PM Speciation Profiles (501, 502, 503, and 504) for Charbroiling and Cooking

By Dr. Wenli Yang Planning and Technical Support Division (PTSD) May 16, 2011

1 Introduction

PM speciation profiles assigned to cooking will be updated for use in the next $PM_{2.5}$ SIP. Currently, ARB does not have any PM speciation profiles for commercial cooking-related categories. Because of this the PM Profile 900 (unspecified) has been assigned to these categories for air quality modeling use.

Cooking-related sources are important contributors to total PM emissions. For year 2010, the statewide annual average $PM_{2.5}$ emitted from cooking-related sources is 25.2 tons/day, which is 2.8% of the total statewide $PM_{2.5}$ emissions; and the South Coast annual average $PM_{2.5}$ related to cooking is 14.8 tons/day, which is 11.8% of the total South Coast $PM_{2.5}$ emissions.

There are three cooking-related categories (EICs) in the current ARB emission inventory:

- 690-680-6000-0000 (Commercial Charbroiling);
- 690-682-6000-0000 (Deep Fat Frying); and
- 690-684-6000-0000 (Unspecified Cooking).

As illustrated in the pie chart (Figure 1) based on the 2010 statewide emission inventory, cooking-related PM emissions are mainly attributed to commercial charbroiling (77%), followed by unspecified cooking emissions (22%) and deep fat frying (1%).

Figure 1. Pie chart of cooking-related categories

All cooking-relevant source tests that have been found in the literature correspond to profiles contained in U.S. EPA's SPECIATE 4.2[1] and the Desert Research Institute (DRI) Source Profiles Database[2] (Appendix 1). There are 78 cooking-related PM profiles in these two databases, but their profile structures and formats are different from ARB's. For

example, ARB profiles use OM (organic matter) as a species while SPECIATE and the DRI profiles use OC (organic carbon); the total weight percentage of all species in the PM mass is 100% in the ARB profiles, which is not the case for some of the SPECIATE and DRI profiles (see Table A1 for details). Because of these important differences, the existing SPECIATE and DRI profiles cannot be used directly as ARB profiles; however, they can be compared, extracted, modified and composited with their original source testing data from peer-reviewed journal papers or reports to make speciation profiles for the three EICs described above.

Two different analysis techniques have been used to determine the proportion of elemental carbon (EC) and organic carbon (OC) contained in PM. These two analysis techniques, called IMPROVE and NIOSH, are used in both ambient air sampling and emissions source testing and they yield slightly different results which cannot be corrected with simple adjustment factors. As of 2009 the IMPROVE method officially replaced the NIOSH method which was commonly used prior to 2006.

Both the IMPROVE and NIOSH methods were used in collecting the available source testing data described above. For example, the IMPROVE method was used by DRI groups in their source tests [3-11], and the NIOSH method was used by Hildemann et al and Schauer et al [12-14]. Because these methods cannot be mixed, new profiles have been created for both. *However, this update will only assign the IMPROVE-based profiles to the inventory, since, as mentioned above, the IMPROVE method is now the official standard EC/OC measurement technique.* Updated NIOSH-based profiles have been developed *only* in case NIOSH-based air quality or emissions inventory analyses prior to 2009 are desired (e.g. source apportionment analyses using NIOSH-based air quality monitoring and these updated NIOSH-based profiles). *NIOSH-based profiles will not be assigned to emission inventory categories.* The profiles developed under this update are listed below.

- PM Profile 501—Commercial charbroiling (IMPROVE);
- PM Profile 502—Cooking (IMPROVE);
- PM Profile 503—Commercial charbroiling (NIOSH);
- PM Profile 504—Cooking (NIOSH).

The IMPROVE-based PM Profile 501 will replace the currently assigned profile (Profile 900, *Unspecified*) for the category of commercial charbroiling (690-680-6000-0000) for all years and the IMPROVE-based PM Profile 502 will replace the currently assigned profile (Profile 900) for the categories of deep fat frying (690-682-6000-0000) and unspecified commercial cooking (690-684-6000-0000) for all years.

2 Methodology

In total, there are 47 cooking-related PM profiles in SPECIATE 4.2[1], and 31 cookingrelated PM profiles in the DRI database[2] were developed. Some of the profiles are made based on individual source tests, and others are composite profiles of a group of source tests. All of these profiles or test data consist of the essential species needed for ARB PM modeling, and these species include OC, EC, sulfate, and nitrate. **2.1** Within the two profile databases, 14 profiles overlap (SPECIATE 4.2 No. 3643 – 4111 vs. DRI 08081 – 16098). These profiles are based on the Imperial Valley/Mexicali Cross Border PM10 Transport Study[10], Northern Front Range Air Quality Study[7-9], and other studies conducted by DRI in Mexico City between 1997 and 2002[4-6]. Since all of these tests were performed in Mexico, they are not used to develop ARB's California-specific PM profiles.

