## 3.2.2 Analysis Methods

All of the particulate samples obtained for any of the catches that had a weight of 100 mg or greater were sent to Armament Systems Corporation,<sup>\*</sup> Anaheim, California, for elemental composition and to Rockwell International Air Monitoring Center (AMC), Jewbury Park, California, for sulfate, nitrate, and carbon analysis.

#### A. Elemental Analysis--

1. <u>X-ray fluorescence</u>--During the mid 1960's, solid state devices (energy dispersive spectometers) were developed which absorb X-ray radiation emitted by a sample and generate voltage pulses whose magnitudes are proportional to the energy of the absorbed X-rays. With the aid of a multichannel analyzer, these pulses can be separated according to their size. Since each atom generates a series of X-rays with specific energies, the energy spectrum accumulated in a multichannel analyzer has peaks which specify the elements present. With proper calibration, the integrated intensity of these responses can be related to the concentrations of the observed elements in the analyzed sample.

(See ASTM STP435, Energy Dispersive X-ray Analysis: X-ray and Electron Probe Analysis, 1971).

Special sample preparation procedures and laboratory techniques were used with energy dispersive spectrometers to generate low ppm detectability for all chemical elements heavier than potassium in solids. The laboratory analysis included the following procedural steps:

- A representative sample was coarsely sieved and the remaining material was thoroughly mixed before a 10-50 mg aliquot was taken.
- (2) The sample was then dried and degreased if necessary.
- (3) 20 to 50 mg of this material were combined with a binder and pressed into a thin pellet for analysis.

A Picker X-ray generator was used to provide photons which excited the prepared pellet. The tube X-rays were filtered in two different modes to provide essentially monochromatic photons of 17 and 35 KeV which were used to fluoresce the sample. This optimized the sensitivity for elements with atomic numbers 19-39 plus 57-83, and 40-56, respectively. Prior to analysis, an absorption measurement was made on the target according to the method of Giaque

\* Formerly Analex Corp.

3-45

and Jaklevic (Ref. 3-25). This was required for elements with atomic numbers 19-30. This measurement enabled proper comparison with NBS standard reference materials and EPA standard reference samples. Each pellet was then fluoresced and the spectrum was accumulated. The responses were corrected for absorption effects, properly integrated and compared to standards to obtain the final elemental concentrations. To insure accuracy, comparisons were made on a periodic basis with whatever data were available from other analytical methodologies in addition to the normal calibration routine.

Although X-ray fluorescence is not normally used to detect silicon and sulfur, atomic numbers 14 and 16 respectively, Armament Systems was requested to report these elements when they felt their analysis could produce a meaningful result. Those results are reported but should be used with some reservation concerning their accuracy.

2. <u>Atomic Adsorption (AA)</u> -- A few samples were randomly chosen for AA analysis to compare with the results of the XRF analysis. Atomic Adsorption analysis was done by Rockwell AMC. The procedure is as follows:

Five to ten milligrams of solid particulate or 1" circle from the filters was treated with a mixture of hydrofloric acid and nitric acid to completely dissolve any silicates present. The mixture was taken to dryness so that all silicones were driven off as  $\text{SiF}_6$ . The remaining solids were resuspended in 10% nitric acid. Before diluting to volume, a flame buffer of lanthanum was added, so that the final matrix used for AA was 10% nitric and 0.5% lanthanum. Then flame analysis was performed.

B. Chemical Analysis--

Each sample received was placed in a desiccator for a minimum period of 24 hours. The samples which contain large particulates were then ground with a mortar pestle until they were homogeneous.

1. Water soluble sulfate  $(SO_4)$  analysis--Three samples were randomly chosen to test relative extraction efficiency for recovery of total sulfate, by a) 0.01 M carbonate extraction, b) water extraction, and c) carbonate fusion extraction. Duplicate and triplicate samples were analyzed to give an indication of precision. The results are discussed in Section 3.3.2. The 0.01 M carbonate extraction method was chosen for all  $SO_4^{-1}$  analysis. The three procedures are given below:

3-46

a) 0.01 M Carbonate Extraction--A long portion of solid sample or a l" diameter circle punched from filter samples was reflux extracted in a 0.01 M carbonate, .0036 M acetate buffer (pH 4.5) for one hour. The hot extract solution was then filtered through Whatman #41 filter paper and diluted to a final volume of 50 ml. Colorimetric analysis was performed using the methylthymol blue (MTB) method. The detection limits were 1.0 µg/ml (0.5% by weight solid).

The MTB method of sulfate determination is based on the spectral difference which exists in basic solutions (pH 12.5-13.0), between the barium complex of MTB and the free MTB. At his pH the barium complex is blue and the free MTB is brown-ish-red. (abosrbs light at 460mm). Thus, the color of solutions containing both the free MTB and the barium complex of MTB, monitored colorimetrically at 460 nm, is the measure of the amount of sulfate in the sample because the reaction of sulfate with MTB-Ba<sup>++</sup> results in equivalent amounts of free MTB.

b) Water Extraction--The procedure used for water extraction was the same as the 0.1 M carbonate extraction except water replaced the 0.01M carbonate solution.

c) Carbonate Fusion Extraction--In this method sodium and potassium carbonates were melted with the sample to convert all insoluble  $SO_4^{=}$  to soluble forms.

Procedure-- 5-10 mg of substance, finely ground, was mixed with 40-50 ml of a mixture of equal par+s of anhydrous sodium and potassium carbonates, in a platinum crucible. The sample was first heated for 5 minutes gently, then to fusion, maintaining the mass in the fused state for 30 minutes. When no further bubbles of carbon dioxide were formed, it was heated as strongly as possible for another 10 minutes. It was allowed to cool, causing the mass to congeal as a layer around the walls of the crucible. (It was easier to extract the mass afterwards if it had as large a surface as possible.) The crucible was then filled one-third with water and heated gently. The solid was then detached. If it did not respond to this treatment, the crucible was placed in a beaker of water and heated until the solid was disintegrated.

3-47

. KVB 5806-783

The hot extract solution was then filtered through Whatman #41 filter and diluted to a final volume of 50 ml. Colorimetric analysis was performed using the MTB method discussed above.

2. <u>Nitrate (NO<sub>3</sub>) Analysis</u>-A portion of the 50 ml hot extract solution (from  $SO_4^{-}$  analysis, section 3.2.2, A.L.a. above) was filtered for the analysis of nitrate. Calorimetric analysis was performed using the Cd reductiondiazo dye method. The detection limit was 0.50 µg/ml (0.25% by weight solid).

The nitrate extracted from the solid and filter samples was reduced to nitrite by a copperized-cadmium reductor column and was reacted with sulfanilamide in acidic solution to form a diazo compound. This compound then coupled with N-1-naphthylenediamine dihydrochloride to form a reddishpurple azo dye which was determined spectrophotometrically at 560 nm.

C. Carbon Analysis--

A carbon analyzer made by Oceanography International was used for the carbon analysis. Using this instument, carbon in the sample was converted to  $CO_2$ , which was analyzed using a Horiba NDIR detector. Three different techniques were used to analyze the samples. Using the direct injection technique, microliter quantities (up to 100 µg) of samp's were injected onto a filament for programmed heating at 150 °C and then at 800 °C. This filament is in a sealed system with  $O_2$  flowing first over the filament, then through a furnace kept at 800 °C, and finally to the NDIR detector.

Samples were sometimes analyzed by the ampule technique. Using this technique, samples were sealed in a glass ampule with oxidizing solution and heated at 150 °C for at least eight hours. The ampules were then cooled and and placed in the analyzer. The tip of the ampule was broken and nitrogen gas flushes all CO<sub>2</sub> from the ampule to the NDIR detector.

Carbonate in solution was analyzed using a closed vial containing acid solution. There was a continuous flow of nitrogen through the solution of this vial and to the NDIR detector. Up to 1 ml of sample was injected through a septum into the acid solution of the vial.

3-48

Most of the samples on this program were analyzed for volatile carbon and total carbon by the direct injection techniques. Five ml of final ground particulates were suspended in 10 ml of carbonate free water. Up to 100 µg of these suspended particulates were injected onto the injection filament for programmed heating. "Volatile" carbon was the carbon which either vaporizes or is oxidized as the filament is heated at 150 °C for 200 seconds. "Nonvolatile" carbon is determined as the filament is heated to 800 °C for 80 seconds.

Inorganic carbon was determined on particulate samples by injecting 1.0 ml of the suspended particulate into acid solution in a closed vial. Carbon dioxide was purged from the acid and to the detector by a flow of nitrogen through the acid solution.

Filter samples were analyzed for inorganic and for total carbon using the ampule technique. For inorganic analysis, a 1 cm circle was punched from the filter and placed in a glass ampule. The ampule was then purged of atmospheric carbon and sealed in a flame. Inorganic carbon was determined by breaking the ampule in a closed system, adding 2.0 ml 5% v/v phosphoric acid, and purging the carbon dioxide to the detecting system. For total carbon analysis, another 1 cm circle was punched from the filter and placed in a glass ampule. One ml 6% v/v phosphoric acid and two ml water are added to the ampule and the ampule is then allowed to sit for 30 minutes. Three ml of saturated potassium persulfate were added and the ampule was purged of carbon dioxide and sealed in a flame. Several ampules were then placed in a pressure vessel and heated for eight hours at 150 °C to allow oxidation of organic carbon. . We ampules were cooled and analyzed by breaking the ampule in a sealed system and purging the carbon dioxide to the detection system.

D. Analysis for the Organic Content of the Impinger Catch--

Sample processing was divided into the operations: (1) determining the amount of water condensed in the impingers, and (2) determining the total weight of particulate matter collected by the impingers.

3-49

The total volume of liquid contained in the impingers was carefully measured. The difference between this volume and the initial volume of distilled water was recorded as the condensate volume. When small amounts of condensate were obtained, each impinger was weighed (to the nearest 0.1 g) before and after the test. A small correction was made for particulate matter.

The impingers and associated tubing were carefully rinsed with small portions of distilled water, the liquid and washings being kept in a beaker or flask. The inner walls of the sampling probe and tubing were washed and the washings kept separate. All of the inner surfaces of each of the cyclones and tubing were washed and processed separately, after the solid material had been transferred to tared vials. Any tar-like or organic material in the equipment or tubing was washed out with minimum amounts of reagent grade acetone or methyl chloroform and added to the aqueous portion. All washing was done in a counter-current manner, using each portion of water or solvent to wash each impinger successively in a direction opposite to the sample gas travel, in order to conserve liquid volume and avoid excess use of organic solvept.

The organic material, was removed from the aqueous by extraction with an organic solvent, and the solvent extract was evaporated at room temperature. The combined liquid and washings (usually a volume of about 2-3:1) from the impinger train, were transferred to a separatory funnel and extracted with five 25-ml portions of reagent grade methyl chloroform per 500 ml of water. About 25 shakings were made for each extraction. The two liquids were allowed to separate as much as possible after each extraction, and care was taken not to include any water in the solvent extract that was drained from the lower portion of the funnel after each extraction. Larger volumes of solvent were used if the aqueous volume was much greater than 500 ml. Since methyl chloroform vapors are toxic all operations were conducted in a well ventilated or hooded location.

Finally, the aqueous fraction was evaporated to dryness and residue weighed as described below:

3-50

The small beaker was evaporated just to dryness at 105 °C in a constant temperature electric oven, cooled in a desiccator for one-half hour, and weighed on an analytical balance to the nearest 0.1 mg. The difference from the tare weight of the beaker was recorded as the weight of particulate matter collected by the impingers. Determination of dissolved solids was made on each batch of distilled water used and a correction for this blank applied to each sample.

The solvent containing the dissolved organic fraction of the particulate matter was placed in 250-ml conical flask and the solvent evaporated by a stream of dry air. The flask was equipped with a two-holed cork stopper. A short glass outlet tube was connected to a vacuum line. An inlet glass tube, drawn out to about 1 mm in diameter at the tip, was placed at a point just above the surface of the liquid. The vacuum was regulated to draw a jet of air over the surface of the solvent and promote fast evaporation. The inlet air passed through a large-diameter drying tube filled with a desiccant such as Drierite. The flask was kept slightly above room temperature in a water bath to prevent slowing of the evaporation process. The discharge air from the vacuum pump or aspirator was hooded to a ventilation . system to remove the toxic vapors.

When the solvent evaporated to 15 ml or less, the liquid was transferred to a tared 50-ml beaker, using small amounts of solvent. The beaker was placed under a small bell jar (such as Corning No. 7880) with an arrangement for drawing a stream of dry air over the surface of the liquid at room temperature, in the manner described in the preceding paragraph. The evaporation was continued until all of the solvent had evaporated and only an oil or resin remained. A halide leak detector (such as one manufactured by Prest-O-Lite) was used to determine when all the chlorinated solvent had evaporated. The sampling tube of the detector was held above the residue in the beaker and the color of the small acetylene flame over a copper grid observed. If any halogen was present as a vapor, the flame would be colored more or less bright blue or green; otherwise the flame was almost a nonluminous blue-biolet. This test is sensitive to a few parts per million. In the rare event that the particulate matter contained volatile organic halides, a series of weighings were necessary in order to determine when all the solvent had been evaporated.

KVB 5806-783

The beaker was placed in a desiccator for one-half hour and weighed on an analytical balance to the nearest 0.1 mg. The difference from the tare weight represented the weight of solvent-soluble particulate matter collected by the impingers. (Only relatively high boiling point organic compounds--over 320 °F boiling point--were retained during the evaporation of the chlorinated solvent.) (The lower boiling point organic compounds, e.g., aldehydes, ketones, organic acids, would not be held.) There should be negligible blank weight from the evaporation of the pure solvent. The weights of the - solvent and aqueous residues are added to give the total particulate matter collected by the impingers. Due to the tar-like consistency of the sample it was not possible to obtain further chemical analyses (i.e., XRF, sulfate, nitrate, and carbon).

3.2.3 Data Reduction

A. Data Sheets and Data Work sheets--

This section deals with the description and use of the various types of data sheets that were used to document each field test. Also in this section are explanations of the calculation used for the reduction of the data to the form given in Table 4-1.

The following is a list of data sheet and work sheet forms used throughout the field test portion of this program and discussed in this section. These forms are listed below and a copy is presented in Section 3.4.

> 5806-6 Test Preparation and Plant Visit 5804-7 Gas Velocity Data 5804-5 SPOT Monitoring Data by Draeger 5806-2 Meter Sheet 5804-4 Water Vapor and Gas Density Calculations 5806-3 Engineering Process Field Report 60-3 Mobile Laboratory Data--only used on sources that were being monitored.

> > KVB 5806-783

60-33 Control Room Data 5804-1 Statement of Process Weight 5806-1 Particulate Emission Calculation 5:06-10 Extraction of Impinger Water 5806-8 Solid Cyclone and Filter Catch 5806-7 Particulate Emission Boil down Sheet 5806-9 Particulate Summary Sheet 5804-8 Laboratory Test Request 5806-A Size Distribution Work Sheet #1 5806-B Size Distribution Work Sheet #2 5806-C Particle Size Distribution 5806-D Chemical Composition of Particulate Samples 5806-E X-ray Fluorescence Analysis Results 5806-F Sulfate and Nitrate Analysis Results 5806-G Carbon Analysis Results

Careful selection of the test sites was made by using the preliminary inventory data. When several test sites were selected for a particular industrial type from the inventory data, then phone calls were made to each plant until cooperation was obtained from at least one plant. A plant visit was scheduled to inspect the equipment and determine the best location for test set-up (if test could be conducted at all). The field test director or project engineer would then visit the plant and use Form 5806-6 (page 1-3) Section 3.4, to acquire the information needed to plan and prepare for the source sampling of particulates.

On the day of the field test, the order of events was as follows:

- 1. The field test director would clear the test area with the proper personnel and safety people.
- 2. The test crew would begin unloading equipment, while the field test director would check the stack (pollution source) for toxic matters with a Draeger tube whenever toxic matter might be present. These data are recorded on Form 5804-5, Section 3.4.

KVB 5806-783

- 3. While test equipment was being set up, a velocity traverse was taken of the stack or ducts (sometimes at both inlet and exit to a control device if these were to be tested.) The velocity data were recorded and calculated on Form 5304-7, Section 3.4. The equation used to calculate velocity was: velocity (ft/sec) = 2.9 [(vel. head in  $E_0$ )(Temp °K)]<sup>1/2</sup>
- 4. Water vapor in the gas stream was determined by using an Orsat and/or Fryrite (0<sub>2</sub> and CO<sub>2</sub>) or sling psychrometer. These data were recorded and calculated on Form 5804-4, Section 3.4.
- 5. The field test director calculated a proper nozzle diameter using the nomograph technique discussed in Section 3.2.1 B or the equation given in the same section.
- As the test crew would complete the last details of the setup, the field test director would check with the control room to assure a normal operation of the equipment being tested.
- The test crew would wait for the field test director's approval before starting the test. The initial meter readings were recorded on the meter sheet, Form 5806-2, Section 3.4.
- During the test interval, the test crew would record data on the meter sheet every 15 minutes, and the field test director would record process observations and data on Forms 5806-3, 60-3, 60-33, and 5804-1 in Section 3.4.
- At the end of the test, the crew would record the final reading and carefully load the equipment for transporting.

The next day at the KVB lab facility, the test crew would unload the samples from the van and begin the tasks of weighing, extracting, and evaporating the liquids. The order of events was as follows:

> Initial weight for solid catches (particulates caught in the cyclones and filter containers) were obtained before the field test. The material in the cyclone was carefully transferred to tared vials, dessicated, and weighed. These data were recorded on Form 5806-8, Section 3.4. Weight data for the filter also were recorded at this time.

