPD Ireland

Industry: Building and Construction materials Location: Ireland

Website

FP Innovations

Industry: Wood Products

Location: USA

Regional/National Program Operators

Product Category Rule (PCR) Technical Committee Formation

Product Category Rule for Environmental Product Declarations

PCR for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements

Program Operator NSF International

NSF International National Center for Sustainability Standards Valid through March 31, 2025

ncss@nsf.org
© 2021 NSF International

APPENDIX A: TECHNICAL REVIEW COMMITTEE

The following individuals participated in the review committee from June 2019 through March 2020.

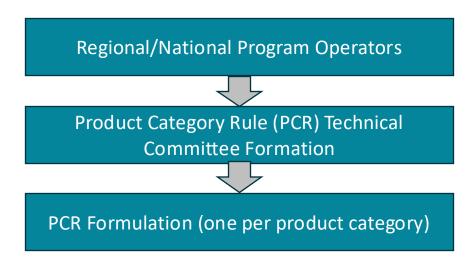
Manufacturers

- Hamid Farzam, Cemex
- Shawn Kalyn, Votorantim / St. Marys Cement LLC
- Kirk McDonald, CalPortland
- Adam Swercheck, Heidelberg Technology Center
- Cheng Qi, Ash Grove Cement / CRH

Trade Associations

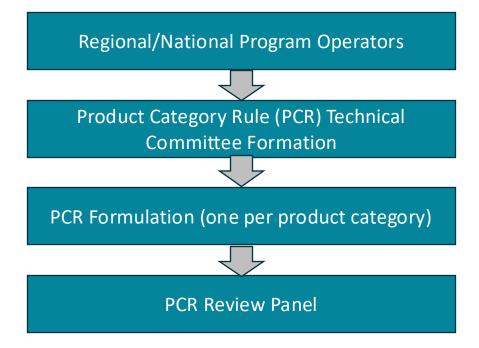
- Adam Auer, Cement Association of Canada
- Jamie Farny, Portland Cement Association

Users


- James Bogdan, National Ready Mixed Concrete Association
- David Green, BASF Corp.
- Emily Lorenz, Precast / Prestressed Concrete Institute
- Martha VanGeem, Consultant

LCA Expertise

- Jamie Meil, ATHENA Sustainable Materials Institute
- Eric Masanet, Northwestern University


NSF

Andrea Burr

Typical PCR scope and contents

CC	DNTENTS	
1	SCOPE	6
2	NORMATIVE REFERENCES	7
3	TERMS AND DEFINITIONS	8
4	ACRONYMS AND ABBREVIATED TERMS	10
_	OFNER MARKETS	4.0
5	GENERAL ASPECTS	
	5.2 Life cycle stages	
	5.3 Average EPDs for groups of similar products	
	5.4 Use of EPDs for construction products	12
	5.5 Comparability of EPDs for construction products	
	5.6 Documentation	13
6	PCR DEVELOPMENT AND USE	13
7	PCR FOR LCA	13
	7.1 Methodological framework	
	7.2 Inventory analysis	
	7.3 Impact assessment indicators describing main environmental impacts derived from LCA	20
8	ADDITIONAL ENVIRONMENTAL INFORMATION	21
Ü		
9	CONTENT OF AN EPD	
	9.1 General	
	9.2 Declaration of general information	
	9.3 Declaration of methodological framework	
	9.5 Declaration of technical information and scenarios	
	9.6 Declaration of additional environmental information	
	5.0 Declaration of adultional crivironmental miormation	20
10	PROJECT REPORT	25
11	VERIFICATION AND VALIDITY OF AN EPD	26
12	REFERENCES	27
AP	PENDIX A: TECHNICAL REVIEW COMMITTEE	29

