

Tier 5 Rulemaking Workshop: Off-Road On-Board Diagnostics (OR OBD) Proposal October 8, 2024

Agenda

- Updates to Proposal
- Workshop Discussion Topics
 - Communication Protocol
 - Embedded Service Tool
 - OBM NOx Monitor Demonstration Testing
 - Steady-State Test Cycle
 - Off-Road Engines < 56 kW
 - Unfinished Items in Draft Regulation

Acronyms

- 3B-MAW: 3-bin moving average window
- AECD: auxiliary emission control device
- CALID: calibration identification number
- CCM: comprehensive component monitoring
- CVN: calibration verification number
- DEC-ECU: diagnostic or emission critical electronic control unit
- DEF: diesel exhaust fluid
- DLC: diagnostic link connector

Acronyms

- DPF: diesel particulate filter
- DTC: diagnostic trouble code
- EGR: exhaust gas recirculation
- FUL: full useful life
- g/bhp-hr: grams per brake horsepower-hour
- g/kW-hr: grams per kilowatt-hour
- kW: kilowatts
- MAD: monitor activity data
- MIL: malfunction indicator light
- MY: model year

Acronyms (cont.)

- NOx: oxides of nitrogen
- NRTC: nonroad transient test cycle
- OBMD: on-board monitoring and diagnostics
- OEM: original equipment manufacturer
- OR OBD: off-road on-board diagnostics
- PEVE: production engine/vehicle evaluation
- PM: particulate matter
- RMC: ramped-modal cycle
- SCR: selective catalytic reduction

Updates to Proposal

- Draft OR OBD regulation language describes the details of all the proposed requirements
 - Provided on Tier 5 workshop website
- Staff revised some proposals that were presented at the Tier 5 workshop in October 2023
- Major revisions will be covered in today's workshop

OR OBD System

Communication Protocol

- Proposal: allow either require SAE J1939 or J1979-2
 - J1939 already in widespread use in off-road engines
 Harmonizes with on-road heavy-duty engines
- Specify 500 kbps baud rate for J1939
- <u>Note: deletion of SAE J1979-2 also affects</u> <u>information on other standardization slides (e.g.,</u> <u>fault codes, diagnostic link connector</u>)

Data Stream Requirements

- All physical inputs and outputs related to the engine and emission control system:
 - All sensor input data (e.g., temperature, pressure sensors)
 All output data (e.g., commanded EGR valve position)
- <u>Replaced with list of specific parameters including:</u>
 - <u>Certification-critical parameters</u>
 - <u>Parameters for engines so-equipped, including US EPA parameters</u> for engines with inducements/derates
- Any additional physical inputs/outputs used by OR OBD system diagnostics, AECDs, OR-REAL, inducements, the engine cooling system, and the engine lubrication system

CALID & CVN Requirements

DEC-ECU definition: the engine control unit and any other on-board electronic powertrain control unit that is field reprogrammable and:

- Has primary control over any major monitor or any rationality fault diagnostic or functional check for any input or output component under OR-OBD, <u>or</u>
- <u>Controls fuel injection timing or quantity, fuel pressure</u> <u>level, cylinder deactivation, EGR valve position, variable</u> <u>geometry turbocharger position, turbocharger boost</u> <u>level, DEF injection quantity, aftertreatment thermal</u> <u>management strategies, AECD operation, PM filter</u> <u>regeneration, oxides of nitrogen (NOx) sensor</u> <u>functions, or PM sensor functions</u>

Proposed Elements of MAD

- MAD uses three tracking parameters:
 - Mini-Denominator = 1-byte "trip" counter that increments when the general denominator* increments, from 0 to 255. Every DEC-ECU <u>that is capable of storing a fault code</u> has one mini-denominator
 - <u>Mini-Numerator</u> = 1-byte counter assigned to every MILrelevant DTC that increments when the monitor runs and completes (resets when mini-denominator reaches 255 and the "Monitor Activity Ratio" is updated)
 - Monitor Activity Ratio (MAR) = 1-byte value assigned to every MIL-relevant DTC. Ratio of mini-numerator to mini-denominator (updates when mini-denominator reaches 255)
 CARB

OBMD Proposal Overview

- OBMD Diagnostic Requirements
 - OBM NOx Emission Threshold
 - PM Filter Emission Threshold
 - Tailpipe NOx sensor Performance
 - PM Sensor Diagnostics
 - Comprehensive Component Monitoring (CCM)
 - Diesel Oxidation Catalyst Performance
 - <u>Closed Crankcase Ventilation System Performance</u>

OBMD Proposal Overview (cont.)