> > 3-54

- 2. The amount of water in the impinger was measured and recorded on the meter sheet, Form 5806-2, Section 3.4. The water was then transferred to a separatory funnel and extracted with methyl chloroform. This procedure is discussed in Section 3.2.2 C. The data were recorded and calculated on Form 5806-10, Section 3.4.
- The impinger water was then evaporated. Also water washes of the cyclones and probe were evaporated. These data and calculations were recorded on Form 5806-7, Section 3.4.
- 4. At this point, the weights of all samples were recorded on the weight summary sheet, Form 5806-9 (Section 3.4) and the data turned over to the project engineer.

The project engineer would review the weight summary sheets and decide on the samples to be sent for XRF analysis and  $SO_4$ ,  $NO_3$ , and carbon analysis. Only samples with weights of 100 mg or larger could be sent for these analyses, due to the limited amount of sample necessary for determinations. He would use Form 5804-8 (Section 3.4) to record samples sent for analysis.

The project engineer would use the various forms discussed above to calculate the parameters given on Form 5806-1, Section 3.4. He would also use the data to determine the size distribution curve. Calculations and plots were recorded on Forms 5806-A, 5806-B, and 5806-C, Section 3.4. The correction for temperature and flow for the D<sub>50</sub> cut size for each cyclone was performed using the data discussed in Section 3.2.3-C. Also refer to Section 3.2.3-B for the explanation of the size distribution plots.

When the project engineer received analysis data for samples completed by 1) XRF--Form 5806-E (Sect. 3.4)--major elements, 2) sulfates and nitrates--Form 5806-F ( :. 3.4), and 3) total carbon, volatile carbon, carbonates--Form 5806-G (Sect. 3.4), he would check the results and enter the data on Form 5806-D (Sect. 3.4) for each field test. This form allowed for easy comparison between the different size fractions for each test and also for assessments of the two trains when they were used simultaneously.

KVB 5806-783

## B. Particle Size Distribution--

In general, the particle sizes will have a normal or Gaussian distribution. Plotting the particle size distribution in µm, against the cumulative weight percent on log-normal probability paper, yields a straight line (Refs. 3-5 to 3-8).

Each source sample for TSP was broken down into the following fractions:

- Probe Catch—assumed to have sizes of particles evenly distributed over total range.
- First Cyclone Catch--contained all particles larger than the D<sub>50</sub> calibrated cut size for this cyclone (9.2 µm for SASS and 8.3 µm for Joy)
- Second or Middle Cyclone Catch--contained only particles of the D<sub>50</sub> calibrated cut size for this cyclone (3.8 µm for SASS and 1.9 µm for Joy).
- Third or Small Cyclone Catch--contained only particles of the D<sub>50</sub> calibrated cut size for this cyclone (1.3 µm for SASS and 0.6 µm for Joy).
- 5. Filter Catch--contained all particles of sizes less than the D<sub>50</sub> calibrated cut size of third cyclone but greater than the porosity of the filter (porosity of the filter is questionable but is estimated at 0.01 µm).
- 6. Impinger Catch--contained aerosols which were vapor through the 400 °F filter and had condensed in the impinger, and submicron particles less than 0.01 µm. However, pseudo particulates [particles formed after the filter, e.g.,  $SO_3 + 3H_2O + H_2SO_4 \cdot 2H_2O$  and  $2NH_3 + SO_3 + H_2O + (NH_4)_2SO_4$ ] may add to the weight of this fraction.

The weight fraction of the probe catch was not used to define the size distribution, because this fraction contained particles of unknown sizes. The weights. in mg, of the remaining fractions were listed on the

3-56

"Size Distribution Work Sheet #2 (Table B)--impinger catch not included, and on the "Size Distribution Work Sheet #1" (Table C)--impinger catch included (Sect. 3.4). Only the data from the second and third cyclones from these work sheets were used to determine the straight line on a log-normal probability plot (corrected size,  $\mu$ m vs weight percent less than stated size). Figure 3-28 illustrates the construction of this function. The first cyclone was not used in generating the particle size distribution since it would catch particles above its D<sub>50</sub> cut point. This material could only be characterized as being above the cut point, i.e. the effective first cyclone catch diameter could not be determined. Corrections of the D<sub>50</sub> calibrated cut sizes are discussed in Section 3.2.3-C.

The sizes of particles contained in the filter catch and in the impinger catch were determined using the straight line and the weight percent less than stated size for these fractions.

This line was also used to determine the percent of particles of sizes greater than 10  $\mu$ m, 3-1  $\mu$ m, and less than 1  $\mu$ m.

Size distribution plots for each of the industrial types tested are discussed in Section 4.0.

C. D<sub>50</sub> Cut Size Corrections for Flow Rate and Temperature--

Temperature and flow rate corrections were needed for samples where the temperatures and/or flow rates were not maintained at the designed conditions (i.e., 4 and 1 SCFM and 400 °F). Varying from the designed conditions was necessary for certain sources (1) to protect the chemical makeup of the sample (i.e., agricultural samples), (2) for safety (e.g., chemical fertilizers), or in a few cases, were the result of inadvertent variation of temperatures and flow rates during the sampling time.

Correction curves for temperature and flow rate on the  $D_{50}$  cut size were derived using the data obtained from the "Development and Laboratory Evaluation of a Five-Stage Cyclone System" (Ref. 3-21.). A summary of these data is shown in Table 3-2.

<u>Temperature Corrections</u>--In Figure 3-29, the temperature is plotted against the cyclone  $D_{50}$  cut points, µm, at a flow rate of 1.0 acfm and a particle density of 1.00 gm/cm<sup>3</sup>. It is noted that when the data are extra-

3-57



WEIGHT, PERCENT LESS THAN STATED SIZE

Figure 3-28. Illustration of particle size distribution construction.

|   | Cyclone       |            | 1              | I · II |       | I    | III   |               | IV                         |                | · <b>V</b> |        |      |        |
|---|---------------|------------|----------------|--------|-------|------|-------|---------------|----------------------------|----------------|------------|--------|------|--------|
|   | Partic        | le Densi   | ty $(gm/cm^3)$ | 2.04   | 1.00  | 2.04 | 1.00  | 2.04          | 1.35                       | 1.00           | 1.05       | 1.00   | 1.05 | 1.00   |
| 2 | Flow<br>1/min | Temp<br>°C | -              |        |       |      | . (   | yclone<br>Mic | D <sub>50</sub> C<br>romet | ut Poir<br>ers | its        |        |      |        |
|   | 7.1           | 25         |                |        |       |      |       |               |                            |                | 2.5        | (2.5)  | د.1  | (1.5)  |
|   | 14.2          | 25         |                | 5.9    | (8.4) | 2:4  | (35)  | (1.7)         | 2.1                        | (2.4)          | 1.5        | (1.5)  | 0.85 | (0.87) |
|   | 28.3          | 25         |                | 3.8    | (5.4) | 1.5  | (2.1) | 0.95          | -                          | (1.4)          | 0.64       | (0.65) | 0.32 | (0.32) |
|   | 28.3          | 93         |                | 4.4    | (6.3) | 2.3  | (3.3) | 1.2           | -                          | (1.8)          |            |        |      |        |
|   | 28.3          | 204        | 2 M 2<br>M     | 6.4    | (9.1) | 2.9  | (4.1) | 1.9           | -                          | (2.8)          |            |        |      |        |
|   |               |            |                | 10.52  |       |      |       |               |                            |                |            |        |      |        |

3-59

# TABLE 3-2. LAFORATORY CALIBRATION OF THE FIVE-STAGE CYCLONES $\mathsf{D}_{50}$ CUT POINTS

 $D_{50}$  cut points enclosed in parentheses are derived from the experimental data using Stoke's Law.

KVB 5806-783

ألادر



Figure 3-29. D<sub>50</sub> particle size,  $\mu m$  vs temperature °R at flow rate of 1.0 acfm and 1.00 gm/cm<sup>3</sup>.



polated to low temperatures, the  $D_{50}$  cut points approach zero as the temperature approaches absolute zero. With this information, a temperature correction curve can be drawn for any  $D_{50}$  cut size at the calibration temperature of any cyclone. Simply draw a line between absolute zero and the coordinate of the  $D_{50}$  cut size and the calibration temperature. The corrected  $D_{50}$  cut size is read on the line at the operation temperature of the cyclones. The calibrated  $D_{50}$  cut points for the small cyclones are plotted this way in Figure 3-30.

<u>Flow Rate Corrections</u>--The D<sub>50</sub> cut point, µm, and the flow rate, acfm, from Table 3-2, are plotted on log-log paper in Figure 3-31. Observe that the slope of the line for each of the cyclone plots is about -0.85. If it is assumed that the slope is the same over the range of flow rates used in this study, then a flow rate correction curve can be obtained for the small cyclones. The flow rate correction curves for both sets of cyclones are shown in Figure 3-32.

#### Example of a temperature and flow rate correction

| SASS | Train | Data: | v <sub>s'</sub> | sample volume DSCF           | 912 |
|------|-------|-------|-----------------|------------------------------|-----|
|      |       |       | v",             | water collected SCF (vapor)  | 96  |
|      |       | ×     | t,              | sampling time, min.          | 240 |
|      |       |       | т.,             | oven/cyclone temperature, °R | 660 |

Calculate the wet actual flow rate at the cyclones, wacfm, as follows:

| flow | rate | at  | cyclones | = | $\frac{(v_{s} + v_{w})}{t} \times \frac{T_{o}}{520}$ |
|------|------|-----|----------|---|------------------------------------------------------|
|      |      | · · | κ.       | - | $\frac{(912 + 96)}{240} \times \frac{660}{520}$      |
|      |      |     |          |   | 5 33 wacfm                                           |

First go to Figure 3-32. Read the  $D_{50}$  cut point for each of the cyclones where the correction line crosses the flow rate, 5.33 acfm

| . 10 | μ | cyclone - 11.5 | ) these values are            |
|------|---|----------------|-------------------------------|
| 3    | μ | cyclone - 4.6  | <pre>corrected for flow</pre> |
| 1    | μ | cyclone - 1.6  | rate only                     |

3-61



Figure 3-30. Temperature correction curves for the six cyclones used in the program.

3-62



Figure 3-31. Cyclone flow rate vs D<sub>50</sub> cut point for small cyclones.



3-64

Now go to Figure 3-30. Place a dot for each of the flow rate corrected values above on the 860 °R line. Then draw a line from the dot to absolute zero and read the temperature corrected  $D_{50}$  cut point at the oven/cyclone temperature 660 °R.

|     | SASS    |          | Flow Rate<br>Corrected | Te  | Flow Rate and mperature Corrected |
|-----|---------|----------|------------------------|-----|-----------------------------------|
| 10µ | cyclone | <b>+</b> | 11.5                   | ÷   | 8.9µm                             |
| Зμ  | cyclone | ÷ .      | 4.6                    | → ' | 3.5µm                             |
| lμ  | cyclone | +        | 1.6                    | +   | 1.3µm                             |

The above procedure is repeated for the small cyclones.

3.3 QUALITY CONTROL

A comprehensive quality control program was conducted as an integral part of the particulate emission field tests. The program featured:

- Calibration of cyclone at 400 °F and 4 scfm for the SASS train and 1 scfm for the Joy train.
- 2. Laboratory quality assurance procedures.
- Concurrent samples taken from the same source with separate but identical trains for precision checks.
- Calibrations of field test instruments with standard methods and frequent response-factor calibrations of laboratory instruments.

### 3.3.1 Cyclone Calibration

This section contains discussion taken from EPA 600/7-78-018, February 1978, "Source Assessment Sampling System: Design and Development" (Ref. 3-1).

The calibration of the SASS cyclones has been underway almost continuously since the development of the SASS. Initial efforts were conducted by Southern Research Institute using a Vibrating Orifice Aerosol Generator. Later calibration tests were performed by Acurex using a different method involving dispersions of polydisperse aluminum spheres. Results have been obtained with both methods that are reasonably consistent and are believed to represent the actual performance of the cyclones.

3-65

The object of the various cyclone calibration tasks was to determine the cyclone efficiency curve; from that curve can be obtained a commonly used figure-of-merit for the cyclone called the  $D_{50}$  cut diameter. Figure 3-33 illustrates these concepts. The efficiency of particle collection is plotted against the particle diameter. For each particle diameter, therefore, the effectiveness of the cyclone is determined. For example, Figure 3-33 shows that for this particulate (fictitious) device, if a large number of 2.5 µm diameter particles are introduced, 17.5% will be collected and 82.5% will pass through uncollected. The particle diameter at which half of the particles collected is the  $D_{50}$  cut diameter; Figure 3-33 shows the  $D_{50}$  cut diameter of that device to be 3.0 m. The  $D_{50}$  cut diameter, often abbreviated to "cut size", is commonly used as a rough indication of the collection cut-off of a cyclone.

Note that Figure 3-33 expresses particle diameters as aerodynamic particle diameters. It is important to distinguish aerodynamic diameters from physical diameters. The physical diameter is the dimension of the particle obtained by physical measurement, for example, with a microscope and reticle. For nonsymmetrical particles, the physical diameter of a given particle may have several different values, depending on the measurement axis chosen. The aerodynamic diameter (sometimes called the Stokes diameter) is defined as the diameter of the equivalent spherical particle of unit specific gravity having the same terminal settling velocity as the particle in question. The advantages of using the aerodynamic diameter to characterize the particles used for cyclone calibration are two-fold. First, each particle is uniquely characterized, independent of any choice of physical dimension. Second, and more important, since the basic cyclone separation mechanism depends on Stoke's Law, measuring particle diameter in terms of Stoke's Law behavior assures that calibration data will be valid over wide ranges of particle size, shape, and density.

A. Polydisperse Powder Cyclone Calibration Method--

From the size distribution data, it should have been possible to construct a cyclone efficiency vs particle size curve for the particle size range of the test dust. When this was attempted, it became apparent that

3-66





3-67

KVB 5906-783.

the experimental results were inconsistent, and in some cases, contradictory. For several experiments, for example, the mass median size of the cyclone cup catch was smaller than the feed material; the filter catch mass median diameter was even smaller. This result is clearly impossible unless the test dust is changing its characteristics during the test.

There is some evidence that the latter explanation is the cause of the unexpected test results. Figures 3-34, 3-35, and 3-36 are scanning electron micrographs of the feed, cyclone cup, and filter fractions. respectively, from a calibration run with the small cyclone. The magnification is 3000X. It is qualitatively apparent that the cyclone cup fraction is smaller than the feed fraction, as indicated by the X-ray Sedograph measurements. The most interesting point, however, is the appearance of the particles. The test dust particles (Figure 3-34) are generally smooth and show cleavage planes. The particles collected by the cyclone (Figure 3-35), however, are very rough and pitted, and seem to be rounded off. The filter fraction largely consists of very small particles that are not evident in the test dust. All of this seems to indicate that the test dust has been eroded and reduced in average size somewhere in the calibration apparatus. As velocities in the dust cloud outlet tube and heater are kept deliberately high (near sonic) to avoid reagglomeration of the dust, it is suspected that particle-particle contact in this region is causing the erosion. The hardness and frangibility of the test dust undoubtedly is also a major factor.

B. Cyclone Calibration Results--

The calibrated aerodynamic D<sub>50</sub> cut points for the three KVB (ARS) SASS cyclones without the swirl busters are 9.2, 3.8, and 1.3 µm for the large, middle, and small cyclones, respectively. The calibration curves are given in Figure 3-37. The calibration results of the KVB SASS cyclone set agree well with the calibration results of the EPA SASS cyclone set as compared in Figure 3-38.

The calibrated aerodynamic  $D_{50}$  cut points for the three KVB (ARB) Joy cyclones are 8.3, 1.9, and 0.6 µm for the large, middle, and small cyclones, respectively. The calibration curves are given in Figure 3-39. The solid lines are the results of the calibration by Acurex and the broken line (----) is the result of Southern Research Institute (SoRI) calibration data on a similar cyclone set. The dashed line (---) is an assumed projection.

3-68



Figure 3-34. SiO<sub>2</sub> test dust.



Figure 3-35. SiO<sub>2</sub> -- small dust cyclone cup catch.

3-69





KVB 5806-783





|                     | ameters, um |             |          |             |
|---------------------|-------------|-------------|----------|-------------|
|                     | K           | VB          | ,        | EPA         |
| Cyclone             | Physical    | Aerodynamic | Physical | Aerodynamic |
| Large <sup>a</sup>  | 5.61        | 9.2         | 6.20     | 10.2        |
| Medium <sup>a</sup> | 2.30        | 3.8         | 2.18     | 3.6         |
| Small               | 0.81        | 1.3         | 1.05     | 1.7         |
|                     |             | 3           |          |             |

<sup>a</sup>Swirl busters removed



3-72



Figure 3-39. Calibration results, KVB 1 cfm cyclone.

KVB 5806-783

The calibration results (curves) from Acurex for the KVB Joy cyclone set entails some questions:

1. Why does the small cyclone calibration curve stay at 100%?

Answer: The small cyclone collected 100% of all of the particle, in the size range of the calibration. The smallest particles were between  $0.6 - 0.7\mu$ m. Therefore the collection efficiency curve was assumed (as shown in Figure 3-39) and the D<sub>50</sub> cut point was taken from this curve to be  $0.6\mu$ m.

2. Why does the calibration curve for the large cyclone taper off at 70% collection efficiency?

Answer: Dr. D. Blake, Acurex, admits that the curve looks strange (nothing like he has even seen before), and said that 30% of the large particles in the size range (15-30µm) of the calibration dust got through the cyclone somehow. However, he could not explain how the large particles could do this and that there might have been an error in the calibration but he could not trace it. Therefore the dashed line is an assumed projection of what the curve should be.