2.2 SPECIATE 4.2 Profiles 4334 to 4382 are normalized versions of DRI Profiles 19131 to 19179, respectively. Some of the profiles were generated based on individual source tests and others are based on composites of individual source test data. Source tests were conducted by DRI at the University of California, Riverside's CE-CERT facility in 2000[11]. For these source tests, the cooking exhaust was ducted through a baffle-type grease extractor in a ventilation hood, and the exhaust stream was mixed with 25-28 times its volume of clean air using a dilution chamber. There were 12 tests conducted in this study, which consisted of the following 5 kinds of cooking operations:

	Operation	Meat	Cooker	Fuel	Profil	le No.
	Operation	mean	COOKCI	1 ист	SPECIATE 4.2	DRI
1	smoking	chicken	charbroiler	Charcoal/ mesquite wood	4334-4336	19191-19133
2	cooking	chicken	charbroiler	charcoal	4337-4338	19134-19135
3	cooking	chicken	charbroiler	propane/ lava rock	4339-4342	19136-19139
4	cooking	hamburger	charbroiler	charcoal	4343-4344	19140-19141
5	stirfrying	steak	stove	propane	4345	19142

 Table 1. Summary of SPECIATE4.2 Profiles 4334-4382

The SPECIATE Profiles 4379 to 4382 are composite profiles for the first four operations (i.e. smoking chicken, charbroiling chicken with charcoal, charbroiling chicken with propane and charbroiling hamburger, respectively). The weight percentages of each species in these profiles have been normalized by the total gravimetric mass of the measured species. These profiles are different from the DRI composite profiles 19176 to 19179, but are identical to the profiles in Chow et al.'s paper[11]. In these normalized profiles, the OC instead of OM was used to calculate the total mass for normalization. This is different from what is done for ARB's PM profiles in that OM is used for calculating the total mass for normalization. Therefore, modifications need to be made to convert the composite profiles 4379 to 4382, and 4345 to ARB format profiles. The following steps are used to implement these modifications:

- 1. Convert OC in the above profiles to OM. The most common elemental analyses for PM quantifies OC, which is typically multiplied by a constant conversion factor, an OM/OC ratio, to estimate OM for assessing total PM mass. A factor of 1.4 is traditionally used[15].
- The PM species 'others' is created to capture the mass associated with the five geological elements (i.e. Al, Si, Ca, Fe and Ti). using the formula of 0.89×[*Al*]+1.14×[*Si*]+0.40×[*Ca*]+0.43×[*Fe*]+0.67×[*Ti*] where [Al], [Si], [Ca], [Fe] and [Ti] are weight percentages of these five elements, respectively[16].

- 3. Add the species of non-sulfate sulfur (non-SO₄ S), insoluble chlorine (insol-Cl), and insoluble potassium (insol-K) to avoid double-counting mass[16] because both sulfate and sulfur, chloride and chlorine, and potassium ion and potassium exist in the same profile. Resulting negative values are set to zero.
 - Non-sulfate sulfur (non-SO₄ S), i.e., total sulfur (S) minus the portion of sulfur in sulfate (SO₄) replaces the total sulfur entry.
 [non-SO₄ S] = [S] [SO₄²⁻] * (32/96)
 - Insoluble chlorine (insol-Cl), i.e., total chlorine (Cl) minus chloride ion (Cl⁻) replaces the total chlorine entry.
 [insol-Cl] = [Cl] [Cl⁻]
 - Insoluble potassium (insol-K), i.e., total potassium (K) minus potassium ion (K⁺) replaces the total potassium entry.
 [insol-K] = [K] [K⁺]
- 4. Add up the weight percentages of all the species as the total percentage of the mass. Please note that OM and 'others' need to be added for the total mass, but [S], [Cl], and [K] are not included.
- 5. Divide the weight percentage of each species by the total percentage of the mass to get the normalized speciation profile.

2.3 SPECIATE 4.2 Profiles 4554 (meat charbroiling emissions)[13], 4653-4655 (cooking vegetables)[14], and 160002.5 and 160012.5 (meat cooking)[12] were based on Schauer et al. and Hildemann et al.'s source testing data, which were collected from a local commercial-scale kitchen. The diluted PM exhaust generated during the cooking was sampled through an overhead exhaust hood equipped with a baffle-type grease extractor [12-14]. These profiles are not included in the DRI database. Profile 4554 is an average profile of two charbroiling tests of frozen and thawed hamburger patties[13]; Profile 160002.5 is made based on tests of charbroiling hamburger over a natural gas flame[12]; Profile 160012.5 is made based on tests of frying meat[12]; Profiles 4653 to 4655 are based on stir-frying vegetables, but, since the speciation is incomplete in the related source tests, they are not used for profile development in this work. Profiles 4554, 160002.5 and 160012.5 are used to generate ARB format profiles using the following steps, which are similar to those described in section 2.2:

- 1. Convert OC to OM by multiplying the OM/OC conversion factor of 1.4;
- 2. Calculate the weight percentage for species 'others';
- 3. Calculate the weight percentage for 'non-SO₄ S' and 'insol-Cl' to avoid doublecounting mass[16]. No double-counting problem for 'K' because no 'K⁺' is reported in these profiles;
- 4. Add up the weight percentages of all the species as the total percentage of the mass;
- 5. Divide the weight percentage of each species by the total percentage of the mass to get the normalized speciation profile.