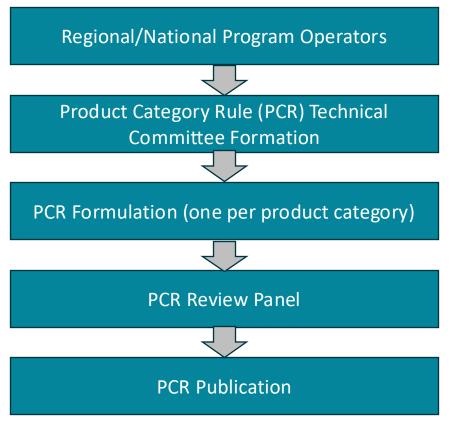
PRODUCT CATEGORY RULES REVIEW PANEL

Program Operator

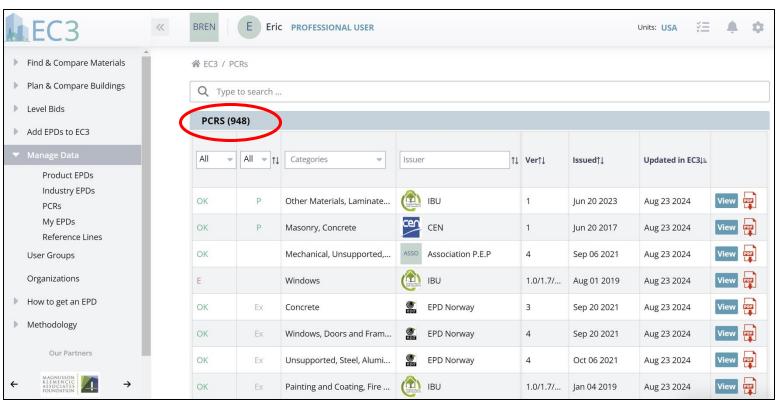
NSF International

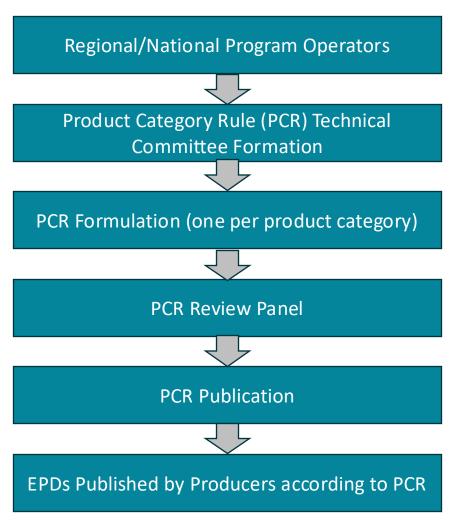
Recommended for adoption by

The PCR Committee for Portland Cement

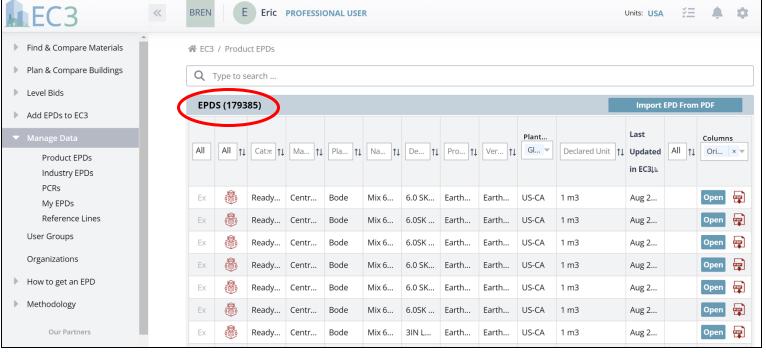

Review panel

Dr. Thomas P. Gloria, PhD Industrial Ecology Consultants 35 Bracebridge Road Newton, MA 02459-1728

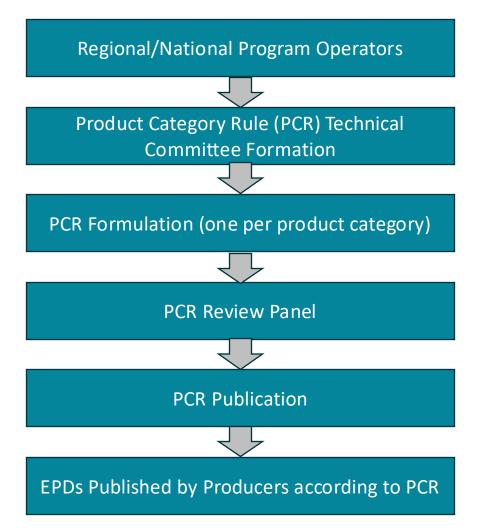

t.gloria@industrial-ecology.com

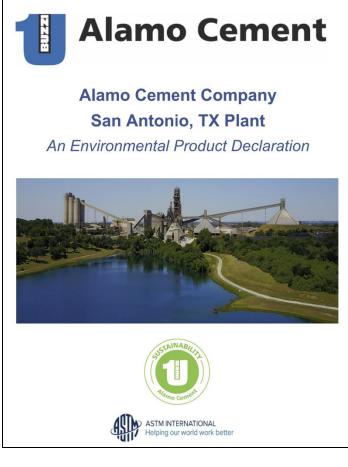

Mr. Jack Geibig EcoForm 2624 Abelia Way, Suite 611 Knoxville, TN 37931 jgeibig@ecoform.com Mr. Bill Stough Sustainable Research Group PO Box 1684 Grand Rapids, MI 49501-1684