3. Why are the two calibration curves different for the middle cyclone which has the same physical dimensions?

Answer: At first it was thought that possibly the physical dimensions of the two cyclones were different. Both SoRI and KVB remeasured the critical dimensions for their cyclone. However, no detectible difference in the cyclone dimensions was found. Blake of Acurex suggested that the calibration method was different and would give different results, i.e. Acurex's calibration method used a grain loading of 1.0-1.5 gr/DSCF whereas SoRI's method used a grain loading of 0.0001-0.001 gr/DSCF.

3.3.2 Laboratory Quality Assurance Program

A. Rockwell Air Monitoring Center-

The importance of applying quality assurance control practices to laboratory procedures was recognized very early by chemists; several texts of analytical chemistry devote chapters to this subject. Essentially, the

3-74

purpose of quality assurance is to answer the question of whether data generated by an analytical procedure can be regarded as typical samples from a single population of data. If such data can be so regarded, statistical control can be assumed. The most commonly used method of determining accurate representation consists of control charts. Control charts are sequential plots of various quality characteristics. For example, qualities shown might be a day-to-day plot of the average content of copper (Cu) in an ore, the normality of a standard solution, the calibration parameters of an instrument, etc. Control charts give a continuous record of the quality characteristic and trends in data. Also, sudden lack of precision can be made evident and causes may be sought by use of the charts. The necessity of comprehensive quality assurance techniques in air quality data generated either in the field or in the laboratory are very well known and have been recognized widely. No study can be considered complete without the application of some type of quality assurance procedure.

To ensure the quality of the results of the sulfate, nitrate, carbon and metal analysis by AA the following procedures are routinely incorporated into the analysis of each sample:

|    | <u>_Parameter</u>  |
|----|--------------------|
| 1. | Mass Determination |
|    | Ť                  |
|    | A. Sample          |
|    | g. Blank           |
| 2. | 50, NO, 6 NH       |

Hetals (Pb)

Analytical Balance Analytical Balance Technicon Auto-Analyzer II

Method

Analyzical Balance

.

Atomic Absorption

Oceanography Intl.

QA Measure Calibration checked daily against a standard weight. 10% are reweighed 10% are reweighed

Calibrated daily sgainst standard solutions. Control checks per tray of 40 samples.

- 1. Extract from previous trav
- 2. Blank extract
- 3. Standard solution
- 4. Duplicate exposed strips Calibration check daily
- against standard solutions. Control checks per run
- 1. Two repeat extract. 2. Two blank extracts (one
- spiked) 3. Two standard solutions 4. Two duplicato exposed
- Two duplicate exposed strips
- Calibrated daily squinst 'standard solutions
  Control checks every 10 secples
   10 secples
- s. 154 veriations ar re-analyzed

#### 3-75

| <b>.</b>             | TSP, Includ<br>Catch, | ing Impinger<br>gr/DSCF | \$ Std    |
|----------------------|-----------------------|-------------------------|-----------|
| Test #               | SASS Train            | Joy Train               | Deviation |
| 2                    | 0.0285                | 0.0278                  | 1.73      |
| · 4                  | 0.0093                | 0.0154                  | 34.92     |
| 7                    | 0.0427                | 0.0200                  | 51.2      |
| 10                   | 0.0026                | 0.0021                  | 15.04     |
| 16                   | 0.0263                | 0.0199                  | 19.59     |
| 21                   | 0.0092                | 0.0071                  | 18.22     |
| 22.                  | 0.0109                | *                       | × .       |
| 35                   | 0.0594                | 0.0649                  | 6.26      |
| 38                   | 0.0170                | 0.0136                  | 15.7      |
| 25                   | 0.0075                | 0.0078                  | 2.77      |
| 27                   | 0.0037                | 0.0033                  | 8.08      |
| . 31                 | 0.0025                | 0.0028                  | 8.00      |
| 1 ler                | 0.0672                | 0.0896 (Test            | 3 20.2    |
| E BOLX               | 0.051                 | 0.0365 Method<br>0.066) | 5 23.43   |
|                      |                       |                         |           |
| / 11                 | 0.0091                | 0.0078                  | 10.88     |
| 12                   | 0.0072                | 0.0085                  | 15.23     |
| 13                   | *                     | 0.0088                  |           |
|                      | *                     | 0.0084                  |           |
| <sup>55</sup> H g 24 | 0.0112                | 0_0144                  | 17.68     |
| 32                   | 0.0124                | 0.0086                  | 25.59     |
| \ 33                 | 0.0132                | 0.0133                  | 0.53      |
|                      |                       |                         |           |

TABLE 3-3. REDUNDANT SAMPLING RESUL'S

\*TSP data known to be in error.

Average 16.4

3-78 .

XVB 5806-783

10 samples for carbon analysis

| 9 |    | **   | sulfate analysis           |    | ,       |      |   |
|---|----|------|----------------------------|----|---------|------|---|
| 7 |    |      | nitrate analysis           | ,  |         | 7    |   |
| 4 |    | . 19 | XRF analysis for elements  |    |         |      |   |
| 3 | ** |      | atomic absorption analysis | to | compare | with | 1 |

Table 3-4 lists the results for redundant carbon analysis. For each set of replicate analyses the percent of the standard deviation (30) on the mean was calculated. The average of these values is 18%. Therefore, the precision of the carbon analysis is  $\pm$  20%, to be conservative. Table 3-5 lists the results for redundant sulfate and nitrate anlaysis. The average of 30for sulfate analysis is 3.0. Again being conservative, the precision of the sulfate analysis is  $\pm 5$ %. A conservative average for the nitrate analysis is  $\pm 30$ %. Table 3-6 lists the results for the redundant XRF analysis of the metals. In all cases listed the results agree with the repeat analysis within the error limit stated for each element.

Table 3-7 lists the results for the chemical composition of the particulate samples, comparing the XRF analysis with the AA analysis. For solid particulate samples (cyclone and filter catches) there is good agreement between the two methods of analysis.

C. Blank Runs on the Sampling Trains--

Twice during Phase II (the field testing part of the program), both sampling trains were treated as though a sample has been taken, although the sampling train has never left the lab. These were called blank runs. The objectives for the blank runs were:

- Determine if any material was being left in the trains from the previous test.
- 2) Evaluate the techniques of the technician used in the lab.
- Determine if material was being transferred from the methyl chloroform to the water or vice versa during the extraction of the impinger condensate.

KVB 5806-783

|             | Total          | 8 Standard | Volatila    | & Standard |
|-------------|----------------|------------|-------------|------------|
| Sample No.  | Carbon : %     | Deviation  | Carbon &    | Deviation  |
| Julipic III | Curron, o      | Devideron  | i carbon, s | 00010010   |
| 8J-2S       | 1. < 2         |            | < 2         | ,          |
|             | 2. < 2         | ~~~        | < 2         |            |
| 10.40       |                |            |             |            |
| 15-45       | 1. 85.3        | 1.8        |             | 1 3        |
|             | 2. 74.1        |            |             | · ·        |
| 8           | 7. 01.4        |            |             |            |
| 15-35       | 1. 67.7        | 14.0       |             |            |
| *           | 2. 72.5        |            |             | ж          |
|             | 3. 69.1        |            |             |            |
|             | 4. 51.0        |            |             |            |
| ř.          | <b>D.</b> /4./ |            |             |            |
| 1S-2S       | 1. 43.7        | 19.1       |             |            |
|             | 2. 29.7        |            |             | č.         |
|             | 3. 39.7        |            |             |            |
| 25-45       | 1. 85.8        | 2.9        |             |            |
| 10          | 2. 82.4        |            | '           |            |
| 35-45       | 1 79 7         | 1.7        |             | *          |
| 30 40       | 2. 77.8        |            |             |            |
|             |                |            |             |            |
| 3S-2S       | 1. 31.8        | 32.0       |             |            |
|             | 2. 50.4        |            |             |            |
| 193-23      | 1. 11.2        | 9.7        | 10.2        | 11.6       |
|             | 2. 9.5         | a          | 8.1         |            |
|             | 3. 9.5         |            | 9.0         | r.         |
| 30-5-25     | 1. 48.6        | 17.0       | 46.6        | 20.5       |
|             | 2. 60.7        |            | 56.9        | 28.        |
|             | 3. 39.5        |            | 36.8        |            |
| ĩ           | 4. 50.4        |            | 49.0        |            |
|             | 5. 41.4        |            | 35.4        |            |
|             | 6. 41.4        |            | 35.4        |            |
| 263-25      | 1, 5,7         |            | 2.3         |            |
|             | 2. 5.9         | 48.5       | 1.1         | 34.7       |
|             | 3. < 2         |            | < 2         |            |
|             |                |            | L           |            |

TABLE 3-4. REDUNDANT CARBON ANALYSIS

Average 18%

3-80

|            | ĩ          | <pre>% Standard</pre> | . 8          | Standard |
|------------|------------|-----------------------|--------------|----------|
| Sample No. | Sulfate, % | Deviation             | Nitrate, % D | eviation |
|            |            |                       |              |          |
| 125-IC*    | 1. 15.8    | 4.8                   |              |          |
| · · · · ·  | 2. 16.8    |                       |              |          |
|            | 3. 17.4    |                       |              |          |
| 11c-TCt    | 1 15 0     |                       |              |          |
| 112-10.    | 2 16 1     | <b>T • T</b>          |              |          |
|            | 2. 10.1    | 8                     |              |          |
| 25-45      | 1. 6.2     | 0.2                   | 0.07         | 18.3     |
|            | 2. 6.0     | •••                   | 0.12         | , 1010   |
|            |            |                       |              |          |
| 15-35**    | 1. 3.5     | 1.3                   | 0.19         | 77.1     |
|            | 2. 3.1     |                       | 0.46         |          |
| 96 E       |            |                       |              |          |
| 35-45**    | 1. 3.6     | 0.28                  | 0.09         | 0        |
| 3          | 2. 3.5     |                       | 0.09         |          |
| ,          |            | ,                     | 1<br>        |          |
| 19J-2S     | 1. 8.2     | 4.4                   | 0.42         | 67.0     |
|            | 2. 8.7     | ,                     | 0.15         | *        |
|            |            | 9                     |              |          |
| 8J-2S      | 1. 0.06    | 18.1                  | 0.02         | 12.9     |
|            | 2. 0.09    |                       | 0.05         | x        |
|            |            |                       |              | ,        |
| 29J-2S     | 1. ND      | 0                     | ND ,         | Ο,       |
|            | 2. ND      |                       | ND           |          |
| 30-5-29    | 1 177      |                       | NTO          | 0        |
| 50-5-23    | 2 ND       | U                     | ND           | . 0      |
|            | ··· 111    |                       | . ND         |          |
|            | Average    | 2.9                   | Average      | 25.0     |

TABLE 3-5. REDUNDANT SULFATE AND NITRATE ANALYSIS

ND = Not Detected

\*Tests 1 and 12 were performed on the same utility boiler at the same sampling location.

\*\*Tests 1 and 3 as above.

3-81

| Sample Number | 29J-2S  | Repeat<br>29J-2S | 19J-2S   | Repeat<br>19J-2S | 8J-2S   | Repeat<br>8J-2S | 30-5-25 | Repeat<br>30-5-2S |
|---------------|---------|------------------|----------|------------------|---------|-----------------|---------|-------------------|
| -1<br>-1      | t       | t                |          |                  |         |                 |         |                   |
| Calcium       | 1.9/0.3 | 1.9/0.3          | 2.2/0.4  | 1.7/0.5          | t       | t               |         |                   |
| Chlorine      |         |                  | 5/2      | 6.7/2            |         | ч.<br>К         |         |                   |
| Chromium      | t       | t                |          |                  |         |                 |         | ۰.                |
| Iron          | 4.3/0.5 | 4.0/0.5          | 0.87/0.1 | 0.8/0.1          | 2.4/3   | 2.2/0.2         |         | τ.                |
| Manganese     | t.      | ٤                |          |                  |         |                 |         |                   |
| Potassium     | 1.5/0.2 | 1.6/0.3          | 5.2/1    | 3.8/1            | 1.2/0.1 | 0.9/0.1         |         |                   |
| Silicon       | >11     | >10              |          |                  | 17/4    | 15/4            |         |                   |
| Sulfur        | <3      | . <2             | 8.1/3    | 7/3              |         |                 | 2       | t                 |
| Titanium      | t       | t                |          |                  | t       | t               |         |                   |
| Zinc          | *       |                  | ' t      | t                |         |                 |         |                   |

# TABLE 3-6. ELEMENT COMPOSITION OF PARTICULATE SAMPLES BY XRF ANALYSIS IN PERCENT FOR REDUNDANT ANALYSIS

2/01 reads 2 + 0.1

3-82
|               | 235-       | 25     | 26J-      | 45     | . 115-   | 55   |
|---------------|------------|--------|-----------|--------|----------|------|
|               | (10µ in Cy | clone) | (lµ in Cy | clone) | (Filt    | er)  |
| Sample Number | XRF        | AA     | XRF       | AA     | XRF      | AA   |
|               | 1 1 (0 )   |        | 1 1 (0 1  | 1 17   |          |      |
| Calcium       | 1.1/0.3    | τ      | 1.1/0.4   | 1.1/   | 12.2/1.0 | 13.5 |
| Chlorine      |            |        | 14/5      | 31     |          |      |
| Cobalt        |            |        |           |        | t        | t    |
| Copper        |            |        | 1.6/0.4   | 1.4    |          | t    |
| Iron          | 3.4/0.4    | 2.1    | 2/0.3     | 2.2    | 4.9/0.06 | 4.i  |
| Lead          | t          | t      | 13/2      | 12.4   | м<br>К   | t    |
| Nickel        | 2.5/0.3    | 1.2    |           |        | 10.6/1.1 | 8.4  |
| Potassium     |            | t      | 9/4       | 1.8    | t        | t    |
| Vanadium      | t          | t      | 6         | t      | 2.1/0.3  | 1.5  |
| Zinc          | t          | t      | t         |        | t        | t    |
|               |            | x      |           |        |          |      |

### TABLE 3-7. XRF VS AA FOR ELEMENT COMPOSITION OF PARTICULATE SAMPLES IN PERCENT

t denotes <1.0%

 $x \in \mathcal{X}$ 

Where values indicated as x/y = x is the measured percent composition and y is the percent variation.

In both cases for the Joy and SASS blank runs, the filters and cyclone wash residues showed no significant weight gain. The probe wash residues had a gain in weight for an average of about 1.5 mg. If it is assumed that this gain is material left in the probe from the previous test, then it can be said that less than 2% of the matter collected in the probe remains in the probe. The impinger condensates were extracted as normal. Normally, the distilled water when boiled dry leaves a residue of 0.006% of the water weight. After the distilled H<sub>2</sub>O was subjected to methyl chloroform extraction, the residue was reduced to approximately 0.004%. Although this result is interesting, it has no effect on the results of the field test samples.

#### 3.3.4 Equipment Maintenance and Calibration

Analytical Balance--One of the most important tools used in measuring fine particulates is the analytical balance. To assure the quality of the work, KVB's analytical balance was serviced and certified at the beginning of the program and half way through it.

Dry-gas Meter--The dry gas meter is another critical instrument used. The dry gas meters used in the sampling trains were checked against one another and against a recently calibrated dry-gas meter four times through the course of the program (once every two months).

Pitot Tubes--The pitot tubes used with the probes and those used to measure stack velocities were checked once a month in a clean air stream against a calibrated standard type pitot tube to check the pitot correction factors. Also the magnehelic gauges which are used to measure the pressure drop across the pitot tube were checked against a draft gauge.

Thermocouples--The thermocouples and pyrometers and thermometers used for the particulate program were checked once a month against constant boiling liquids.

Vacuum Leaks--Vacuum leaks in the sampling system were checked for as part of the sampling procedure for each test.

SECTION 3.4



This section contains the forms referred to in

Sections 3.1 through 3.3.4.

TEST PREPARATION AND PLANT VISIT

| Test: firm on date hr                                            |
|------------------------------------------------------------------|
| Firm Name                                                        |
| Address                                                          |
| Person Contacted Name                                            |
| Title                                                            |
| Process Product                                                  |
| Equipment to be Tested APCD Permit                               |
| Size                                                             |
| Make                                                             |
| Control Equipment, if any APCD Permit                            |
| Size                                                             |
| Make                                                             |
| Process Material Information (quantitative, qualitative, source) |
| Process Weight Availability                                      |
|                                                                  |
| Operating Schedule of Equipment, cycle, type                     |
| Operating Schedule of Plant                                      |
| Plant Personnel Schedule (Shifts)                                |
| Process Specifics                                                |
|                                                                  |
| Process Control Location                                         |
| Access                                                           |
| Process Typicity (Representative of Normal Operation):           |
| Annual Process Time Rate: hr/dayday/week                         |
| wks/year                                                         |
| Process Diagram, Drawings Availability                           |
| Plant Entry and Exit                                             |
| KVB 5806-783<br>3-86 5806-6 Page 1 of 3<br>9/28/77               |

Page 2 5806-6 9/28/77

| Plant Restrictions in Access                                    |                 |
|-----------------------------------------------------------------|-----------------|
|                                                                 |                 |
| Vehicle Access                                                  |                 |
| Parking                                                         |                 |
| Plant Safety Requirements                                       |                 |
|                                                                 |                 |
| Plant Engineering and Maintenance Engineering Help During Test  |                 |
| Their Liaison, Name:                                            |                 |
| Equipment Access                                                |                 |
| Operator Access (in Charge)                                     |                 |
| Operator's Permission (by Company Policy) to Supply Information |                 |
| Operational Fluke Indicators of Down, Start-up, Stop, etc:      |                 |
| Revisit Contact, Name                                           |                 |
| Title                                                           |                 |
| Test Documentation Photo Permit                                 |                 |
| Test Synchronization with Plant Running                         |                 |
| · · · · ·                                                       |                 |
| (if overtime by test crew on rigging, take-down. etc.)          |                 |
| Communication to Outside                                        |                 |
|                                                                 |                 |
| Emergency Procedures, if any, Designated:                       |                 |
|                                                                 | and the second  |
| TEST SETUP                                                      |                 |
| Best Location of Test Stations                                  |                 |
| Source Geometry: Shape                                          |                 |
| Diameter                                                        |                 |
| Height                                                          |                 |
| Test Area Access at Height                                      |                 |
| through                                                         |                 |
| Test Holes Size                                                 | Ŷ.              |
| Height Above Level Area                                         |                 |
| Width of Platform                                               |                 |
| General Space Availability                                      |                 |
|                                                                 | e <u>terrin</u> |
|                                                                 | 707             |

KVB 5806-KVB, INC.