It is important to note that two different techniques were employed for the analysis of EC and OC in the PM samples for the source tests mentioned above. The IMPROVE EC/OC method was used by DRI groups in their source tests[3-11], and the NIOSH EC/OC method was used by Hildemann et al and Schauer et al[12-14]. Research has suggested that the measurements obtained from these two methods should not be integrated because

improper compositing or integration will lead to biases and errors in source attribution studies[17]. Therefore, two sets of speciation profiles are developed based on their EC/OC analytical methods.

In summary, the profiles or tests used for developing ARB profiles consist of (Table 2):

	ECOC	Profile	Operation	Profiles	
	method	Type	operation	SPECIATE 4.2	DRI
1	IMPROVE	average	Smoking chicken w/wood	4379[11]	19176
2	IMPROVE	average	Charbroiling chicken w/ charcoal	4380[11]	19177
3	IMPROVE	average	Charbroiling chicken w/propane	4381[11]	19178
4	IMPROVE	average	Charbroiling hamburger w/charcoal	4382[11]	19179
5	IMPROVE	single	Stirfrying steak w/propane	4345[11]	19142
6	NIOSH	average	Charbroiling hamburger w/natural gas	4554[13]	N/A
7	NIOSH	average	Charbroiling hamburger w/natural gas	160002.5[12]	N/A
8	NIOSH	average	Frying meat	160012.5[12]	N/A

Table 2. Profiles in SPECIATE and DRI Database Used for ARB Profile Development

3 Results and Discussion

According to the emission inventory needs, the profiles modified above can be further composited into a charbroiling profile and a cooking profile.

For the IMPROVE EC/OC method: the charbroiling profile (#501) is the average of the 3 charbroiling-related profiles, and the cooking profile (#502) is the average of the 3 charbroiling-related profiles, the 1 smoking profile and the 1 stir-frying profile.

For the NIOSH EC/OC method: the charbroiling profile (#503) is the average of the 2 charbroiling-related profiles; and the cooking profile (#504) is the average of the 2 charbroiling-related profiles and the 1 frying meat profile.

In general, OM is the dominant species. More specifically, in the four composite profiles, OM is over 90% of the total PM mass. EC is 4.8% and 6.3% in the IMPROVE profiles, but not detected in the NIOSH profiles.

A new SAROAD code needs to be added to the existing PMSPECIES file for sodium ion (Table 3).

	Table 5. New AKD SAKOAD Codes to be Added to the TMST ECHES The							
ARB SAROAD	CAS	Chemical Name	Formula	Molecular Weight				
12181	N/A	Sodium ion	Na^+	23				