- OBMD Diagnostic Requirements
 - OBM NOx Emission Threshold
 - Fixed threshold based on 3B-MAW bins B and C

OBM NOx THDs (g/kw-hr)		
Power	Bin B	Bin C
>56 kW & <560 kW	0.6	0.6
>560 kW <u>& <56 kW</u>	N/A	1.2 <u>or "1.5 x standard,"</u> <u>whichever is higher</u>

OBMD Proposal Overview (cont.)

- OBMD Diagnostic Requirements (cont.)
 - PM Filter Filtering Performance Diagnostic
 - Malfunction Criteria
 - Proposing same emission threshold level as on-road HD OBD: 0.04g/kW-h or "PM standard + 0.02 g/kW-h," whichever is higher
 - On-road HD engine OEMs have met this requirement using resistive PM sensors since 2016 MY
 - PM Filter diagnostic requirements will be identical for both OBMD and OBD proposals
 - Frequent regeneration malfunctions
 - <u>Active/intrusive injection malfunctions</u>

OBD Proposal Overview

- OBD Requirements for non-SCR<u>/tailpipe NOx</u> sensor_engines
 - Diagnostic Requirements
 - PM Filter emission threshold diagnostic
 - Performance-based monitoring for select major components (see next slides)
 - Add closed crankcase ventilation system
 - Comprehensive Component diagnostics (CCM)

OBD Proposal Overview

- OBD Diagnostic Requirements
 - PM Filter Emission Threshold
 - PM Sensor and Heater Diagnostics
 - EGR System Emission Threshold
 - Diesel Oxidation Catalyst Performance
 - Fuel System Emission Threshold and Feedback Control
 - CCM
 - <u>Closed Crankcase Ventilation System Performance</u>

OR OBD Implementation Elements

- Certification
 - OR OBD System Demonstration Requirements
 - Demonstration engine
 - OBMD:
 - tailpipe NOx sensor aged to FUL plus degreened engine and aftertreatment <u>or</u>
 - <u>engine and aftertreatment aged according to tailpipe</u> <u>certification durability requirements</u>
 - OBD: align with tailpipe certification durability requirements

OR OBD Implementation Elements

- Certification (Cont.)
 - OR OBD System Demonstration Requirements (Cont.)
 - Limited diagnostic demonstration testing
 - OBMD
 - Emission threshold testing: OBM NOx, DPF, NOx sensor
 - Performance monitors (similar to "on-road" J2/L2): NOx sensor, PM sensors, CCM
 - OBD

ARB

- Emission threshold testing: DPF/Fuel System/EGR
- Performance monitors (similar to "on-road" J2/L2): PM sensors, DOC, CCM

18

OR OBD Implementation Elements (cont.)

- Post-certification:
 - Verification of Standardized Requirements similar to "on-road" PEVE J1/L1
 - <u>Verification of Diagnostic Requirements</u> similar to "on-road" <u>PEVE J2/L2</u>
 - <u>Testing of all non-emission threshold diagnostics (i.e., diagnostics</u> <u>not tested during demonstration testing</u>)
 - <u>Verification of Monitor Activity Data similar to "on-road" PEVE</u>
 <u>J3/L3</u>
 - <u>Collection/submission of monitor activity data and "snapshot" data</u>

Agenda

- Updates to Proposal
- Workshop Discussion Topics
 - Communication Protocol
 - Embedded Service Tool
 - OBM NOx Monitor Demonstration Testing
 - Steady-State Test Cycle
 - Off-Road Engines < 56 kW
 - Unfinished Items in Draft Regulation

Communication Protocol

- CARB proposes to remove SAE J1979-2 as an option for communication protocol
 - Removed because 1979-2 not a popular choice among off-road engine manufacturers
 - Leaves only one required protocol: SAE J1939
- Allow an ethernet-based protocol as an alternative?
 - Issue: would require further development of communication standards to support OR OBD
 - Timeframe of that effort?