Page 3 5806-6 9/28/77

Estimate of Source: Temperatures, Inlet

| IN OUT gas velocity gas toxicity gas toxicity mission load noise dust Equipment Hauling to Test Area Electricity Availability: 30A, 60A, 110 V eachat Distance to be assisted in hook-up by Water Availability Cleanup Availability |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| gas velocity<br>gas toxicity<br>emission load<br>dust<br>Equipment Hauling to Test Area<br>Electricity Availability: 30A, 60A, 110 V each at Distance<br>to be assisted in hook-up by<br>Water Availability<br>Cleanup Availability |   |
| gas toxicity                                                                                                                                                                                                                        |   |
| emission load                                                                                                                                                                                                                       |   |
| noise<br>dust<br>Equipment Hauling to Test Area<br>Electricity Availability: 30A, 60A, 110 V each at Distance<br>to be assisted in hook-up by<br>Water Availability<br>Cleanup Availability                                         |   |
| dust<br>Equipment Hauling to Test Area<br>Electricity Availability: 30A, 60A, 110 V each at Distance<br>to be assisted in hook-up by<br>Water Availability<br>Cleanup Availability                                                  |   |
| Equipment Hauling to Test Area                                                                                                                                                                                                      |   |
| Electricity Availability: 30A, 60A, 110 V each at Distance to be assisted in hook-up by<br>Water Availability<br>Cleanup Availability                                                                                               |   |
| Electricity Availability: 30A, 60A, 110 V each at Distanceto be assisted in hook-up by<br>Water Availability<br>Cleanup Availability                                                                                                |   |
| to be assisted in hook-up by                                                                                                                                                                                                        |   |
| Water Availability<br>Cleanup Availability                                                                                                                                                                                          |   |
| Cleanup Availability                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                     |   |
| Nearest Source of ICE Machine at                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                     | • |
| DATE:BY                                                                                                                                                                                                                             |   |

KVB, INC.

KVE 5806-783

## Sample Code\_

KVB .

-----

Firm and Unit

۰.

Test No. \_

Sampling Station \_\_\_\_\_

\_Date \_\_\_\_\_ GAS VELOCITY DATA Vel (ft/sec)=2.9/AP(°K)

Page <u>F-</u>

Time Start Vel.Head Temp. Vel. Vel.Head Temp. Vel.Head Temp. Vel. Vel. In. H<sub>2</sub>O Ft/Sec. In.H<sub>2</sub>O °F Ft/Sec. In.H<sub>2</sub>O °F Ft/Sec. °F Point A. Average Velocity(Traverse)Ft/Sec \_\_\_\_ B. Av. Velocity(Ref. Point) Ft/Sec



3-89

a for the second second of a second of

KVB 5806-783 KVB 5804-7

3/7-5

| · .                | Sample Code                           |          |
|--------------------|---------------------------------------|----------|
| Firm Name and Unit | · · · · · · · · · · · · · · · · · · · | •        |
| Test No.           | ,                                     | Page D-2 |
| Sampling Station   |                                       | Date     |

SPOT MONITORING DATA BY DRAEGER OR TLV SNIFFER

|                                       |                                       |                                       | 1        | CONCENTRA                             | TION     |
|---------------------------------------|---------------------------------------|---------------------------------------|----------|---------------------------------------|----------|
| INSTRUMENT USED                       | FUNCTIONAL DATA                       | COMPOUND NAME                         | maa      | Grs/SCF                               | Lbs/Hour |
|                                       | 2                                     |                                       |          |                                       |          |
| ······                                |                                       |                                       |          |                                       | •.       |
|                                       |                                       |                                       | <u> </u> |                                       |          |
|                                       | l<br>I                                |                                       | [        | 1                                     |          |
| • • •                                 | 1                                     |                                       | <br>     |                                       | L        |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          | }                                     |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       | 1        |
| · · · · · · · · · · · · · · · · · · · |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       | 1        |
|                                       |                                       |                                       |          | i                                     |          |
|                                       |                                       |                                       | 1        |                                       |          |
|                                       | · · · · · · · · · · · · · · · · · · · |                                       | <u> </u> |                                       |          |
|                                       |                                       | 1                                     |          |                                       |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          | 1                                     | 1 .      |
|                                       |                                       | · · · · · · · · · · · · · · · · · · · |          |                                       | 1        |
|                                       |                                       |                                       |          |                                       |          |
|                                       | ·                                     |                                       |          |                                       |          |
|                                       | ×                                     |                                       |          |                                       |          |
|                                       |                                       |                                       |          | 1                                     | 1        |
|                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |          | · · · · · · · · · · · · · · · · · · · |          |
|                                       |                                       | 1                                     |          |                                       |          |
|                                       |                                       |                                       |          |                                       |          |
|                                       |                                       |                                       |          |                                       | -        |

9/76

KVB 5804-5

3-90

| KVB _NIT<br>OPERATORS<br>Train type :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FUEL                                                                                                                                                 | - TEST RUBBER<br>DATE<br>AMBIENT TEMPERATUR<br>METER VOL. (START/E | ND)                                                                                                         | Page<br>Of                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Fuel Analysis (& By Weight)C = H = S = O =N = $CO_2 = H_2O =$ ASH = INERT =DENSITY = HHV =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nomograph Setup<br>Pmeter= C =<br>Pstack= Tstack<br>Tweter= $\triangle P$ =<br>$\triangle H_g$ = Noz(Ideal)=<br>Noz(Actual)=<br>$H_2O$ = $\bigvee$ = | Imp.       Vol. (End)         #1                                   | Vol. (Start)       △Vol. (ml)                                                                               | Filter#<br>Particulate Wts<br>Filtermg<br>Acetonemg<br>Totalmg      |
| Image: Sampling Time     Particulate     Condensity       Per Point, Min.     Wt., mg     Vol.,       Image: Sampling Time     Image: Sampling Time     Vol.,       Image: Samp | 31 41<br>sate Fuel Flow Load<br>ml gal/hr MW<br>41<br>41                                                                                             | 51 61<br>Cpitot Stack Press.<br>In.Hg-Gauge<br>51<br>51            | TEST RE<br>TEST REBarometric<br>PressureTest Averages:<br>$\Delta P_5 = 1$<br>$\Delta H = 1$ 61Sample Vol.= | SULTS<br>stack **F<br>meter **F<br>Ft <sup>3</sup>                  |
| Sample<br>Point Time METER CONDITIONS<br>A P <sub>5</sub> A H Meter F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reading Stack Probe Ov                                                                                                                               | en In Out In                                                       | C.     Vac.     Percent       OUT     MWstack       Velocity       Total Sa       Time       ISOKINET       | 0 <sub>2</sub> =<br>gas =(~28<br>=ft/se<br>umple<br>=min.<br>PICS = |
| ХУВ 5806-783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                                                    | COMMENTS                                                                                                    | ulate Emissions<br>1bs/10 <sup>6</sup> BT<br>:<br>:                 |

ļi:

|            | Sample Code                                           |       |                                                  |
|------------|-------------------------------------------------------|-------|--------------------------------------------------|
|            | Firm and Unit                                         |       |                                                  |
|            | ,                                                     |       |                                                  |
|            | Test No.                                              | Page  |                                                  |
|            | Sampling Station                                      | Date  |                                                  |
|            |                                                       |       |                                                  |
|            | WATER VAPOR AND GAS DENSITY CALCULATIONS              | 3     |                                                  |
|            |                                                       |       | e.                                               |
| i.         |                                                       |       |                                                  |
|            | Percent Water Vapor in Gases                          | ,     |                                                  |
|            |                                                       |       |                                                  |
| <b>A</b> . | Gas Pressure at Meter, In. Hg (Absolute)              |       |                                                  |
| з.         | Vapor Pressure of Water at Impinger Temp., In.Hq      |       |                                                  |
| c.         | Volume of Metered Gas, Cu. Ft.                        |       |                                                  |
| D.         | Volume of Water Vapor Metered, BXC/A, Cu.Ft.          |       |                                                  |
| ε.         | Volume of Water Vapor Condensed, Cu.Ft.*              |       |                                                  |
| F.         | Total Volume of Water Vapor in Gas Sample, D+E,Cu.Ft. | · · · | مربق میں اور |
| G.         | Total Volume of Gas Sample, C+E, Cu.Ft.               |       | ,                                                |
| н.         | % Water Vapor in Sampled Gas, 100 x F/G               |       | · · · · · · · · · · · · · · · · · · ·            |
| * 5        | See D on sampling train data sheet                    | ų.    |                                                  |
|            | Gas Density Correction Factor                         | 3<br> |                                                  |

| Component            | Volume Percent X | Moisture Colle | ction X Mol.Wt.= | Weight Per Mol<br>Wet Basis |
|----------------------|------------------|----------------|------------------|-----------------------------|
| Water                |                  | 1.0            | 18.0             |                             |
| CarbonDioxide        | Dry Basis        |                | 44.0             |                             |
| CarbonMonoxide       | Dry Basis        |                | 28.0             |                             |
| Oxygen               | Dry Basis        |                | 32.0             |                             |
| Nitrogen +<br>Inerts | Dry Basis        | 7              | 28.2             | •                           |
|                      | 1                |                |                  | *                           |
| ~                    | 5 9              |                |                  | . <sup>6</sup> 1            |
|                      |                  | Average        | Molecular Weight |                             |

J. Density of Gas Referred to Air =  $\frac{Av.Mol.Wt.}{28.95}$ K. Gas Density Correction Factor =  $\sqrt{\frac{1.00}{J}}$  = 3-92

KVB 5806-783 KVB 5804-4

9/76

KVB Test No.

KVB

page No. \_\_\_

# ENGINEERING PROCESS FIELD REPORT

| co. Name:       |           |        | 1     |          |          |                                                                                                                 |                               | Date                                             |
|-----------------|-----------|--------|-------|----------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|
| Address         | ÷ •       |        |       |          |          |                                                                                                                 |                               | APCD Dermit No                                   |
| Source of par   | ticulates |        |       |          |          | Type                                                                                                            |                               |                                                  |
| Point of observ | ration    |        | _     |          |          | Pt. of                                                                                                          | discharge                     | · · · · · · · · · · · · · · · · · · ·            |
| weather         | wi        | ind .  |       |          | time fro | m                                                                                                               | to                            |                                                  |
| Co. Process or  | Pit.engr  |        |       |          |          |                                                                                                                 |                               |                                                  |
| TIME            | Rinkz     | aval   | %     | color    |          |                                                                                                                 |                               |                                                  |
| •               | mii       | user.  | Rncin |          | Pn       | xess                                                                                                            | obser ve                      | ation                                            |
|                 | ŀ         |        |       | а.<br>1  |          | 1                                                                                                               |                               |                                                  |
|                 |           | $\top$ |       |          |          |                                                                                                                 |                               |                                                  |
|                 |           | 1      |       |          |          |                                                                                                                 |                               | ×                                                |
|                 |           |        |       |          |          |                                                                                                                 | میں ایک ایک بر ایک بری میں کا |                                                  |
| 1.1             |           | 1      |       |          |          |                                                                                                                 |                               | an a that an |
|                 | 1         | T      |       |          |          |                                                                                                                 |                               |                                                  |
|                 |           |        | •     |          |          |                                                                                                                 |                               |                                                  |
|                 |           |        |       |          |          |                                                                                                                 |                               | unar a                                           |
|                 |           |        |       |          |          |                                                                                                                 |                               |                                                  |
|                 |           |        |       |          |          |                                                                                                                 |                               |                                                  |
|                 |           |        | 4     |          |          | ,<br>,                                                                                                          |                               |                                                  |
|                 |           |        | . *   |          |          |                                                                                                                 | l'                            |                                                  |
|                 |           | 1_     |       | -        |          |                                                                                                                 |                               |                                                  |
| -               |           | Ļ      | ļ     |          |          |                                                                                                                 |                               | 2110 C. 1000 B. 1000                             |
|                 |           | +      |       | <u> </u> |          |                                                                                                                 | <u>.</u>                      |                                                  |
| <u> </u>        |           | 1-     |       |          |          |                                                                                                                 | -                             | , .<br>                                          |
|                 |           | +-     |       |          | -        |                                                                                                                 |                               |                                                  |
|                 | <u> </u>  | +      |       |          |          |                                                                                                                 | ,                             |                                                  |
| (0108           |           | +-     |       | <u> </u> | <u> </u> | 1                                                                                                               | · · · · · ·                   | · · · · · · · · · · · · · · · · · · ·            |
| B +blac         | k L       | 1      | 1 10  | cal ti   | me of    | discha                                                                                                          | arge of                       | opacity                                          |
| w = whit        | 2         | ×.     |       | Sign     | ohre     |                                                                                                                 |                               | ,<br>                                            |
|                 |           |        |       |          |          | '.                                                                                                              | KVB                           | · · · ·                                          |
|                 |           |        |       |          |          | and the second secon |                               |                                                  |

3-93

### KVB. INC.

Test No. to

Test Engr.

MOBILE LABORATORY DATA

| Test Number                             |     | Date    |           |                                       |   |
|-----------------------------------------|-----|---------|-----------|---------------------------------------|---|
| Unit Number                             |     | Owner   |           |                                       |   |
| Fuel                                    | ē.  | Locat   | ion       |                                       |   |
| Capacity (k#/hr)                        |     | Ident:  | ification |                                       |   |
| Furnace Type                            |     | Burner  | Type      |                                       |   |
|                                         |     |         |           | 1                                     |   |
| 1. Test Number                          |     | ·       |           | · · · · · · · · · · · · · · · · · · · |   |
| 2. Load (k#/hr) of Btu/hr               |     |         |           |                                       |   |
| 3. Flue Diameter (ft)                   |     |         |           |                                       |   |
| 4. Probe Position                       |     |         |           |                                       |   |
| 5. Process Rate                         |     |         |           |                                       |   |
| 5.                                      |     | •       |           | <u>,</u> ,                            | ) |
| 7. Water Content (% vol.)               |     |         |           |                                       | i |
| 8. Oxygen (%)                           |     |         |           |                                       |   |
| 9. NOx(hot_line) reading/@3% 02(ppm)    |     |         |           |                                       | i |
| 10. NO(hot line) reading/@3% G2(ppm)    |     |         |           |                                       |   |
| 1. NO2(hot line) reading/03% O2(ppm)    |     |         |           |                                       |   |
| 12. NOx dry 3 3% 0, (hot line) prm      |     |         |           | 1                                     |   |
| 13. NO dry @ 3% O2 (hot line) (ppm)     |     |         |           |                                       |   |
| 14. NO2 dry @ 3% 02 (hot line) (ppm)    |     |         |           |                                       |   |
| 15. Carbon Dioxide (%)                  |     |         |           |                                       |   |
| 16. Carbon Monoxide (ppm) uncor./cor.   |     |         |           |                                       |   |
| 17 - Hydrocarbon (ppm)                  |     |         |           |                                       |   |
| 18. Sulfur Trioxide (ppm)               |     |         |           | ÷                                     |   |
| 19. Sulfur Dioxide (ppm)                |     |         |           |                                       |   |
| 20. Total Particulate (g/Mcal)          |     |         |           |                                       |   |
| 21. Total Particulate (lb/Mbtu)         |     |         |           |                                       |   |
| 22. Smoke Number                        |     |         |           |                                       |   |
| 23. NO(cold line) reading/dry @3% (ppm) |     | 1       |           |                                       |   |
| 24.                                     |     | ······· |           |                                       |   |
| 25. Atmos. Temp. (F*/C*)                | . A |         |           |                                       |   |
| 26. Dew Point Temp. (5°/C°)             | 9   |         |           |                                       |   |
| 27. Atmos. Pressure (in.He)             |     |         |           |                                       |   |
|                                         |     |         |           |                                       | 1 |
| -                                       |     |         |           |                                       |   |
|                                         |     | 1       | 1         |                                       | 1 |

KVB 5806-783 60-3 KVB .

Test No.