 Table 3. New ARB SAROAD Codes to be Added to the PMSPECIES File

_

Profile No.	50)1	502			
Profile Nam	e	Charbroiling	(IMPROVE)	Cooking (IMPROVE)		
		Weight				
		Weight Dereentege	Stan dand	Weight	Stan dand	
Spacias	SADOAD	(%)	Deviation	(%)	Deviation	
OM	11102	(%)	5 207720	(%)	6 6 5 0 5 1 7	
UM EC	12000	95.205059	2.069611	90.083403	4 710759	
EC	12000	4.814203	3.908011	0.288829	4./10/38	
suitate	12403	0.221409	0.179104	0.214007	0.191740	
non-sultate sultur	12404	0.049262	0.040731	0.101140	0.094078	
ablarida ian	12300	0.039127	0.004330	0.202078	0.503520	
	12203	0.204499	0.292940	0.084524	0.313212	
insoluble chlorine	12202	0.014653	0.019909	0.084534	0.1051/4	
ammonium	12301	0.146716	0.125022	0.029168	0.065221	
sodium ion	12181	0.146/16	0.125832	0.131486	0.11938/	
sodium	12184	0.000440	0.001055	0.100056	0.1.100.50	
potassium ion	65312	0.090440	0.081055	0.123256	0.142052	
insoluble potassium	12182	0.028281	0.013391	0.060485	0.056456	
potassium	12180					
magnesium	12140	0.101334	0.151172	0.109528	0.108791	
aluminum	12101	0.034624	0.021800	0.050570	0.031352	
silicon	12165	0.237446	0.193869	0.313526	0.189264	
phosphorus	12152	0.004644	0.003858	0.003074	0.003510	
calcium	12111	0.111749	0.052537	0.143956	0.060570	
titanium	12161	0.002625	0.001286	0.004726	0.003441	
vanadium	12164	0.000121	0.000150	0.000194	0.000259	
chromium	12112	0.001229	0.001944	0.001926	0.002310	
manganese	12132	0.008338	0.001839	0.016558	0.020236	
iron	12126	0.120164	0.056486	0.205100	0.202892	
cobalt	12113	0.000969	0.000797	0.000956	0.000696	
nickel	12136	0.003065	0.001422	0.003867	0.001565	
copper	12114	0.008421	0.004828	0.017527	0.021454	
zinc	12167	0.015953	0.012269	0.024623	0.016106	
gallium	12124			0.000076	0.000169	
arsenic	12103	0.000121	0.000041	0.000406	0.000707	
selenium	12154	0.000025	0.000043	0.000045	0.000067	
bromine	12109	0.000875	0.000343	0.004751	0.007043	
rubidium	12176	0.000171	0.000153	0.000254	0.000310	
strontium	12168	0.000796	0.000639	0.000936	0.000493	
zirconium	12185	0.007745	0.013415	0.005464	0.010091	
palladium	12151	0.000245	0.000308	0.001535	0.002655	
silver	12166	0.002092	0.003624	0.002980	0.003050	
cadmium	12110	0.000172	0.000238	0.000436	0.000711	
indium	12131	0.000833	0.001011	0.000636	0.000801	
tin	12160	0.001113	0.000801	0.001667	0.002004	
antimony	12102	0.001805	0.001481	0.012950	0.025963	
barium	12107	0.016896	0.017090	0.011515	0.014362	
lanthanum	12146	0.009045	0.011674	0.005427	0.009627	
gold	12143	0.000935	0.001620	0.000561	0.001255	
mercurv	12142			0.000045	0.000102	
thallium	12173			0.000015	0.000034	
lead	12128	0.015129	0.026205	0.010667	0.019712	
others	12999	0,399633	0.253400	0.551368	0.307153	
total		100.000000	0.200700	100.000000	0.007100	
	1					

Table 4 Cooking-Related PM2 5 Speciation Profiles

Profile Name Charbroiling (NIOSH) Cooking (NIOSH)	
Weight Weight	
Percentage Standard Percentage Standard	d
Species SAROAD (%) Deviation (%) Deviation	n
OM 11102 96.143270 0.151345 93.674473 4.27742	20
EC 12000	
sulfate 12403 0.122495 0.173234 0.416617 0.52395	54
non-sulfate sulfur 12404 0.193233 0.273272 0.584015 0.70389	97
nitrate 12306 0.398132 0.530046 1.031029 1.15851	12
chloride ion 12203 0.388717 0.060716 1.554789 2.02015	51
insoluble chlorine 12202	
ammonium 12301	
sodium ion 12181	
sodium 12184 0.510457 0.342429 0.505941 0.24226	60
potassium ion 65312	
insoluble potassium 12182	
potassium 12180 0.439115 0.357026 0.425252 0.25359	95
magnesium 12140 0.530813 0.750682 0.353875 0.61293	30
aluminum 12101 0.086328 0.009901 0.057552 0.05033	31
silicon 12165 0.147559 0.027197 0.098373 0.08733	37
phosphorus 12152 0.125454 0.012434 0.083636 0.07296	63
calcium 12111 0.043419 0.032638 0.084158 0.07424	41
titanium 12161 0.005833 0.008249 0.003889 0.00673	35
vanadium 12164 0.001750 0.002475 0.001167 0.00202	21
chromium 12112 0.055212 0.09563	30
manganese 12132 0.015091 0.02613	39
iron 12126 0.051585 0.044187 0.122729 0.12712	25
cobalt 12113	
nickel 12136 0.014253 0.008608 0.027538 0.02380	02
copper 12114 0.198326 0.280475 0.132217 0.22900	07
zinc 12167 0.128328 0.181484 0.085552 0.14818	81
gallium 12124	01
arsenic 12103 0.001167 0.001650 0.000778 0.00134	47
selenium 12154 0.000583 0.000825 0.002597 0.00353	37
bromine 12109 0.00505 0.000025 0.00257 0.00555	<u>ол</u>
rubidium 12176 0.000220 0.007424 0.0004419 0.00079	7 <u>7</u>
strontium 12168 0.002333 0.003300 0.005236 0.00554	/0
zirconium 12185	75
nalladium 12151	
silver 12166 0.010170 0.014383 0.006780 0.01174	43
cadmium 12110 0.010170 0.014505 0.000700 0.01174	75
indium 12110	
tin 12151	
antimony 12100	
harium 12102 0.137002 0.136220 0.260652 0.23483	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>.</u> ./2
and 12140 0.010170 0.014303 0.000760 0.01174	τJ
<u>solu</u> <u>12143</u> mercury <u>12142</u>	
thallium 12173	
manum 121/3 load 12128 0.015740 0.022272 0.094116 0.11045	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57
total 100 000000 100 000000	07