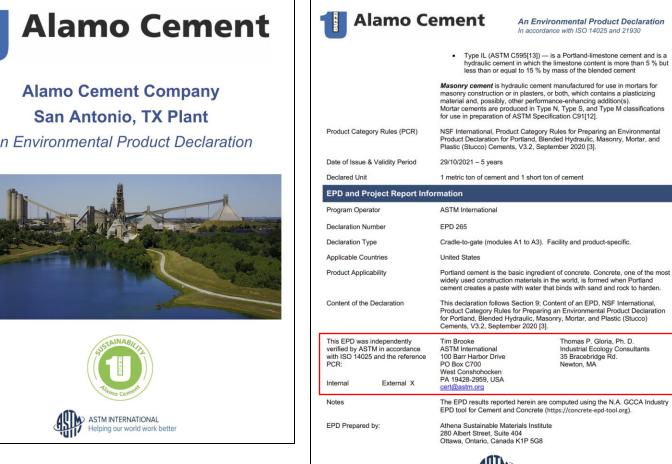
bstough@sustainableresearchgroup.com



Hundreds of PCRs Worldwide






Tens of thousands of EPDs worldwide

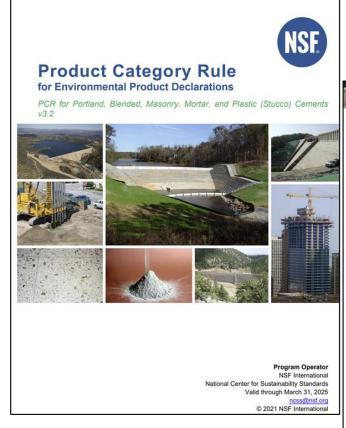
Independent verification of EPDs

Research methods

 Initial focus limited to covered materials in California and U.S. Federal "Buy Clean" programs

	Buy Clean Policies with Set Thresholds							
Policy	Location/ Application	Material	Threshold					
Buy Clean California Act ¹⁰ /L.A. Executive Directive No. 25 ¹⁶	California Public Projects, Los Angeles City Public Projects	Structural Steel	1,010 kg CO ₂ eq/metric ton (Hotrolled), 1,710 kg CO ₂ eq/metric ton (Hollow), 1,490 kg CO ₂ eq/metric ton (Steel Plate)					
		Concrete Reinforcing Steel ("Rebar")	890 kg CO ₂ eq/metric ton					
		Flat Glass	1,430 kg CO ₂ eq/metric ton					
		Mineral Wood Board Insulation	3.33 kg CO_2 eq/ $1m^2$ at R_{SI} = 1 (light-density), 8.16 kg CO_2 eq/ $1m^2$ at R_{SI} = 1 (high-density)					
U.S. Federal Buy Clean/GSA Low Embodied Carbon ¹⁷	U.S. Federal Projects	Concrete*	242 kgCO ₂ eq/m ³ (standard mix, lowest compressive strength up to 2499 f'c in PSI) 414 kgCO ₂ eq/m ³ (standard mix, lowest compressive strength of 6500 f'c in PSI and up)					
		Steel, Asphalt, Flat Glass	40% below average (best) 20% below average (better) "Below average" (acceptable)					

UC SANTA BARBARA


Research methods

- Initial focus limited to covered materials in California and U.S. Federal "Buy Clean" programs
- EPD database (500+)
 - Focus on:
 - BCCA and U.S. federal products
 - Producer locations relevant to California
 - Data fields
 - Common/required reporting fields
 - Additional assessment fields

EPD content	Data tag/field
Declaration	Declaration number
information	Date of issuance
	Program Operator
	Company
	Product Name
	Product Definition
	Declaration Type
	PCR Reference
	Period of Validity
	Geographic Scope
	Product application
	Specificity level
Scope and	System boundary (A1, A2, A3, etc.)
boundaries	Declared unit (e.g., ton, m3)
	Are production technologies described? (Y/N)
	Are recycled material inputs indicated? (Y/N)
	Are supply chain locations/logistics documented? (Y/N)
Data quality	Are data quality ratings/descriptions offered? (Y/N)
	Temporal representativeness rating
	Geographical representativeness rating
	Technological representativeness rating
	Data sources (by stage) primary or secondary
Results by	Primary energy - total
stage (A1, A2,	Primary energy - renewable (MJ)
etc.)	Final energy use by fuel (MJ)
	Electricity grid mix
	Which LCIA characterization model(s) was/were used? (e.g., TRACI 2.0)
	Global warming potential (GWP) (kg CO2 eq)
	Ozone depletion potential (ODP) (kg R11 eq)
	Acidification potential (AP) (kg SO2 eq)
	Eutrophication potential (EP) (kg N eq)
	Smog formation (kg O3 eq)
	Abiotic depletion potential (ADP)
	III SANIA BARBAR