Engr.

| est Number                                          | _ Date    |      | ų.                 |    |   |     |            |              |         |   |
|-----------------------------------------------------|-----------|------|--------------------|----|---|-----|------------|--------------|---------|---|
| nit Number                                          | Owner     |      | •                  |    |   |     |            | anterație, s |         |   |
| `uel                                                | _ Locatio | on   |                    |    |   |     |            |              |         |   |
| Tapacity (K#/hr)                                    |           |      |                    |    |   |     |            |              |         |   |
| urnace Type                                         | Burner    | Type |                    |    |   |     |            |              | · · · · |   |
| 2 <sup>6</sup> 2                                    |           |      |                    |    |   | • . |            |              |         |   |
| L. Test Number                                      |           |      |                    |    |   |     |            |              |         | 3 |
| 2. Load (K#/hr)                                     |           |      |                    |    |   |     |            |              |         |   |
| G. Control Method Auto/Hand                         |           |      | a constantibularia |    |   |     |            |              | 1       |   |
| . Staged Air Port Open                              |           |      |                    |    |   |     |            |              |         |   |
| 5.                                                  |           |      |                    |    |   |     |            |              |         |   |
| 5. Oxygen/Air Level (%)                             |           |      |                    |    |   |     |            |              |         |   |
| 7. Drum Pressure (psig)                             |           |      |                    |    |   |     |            |              | 1       |   |
| <ol> <li>Final Steam Press/Temp(psig/°F)</li> </ol> |           |      |                    |    |   |     | 1. Sec. 1. |              |         |   |
| . Fuel-Air Ratio Setting                            |           |      |                    |    |   |     |            |              |         |   |
| 10. Feedwater Press/Temp(psig/°F)                   |           |      |                    |    |   |     | w.         |              |         |   |
| <pre>Ll. Air Flow Primary/Secondary( )</pre>        |           |      |                    |    |   |     | •          |              |         |   |
| 12. Air Temp Primary/Secondary(°F)                  |           |      |                    |    |   |     |            |              |         |   |
| 13. Fan Setting FD/ID                               |           |      |                    |    |   |     |            |              |         |   |
| 14. Register Setting (topen C.C.)                   |           |      |                    |    |   |     |            |              |         |   |
| 15. Fuel Flow (lb/hr)*                              |           |      |                    | ×. |   |     |            |              |         |   |
| 16. Fuel Press/Temp (psig/°F)                       |           |      |                    |    |   |     |            |              |         |   |
| 17. Fuel Atomization Press (psig)                   |           |      | r.                 |    |   |     |            |              |         |   |
| 18. Pressure Furnace/Windbox (iwg)                  |           |      |                    |    | 8 | ľ   |            |              |         |   |
| 19. Smoke Meter                                     |           |      |                    |    |   |     |            |              |         |   |
| 20. Stack Temp. (°F)                                |           |      |                    |    |   |     |            |              |         |   |
| 21. Boiler Outlet Press. (iwg).                     |           |      |                    |    |   |     |            |              |         |   |
| 22. Boiler Outlet Temp. (°F)                        |           |      |                    |    |   |     |            |              |         |   |
| 23. Air Heater Inlet Temp.(°F)                      |           |      |                    |    |   |     |            |              |         |   |
| 24. Air Heater Outlet Temp. (°F)                    |           |      |                    |    |   |     |            |              |         |   |
| 25. Windbox Temperature (°F)                        |           |      |                    |    |   |     |            |              |         |   |
| 26.                                                 |           |      |                    |    |   |     |            |              |         |   |
| 27.                                                 |           |      |                    |    |   |     |            |              |         |   |
| 28.                                                 |           |      |                    |    |   |     |            |              |         |   |

|               |                                                                                                                 | ×              | Χ.                                     |                                                                                                                 |        |
|---------------|-----------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
|               |                                                                                                                 |                |                                        |                                                                                                                 |        |
|               | Sample Code                                                                                                     |                | ······································ |                                                                                                                 |        |
| e.            | Toctod by-                                                                                                      | *              |                                        | 8                                                                                                               |        |
|               | Tested by.                                                                                                      |                |                                        | ,                                                                                                               |        |
| x.            |                                                                                                                 | <i>a</i> .     | Date                                   |                                                                                                                 |        |
|               | STATEMENT OF PROCE                                                                                              | SS WEIGHT OR   | OLUME                                  |                                                                                                                 |        |
|               | · · · · · · · · · · · · · · · · · · ·                                                                           |                | 1                                      |                                                                                                                 |        |
| Firm Name     |                                                                                                                 |                |                                        |                                                                                                                 |        |
| -             |                                                                                                                 |                |                                        |                                                                                                                 |        |
| Address _     | · · ·                                                                                                           |                |                                        |                                                                                                                 |        |
| DATA ON OPER  | ATING CYCLE TIME:                                                                                               |                |                                        |                                                                                                                 |        |
| Start of Open | ration, Time                                                                                                    |                | 2 yr <sup>16</sup>                     |                                                                                                                 |        |
| End of Operat | tion, Time                                                                                                      |                |                                        |                                                                                                                 |        |
| Elapsed Time  | , Minutes                                                                                                       |                |                                        | 8                                                                                                               |        |
| Idle Time Du  | ring Cycle,Min.                                                                                                 |                |                                        | ×                                                                                                               |        |
| Net Time of   | Cycle, Minutes                                                                                                  |                |                                        |                                                                                                                 |        |
| DITL ON MATE  | TAL CHARGED TO PROCES                                                                                           | SS DURING OPER | ATING CYCLE:                           |                                                                                                                 |        |
| DATA ON MALE. | RIAL CHARGED TO TROCK                                                                                           |                |                                        |                                                                                                                 | 150.0  |
| :aterial      |                                                                                                                 |                | Weight                                 |                                                                                                                 | 155, 9 |
| Material      |                                                                                                                 |                | or                                     |                                                                                                                 | lbs,q  |
| Material      |                                                                                                                 |                | Volume                                 | M                                                                                                               | 1DS, 9 |
| Material      | - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 | ,              |                                        | and the local second | 1be (  |
| Material      |                                                                                                                 |                |                                        |                                                                                                                 | lbs, c |
| Material      |                                                                                                                 |                |                                        |                                                                                                                 | lbs,   |
|               |                                                                                                                 |                |                                        | ,<br>,                                                                                                          |        |
|               |                                                                                                                 |                | Total:                                 |                                                                                                                 |        |
|               |                                                                                                                 | 30             |                                        |                                                                                                                 |        |
|               | 7                                                                                                               |                |                                        |                                                                                                                 |        |
|               |                                                                                                                 | 1              |                                        |                                                                                                                 | 1      |
|               |                                                                                                                 | Signature      |                                        |                                                                                                                 |        |
|               | 2                                                                                                               | Title          | 2.<br>                                 |                                                                                                                 | · ,    |
|               |                                                                                                                 |                |                                        | ,                                                                                                               |        |
|               | ,                                                                                                               | ,              |                                        |                                                                                                                 |        |
| (s)           |                                                                                                                 |                |                                        |                                                                                                                 |        |
| ×             |                                                                                                                 |                |                                        | 4                                                                                                               |        |
| 0/76          | · · ·                                                                                                           |                | 2                                      |                                                                                                                 |        |
| 3/10          | · ,                                                                                                             | 3-96           | KVB 5                                  | 804-1<br>1779 520                                                                                               | 6-783  |
|               |                                                                                                                 |                |                                        | AND DOD                                                                                                         |        |

### PARTICULATE EMISSION CALCULATIONS

| Test No Date Location Engr.                                                                                                       |                 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit No Fuel Load                                                                                                                 |                 |
| Pitot Factor, Fs Barometric Pressure, Pin. Hg                                                                                     |                 |
| Tot. Liquid Collected, V ml Total Particulate, M m 9m                                                                             |                 |
| Velocity Head, APiwg Stack Temp., Ts®R Stack Area, As                                                                             | ft <sup>2</sup> |
| Sample Volume, Vmft <sup>3</sup> Stack Press., Psgivg Excess 0, X0,                                                               | •               |
| Orifice Press. Diff., Hiwg Stack Gas Sp. Gravity, Gsn.                                                                            | a.              |
| Sample Time, 8 min Nozzle Dia., Dn in. Meter Temp., T                                                                             | °R              |
| *1. Sample Gas Volume $Vm = 0.0334 Vm (P + H/13.6) \frac{520}{T_m}$                                                               | SCF             |
| 2. Water Vapor Vw std = 0.0474 V lc                                                                                               | scr             |
| 3. Moisture Content Bwo = Eq. 2/(Eq. 1 + Eq. 2)                                                                                   | N.D.            |
| 4. Concentration a. C = 0.0154 Mn/Vm std                                                                                          | grains/DSC!     |
| b. $C = 2.205 \times 10^{-6} Mn/Vm std$                                                                                           | 15/DSCF         |
| c. $C = Eq. 4b \times 16.018 \times 10^3$                                                                                         | grans/DSCM      |
| 5. Abs. Stack Press. Ps = ( $P_{bar} \times 13.6$ ) + Psg                                                                         | in. w abs.      |
| 6. Stack Gas Speed Vs = 174 Fs $\sqrt{\Delta PTs} \sqrt{\frac{407}{Ps}} \times \frac{1.00}{Gs}$                                   | ft/min          |
| 7. Stack Gas Flow a. Qsw = Eq. 6 x As x $\frac{520}{Ts}$ x $\frac{Ps}{407}$<br>Rate @ 60°F                                        | WSCF/min        |
| b. $Qsd = Eq. 7a \times (1 Eq. 3)$                                                                                                | DSCF/min        |
| 8. Material Flow $Ms = Eq. 7b \times Eq. 4b \times 60$                                                                            | lb/hr           |
| 9. $xO_2$ factor $xO_2 f = 2090/(20.9 - xO_2)$                                                                                    | N.D.            |
| 10. Emission a. E = Eq. 4b x Fe x Eq. 9                                                                                           | 15/M48tu        |
| b. $E = Eq. 4c \times Fm \times Eq. 9 \times 1000$                                                                                | ng/joule        |
| 11. * Isokinecic<br>$I = \frac{14077 \times 15(\sqrt{m} \text{ std}^{-7} \sqrt{m} \text{ std}^{-7})}{4 \times 16 \times 10^{-2}}$ | 3               |
| 011 Gas Coal                                                                                                                      |                 |
| Fe SC Feet/10 <sup>4</sup> Btu 92.2 87.4 98.2                                                                                     |                 |
| Fm SC Meters/10 <sup>4</sup> joules 0.002475 0.002346 0.002636                                                                    |                 |
| * Cmit 520 if dry gas meter is temp. compensated Data S                                                                           | heet 5806-1     |

| EXPRACTIC                             | ON OF IMPINGER WATER                         |
|---------------------------------------|----------------------------------------------|
| а – с<br>а                            | Extraction Date                              |
| Test Number                           | Engineer                                     |
| Sampling Type: SASS Trai              | in Joy Train                                 |
| Vol. of Impinger Water                | ml                                           |
| Vol. of methyl chloroform per extract | tion m1                                      |
| Times of extractions                  |                                              |
| Amb Temperature                       | _•F                                          |
| Sample No                             |                                              |
| Sep No.                               |                                              |
| Tared Beaker No Tared                 | Beaker No Tared Beaker No                    |
| Final wt. (g)                         | · · · · ·                                    |
| Initial (g)                           | · · · · ·                                    |
| * Tare                                |                                              |
| wt. (g) Methyl                        | 1 Chloroform Blank Residue g/200cc           |
| - Residue (g)                         | Residue Total (g)                            |
|                                       |                                              |
| REMARKS :                             |                                              |
|                                       |                                              |
|                                       |                                              |
| · · · · · · · · · · · · · · · · · · · | 3-98 KVB 5806-783<br>KVB 5806-10<br>10/25/77 |
| · · · ·                               |                                              |

| TEST NO.           |     |               | TRAIN    |      |      |
|--------------------|-----|---------------|----------|------|------|
|                    |     |               | ENGINEER |      |      |
|                    |     | SOLID CYCLONE | CATCH    |      |      |
| · · ·              | 101 | 31            | 14       | TARE | TARE |
| Cont. No.          |     |               |          |      |      |
| Final Wt. (g)      |     |               |          |      |      |
| Initial Wt.<br>(g) |     |               |          | *    |      |
| Inc. (g)           |     |               |          | ·    |      |
| ± Tare             |     |               | · · ·    | ÷    |      |
| Part. Wt. (g)      |     |               | ·        |      |      |

### FILTER CATCH

|                 | SAMPLE FILTER | TARED FILTER | TARED FILTER |
|-----------------|---------------|--------------|--------------|
| Final Wt. (g)   |               |              |              |
| Initial Wt. (g) | ·             | ·            |              |
| Inc. (g)        |               |              |              |
| ± Tare          |               | 5 K          | · · .        |
| Part. Wt. (g)   |               |              | ·            |

| EMARKS:         | - | · · · · · · · · · · · · · · · · · · · |                    |    |   |     |   |  |
|-----------------|---|---------------------------------------|--------------------|----|---|-----|---|--|
|                 |   |                                       | · , ·              |    |   |     |   |  |
|                 |   |                                       |                    |    |   | v   | , |  |
|                 |   | r <sup>v</sup>                        |                    |    |   | ,   |   |  |
|                 |   | 2 i v                                 | · · ·              |    | , |     |   |  |
|                 |   |                                       | an galari na ma ba |    |   | ÷., |   |  |
| 1 <sup>95</sup> |   |                                       |                    | i. |   |     |   |  |
|                 |   |                                       |                    |    |   | ,   |   |  |

Å.

3-99

кVB 5806-783 кVB 5806-8 10-19-77

DATE\_

# LABORATORY TEST REQUEST

| PROGRA | M: C.A.R.B. OR | GANIC COMPOUND EMISSION INVENTORY      |             |
|--------|----------------|----------------------------------------|-------------|
| Test:  | FIRM NAME      |                                        |             |
|        | Address        | ······································ |             |
|        | UNIT TESTED    |                                        |             |
|        | Date of Test   | · · ·                                  |             |
| PROCES | S MATERIAL     | EMISSION TYPE                          | ,<br>       |
|        | Remarks        |                                        | <del></del> |
|        | TEST CODE      |                                        |             |

| SAMPLE<br>NO. | CONTAINER<br>TYPE                     | SOURCE OF<br>SAMPLE | SAMPLING<br>TIME | SAMPLING<br>DURATION | SAMPLE<br>CC, | VOLUME .<br>CU.FT. |
|---------------|---------------------------------------|---------------------|------------------|----------------------|---------------|--------------------|
|               |                                       |                     |                  |                      | 3             |                    |
|               |                                       |                     |                  |                      |               |                    |
|               |                                       |                     |                  |                      |               | Υ                  |
|               |                                       |                     |                  |                      |               |                    |
|               | а<br>ж                                |                     |                  |                      |               |                    |
| ·             |                                       | · · · · ·           |                  |                      |               |                    |
|               | · · · · · · · · · · · · · · · · · · · |                     |                  | · .                  | ,             |                    |
|               |                                       |                     |                  |                      |               |                    |
|               |                                       |                     |                  |                      |               |                    |
|               |                                       |                     |                  |                      |               |                    |
|               |                                       |                     |                  |                      | 5             |                    |
|               |                                       |                     |                  |                      |               |                    |
| ,             |                                       |                     |                  |                      |               |                    |
|               | 0                                     | 6                   |                  |                      |               |                    |

| DELIVERY DATE    | BY (SIG                                                                                                         | NATURE)         |              |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| RECEIVED BY      | and the second secon |                 | 1            |
| ANALYSIS COMPLET | ED BY                                                                                                           | DATE            |              |
| PROJECTED DATA T | RANSFER DATE                                                                                                    |                 |              |
|                  | 3-102                                                                                                           |                 | KVB 5806-783 |
| 9/76             | White - originator                                                                                              | Pink - receipt  | 5804-8       |
| 4                | Yellow - lab                                                                                                    | Blue - attached | to results   |

### SIZE DISTRIBUTION WORK SHEET #1

| Test No                                  |     | Company |                                      |                         |                       |  |
|------------------------------------------|-----|---------|--------------------------------------|-------------------------|-----------------------|--|
|                                          |     |         |                                      | 4                       |                       |  |
|                                          | πσ  | 8       | Weight %<br>Less Than<br>Stated Size | Uncorrected<br>Size, Um | Corrected<br>Size, um |  |
| SASS                                     |     |         |                                      |                         |                       |  |
| 10 µ cyclone                             |     |         | 100%                                 | 9.2                     |                       |  |
| 3 µ cyclone                              | · . |         |                                      | 3.8                     | · · · ·               |  |
| l u cyclone                              |     |         | <u></u>                              | 1.3                     |                       |  |
| Filter                                   |     |         |                                      |                         |                       |  |
| Impinger                                 |     |         |                                      |                         |                       |  |
| Total                                    |     | 100%    | 0%                                   | <u> </u>                |                       |  |
| Oven Temperature (°R)                    |     | ·       |                                      |                         | ,                     |  |
| Flow Rate Through<br>Cyclones (wacf/min  | )   |         |                                      | · · ·                   | ×                     |  |
| JOY                                      |     |         |                                      | ,                       |                       |  |
| 10 µ cyclone                             |     |         | 100%                                 | 8.4                     |                       |  |
| 3 µ cyclone                              | 1   |         |                                      | 1.9                     | · · ·                 |  |
| l'u cyclone                              |     |         | -                                    | 0.6                     |                       |  |
| Filter                                   |     |         |                                      |                         |                       |  |
| Impinger                                 |     |         |                                      |                         |                       |  |
| Total                                    |     | 100%    | 0%                                   |                         |                       |  |
| Oven Temperature<br>(°R)                 |     |         | 2                                    | æ                       | 4.                    |  |
| Flow Rate Through<br>Cyclones (wacf/min) |     |         | * .                                  | 13                      |                       |  |
| ж<br>Х                                   | е   | É.      | ¥.                                   |                         |                       |  |

KVB 5806-A Rev. 3/7/78 KVB 5306-783

### SIZE DISTRIBUTION WORK SHEET #2

|              | шg      | 8                                                                                                                | Weight %<br>Less Than<br>Stated Size  | Uncorrected<br>Size, um | Corrected<br>Size, um |
|--------------|---------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-----------------------|
| SASS         |         |                                                                                                                  | •                                     |                         |                       |
| 10 µ cyclone |         | and the second | 100%                                  | 9.2                     |                       |
| 3 µ cyclone  |         |                                                                                                                  | · · · · · · · · · · · · · · · · · · · | 3.8                     |                       |
| l µ cyclone  |         | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 1.3                     |                       |
| Filter       |         |                                                                                                                  |                                       |                         | ·                     |
| Total        | ·.      | 100%                                                                                                             | 0%                                    |                         |                       |
| <u> </u>     |         |                                                                                                                  |                                       |                         |                       |
|              |         | e ar                                                                                                             |                                       |                         |                       |
| TOX          | · . · . |                                                                                                                  |                                       | ~                       |                       |
| 10 u cvclone | . '     |                                                                                                                  | 100%                                  | 8.4                     |                       |
| 3 u cyclone  |         |                                                                                                                  |                                       | 1.9                     |                       |
| l µ cyclone  |         |                                                                                                                  |                                       | -0.6                    |                       |
| Filter       |         |                                                                                                                  |                                       |                         |                       |
| Total        |         | 100%                                                                                                             | 0%                                    |                         |                       |
| à.           |         |                                                                                                                  |                                       |                         |                       |
|              | • 1     |                                                                                                                  |                                       |                         |                       |
|              |         |                                                                                                                  |                                       |                         | ,                     |
|              |         |                                                                                                                  | · ·                                   |                         |                       |
|              |         |                                                                                                                  |                                       | а.<br>                  |                       |
| <i>a</i>     |         |                                                                                                                  | ,                                     | and the second second   |                       |
|              |         |                                                                                                                  |                                       | KVB 5                   | 806-3                 |