Two assumptions related to these profiles are proposed in this work:

- The ratios of PM_{10}/TPM and $PM_{2.5}/TPM$ for the default PM Profile 900 are 0.70 and 0.42, respectively. It is possible that the $PM_{2.5}$ emissions from charbroiling or cooking are underestimated as testing in the South Coast Air Basin has demonstrated that most of the PM_{10} emissions are equal to or less than 2.5 microns. Also because filters are typically used in the ventilation hood during cooking, it is expected that the majority of the TPM is PM_{10} . So for these charbroiling and cooking profiles, the ratios of PM_{10}/TPM and $PM_{2.5}/TPM$ are assumed to be 1.0.
- The tests and profiles discussed above are all based on source testing for $PM_{2.5}$ exhaust. No speciation information for PM_{10} and total PM (TPM) has been found in the above source tests. Therefore, it is suggested to use the same speciation profiles for cooking-related PM_{10} and TPM exhausts for now (i.e. assume all of the emissions mass has the same species mix).

4 Estimated Impacts of Changes on Emission Inventory

This update will only assign the IMPROVE-based profiles to the inventory, since the IMPROVE method is now the official standard EC/OC measurement technique. NIOSH-based profiles will not be assigned to emission inventory categories. Although the technique is outdated, updated NIOSH-based profiles have been developed in case air quality or emissions inventory analyses prior to 2009 are desired (e.g. source apportionment analysis).

The newly-developed IMPROVE-based profiles will replace the current Profile 900 for the three cooking-related categories: PM Profile 501 (Charbroiling-IMPROVE) for Commercial Charbroiling category (i.e. 690-680-6000-0000), and PM Profile 502 (Cooking-IMPROVE) for Unspecified Cooking category (i.e. 690-684-6000-0000). Since there is currently no source test data or profile available for deep fat frying operations, and emissions from deep frying are only estimated at around 1% of the cooking emissions, it is suggested that the composite cooking Profile 502 be assigned to this category (i.e. 690-682-6000-0000).

Since Profile 900 is currently being used as a default profile for these categories, no detailed species can be segregated for these categories. Using Profiles 501 and 502 to replace Profile 900, the changes in PM modeling species for year 2010 emission are estimated in Table 5. Given the 2010 statewide annual average commercial cooking emissions of 25.23 tons/day [18], the OM increases from 0 to 23.37 tpd, EC increases from 0 to 1.30 tpd, sulfate increases from 0 to 0.05 tpd, and nitrate increases from 0 to 0.03 tpd. Commensurately, the emission of 'other species' decreases from 25.23 tpd to 0.47 tpd because the PM mass is now assigned to specific species.

	Current (PM No. 900)	New (PM No. 501 & 502)	Change
OM	0	23.37	+23.37
EC	0	1.30	+1.30
Sulfate	0	0.05	+0.05
Nitrate	0	0.03	+0.03
Other species	25.23	0.47	-24.76

 Table 5. Changes on 2010 Statewide Annual Ave. Emissions Using Updated Cooking Profiles (tpd)

Because NIOSH EC/OC method is not in use for ambient PM monitoring, the newlydeveloped NIOSH profiles, PM Profiles 503 (Charbroiling-NIOSH) and 504 (Cooking-NIOSH) will not be used for air quality modeling purpose as the above IMPROVE profiles. They are recommended to be used only in source apportionment studies in which EC/OC for ambient and other emission sources is measured by NIOSH method.

5 Version Control

This section will be completed after management approval and after the CEIDARS FRACTION table and PMPROFILE table are updated. Version information from CEIDARS FRACTION table will be copied here.

References:

1. Hsu, Y.; Divita, F. J., *SPECIATE Version 4.2*. US EPA:

2010; <u>http://www.epa.gov/ttn/chief/software/speciate/index.html</u>. Accessed October 15, 2010.

2. DRI Source Profiles Version 5. Desert Research Institue: 2009; Accessed 2010.

3. Vega, E.; Reyes, E.; Ruiz, H.; García, J.; Sánchez, G.; Martínez-Villa, G.; González, U.; Chow, J. C.; Watson, J. G., Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000-2002. *Journal of Air and Waste Management Association* **2004**, *54*, (7), 786-798.

4. Vega, E.; Reyes, E.; Ruiz, H.; García, J.; Sánchez, G.; Martínez-Villa, G.; González, U.; Chow, J. C.; Watson, J. G., Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000-2002. *Journal of Air & Waste Management Association* **2004**, *54*, (7), 786-798.

5. Vega, E.; Mugica, V.; Carmona, R.; Valencia, E., Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. *Atmospheric Environment* **2000**, *34*, (24), 4121-4129.

6. Chow, J. C.; Watson, J. G.; Edgerton, S. A.; Vega, E., Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. *The Science of The Total Environment* **2002**, *287*, (3), 177-201.