Research methods

- Initial focus limited to covered materials in California and U.S. Federal "Buy Clean" programs
- EPD database (500+)
 - Focus on:
 - BCCA and U.S. federal products
 - Producer locations relevant to California
 - Data fields
 - Common/required reporting fields
 - Additional assessment fields
- PCR characteristics database (40+)
 - Focus on North American and major import partners
 - Process and stakeholder assessment

- 61 161 161
- Shawn Kalyn, Votorantim / St. Marys Cement LLC
- Kirk McDonald, CalPortland
- Adam Swercheck, Heidelberg Technology Center
- Cheng Qi, Ash Grove Cement / CRH

Trade Associations

- Adam Auer, Cement Association of Canada
- Jamie Farny, Portland Cement Association

Users

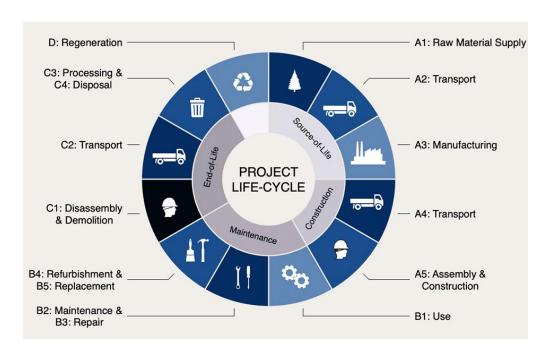
- James Bogdan, National Ready Mixed Concrete Association
- David Green, BASF Corp.
- Emily Lorenz, Precast / Prestressed Concrete Institute
- Martha VanGeem, Consultant

LCA Expertise

- Jamie Meil, ATHENA Sustainable Materials Institute
- Eric Masanet, Northwestern University

NS

Andrea Burr


How up-to-date are EPD data?

Why it matters

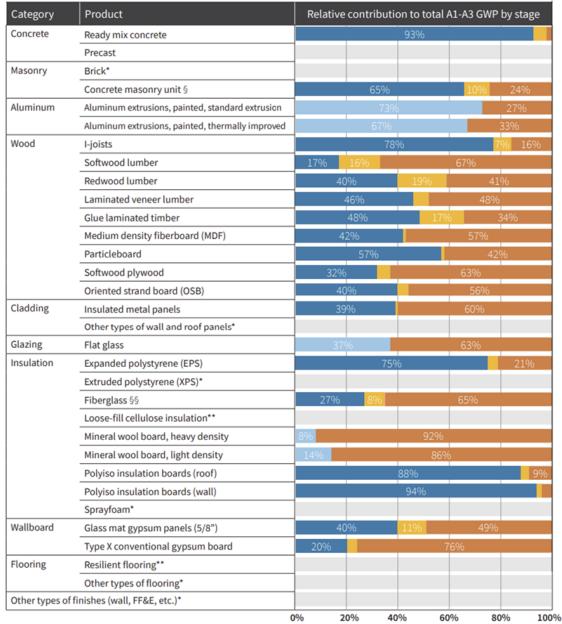
- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time
- Setting threshold reduction cadence

		Maximum da		
		Primary data		Data quality
Material class	Relevant PCRs	(A3/A2)	data (A2/A1)	ratings
Steel	UL Environment: Part B: Designated Steel Construction Product EPD Requirements (8/2020, version 2.0)			Encouraged
	SCS Global Services' PCR for Designated Steel Construction Products (5/2015, version 1.0)			Not addressed
Glass	NSF International: NGA PCR for Flat Glass: UN CPC 3711, Version 2.0			Encouraged
Mineral wool/insulation	UL Environment, Part B: Building Envelope Thermal Insulation EPD requirements, Volume 3.0			Encouraged
Concrete	ASTM International's PCR for Precast Concrete (5/2021, version 3.0)	5 years	10 years	Not addressed
	NSF International's Product Category Rule for Concrete (8/2021, version 2.1)			Not addressed
	UL's Part B: Concrete Masonry and Segmental Concrete Paving Product EPD Requirements (3/2022, version 1.1)			Encouraged
Cement	NSF International's Product Category Rule for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements (9/2021, version 3.2; or 5/2020, version 3.0)			Not addressed
Asphalt	National Asphalt Paving Association's Product Category Rule for Asphalt Mixtures, (4/2022, version 2.0)			Not addressed

Building life cycle stages

Primary data = collected directly from operations

Secondary data = obtained from general LCA datasets

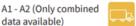

How up-to-date are EPD data?