PARTICLE SIZE,

| -   |                                       | ×                                     | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|-----|---------------------------------------|---------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------|-------|
| 1   | Samle Musper                          | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                  |       |
|     |                                       | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| ŀ   | Percent or the                        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Linung                                |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | í     |
|     | VOCLODY                               |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                                                                                                  |       |
| 1   | land                                  | 1                                     |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                  |       |
| 1   | Arsenic                               |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| 1   | Artum                                 |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | 1     |
|     | 1 smuth                               |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| 1   |                                       | 1                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| - i |                                       |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Cardma um                             |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Calcium                               |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1.4                                                                                                              | l     |
|     | Diariae                               |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| ŀ   |                                       | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| 1   | Circaius                              |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Cobelt                                |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| 1   | Cooper                                |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | 1     |
| ł   |                                       | · ·                                   | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1                                                                                                                | 1     |
| H   |                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Indium                                |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Iodine                                |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | 1     |
| Ī   | T-s de sen                            | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1                                                                                                                |       |
| ł   |                                       |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | 1     |
| 1   | 1.000                                 |                                       | !        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | <u> </u>                                                                                                         | 1     |
| ł   | Lasd                                  |                                       |          | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | · · ·                                                                                                            |       |
|     | SACCAP410                             | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 .      | x                                                                                                                |       |
|     |                                       | i                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| -   | TREES                                 |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
|     | Molivodenua                           | <u> </u>                              | <u></u>  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  | 1     |
| :   | Nickel                                |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ;                                                                                                                | 1     |
| - 1 | M                                     |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i        |                                                                                                                  | 1     |
| i   |                                       | · · · · · · · · · · · · · · · · · · · |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| -   | 2474142                               |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  |       |
| i   | Palladium                             | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  | 1     |
| . 1 | 2401500518                            |                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i        |                                                                                                                  | 1 1 1 |
|     |                                       | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  | 1     |
| 1   | 2                                     |                                       | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | 7                                                                                                                | ····· |
| 1.1 | Potassium                             |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                  | 1     |
|     | Rhentics                              | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1                                                                                                                | 1     |
|     | Rupation                              | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                |       |
| 1   | Bathenaim                             | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | 1     |
| í   |                                       | 0.0                                   | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                                                                                                  | 1     |
|     | Scandius                              |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u> |                                                                                                                  |       |
|     | Selenzum                              | 1                                     | 1<br>    | Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |                                                                                                                  |       |
| *   | Silicon                               | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :        | 1                                                                                                                | 1     |
|     | SLIVET                                | 1                                     | 1        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E i      | 1                                                                                                                | 1     |
|     | - 1                                   | 1                                     | 1        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | a and a second |       |
|     | SEFORELIN                             |                                       |          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | <u> </u>                                                                                                         |       |
|     | Sulfur                                | i                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i        |                                                                                                                  |       |
|     | Tantalum                              | 1                                     | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ł        | 1                                                                                                                | 1     |
|     |                                       | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  | 1     |
|     | · · · · · · · · · · · · · · · · · · · | 1                                     |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | 1     |
| 1   | 71748108                              |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u> |                                                                                                                  |       |
| 5   | Tunestan                              |                                       | !        | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |                                                                                                                  |       |
| 1   | Vanadium                              | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | !                                                                                                                |       |
| 2   | Terrer                                | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 .      | 1                                                                                                                | 1     |
| -   |                                       | 1                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | 1     |
| -   | 51.90                                 |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                  | 1     |
| -   | 21000110                              | 1                                     | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                                                                                                  |       |
|     | !                                     | !                                     | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1                                                                                                                | 1     |
|     | 1                                     | 1 I                                   | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | ł                                                                                                                | 1     |
| 5   | Tun Theat in                          | 1 .                                   |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ;        |                                                                                                                  |       |
| 3   | and over tremminia                    |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | 1     |
|     | Sulfaces NoC sold                     | · · · · · · · · · · · · · · · · · · · |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                  | 1     |
|     | Sultur tron so -1                     |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | 1     |
|     | Mitrate 'N.J soll                     |                                       | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | t                                                                                                                | 1     |
| -   | Taral Campa                           |                                       | T        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  |       |
|     | I I I I I I I I I I I I I I I I I I I |                                       | i        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                |       |
| 3   | Volatile Jarbon                       |                                       |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | <u>i.</u>                                                                                                        |       |
|     | Tarbonaras                            |                                       | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                                                                                                                  | 1     |
|     | Sus Total                             |                                       | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 .      | i                                                                                                                | 1     |
|     | The heart                             |                                       | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i        | 1                                                                                                                | 1     |
|     |                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | •                                                                                                                | 1     |
|     | Total                                 |                                       | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1                                                                                                                | i     |
|     |                                       |                                       |          | and the second se |          | the second se  |       |

CHIMICAL CONVOSITION OF PARTICULATE SAULUE THE PERCENT

3-106

KVB 5806-D KVB 5806-783

|               | 712-C North Valley S                  | treet, Anaheim, Cal | ufornia 92801 | (714)                                                         | 533-4750    | (                                      |         |
|---------------|---------------------------------------|---------------------|---------------|---------------------------------------------------------------|-------------|----------------------------------------|---------|
| Prepared for: | · · · · · · · · · · · · · · · · · · · | ,                   |               |                                                               | Date:       |                                        |         |
|               | •                                     | ×.                  |               |                                                               | P.O.#       |                                        |         |
|               |                                       | × .                 |               |                                                               |             |                                        | •       |
| Sample Label: | 121                                   |                     |               |                                                               | Lab Run #   |                                        | •       |
| ×             |                                       |                     |               |                                                               |             |                                        |         |
|               | Concen                                | trations are        | in .          |                                                               |             | 4                                      |         |
| а.<br>А. а.   | ooncen.                               |                     |               |                                                               |             |                                        | ii<br>s |
| 2 - A - A     | 4<br>                                 | 20 <sup>-10</sup>   | ti            | 9                                                             | ě.          | a l                                    |         |
|               |                                       |                     | ×             |                                                               |             |                                        |         |
| Aluminum -    | •                                     | Indium              |               |                                                               | Rubidium _  | ,                                      |         |
| Antimony      |                                       | Iodine -            |               |                                                               | Ruthenium _ |                                        |         |
| Arsenic       |                                       | Iridium _           | •             |                                                               | Scandium _  | y 11                                   |         |
| Barium        |                                       | Iron _              |               | Martine and Spanning                                          | Selenium _  |                                        | -       |
| Bismuth       | ,<br>                                 | Lead _              |               |                                                               | Silicon     |                                        |         |
| Bromine       | 1                                     | Manganese _         |               | ,                                                             | Silver      |                                        |         |
| Cadmium       | · · · · · ·                           | Mercury _           |               |                                                               | Strontium _ | ······································ | ,<br>   |
| Calcium       |                                       | Molybdenum_         |               |                                                               | Sulfur _    |                                        |         |
| Cesium        |                                       | Nickel              |               |                                                               | Tantalum _  |                                        |         |
| Chlorine      | · · ·                                 | Niobium _           | 1.1           |                                                               | Tellurium _ | 1)<br>                                 |         |
| Chromium      | •                                     | Osmium _            |               |                                                               | Thallium _  |                                        |         |
| Cobalt        |                                       | Palladium _         |               | - 10 <sup>-101</sup> -10-10-10-10-10-10-10-10-10-10-10-10-10- | Tin _       |                                        |         |
| Copper        |                                       | Phosphorus_         |               |                                                               | Titanium _  |                                        |         |
| Gallium       |                                       | Platinum _          | е.            |                                                               | Tungsten _  |                                        |         |
| Germanium     | •                                     | Potassium _         |               |                                                               | Vanadium _  |                                        |         |
| Gold          |                                       | Rhenium             |               |                                                               | Yttrium _   | r.                                     |         |
| Hafnium       | ·                                     | Rhodium             |               |                                                               | Zinc _      |                                        |         |
|               |                                       | e.                  | £             |                                                               | Żirconium _ | 9                                      |         |
|               |                                       | ••                  |               |                                                               |             |                                        |         |
| · · · doall   | UTITAS SETTUD                         | (e                  |               |                                                               |             | ž.<br>T                                | ŝ       |

not detected

3-107

KVB 5806-783

5806-E

DATA EVE1

#### FIELD DATA

| ЕLD       | DATA            | S04   | A<br>NOG   | NAL | YTICAL | рата        |
|-----------|-----------------|-------|------------|-----|--------|-------------|
| KVB<br>mc | NUMBER<br>TAKEN | YG/ML | YG∕ML<br>≇ |     | CODE   | 2<br>2<br>2 |

3-108

KVB 5806-F KVB 5806-793

### FIELD DATA

| ELD DATA    | 5  | C03 1   | A<br>VC | NALY<br>TC | ΥT | ІСА | L DA           | ΤA. |
|-------------|----|---------|---------|------------|----|-----|----------------|-----|
| KVB (M. TER |    | YG/ML . | YG/ML   | YG/ML      |    | 141 | n ne anat a an |     |
| mg Tr       | a. |         | z       | *          | -  |     | CODE           |     |

3-109

KVB 5806-783

KVB5806-G

#### REFERENCES

#### SECTION 3.0.

- 3-1. Blake, D. E., "Source Assessment Sampling System: Design and Development," EPA-600/7-78-018, February 1978.
  3-2. Smith, W. B. and Wilson, R. R., "Development and Laboratory Evaluation of a Five-Stage Cyclone System," EPA-600/7-78-008, January 1978.
  3-3. Federal Register, Vol. 36, pp. 22394 to 22396, November 25, 1971.
  3-4. Siaque and Jaklevic, "Rapid Quantitative Analysis by X-Ray Spectrometry," <u>Advances in X-Ray Analysis</u>, Vol. 15, p. 164-175, Plenum Press, New York, NY, 1971.
  3-5. Dixon, W. J., "Introduction to Statistical Analysis," McGraw-Hill, Inc., Ch. 5, 1969.
- 3-6. "Control of Particulate Emissions," EPA Training Course 413, Section 9.
- 3-7. Stockham, J. D. and Fochtman, E. G., "Particle Size Analysis," Ann Arbor Science Publishers, Inc. Ch. 2, 1977.
- 3-8. Hesketh, H. E., "Fine Particles in Gaseous Media," Ann Arbor Science Publishers, Inc., Ch. 1, 1977.
- 3-9. Smith, W. B., et al., "Technical Manual: A Survey of Equipment and Methods for Particulate Sampling in Industrial Process Streams," EPA-600/7-78-043, March 1978.
- -10. Blake, D. E., Cyclone Calibration report, January 1978, Acurex/ Aerotherm.

#### SECTION 4.0

#### PARTICULATE TEST RESULTS

### 4.1 TEST PROGRAM

During this program, 41 source tests were conducted at 25 different locations. This section is a report of each of these tests describing the source, discussing circumstances of the test, and presenting and analyzing the test results. The following sub-sections are grouped together according to the type of general industrial process.

> Fuel Combustion Mineral Products Food and Agriculture Metal Fabrication Netallurgical Organic Solvent Use Chemical Wood Operation

The field tests were run to obtain particulate emission data for the industrial types listed above. The distribution of the tests is shown in Figure 4-1. Of the completed field tests, 11 tests were run with simultaneous sampling with the larger SASS train and the small Jcy train (as discussed in Section 3.2.1 A) for accuracy assessment. Eleven tests were run as simultaneous sampling of both trains (one on the inlet and the other on the outlet) to evaluate the efficiency of the particulate control equipment. Seven tests were run using only the SASS train, and two tests were run using only the Joy train.

4-1



Figure 4-1. Distribution of field tests (total 41 tests)

4-2

### 4.2 SUMMARY OF TEST RESULTS

The key results of all field tests are summarized in Table 4-1. The results for each test have been listed on two consecutive pages. For example, results from Test OIS begin on the first line of the industrial boiler section on the first page of the table and continue on the first line of the second page. The following is a brief explanation of each of the entries in the Table 4-1:

- Application Categories--Combustion of Fuel, Food and Agriculture, Metal Fabrication, etc.; general classification of the source type tested.
- Company/Industry Type--Type of source tested. Specific names of plants tested are not included in the report.
- Test Number--A unique number assigned by KVB which identifies the location, test procedure and test results.
- 4) Date of Test
- 5) Sample Volume--Volume of gas sample taken during test [Dry Standard Cubic Feet (DSCF) and Wet Standard Cubic Feet (WSCF)].
- 6) Sample Flow Rate--[Wet Standard Cubic Feet per Minute (WSCFM)]. This is the flow rate of gas that has passed through our sampling equipment.
- 7) Temperature °F-Shown are the temperatures of the stack, the dry gas meter used to measure the sample volume taken, and the oven in which the three cyclones plus filter were housed.
- Percent Isokinetic--The amount that the sampling stream velocity varies from stack gas velocity. Over 100% means the sampling stream was faster than the stack gas stream.
- 9) Particulate Weights, mg--These are the weights of particulates collected in probe, 10µm cyclone, 3µm cyclone, 1µm cyclone, the filter, and the impinger. The impinger catch is broken down into two parts, the organic fraction and the nonorganic fraction.

- 10) Stack Flow Rate--Dry Standard Cubic Feet per Minute (DSCFM). This is the exhaust gas velocity measured at the sample location
- Excess 02--This is the oxygen concentration in the exhaust gas measured at the sampling location. Combustion Sources.
- CO2-This is the carbon dioxide concentration in the exhaust gas measured at the sampling location. Combustion Sources.
- 13) Sampling Time--The time taken in minutes to complete the source sample.
- 14) Plant Operation Time--This is the number of hours the plant or equipment sampled is operated in one year.
- 15) Emissions--These are factors related to the device type tested.

| gr/DSCF  |  |
|----------|--|
| T/yr     |  |
| lb/hr    |  |
| 15/MMBtu |  |

- Grains per dry standard cubic feet
  Tons per year
  pounds per hour
  pounds per million Btu
- 16) Particle Size Distribution, Percent of Particles--Distribution into size ranges; greater than 10 microns, 3 to 10 microns, 1 to 3 microns and less than 1 micron. This table includes the impinger catch as part of the total suspended particulate (TSP) as. directed by the ARB (EPA Method 5 does not include the impinger catch in the measurement of TSP. The SCAQMD includes the impinger catch in their methods. Results with and without the impinger catch are presented in the detailed discussions in Section 4.2).

The percent of particles >10 $\mu$ m, 3-10 $\mu$ m, 1-3 $\mu$ m, <1 $\mu$ m are taken from the size distribution curves (weight percent less than stated versus particle size,  $\mu$ m, on log-normal paper) presented in Section 4.2.

17) Control--If the inlet and exit to a control device were sampled, the type of control device (i.e., baghouse, cyclone, etc.) and efficiency is listed. Where a control device was tested, the measured control efficiency (Input - Output Input) x 100 percent) is indicated.