7. Watson, J. G.; Fujita, E. M.; Chow, J. C.; Zielinska, B.; Richards, L. W.; Neff, W. D.; Dietrich, D. *Northern Front Range Air Quality Study. Final Report.*; Desert Research Institute Reno, NV., 1998.

8. Fujita, E. M.; Watson, J. G.; Chow, J. C.; Robinson, N. F.; Richards, L. W.; Kumar, N. Northern Front Range Air Quality Study. Volume C: Source apportionment and simulation methods and evaluation. ; Desert Research Institute: Reno, NV., 1998.

9. Zielinska, B.; McDonald, J. D.; Hayes, T.; Chow, J. C.; Fujita, E. M.; Watson, J. G. *Northern Front Range Air Quality Study, Volume B: Source measurements.*; Desert Research Institute Reno, NV., 1998.

10. Chow, J. C.; Watson, J. G. *Imperial Valley/Mexicali Cross Border PM10 Transport Study*; 4692.1D1; Desert Research Institute, Reno, NV.: San Francisco, CA, 1997.

11. Chow, J. C.; Watson, J. G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D. H.; Crow, D.; Kohl, S. D.; Engelbrecht, J. P.; Green, M. C., Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. *Chemosphere* **2004**, *54*, (2), 185-208.

12. Hildemann, L. M.; Markowski, G. R.; Cass, G. R., Chemical composition of emissions from urban sources of fine organic aerosol. *Environmental Science & Technology* **1991**, *25*, (4), 744-759.

13. Schauer, J. J.; Kleeman, M. J.; Cass, G. R.; Simoneit, B. R. T., Measurement of Emissions from Air Pollution Sources. 1. C1 through C29 Organic Compounds from Meat Charbroiling. *Environmental Science and Technology* **1999**, *33*, (10), 1566-1577.

14. Schauer, J. J.; Kleeman, M. J.; Cass, G. R.; Simoneit, B. R. T., Measurement of Emissions from Air Pollution Sources. 4. C1-C27 Organic Compounds from Cooking with Seed Oils. **2002**, *36*, (4), 567-575.

15. Aiken, A. C.; DeCarlo, P. F.; Kroll, J. H.; Worsnop, D. R.; Huffman, J. A.; Docherty, K. S.; Ulbrich, I. M.; Mohr, C.; Kimmel, J. R.; Sueper, D.; Sun, Y.; Zhang, Q.; Trimborn, A.; Northway, M.; Ziemann, P. J.; Canagaratna, M. R.; Onasch, T. B.; Alfarra, M. R.; Prevot, A. S. H.; Dommen, J.; Duplissy, J.; Metzger, A.; Baltensperger, U.; Jimenez, J. L., O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. *Environmental Science & Technology* **2008**, *42*, (12), 4478-4485.

16. Allen, P., Developing PM Species Profiles for Emission Inventory. In 2008.

17. Schauer, J. J., Evaluation of elemental carbon as a marker for diesel particulate matter. *Journal of Exposure Analysis and Environmental Epidemiology* **2003**, *13*, (6), 443-453.

18. *CEPAM*. California Air Resources Board:

2010; <u>http://cefs1.arb.ca.gov/cefs/cepam_home.php</u>. Accessed December 20, 2010.

Appendix 1. Summary of Cooking-Related PM Speciation Profiles in SPECIATE 4.2 and DRI Source Profile Database

Table A1. Cooking-related PM Speciation Profiles in SPECIATE 4.2 and DKI Database						
SPECIATE 4.2	DRI Database	Profile Notes	Total % in DRI Database	Total % in SPECIATE 4.2		
		Same Profiles in SPECIATE 4.2 and DRI Database:				
3643	08081	Composite of 11 Mexicali charbroil cooking emission profiles from the Asadero El Nerivl Ciclon restaurant (IMTSA1, IMTSA2, IMTSA3, IMTSA4, IMTSA5, IMTSA6, IMTSA7, IMTSA8, IMTSA9, IMTSA0, and IMTSAA). Samples collected on 12/16/92 – 12/18/92.	70.768	70.768		
3644	08082	Composite of nine Mexicali charbroil cooking emission profiles from the La Cabana Asadero restaurant (IMTSC1, IMTSC2, IMTSC3, IMTSC4, IMTSC5, IMTSC6, IMTSC7, IMTSC8, and IMTSC9). Samples collected on 12/18/92.	80.7343	80.7343		
Chow, J.C. Prepared for	; Watson, J or U.S. Env	.G. (1997). Imperial Valley/Mexicali Cross Border PM10 Transport Study. ironmental Protection Agency, Region IX, San Francisco, CA, by Desert Res NV.	Report No. search Instit	4692.1D1. tute, Reno,		
3915	13050	Composite of NMCH, NMAHa, NMCK, and NMCCa.	83.729	83.729		
3916	13051	Average of three replicate samples, automated charbroiler, hamburger, samples MAH1, 2, and 3.	83.8692	83.8692		
3917	13052	Charbroiled hamburger, sample MCH1.	83.6959	83.6959		
3918	13053	Average of two samples, charbroiled chicken w/ skin, samples MCC1 and MCC2.	83.4128	83.4128		
3919	13054	Charbroiled steak, sample MCK1.	83.9417	83.9417		
Zielinska, B	.; McDonal	d, J.D.; Hayes, T.; Chow, J.C.; Fujita, E.M.; Watson, J.G. (1998). Northern	Front Range	e Air		