Why it matters

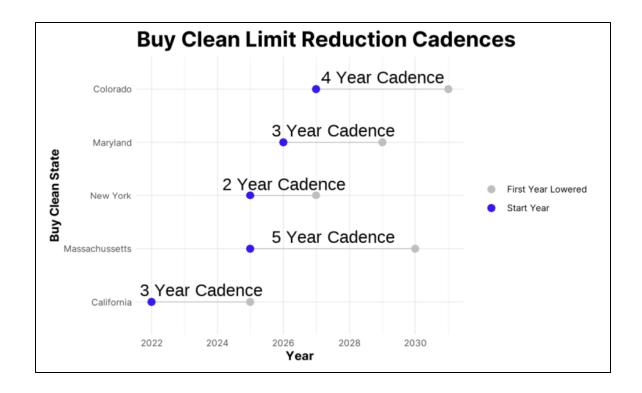
- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time
- Setting threshold reduction cadence

		Maximum da		
Material class	Relevant PCRs	Primary data (A3/A2)	Secondary data (A2/A1)	Data quality ratings
Steel	UL Environment: Part B: Designated Steel Construction Product EPD Requirements (8/2020, version 2.0)			Encouraged
	SCS Global Services' PCR for Designated Steel Construction Products (5/2015, version 1.0)	1		Not addressed
Glass	NSF International: NGA PCR for Flat Glass: UN CPC 3711, Version 2.0			Encouraged
Mineral wool/insulation	UL Environment, Part B: Building Envelope Thermal Insulation EPD requirements, Volume 3.0			Encouraged
Concrete	ASTM International's PCR for Precast Concrete (5/2021, version 3.0)	5 years		Not addressed
	NSF International's Product Category Rule for Concrete (8/2021, version 2.1)			Not addressed
	UL's Part B: Concrete Masonry and Segmental Concrete Paving Product EPD Requirements (3/2022, version 1.1)			Encouraged
Cement	NSF International's Product Category Rule for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements (9/2021, version 3.2; or 5/2020, version 3.0)			Not addressed
Asphalt	National Asphalt Paving Association's Product Category Rule for Asphalt Mixtures, (4/2022, version 2.0)			Not addressed

Contribution of life-cycle stage by product



Life cycle stages

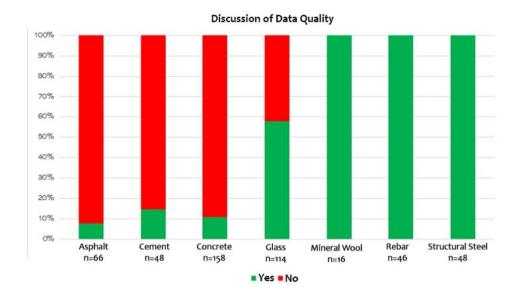

How up-to-date are EPD data?

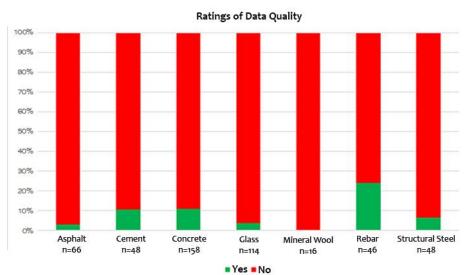
Why it matters

- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time
- Setting threshold reduction cadence

_ 40	
5-10	l vaarc
O-TC	ycais

		L		<u> </u>		
		I	Maximum da	ta age		
Material class	Relevant PCRs	ш	Primary data (A3/A2)	Secondary data (A2/A1)		ta quality ings
Steel	UL Environment: Part B: Designated Steel Construction Product EPD Requirements (8/2020, version 2.0)				Er	couraged
	SCS Global Services' PCR for Designated Steel Construction Products (5/2015, version 1.0)				N	t addressed
Glass	NSF International: NGA PCR for Flat Glass: UN CPC 3711, Version 2.0				Er	couraged
Mineral wool/insulation	UL Environment, Part B: Building Envelope Thermal Insulation EPD requirements, Volume 3.0				Er	couraged
Concrete	ASTM International's PCR for Precast Concrete (5/2021, version 3.0)		5 years	10 years	No	t addressed
	NSF International's Product Category Rule for Concrete (8/2021, version 2.1)				No	t addressed
	UL's Part B: Concrete Masonry and Segmental Concrete Paving Product EPD Requirements (3/2022, version 1.1)				Er	couraged
Cement	NSF International's Product Category Rule for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements (9/2021, version 3.2; or 5/2020, version 3.0)				N	t addressed
Asphalt	National Asphalt Paving Association's Product Category Rule for Asphalt Mixtures, (4/2022, version 2.0)				No	t addressed
		1				


How clearly is EPD data quality communicated?