Embedded Service Tool

- Embedded service tool (i.e., wireless diagnostic data) concept was raised by industry as alternative to physical DLC
- Need to resolve question raised last October: can DLC "equivalence" criteria be adequately met? E.g.:
 - Universal access (e.g., no fees or permission to access)
 - Reliable lifetime access (e.g., supports local wireless communication, not just via remote web server)
 - Data logging functionality (e.g., supports PEMS testing)
 - Data authenticity (e.g., assurance the data is directly from the specific piece of equipment being examined)

OBM NOx Monitor Demonstration Testing

- Monitor uses 3B-MAW Bin B and Bin C
 - 2,400 windows required for a diagnostic decision
 - Windows can span > 1 operating cycle
- Proposal:

ARB

- Demonstrate NOx monitor for both Bin B and Bin C
- Allow double-length test cycles to expedite malfunction detection
- Example sequence for Bin C monitor detection demo:
 - 2xNRTC, 5-min soak, 2xNRTC \rightarrow Pending fault code
 - 2xNRTC, 5-min soak, 2xNRTC → MIL-on fault code

Steady-State Cycle Considerations

- Two versions of the steady-state test cycle available in certification:
 - <u>RMC</u>: defined duration, defined speed/load trace
 - <u>Discrete-mode cycle</u>: undefined duration, no speed/load trace
- Discrete-mode cycle problematic for malfunction detection testing
 - Does not provide uniform, repeatable conditions over which a monitor's performance can be evaluated
 - Different manufacturers can run the test differently

Steady-State Cycle Considerations (cont.)

- Proposal for malfunction detection testing when a steady-state test cycle must be used:
 - Variable-speed engines \leq 560 kW:
 - Require RMC (discrete-mode cycle not allowed)
 - No technical concerns since NRTC emissions test is required
 - Variable-speed engines > 560 kW and constantspeed engines:
 - Manufacturer chooses either discrete-mode or RMC
 - If discrete-mode, manufacturer to attempt following RMC as closely and repeatably as possible

Unfinished Items in Draft Regulation

- SAE Standards and Dates
- Required Data in Freeze Frame
- NOx Mass Accuracy Requirements
- OBMD Tailpipe NOx Sensor Diagnostic Threshold
- OBMD Demonstration Engine: Method to Produce a
 FUL Tailpipe NOx Sensor
- Non-Compliance Criterion for Monitor Activity Ratio

Off-Road Engines < 56 kW

- Engines < 56 kW may have special challenges
 - Propose less stringent requirements?
- Current scope for OR OBD: all Tier 5 electronicallycontrolled engines
 - Specify a minimum "degree" of electronic control?
- CCM rationality monitoring requirements
 - Allow reduced rationality (e.g., stuck sensor) for wider range of input components?
- Staff open to other ideas from industry
 CARB

NOx Mass Accuracy Requirements

- On-road OBD NOx mass accuracy requirement:
 - +/- 20% OR +/- 0.1 g/bhp-hr relative to lab result
 - Developed for 0.2 g/bhp-hr NOx on-road engines
 - On-road manufacturers comply with large margin
- Need to identify requirement for Tier 5 engines
 - One reference: Southwest Research Institute NOx sensor project
 - Staff is interested in industry feedback

~ARB

OBMD Tailpipe NOx Sensor Diagnostic Threshold

- Tailpipe sensor diagnostic threshold is unique:
 - Detect malfunction if sensor failure/deterioration causes NOx mass calculation error to exceed +/- TBD g/kW-hr as measured over applicable cycle (NRTC or steady-state cycle)
- Requires multiple offset, gain, etc. monitors to be calibrated with thresholds that correspond to this TBD level of error
- Staff is interested in industry feedback

OBMD Demonstration Engine: Method to Produce a FUL Tailpipe NOx Sensor

- Demonstration engine options:
 - Engine aged according to emissions certification requirements (i.e., harmonized with tailpipe cert), or
 - Low-hour emissions-stabilized engine with FUL tailpipe NOx sensor
- Need to identify method to create a FUL sensor
 - E.g., age multiple sensors simultaneously during aging of the emissions engine, use one sensor for OBMD testing
 - Other methods?

Contacts

Jason Wong Manager, OBD Program Development Section Email: jason.wong@arb.ca.gov Ph: (951) 542-3419

Michael Regenfuss Chief, OBD Branch Email: <u>michael.regenfuss@arb.ca.gov</u> Ph: (951) 542-3361