Table A1. Cooking-related PM Speciation Profiles in SPECIATE 4.2 and DRI Database

Zielinska, B.; McDonald, J.D.; Hayes, T.; Chow, J.C.; Fujita, E.M.; Watson, J.G. (1998). Northern Front Range Air Quality Study, Volume B: Source measurements. Prepared for Colorado State University, Fort Collins, CO, by Desert Research Institute, Reno, NV. http://charon.cira.colostate.edu/DRIFinal/ZipFiles/.

Fujita, E.M.; Watson, J.G.; Chow, J.C.; Robinson, N.F.; Richards, L.W.; Kumar, N. (1998). Northern Front Range Air Quality Study. Volume C: Source apportionment and simulation methods and evaluation. Prepared for Colorado State University, Cooperative Institute for Research in the Atmosphere, Ft. Collins, CO, by Desert Research Institute, Reno, NV. http://charon.cira.colostate.edu/DRIFinal/ZipFiles/.

Watson, J.G.; Fujita, E.M.; Chow, J.C.; Zielinska, B.; Richards, L.W.; Neff, W.D.; Dietrich, D. (1998). Northern Front Range Air Quality Study. Final report. Prepared for Colorado State University, Fort Collins, CO, by Desert Research Institute, Reno, NV. <u>http://charon.cira.colostate.edu/DRIFinal/ZipFiles/</u>.

4020	16007	Composite of two food cooking profiles CET1 and CET 2.		81.2814
4048	16035	Composite of two food cooking profiles. Grilled chicken shop, Lindavista District, Mexico City. LPG fuel. Sample collection time 1000 - 1135 and 1521- 1611 (3/15/98).	82.2964	82.2964
4052	16039	Composite of two food cooking profiles. Restaurant "San Antonio", Del Valle District, Mexico City. Charcoal and LPG fuels. Sample collection time 1600 - 1800 and 1820- 1950 (3/13/98).	79.5065	79.5065
4108	16095	Food cooking profile from restaurant "El Torito", Lindavista District, Mexico City. Fried pork. LPG fuel. Sample collection time 1200 – 1245 (3/15/98).	83.262	83.262

4109	16096	Food cooking profile from restaurant "El Torito", Lindavista District, Mexico City. Fried pork. LPG fuel. Sample collection time 1307- 1437 (3/15/98).	79.3009	79.3009
4110	16097	Cooking profile from a restaurant on 27th St (3/15/98).	73.3569	73.3569
4111	16098	Composite of two food cooking profiles. Corn tortilla making. LPG fuel. Sample collection time 0825-1125 and 1820-1950 (3/14/98).	81.7725	81.7725

Vega, E.; Reyes, E.; Ruiz, H.; Garcia, J.; Sanchez, G.; Martinez-Villa, G.; Gonzalez, U.; Chow, J.C.; Watson, J.G. (2004). Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000-2002. Journal of the Air & Waste Management Association, in press.

Chow, J.C.; Watson, J.G.; Edgerton, S.A.; Vega, E. (2002). Chemical composition of PM10 and PM2.5 in Mexico City during winter 1997. Science of the Total Environment 287 (3), 177-201.

Vega, E.; Mugica, V.; Carmona, R.; Valencia, E., 2000. Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. Atmospheric Environment 34 (24), 4121-4129.

Original Profiles in DRI Database, and Normalized in SPECIATE 4.2

4334	19131	Emissions from smoking chicken on an underfired charcoal charbroiler with mesquite wood smoke were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/22/00.	69.6521	100
4335	19132	Emissions from smoking chicken on an underfired charcoal charbroiler with mesquite wood smoke were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/22/00.	87.6608	100
4336	19133	Emissions from smoking chicken on an underfired charcoal charbroiler with mesquite wood smoke were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/22/00.	81.0982	100
4337	19134	Emissions from cooking chicken on an underfired charcoal charbroiler were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/23/00.	68.8305	100
4338	19135	Emissions from cooking chicken on an underfired charcoal charbroiler were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/23/00.	75.9677	100
4339	19136	Emissions from cooking chicken on an underfired propane/lava rock charbroiler were collected in a fume hood at the University of California– Riverside's CE-CERT facility on 02/23/00.	74.767	100
4340	19137	Emissions from cooking chicken on an underfired propane/lava rock charbroiler were collected in a fume hood at the University of California– Riverside's CE-CERT facility on 02/23/00.	83.9041	100
4341	19138	Emissions from cooking chicken on an underfired propane/lava rock charbroiler were collected in a fume hood at the University of California– Riverside's CE-CERT facility on 02/23/00.	91.3645	100
4342	19139	Emissions from cooking chicken on an underfired propane/lava rock charbroiler were collected in a fume hood at the University of California– Riverside's CE-CERT facility on 02/23/00.	100	100
4343	19140	Emissions from cooking hamburger on an underfired charcoal charbroiler were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/24/00.	74.1264	100
4344	19141	Emissions from cooking hamburger on an underfired charcoal charbroiler were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/24/00.	72.3119	100
4345	19142	Emissions from stirfrying steak and peppers on a 24" x 26" propane-gas- fueled commercial stove were collected in a fume hood at the University of California–Riverside's CE-CERT facility on 02/24/00.	143.740	100
4379	19176	Composite of three profiles of emissions from smoking chicken on an	79.4701	100