Why it matters

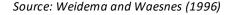
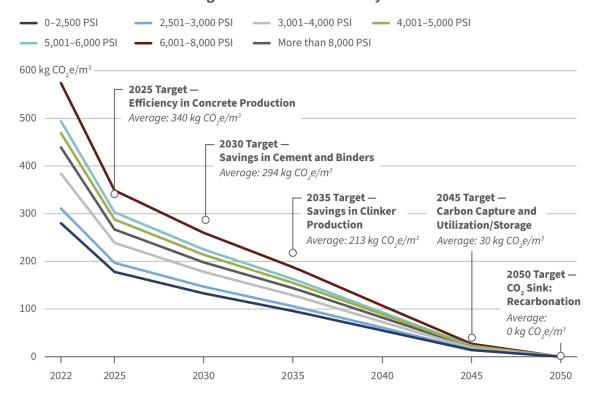
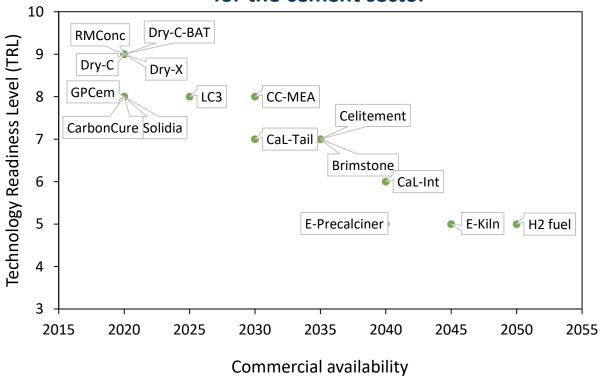

- Selecting materials
- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time

Table 1 Pedigree matrix with 5 data quality indicators

Indicator score	1	2	3	4	5
Reliability	Verified ^a data based on measurements ^b	Verified data partly based on assumptions or non-verified data based on measurements	Non-verified data partly based on assumptions	Qualified estimate (e.g. by industrial expert)	Non-qualified estimate
Completeness	Representative data from a sufficient sample of sites over an adequate period to even out normal fluctuations	Representative data from a smaller number of sites but for adequate periods	Representative data from an adequate number of sites but from shorter periods	Representative data but from a smaller number of sites and shorter periods or incomplete data from an adequate number of sites and periods	Representativeness unknown or incomplete data from a smaller number of sites and/or from shorter periods
Temporal correlation	Less than three years of difference to year of study	Less than six years difference	Less than 10 years difference	Less than 15 years difference	Age of data unknown or more than 15 years of difference
Geographical correlation	Data from area under study	Average data from larger area in which the area under study is included	Data from area with similar production conditions	Data from area with slightly similar production conditions	Data from unknown area or area with very different production conditions
Further technological correlation	Data from enterprises, processes and materials under study	Data from processes and materials under study but from different enterprises	Data from processes and materials under study but from different technology	Data on related processes or materials but same technology	Data on related processes or materials but different technology



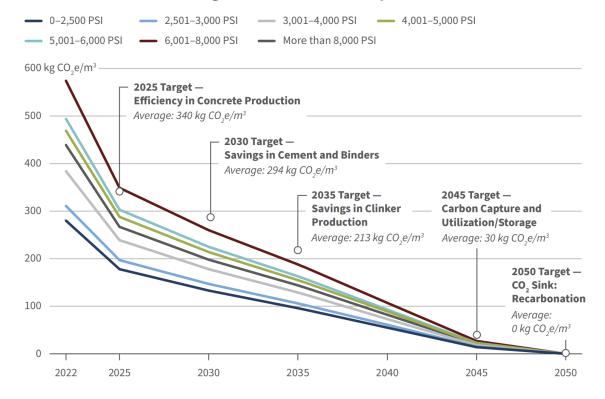
How often are production characteristics reported?