4-4

TABLE 4-1. SUMMARY OF FIELD TEST RESULTS

| Industry .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test Bu.    |        |     | Vol.  | FLOW<br>MAKE | Timp's | Heter | .r.    | Lean. | Profect         | tutm<br>Cyclone | Perticula<br>Jam<br>Cyclone | te Metylik<br>1 jim<br>Cyclone | Fulter<br>Catch | Impinger      | Tetel  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|-------|--------------|--------|-------|--------|-------|-----------------|-----------------|-----------------------------|--------------------------------|-----------------|---------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |       |              |        | Ind   | IOD TR | MUSTO | 7               |                 |                             |                                |                 |               |        |
| strial<br>state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510         | 11/6   | 583 | 645   | 1.2          | \$15   | 66    | 400    | 114   |                 | 630.8           | 244.0                       | 143.6                          | 565.            | H 160.5       | 2580.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C10         | 1113   | 32  | ŞĘ    | 1.01         | 500    | 94    | 100    | 2.46  |                 | 79.5            | 6.9                         | 11.2                           | 19.             | 20.9          | 184.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 025         | 51/6   | 116 | lut   | 3.72.        | 515    | 106   | TOP    | NE L  | 2.62            | 256.3           | 9.4Er                       | 349.1                          | 275.1           | 4.091 d       | 1700.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L20         | 1174   | 1R  | 06    | re.          | 500    | 85    | 400    | 16    | 22.1            | 36.8            | 15.1                        | 4.0                            | 15.4            | 11.9          | 146.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE 0        | 9/20   | 570 | 625   | 1.4.E        | 916    | 101   | 100    | 122   | 63.1            | 268.8           | 116.7                       | 126.9                          | 277.            | 30.8          | .8681  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>FE 0</b> | 02/6   | 43  | 56    | 16.          | 500    | 88    | 169    | 61    | 26.4            | 36.7            | 3.1                         | 3.5                            | 18.             | 24.1          | 116.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5810        | 9/20   | 62  | 01    | 1.17         | 500    | 100   | 505    | 66    | Ju              |                 | 1                           | r                              | 124.4           | 63            | 267    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEO         | 9/20   | 15  | 17    | 1.10         | 512    | BG    | 1      | 86    | 9.4.8<br>7.5400 | 3.4 e<br>5.0µm  | 3.0 W                       | 1.2 8<br>1.1 µm                | ι.ε             | 1 1           | 14.3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 165         | 12/12  | 807 | 6.88  | 3.68         | 450    | 88    | Int    | - BI1 | 20.2            | 34.6            | 9.6                         | 6.3                            | 100.1           | 083.6         | 1065.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.1        | 1977 - | 672 | 26.3  | .10          | 450    | 100   | 100    | 611   | 8.2             | 2.7             | 1.1                         | H. 2                           | 24.2            | 87.0          | 129.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     |       |              |        |       |        |       |                 |                 |                             |                                |                 |               |        |
| ty Ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75        | 10/20  | 634 | 762   |              | 113    | 16    | 100    | RN    | 13.2            | H.4             | 2.6                         | 1.3                            | 29.H            | 618.4<br>82.9 | 1756.1 |
| uj îne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rt0         | 10/20  | 207 | 1 112 | .156         | 412    | 06    | 964    | 101   | ۲.۴             | 3.6             | 1.4                         | 1.2                            | 1.2             | 192.7         | 268.   |
| 9 the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.1        | 1171   | 122 | 540   | 1.00         | 120    | J.H   | 400    | ۱۲    | 11.0            | 26.5            | 9.2                         | 35. J                          | 6.68            | 141.6         | 484.3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 11/01  | 418 | 451 5 | . 66         | 305    | 100   | 186    | P24   | 0.00            | 125.2           | 514.8                       | 100.0                          | 146.7           | 168.2         | 4 327  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200         | 1161   |     |       |              |        |       |        |       |                 |                 |                             |                                |                 | 1.140         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |     | 1     |              |        |       |        |       |                 |                 |                             |                                |                 |               |        |
| address of the second s |             | 1      |     |       | 1            | -      |       | 1      |       | 1               |                 |                             |                                |                 |               |        |

КИВ 5806-783 · (Continued)

|           | America  |                 |        |        |        |        |       |        |             |        |         |        |         |        | 50 km  |   |       |    |
|-----------|----------|-----------------|--------|--------|--------|--------|-------|--------|-------------|--------|---------|--------|---------|--------|--------|---|-------|----|
|           | clent    |                 |        |        |        |        |       |        |             |        |         | •      |         |        | 3      |   |       |    |
| Control   | Kett     |                 |        |        |        |        |       |        |             |        |         |        | 6.      |        |        |   |       |    |
|           | 1        |                 | Mone   | 2      | 3      | =      | 3     | :      | z           | x .    | T       | :      | <br>NOR | 1      | =      |   | None  |    |
| but I um. | 1 v v    |                 | 63     | 56     | 66     | 65     | 76    | Śġ     | 1           |        | 96      | 1.6    | 1.06    | ₽.86   | 92     |   | 14    |    |
|           |          |                 | =      | +      | 15     | 12     | 2     | 8      | 20          | ı      | 0.8     | 1.4    | ¢ξ. U   | 0.6    | 2      |   | 4.45  |    |
|           | 10,00    |                 | 10     | ŝ      | 11     | 6      | 9     | 4      | 50          | 1      | 0.8     | 6.0    | .15     | 0.4    | 2      | · | 4.45  | e. |
| . I       | fight.   |                 | 11     | 4.F    | п      | 11     | 1     | JL     | 1           | ,      | د. ۲    | 0.7    | IJ.U    | 0.11   | -      |   | 0.1   |    |
|           | Tu/watu  | 15              | 0.020  | 0.1322 | 0.041  | 0.042  | 110.0 | 64.0   | 960.0       | 0.0270 | 1110.0  | 0.0184 | 0,0000  | 1870.0 | 5660.0 |   | 0.214 |    |
|           | IL/Ne    | 1'TSUMH         | 1,120  | 111.0  | 0.128  | 0.124  | 0.210 | 0.149  | 0.270       | £10.0  | 1       | 1.61   | 0,090   | 0.0424 | 1. 36  |   | U.17  |    |
|           | 1/1      | <b>IEI</b> , CL |        |        |        |        |       |        |             |        | 6.2     | 2.7    | 1.0.4   | 0.2    | 4.5    |   | 15.7  |    |
|           | 1.10/14  | 14              | 0.0672 | 0.0896 | 2820.0 | 0.0278 | J.051 | 0.0365 | 0.066       | 0.0179 | 0.020.0 | 0.0087 | 0.0427  | 0.0200 | 0.0101 |   | 0.159 |    |
| 1ur14     | Press    | ×               | 3      |        |        |        | ,     |        |             |        | 8736    | 8736   | 8736    | 8736   | 6570   |   | 87 J6 |    |
|           | Tim.     |                 | 202.5  | 35     | 272    | 92     | 180   | 60     | 60          | 15     | 740     | 240    | 240     | 211.2  | 240    |   | 011   |    |
|           | 3        |                 |        |        |        |        |       | 8      |             |        | 0.6     | 9.0    | 14.4    | 14.4   | 3.7    |   | -     |    |
|           | 0        |                 | 2.2    | 2.2    | 2.5    | 2.5    | 2.5   | 2.5    | 2.4         | 2.5    | 8.37    | 8.37   | 2.1     | 2.1    | 12.5   |   | 16.6  |    |
| Stack     | Pieter   |                 | 552    | 164    | 520    | 520    | 476   | 476    | 476         | (1)    | 1818    | 1818   | 247     | 247    | 5248   |   | 9965  |    |
|           | Test Mu. |                 | sto    | rto    | 025    | r20    | 510   | rt0    | <b>SILO</b> | 01A    | lus     | 16.1   | 5/0     | Гm.    | Ld I   |   | 550   |    |

KVB 5806-783 (Continued)

|                         |          | ,            |          |       | Sumple. |        |            | ,      |       |        | •    | Pert loule | the Merglist | 1.4    |              |        |
|-------------------------|----------|--------------|----------|-------|---------|--------|------------|--------|-------|--------|------|------------|--------------|--------|--------------|--------|
| Assemption / Austineers |          |              | States - |       | 1       | Tentes | -TAININT   |        | -     | Fruba  | 101  | and a      | -            | Filtur | Jupiter and  |        |
| The second              | Test In. | 1/14         | 1121     | 1×1   | N. XA   | 275    | Hel el     | Uver.  | 1 L H | 2415   | 2H 1 | 11.9       | 10.6         | 9.96   | 125.7        | 556.8  |
| Utility<br>Hotter 11    | 115      | 1978.        | 941      | 1701  |         | c      | 16         |        |       |        |      |            |              |        | 50.4         |        |
| ULILITY<br>Boller       | r11 .    | 1/14<br>1978 | 223      | 245   | 1.02    | 275    | 81         | 685    | 164   | 11.7   | 14.4 | 3.4        | 2.6          | 24.8   | 26.1         | 112.6  |
| T                       | 125      | 01/1<br>8791 | 516      | 966   | 1.1     | 284    | . 46       | 59.2   | - 461 | 31     | 31.2 | 25.3       | 9.6          | 9.96   | 19.4         | 429.0  |
| =                       | 12.1     | 1978         | 222      | 244   | 1.01    | 275    | 81         | 641    | 156   | 3.6    | 14.3 | 2.6        | 2.7          | 24.0   | 1.62         | 6.69   |
| -                       | • St 1   | 81/1         | 1406     | ttst  | 4.2     | 281    | 82         | 3 UB   | 149   | 12.2   | 8.61 | 64.8       | 3.0          | 161.4  | 2107.8       | 111.0  |
| 2                       | NI       | 81/1         | 300      | 966   | 1.06    | 173    | 11         | 345    | 132   | 4.0    | 3.5  | 0          | 0.9          | 8.92   | 122.2        | 170.6  |
|                         |          | 1            |          | 1     |         | 1      |            |        |       |        |      |            |              |        |              |        |
| E                       | 2.15     | 1/24         | 668      | 116   | 4.24    | 162    | 60         | 060    | 16    | 1.1.41 | 35.6 | 29.2       | 5.7          | 116.9  | 1174.3       | 0.9891 |
| 2                       | LL 2 1J  | 1/24         | 194      | 214   | 0.93    | 290    | BIO.       | 355    | 87    | 10.6   | 10.9 | 1.2        | 3.6          | 25.5   | <b>47.</b> 3 | 105.6  |
| T                       | 245      | 1978         | 946      | 1024  | 4.2     | 222    | 111        | 400    | 11    | 10.4   | 41.7 | 3.4        | 1.4          | 96 . Ŭ | 17.4         | 686.1  |
|                         | C42      | 97/1         | 212      | 233   | 96.0    | 220    | 56         | 299    | ทห    | 14.5   | 5.8  | 1.5        | 6.0          | 24.5   | 46.9         | 1.961  |
|                         | 325      | 3/6<br>1978  | 112      | 825 R | 4.1     | 295    | 64         | 112    | 92    | 1.64   | 26.9 | 6.1        | 3.4          | 64.5   | 107.5        | 621.1  |
| 1                       | 32.5     | 9/6<br>9/6   | RLL      | 853   | 1.03    | 292    | 61         | 151    | 92    | ٤.L    | 5.5  | 1.2E       | 11.4         | 68.0   | 195.9        | 433.6  |
| 8                       | SEE      | 3/8          | 683      | . 96  | 4.1     | 286    | 56 -       | çar    | 100   | 211.9  | 52:6 | 28.4       | 6.9          | 108.3  | - 60.0       | 757.2  |
|                         | rti      | 3/8          | 227      | 24%   | 1.06    | 286    | 6 <i>L</i> | E AE . | 101   | 21.1   | 19.4 | 3.8        | 7.0          | 29.5   | 54.9         | 195.6  |
|                         |          |              | •        |       |         |        |            |        |       |        | ×    |            |              |        |              |        |
|                         |          |              |          |       |         |        |            |        |       |        |      |            |              |        |              |        |
|                         |          |              |          |       |         |        |            |        |       |        |      |            |              |        |              |        |
|                         |          |              |          |       |         |        |            | 1      |       |        |      |            |              |        |              |        |

KVB 5806-783 (Continued)

ind data, not included in add

| Flow  |           |       | for the st | Plant<br>Queration | 4       |      |        |                    |            |     |            | 1            | 3    | Introl    |             |
|-------|-----------|-------|------------|--------------------|---------|------|--------|--------------------|------------|-----|------------|--------------|------|-----------|-------------|
| . 1   | Kacasa    | ຮົ    | Tim.       | TLAU<br>hr/yr      | 4r/bscF | 14/1 | 16/11  | 111/14/11          | lupa       | 10  | -114       | < lus        | Type | Efficient | Komarke     |
| 134   | 4.8       | 10,0  | 240        | 9136               | 1600.0  | 584  | 65.01  | 0.0154             | 0.1        | 2.5 | ~          | 5.16         | Non  |           | 1<br>472 M  |
| her   | <b>4.</b> | 10.0  | 240        | 8736               | 0,0078  | 24.3 | 55.6   | u.0132             | 7          | 1   | 10         | B <i>L</i> . | · 2  |           |             |
| 1174  | 5.5       | 10.0  | . 240      | 917B               | 0.0072  | 242  | 55.5   | 0110.0             | ¢.         | s   | <i>(</i> ~ | <b>U4.U</b>  | 2    |           | )<br>476 Mu |
| 117   | 5.9       | 10.0  | 243        | - 9E78             | 8500.0  | 196  | 44.8   | 0.010 <sup>5</sup> | 5          |     | 8          | 80.0         | 3    |           |             |
| 32 34 | 6.2       | 10.5  | 36.0       | 9116               | 0.0271  | 876  | 212.4  | 050.0              | 0.1        | 6.0 |            | 95.5         | Ξ    |           | [<br>[      |
| 12.34 | 6.2       | 10.6  | 316        | 9136               | 0.0048  | 667  | č. Bu  | 0.0162             | ~          | 0   | 0          | 96           | I    |           |             |
|       |           |       | -          |                    |         |      |        |                    |            |     |            |              |      |           |             |
| 5434  | 6.4       | 10.5  | 2.30.5     | 8736.              | 0.0289  | 176  | 210.16 | 6440.0             | ç.1        | 1.1 | 2.2        | . 56         | Non  |           | -<br>  450  |
| 113   | 6.4       | 10.5  | 229.6      | 9136               | 0.0084  | 268  | 61.1   | 0.0161             | 10         | 1.0 | 1.5        | 8.7 B        | 3    |           | _           |
| 101   | 6.5       | 10.0  | 240        | 8736               | 0.0112  | 202  | 46.2   | 0.0214             | 5          | 1   | -          | 0.69.        | I    |           |             |
| 101   | 6.5       | 10.01 | 240        | 8736               | 0.0144  | 259  | 49.1   | 0.0275             | ۰. ئ<br>رئ | 0.5 | 0.6        | 36.5         | I    |           | 9C7 [       |
| 596   | 4.75      | 10.2  | 206.9      | - 367B             | 0.0124  | 369  | 84.5   | 0.0211             | ځ.ځ        | 1.5 |            | 94           | :    |           | ]           |
| 865   | 4.75      | 10.2  | 828.5      | H736               | 0.0046  | 256  | 58.1   | 0.0147             | 0.1        | 0.7 | 4          | 95           | I    |           |             |
| 504   | 6.0       | 10.7  | 240        | 8736               | 0.0132  | 42.3 | 96.9   | 0.0244             | -          | 4   | 5.         | 87           | 3    |           |             |
| 504   | 6.0       | 10.7  | 238.6      | 8736               | 0.0133  | 427  | 1.12   | 0,0246             | 2          | ~   | 2          | нн           | =    |           |             |
|       |           |       |            |                    |         |      |        |                    |            |     |            |              |      |           |             |
| 1     |           |       |            |                    |         |      |        |                    | 1          |     |            |              |      |           |             |
| 1     |           |       |            |                    |         |      |        |                    |            |     |            |              |      |           |             |

KVB 5806-783 (Continued)

. . .

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |          |      |         |       | sumple       |       |       |     | ۰,      |       |      | Particula | dylun el        | <b>1</b>        |               |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------|---------|-------|--------------|-------|-------|-----|---------|-------|------|-----------|-----------------|-----------------|---------------|-------|
| Utility         13         1/16         774         950         274         76         193         150         131         130         151         131         130         151         131         130         131         131         131         130         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131         131                            | umpuny/Industey      | Test MJ. | bate | LINKI I | with  | HALK H       | Traja | Mater | .r. | Isohin. | Fruke | 10 m | 2 pue     | 1 Jun<br>Cyclum | Filter<br>Catch | Inpinyer      | Tutal |
| $211$ $100$ $171$ $100$ $275$ $92$ $192$ $111$ $112$ $1.2$ $6.5$ $\sim$ $225$ $178$ $113$ $121$ $4.36$ $227$ $610$ $610$ $\sim$ $225$ $1936$ $113$ $124$ $121$ $12.3$ $610$ $610$ $\sim$ $225$ $12936$ $227$ $0.994$ $225$ $81$ $111$ $18-0$ $7.3$ $32.1$ $610$ $\sim$ $221$ $1296$ $227$ $0.994$ $225$ $81$ $370$ $100$ $8.4$ $2.0$ $177$ $2.8$ $237$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $327$ $510$ $510$ $510$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ucility<br>Boiler #2 | 215      | 91/1 | •11     | E ĈĤ  | 4.6          | 274   | 76    | 661 | 150     | 60.6  | 4.3  | 4.8       | 1.9             | 50.9            | 271.6         | 460.  |
| ***     225     197     1071     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111 </td <td>1</td> <td>517</td> <td>1/16</td> <td>157</td> <td>177</td> <td>1.00</td> <td>275</td> <td>72</td> <td>382</td> <td>111</td> <td>11.2</td> <td>1.2</td> <td>0.6</td> <td>6.0</td> <td>12.2</td> <td>45.9</td> <td>72.4</td> | 1                    | 517      | 1/16 | 157     | 177   | 1.00         | 275   | 72    | 382 | 111     | 11.2  | 1.2  | 0.6       | 6.0             | 12.2            | 45.9          | 72.4  |
| *     223*     V/18     250     277     0.994     235     81     370     100     8.4     2.0     1.7     2.8     19.5       6     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,                   | 225      | 81/1 | ACTI    | EE 21 | 8E. <b>4</b> | 225   | 63    | 181 | 111     | 18.0  | 1.3  | 37.3      | 9.8             | 82.7            | 619.0<br>34.1 | 808   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                    | . 22.5*  | 1978 | 250     | 112   | 0.994        | 225   | 83    | 370 | 100     | 8.4   | 2.0  | 1.7       | 2.8             | 19.5            | 9.1E          | 75.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      | ,         |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | ×.,      |      |         |       | -            |       |       |     |         |       |      |           | 3               |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       |              |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       | л<br>"л      | -     |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |         |       | 1            |       |       |     |         |       |      |           |                 |                 |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      | ,       |       |              |       |       |     |         |       |      |           |                 |                 |               |       |

KVB 5806<sup>1</sup>-783 (Continued)