		underfired charcoal charbroiler with mesquite wood smoke (SMOCKN01, SMOCKN02, and SMOCKN03).		
4380	19177	Composite of two profiles of emissions from cooking chicken on an underfired charcoal charbroiler (CHACKN01 and CHACKN02).	72.3998	100
4381	19178	Composite of four profiles of emissions from cooking chicken on an underfired propane/lava rock charbroiler (PROCKN01, PROCKN02, PROCKN03, and PROCKN04).	83.3454	100
4382	19179	Composite of two profiles of emissions from cooking hamburger on an underfired charcoal charbroiler (CHAHAM01 and CHAHAM02).	73.2196	100
Chow, J.C.; Green, M.C and Observa	Watson, J. . (2004). S ational (BR	G.; Kuhns, H.D.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.J.; Kohl, S.D.; Enource profiles for industrial, mobile, and area sources in the Big Bend Regiona AVO) Study. Chemosphere 54 (2), 185-208.	ngelbrecht, . I Aerosol V	I.P.; isibility
		In DRI Database Only		
	19180	Composite of 19177 (charcoal chicken), 19178 (propane chicken), and 19179 (charcoal hamburger) profiles	76.3214	
See 19177,	19178 and	19179.	•	
		in SPECIATE 4.2 Only		
4383		Composite of 12 profiles of cooking emissions (SMOCKN01, SMOCKN02, SMOCKN03, CHACKN01, CHACKN02, PROCKN01, PROCKN02, PROCKN03, PROCKN04, CHAHAM01, CHAHAM02, and STIFRY01).		100
See 4334-43	382			
4554		Meat charbroiling emissionsSpecies are the composite average of the two charbroiler tests of frozen and thawed hamburger patties from the denuded sampling train. Several alkanes and PAH were quantified in the first backup PUF cartridge, indicating negative artifacts of those specie		35.51
Schauer, J.J Sources. 1. 10, pp. 1566	., M.J. Klee C1-C29 Or 5-1577.	eman, G.R. Cass, and B.R.T. Simoneit (1999). Measurement of Emissions fror ganic Compounds from Meat Charbroiling. Environmental Science and Techn	n Air Pollut ology, vol.	ion 33, no.
4653		Cooking vegetables - Stir frying in soybean oil		79.36
4654		Cooking vegetables - Stir frying in canola oil		61.7
4655		Cooking potatoes - Deep frying in hydrogenated oil		66.7
Schauer, J.J Sources. 4. no. 4, pp. 50	., M.J. Klee C1-C27 Or 57 - 575.	eman, G.R. Cass, and B.R.T. Simoneit (2002). Measurement of Emissions from ganic Compounds from Cooking with Seed Oils. Environmental Science and T	n Air Pollut Fechnology,	ion vol. 36,
160002.5		Meat CookingCharbroiling local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.		61.94
160012.5		Meat Cooking Frying: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.		66.2
Hildemann, Organic Ae	L.M.; Mar rosol"; Env	kowski, G.R.; Cass, G.R.; "Chemical Composition of Emissions from Urban So iron. Sci. Technol. Vol. 25, No. 4, p. 744, 1991.	ources of Fi	ne
91005		Charbroiling - CompositeMedian of Profiles 160002.5, 3915, 4383, and 4554.		86.76
92015		Charbroiling - Simplified based on Composite Profile #91005		100
92046		Meat FryingSimplified based on Individual Profile #160012.5		100

92058	Potato Deep FryingSimplified based on Individual Profile #4655	100
1600030	Meat Cooking - Charbroiling: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.	0
16000C	Meat Cooking - Charbroiling: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.	0
1600110	Meat Cooking - Frying: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.	0
1600130	Meat Cooking - Frying: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.	0
16001C	Meat Cooking Frying: A local commercial-scale kitchen was utilized in conducting this experiment. Two types of hamburger meat, regular (approximately 21% fat) and extra-lean (approximately 10% fat) were cooked.	0