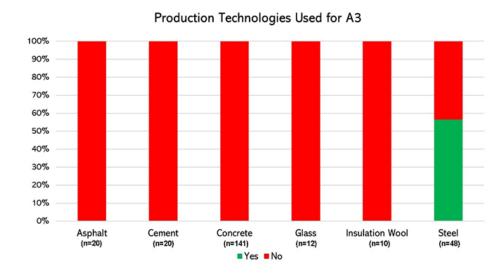

Why it matters

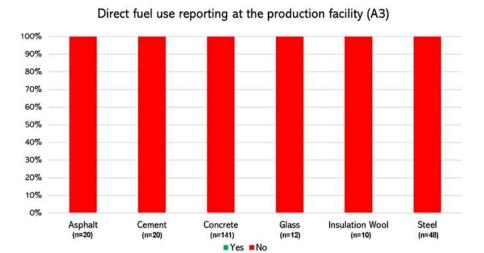
- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time

Exhibit 9 Recommended US federal procurement targets for various ready mix concrete strengths to achieve net zero by 2050

Emerging low-carbon technology availability for the cement sector

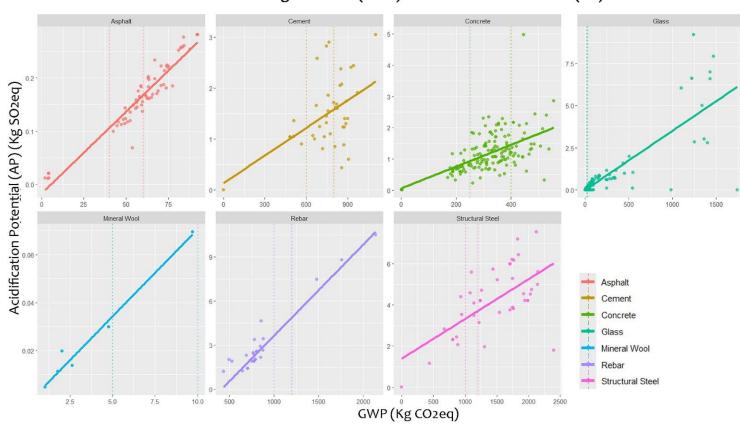



How often are production characteristics reported?


Why it matters

- Setting initial embodied carbon thresholds
- Lowering allowing thresholds over time

Exhibit 9 Recommended US federal procurement targets for various ready mix concrete strengths to achieve net zero by 2050



How often are supply chain locations reported?

Why it matters

Ensuring environmental co-benefits

Global Warming Potential (GWP) vs Acidification Potential (AP)

Developing best practices for EPDs: current status

ADVANCE ROBUST
ENVIRONMENTAL PRODUCT
DECLARATIONS

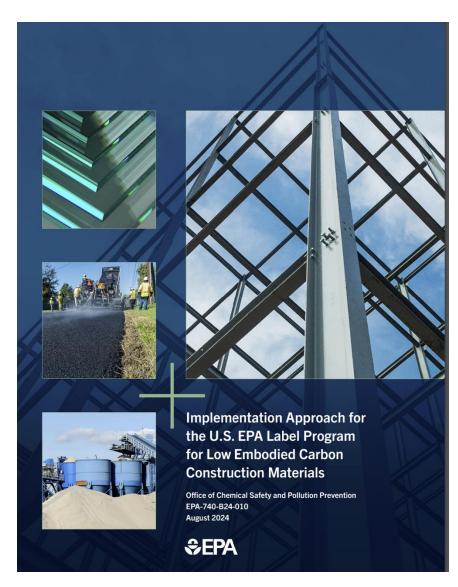
Phase I: Data Quality Improvement

- Draw on ongoing data improvements to Federal LCA Commons and fill existing data gaps
- Determine PCRs meeting EPA's PCR Criteria
- Collect third-party-verified EPDs and industry benchmarks

SET THRESHOLDS FOR LOW EMBODIED CARBON MATERIALS

Phase II: Threshold Setting

- Develop thresholds for each material/product type, considering performance requirements, regionality and viable industry averages
- Finalize thresholds, informed by stakeholder input via public comments


LAUNCH LOW EMBODIED CARBON LABEL

Phase III: Labeling

- Label materials/products meeting thresholds using EPDs
- Launch publicly accessible registry of labeled materials/products
- Highlight labeled materials in other platforms, federal programs, and procurement policies

Figure 2. Three Phases of the Label Program.

Best practices for EPDs: current status

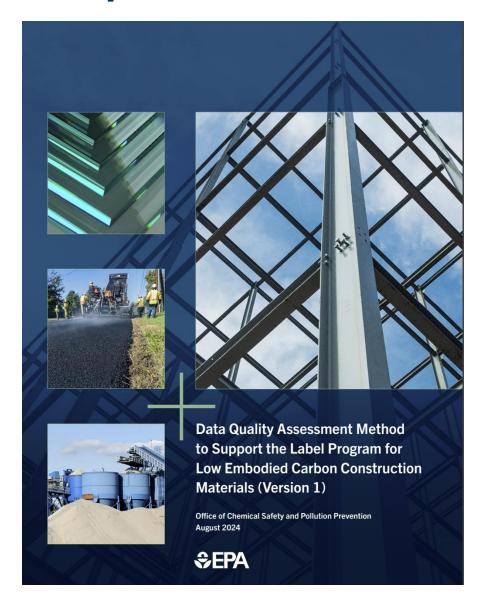
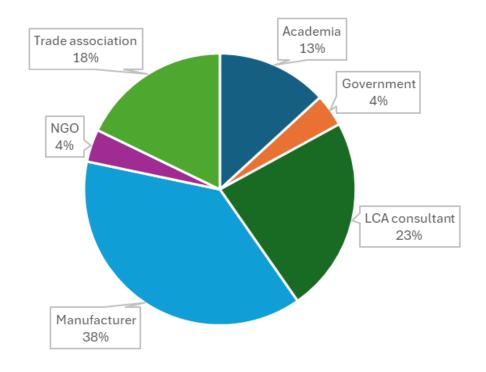


Table 1. Flow-Level DQIs

Indicator	Definition	← Highest Data Quality (Lowest Score)				Lowest Data Quality (Highest Score) →													
		1	2	3		4	5 (Default)												
Temporal representa- tiveness	Indicates the temporal difference between the date of data generation and the date the data are supposed to represent based on the PCR.	Less than 3 years of difference	Less than 6 years of difference	Less than 10 years of difference		years of		years of		years of		years of		years of		years of		Less than 15 years of difference	Age of data unknown or more than 15 years
Geographic -al representa- tiveness	Indicates how well the geographical area from which data for a unit process are collected satisfies the goal of the study (ISO 14044).	Data from same resolution ^a and same area of study	Within one level of resolution and a related area of study ^b	Within two levels of resolution and a related area of study		levels of resolution and a related		levels of resolution and a related		Outside two levels of resolution but a related area of study	From a different or unknown area of study								
Technolog- ical representa- tiveness	technology categories: process design, operating are are are are		ology ories	One of the technology categories is equivalent	None of the technology categories are equivalent														
Data collection methods	Assessment of the robustness of the sampling methods and data collection period.	Representa- tive data from >80% of the relevant market, dover an adequate periode	Representa- tive data from 60–79% of the relevant market, over an adequate period, or representa- tive data from >80% of the relevant market, over a shorter period	Representa- tive data from 40–59% of the relevant market, over an adequate period, or representa- tive data from 60–79% of the relevant market, over a shorter period		tive data from 40–59% of the relevant market, over an adequate period, or representa- tive data from 60–79% of the relevant market, over a shorter		Representa- tive data from <40% of the relevant market, over an adequate period, or representa- tive data from 40–59% of the relevant market, over a shorter period	Unknown or data from a small number of sites and from shorter periods										

UC SANTA BARBARA

PCR development: who's at the table?


Program operators reviewed to date

Country	Program Operator for PCRs				
Austria	Bau-EPD				
Canada	FPINnovations				
France	AENOR				
Germany	Institut Bauen und Umwelt e.V. (IBU)				
India	EPDIndia				
Ireland	EPDIreland				
Italy	EPDItaly				
Japan	Japan Environmental Management Association for Industry				
Netherlands	Milieu Relevante Product Informatie (MRPI)				
Poland	Instytut Techniki Budowlanej (ITB)				
Korea	Korea Environmental Industry & Technology Institute (KEITI)				
Sweden	The International EPD System				
Taiwan	EPDTaiwan				
UK	Building Research Establishment (BRE)				
US	ASTM International				
	Carbon Leadership Forum				
	CSA				
	NAPA				
	NRMCA				
	NSF International				
	SCS Global Services				
	Smart EPD				
	Sustainable Minds				
	UL Environment				

Covered products to date

Country
Asphalt
Building and Construction Products
Cement
Concrete
Flat Glass
General
Mineral Wool
Reinforcing Steel
Thermal Insulation
Wood

Stakeholder representation (n=130)

Summary

- Embodied carbon policies are proliferating globally, particularly for building materials
- PCRs and EPDs are also proliferating, but are still works in progress:
 - Their coverage of building materials and products is incomplete
 - Their processes and contents can be improved to better support embodied carbon regulations
- Efforts are underway to make improvements, particularly in the U.S.
 - Data quality ratings, secondary data, comparability, and transparency
- Key remaining opportunities include:
 - Ensuring comparability in reporting and consistency in data quality
 - Production and supply chain characteristics transparency
 - Broader stakeholder engagement
 - Timeliness of data

Thank You!