"Bad data; not included in subsequent analyses

| Lenit.                        | 124-44  |         |              |               |         |             |             |   |   |    |          |        |             |        |             |             |       |   |   |
|-------------------------------|---------|---------|--------------|---------------|---------|-------------|-------------|---|---|----|----------|--------|-------------|--------|-------------|-------------|-------|---|---|
| trol<br>Lifetont              |         | -       |              |               |         |             |             |   |   |    |          |        |             |        |             |             |       | 1 |   |
| 111+                          | Nohu    | 1       |              | 1             |         | !<br>!      |             |   | 1 |    | ;        | :<br>: |             | -      |             | !<br>!<br>! |       |   | - |
|                               | 2.16    | 5.16    | 16           | 96            |         |             |             |   | ļ |    |          | -      |             |        | Ì           |             |       | 1 |   |
| F Partic                      | 1.6     | 0.1     | 5. Ł         | ¢.1           |         |             |             |   |   |    |          |        | i.          | t      |             |             |       | i |   |
| the first                     | 61.0    | 0.6     | 1.1          | 1.1           |         |             | :<br>:<br>: |   |   |    | 1<br>1   | •      |             | :      | i<br>T      | 1           |       | İ |   |
|                               | -       | - 1     | ы.<br>Э      | ۲<br>۱        |         | 2           |             |   | 1 |    | 1        | I      | 1           |        |             |             | 1     | 1 |   |
| 11./wuita                     | 1.0.2   | 0.013   | 170.0        | 1400.0        |         |             |             |   | 1 | 1  |          |        |             | :      | ;           | -           |       | • |   |
| I VI                          | N. 62   | 21.0    | 20.02        | н<br>1.<br>1. |         | ,<br>1<br>1 |             | 1 | 1 | i  |          | į      | j           | •<br>• | :           |             | i     | 1 |   |
| 1 a/a                         | 17.01   | 6.00    | ни. <b>С</b> | 11.7          |         |             | 1           | l | ł |    | ,<br>1   | 1      | <del></del> |        | з<br>1      |             |       |   | 1 |
| 1 150/16                      | 2600.0  | 1/00.0  | 6010.0       | 1. 0046       | <b></b> | ]           |             |   | 1 |    | .        | 1      | 1           |        | ;<br>;<br>; | ;<br>;      | :<br> |   |   |
| Plant<br>there at Lun<br>Theu | . 1110  | 1110    | U7.16        | 1110          |         |             |             |   |   |    |          |        |             | 1      |             |             |       |   |   |
| tine,                         | 2ml     | 1/10    | 187          | 618           |         |             | 1           |   |   |    |          |        |             |        |             |             |       |   | - |
| 8.                            | - H. F  | 9.8     | 2.2          | ų. 5          |         | :           | ĺ           | Ì | 1 | 1. | <u>.</u> |        | İ           |        |             | Ì           | ļ     | İ | 1 |
|                               | 7.0     | 7.0     | <b>8</b> .0  | B.0           | ,       |             |             |   |   |    |          |        |             |        |             |             |       |   |   |
| Flack<br>Flack                | +61 P/1 | +61 PL1 | 1512         | 11517         |         |             |             |   |   |    |          |        |             |        | İ           |             |       |   |   |
| 1                             | 215     | in      | 225          | . 177         |         |             |             |   | - |    |          |        | 1           |        |             |             |       |   |   |

KVB 5H06-783 (Continued)
# . (beuni Jnoo) - 1-4 AlHAT

| น่อาตุ                       | 567        | 1618<br>5/51  | 9L                | 76     | 58.0                   | 987             | 98        | 544      | 101                    | L'YUR          | 9.11601     | E 182601                        | 5185-6                         | cz 1 171                   | 9°C<br>1°E             | . 4964.          |
|------------------------------|------------|---------------|-------------------|--------|------------------------|-----------------|-----------|----------|------------------------|----------------|-------------|---------------------------------|--------------------------------|----------------------------|------------------------|------------------|
| Haton                        | 567        | 761<br>17/51  | <b>F18</b>        | 11.6   | 6.1                    | 541             | <b>76</b> | 400      | . tt                   | 6.01           | 301.2       | 2151                            | 7.8                            | 0.21                       | n'21<br>7 59           | 120.0            |
| Buttom<br>ateuday            | 523        | 8/61<br>10/1  | 534               | 6EZ    | 66'0                   | 661             | 58        | 548      | \$.001                 | 9.8            | 1.6         | <b>P.1</b>                      | L.1                            | 0                          | · · 16                 | <sup>;</sup> 011 |
| - purioo                     | 552        | 9/61<br>10/1  | 166               | 766    | 51.4                   | 0.011           | 16        | nnt      | 201                    | 9.57           | 1.61        | 7.81                            | 1.2                            | 2.2                        | 1 '6FE<br>1 '6FE       | .285             |
| REPTORER                     | CUL        | 161<br>3/58   | 530               | 192    | 96.0                   | <b>F</b> ST     | tot.      | 668      | 101                    | t.tt           | ¥.1         | <b>F.I</b>                      | ٤.٤                            | 8.00                       | 1911)<br>1911          | 303.             |
| sselfredi's                  | SRC        | 0261<br>92/0  | \$16              | 1.96   | 0.C                    | FST             | 104       | 661      | sat                    | 2.61           | 9°L         | 2.2                             | 1.6                            | 130.8                      | 6 <b>*6</b> 1<br>9*078 | .1101            |
| wabli                        | rst        | 861<br>91/C   | 061               | 981    | \$6.0                  | SEB             | 811       | 161      | 011                    | \$°\$5         | 0.45        | 6.01                            | 6.955                          | 0.141                      | 1.14                   | .215             |
| RABIC                        | 891        | RLG1<br>91/C  | OLL               | 016    | ۲.۴                    | SCB             | 001       | 080      | Þ6                     | 4.48           | 7.86        | 0.04                            | 83.3                           | <b>)</b> .8€6              | 191<br>105 1           | 1432'            |
| 55915                        | 587        | 161<br>5/10   | 526               | 196    | 9'E                    | 618             | C6        | 16E      | 18                     | \$.25          | <u>с.</u> ц | 1.51                            | 1.45                           | 9,796                      | 1.61                   | .6951            |
| 88511                        | 501        | 9261<br>21/1  | 161               | 112    | 16.0                   | 1001            | 96        | FLE      | 06                     | 516            | ٥.٤         | 3.4                             | 1.111                          | 1:192                      | 1.95                   | .724             |
| 889[5                        | 507        | 861<br>71/1   | 066               | 7901   | PT'5                   | 450             | L*6A      | 680      | SPT                    | a.e            | ۲.۲         | 1.5                             | Þ*5                            | 1.51                       | 1.2<br>165E            | .961             |
| <b>ງ</b> ນອຫອ <sub>ີ</sub> ງ | 581        | 2261<br>91/71 | 015               | 266    | £1,¥                   | tøc             | 55. )     | 861      | 5.98                   | +-SE           | 6'511       | 1.2H1                           | 8.62                           | 9.15                       | 5.9<br>.151            | . 909            |
| ງບຸດພຸດຕູ                    | 56         | LL61<br>L/11  | 296               | SBR    | 66°C                   | <b>5</b> 9E     | Þ6        | 568      | 761                    | s-it           | 5'R6        | 6.951                           | 5413                           | 5161                       | 1.4                    | 345              |
| Rt fek                       | 6J         | 1161<br>1/11  | 511               | 111    | 86.0                   | SL.             | 68 .      | 502      | ts                     | <b>₽</b> 1901  | 2.4828      | 6111                            | 5.2                            | 5.5                        | )<br>; 'C              | .0174            |
| htick                        | 58         | LL61<br>1/11  | 669               | 102    | 16.9                   | <b>S</b> A      | 56        | 20Z      | <b>Þ</b> 6             | s'st           | 6*0E1       | 9.21                            | 1.1                            | 9'1                        | ) * 60<br>; * 61       | 361              |
| gAberru                      | 50         | 2261<br>91/01 | SHE               | LOS    | £8.4                   | PIF             | Þ01       | 101      | 101                    | 13.3           | \$1595      | • 1905                          | 80.2                           | 9.66                       | 11511                  | ' S 6 E 1        |
|                              |            |               | 2                 |        |                        |                 | IH        | NERVT    |                        | 5 A<br>1       | · .         |                                 | *                              |                            |                        |                  |
| Yatenbel \ympimi<br>#417     | 10.55 MIL. | # 1 Pri       | d Hirt<br>Tolaric | John L | 84 -58<br>9399<br>9018 | व्यक्त<br>जन्मद | 78161875  | 4.<br>1. | ्माकृत्व <u>ा</u><br>१ | 17193<br>47034 | alot .      | Bling St i<br>Oty<br>Enst i IPA | C.Xc ( 046<br>1 140<br>1 1 140 | 175173<br>185154<br>185154 | hin/0/1                | 114              |

KAB 2809-183

(beuniano?)

7

| server and the server of the server of the | to at a month's warman a | distances in the |       |            |                   |              | B          | A metaline | the second second second | The surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surgery state of the surge |                                     | A            |      | a contractor of the | And the second second second second | A survey have been as the survey of |
|--------------------------------------------|--------------------------|------------------|-------|------------|-------------------|--------------|------------|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|------|---------------------|-------------------------------------|-------------------------------------|
|                                            | •                        |                  |       |            |                   |              | <b>V</b> H | 5.111      | 6 6/ 0.                  | 580.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 071.                                | 06           | 0.5  | 11.4                | 1.5585                              | 162                                 |
|                                            | 6'66                     | 08007<br>-619    | n     | r          | 3                 | 01           | AH.        | 4. 3.4     | 95.1                     | 91.600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 077.                                | 510          | 5°1  | 18.2                | 68054                               | 567                                 |
|                                            | m                        | н                | 66    | 1.0        | 5.0               | 55.0         | . VH       | 9617       | 5°01                     | 1.400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zint                                | 540          | 4.0  | 1.0                 | 16900                               | £57                                 |
| Į,                                         | 10101<br>1011 1,981 0    | 18115<br>3516    | 16    | Þ          | н'г               | 1 '7         | YH         | 16.2       | e.01                     | ·\$7.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2101                                | 540          | 4.0  | • • 9               | 64654                               | 542                                 |
| poth ducta                                 |                          |                  | 2.66  | 1.0        | 2.0               | 7 ° 0        | * VH       | 1.21       | 2.12                     | 91 10 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9F L Ø                              | 540          | 5.0  | 0.02                | 62259                               | rnt                                 |
| TOT DEVICE TOTALS                          | auli<br>Nutred           | r 1 in:<br>Iaire | 6'86  | 5.0        | 2.0               | 9.0          | ¥;I        | \$7.61     | 0.44                     | 01.10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.60                               | 540          | s.0  | 0.05                | 61,159                              | sat                                 |
|                                            | Ni                       | 7H               | 56    | <i>t</i> . | ۲°Ť.              | 7.1          | VN         | [d,)       | 1.15                     | 6190.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0008                                | 081          | 0.8  | 0.11                | 88811                               | rst                                 |
|                                            | [91]                     | 741              | 611   | F          | ţ                 | 5.4          | AH         | 10.9       | 5.25                     | \$650.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0049                                | 001          | 0.8  | 0.11                | 88811                               | SSF                                 |
|                                            | PU                       | ON               | 1.16  | ( ' '      | 1.0               | 3.0          | · VN       | 61'L       | 2.06                     | 7190'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001-8                               | 1.06         | 5.9  | 9.8                 | 02961                               | 582                                 |
| Jetut 453                                  | ¥£'86                    | 453              | 9.86  | 5'0        | 1,0               | ۹.u          | . YN       | 65 B       | LE                       | 10.0164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 967.0                               | 553          | 6.2  | 12.3                | FBFLZ                               | 301                                 |
| Al outleter                                | 96.34<br>10 801105       | 453              | L6    | 1          | ח'ר               | + 1          | VII        | 18.1       | 0.8                      | 1900'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.18                               | 340          | 8.2  | 1.21                | 65676                               | 502                                 |
| 1903 - 1904                                | basee7                   | 101              | 0.46  | 11         | 54                | 0.8          | VN         | 12.47      | 40                       | 660010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NZLL                                | 540          | 10.4 | 14.3                | 121911                              | 201                                 |
| av5 - 100.1                                | bajaar                   | 101              | 30    | 10         | 70                | 0.0          | V11        | 64.8       | 37.6                     | 019500-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1158                                | 540          | 5.1  | 14.2                | 175121                              | 56                                  |
| Julat                                      | 8.66                     |                  | \$1.0 | 0, 10      | 58.0              | 9.96         | 144        | 5112       | 9.92                     | 691.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5675                                | 150          |      | 214                 | 6117                                | ศา                                  |
| nanoupau<br>nanoupau                       | 8.66                     | -591<br>-594     | 81    | 1          | +                 | 44           | AN         | FSE O      | 1.0                      | 11900.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5675                                | 142.2        |      | VIX                 | 5199                                | 58                                  |
| e.                                         |                          |                  | 33    | ÞI         | 511               | 15           | VIT        | 31.6       | 1.6                      | 8550.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9678                                | 501          | 5.0  | 0.01                | 8051                                | 59                                  |
|                                            |                          |                  |       |            |                   |              |            | TAN        | INTH                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |              |      |                     |                                     |                                     |
| adiamit.                                   | 101340<br>1<br>316121415 | 2                |       | wit j      | #1411<br>10 30831 | **!#12<br>*# | hime/gi    | 1.19291    | 111                      | <u>a 3507 ik</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37/14<br>emit<br>wojiateda<br>aveid | .nin<br>.nin | 100  | *** >**             | NA.980<br>9398<br>8018<br>92938     | -111                                |

. (boundthoo) 1-4 Saurt

(Continued) KAB 2806-783

.

|                       |            |              |      | 1       |       |         |         |            | -     |         |           |          |            |         |           |            |
|-----------------------|------------|--------------|------|---------|-------|---------|---------|------------|-------|---------|-----------|----------|------------|---------|-----------|------------|
|                       |            | ł            | 1    | 1.1     |       | l.      | tel ure | 2          | -     | Peodo   | 101       | Per tule | t the type | 100     | (au 144a) |            |
|                       |            |              |      |         |       | 100A    | N UNA   | GHICU      | LTURE |         |           |          |            |         |           | ,          |
| kice .                | 45         | 11/01        | £1.6 | .966    | 5,00  | 87      | 100     | 202        | 117   | ¢.7t    | 327.4     | 64.9     | 7.6        | 1.0     | 94.3      | 1.065      |
| kice                  | 7          | 11/01        | 190  | 197     | 0.99  | 911     | 16      | 205        | 116   | 36.6    | 141.1     | 2.2      | 1.0        | 0.7     | 6.8       | 190.3      |
| CARACOA               | 376        |              |      |         | Lust  | singule | Due     | To         | litgh | Lougera | ture      |          |            |         |           |            |
| CARACOA               | L76        | 1974<br>1974 | 212  | 241     | ¢4.0  | 115     | 101 -   | 400        | 122   | 180. 3  | 304.9     | 1.0      | 8.1        | 5.1     | 1.41      | U 069. U   |
|                       |            |              |      |         |       | MELLA   | AL FAB  | LICAT      | ION   |         |           | *        |            |         |           |            |
| licat Treat<br>Steel  | 145        | 11/29        | 762  | 112     | 4.06  | 661     | )14     | 161        | 84    | 16.5    | 4.21      | 14.8     | 1.6        | 10.2    | 59.6      | 140.1      |
| Huat Treat<br>Steel   | 147        | 11/29        | 178  | 100     | 10.0  | 100     | 111     | 161        | 16    | 54.2    | 96.7      | 7.61     | 261.8      | 147.2   | 10.2      | 685.0      |
| Sand Blast<br>Stuel   | 345        | 8/61         | 916  | 941     | 4.0   | 75      | 101     | 66,5       | 100   | 0.2     | 14.2      | 3.1      | 1.0        | 1.2     | 11.2      | 53.3       |
| Sand Blast<br>Steel   | 34J        | 3/14         | 164  | 164     | 1.03  | 66      | 85      | İĉt        | dir.  | 61.1    | 9452.6    | 262.4    | 186.6      | 17.1    | 5.B - 5   | 2 UN 1 U 5 |
| ,                     | а<br>С. А. |              | •    |         |       | 2       | METAL.  | TURNI      | CAL   |         |           |          |            |         |           |            |
| A Luminum<br>Foundry  | 105        | 01/11        | 1220 | 1 5 6 1 | 4, 30 | 1141    | 105     | 404.       | B1    | 0.12    | 17.1      | 8.4      | 5.1        | 47.0    | 27.7      | 208.4      |
| Al uni nun<br>Foundry | 107        | 11/10        | 334  | 101     | 1.22  | 1141    | 16      | <b>JB2</b> | 69    | 12.0    | 1.1       | 1.0      | 4.0        | 6.6     | 2.2       | 45.8       |
| Stater<br>Plant       | 265        | 2/2          | 954  | 1023    | 4.2   | 329     | 10      | 376        | 108   | 35.1    | 1 · · , R | . 36.7   | 14.1       | 100.1   | 345.2     | 0.148      |
| Sinter<br>Plant       | 56.1       | 2/2          | 206  | 672     | 0.99  | 245     | 82      | બા         | 771   | 127.6   | 142.4     | 28.9     | 1.916      | FIBUA - | 115.9     | 1.41       |
| Open Hearth<br>Steel  | 365        | 1/21<br>1978 | 963  | lul     | J. U  | 422     | 101     | 405        | 16    | 1.111   | 70. 1     | 66.1     | 161.0      | 1.122   | 1 01      | 6(0.4      |
| open Hearth<br>Steel  | 3          | 12/6         | 170  | 169     | 0.90  | 4Ufb    | 101     | 401        | 96    | 227.5   | 268.9     | 1.90     | 585.2      | 883.3   | 10.5.0    | 283.4      |
|                       | 1          |              |      |         | r.    |         |         |            |       |         | ×.        |          |            |         |           |            |
|                       |            |              |      |         |       |         |         | 1          |       |         |           |          |            |         |           |            |

KVB 5806-783 (Continued)

4-13

5.

|                                          |          |                      |        |                | [          |        |         |               |                   |                   |        |         |         |                     |                    | 1        | ا ب      |        |
|------------------------------------------|----------|----------------------|--------|----------------|------------|--------|---------|---------------|-------------------|-------------------|--------|---------|---------|---------------------|--------------------|----------|----------|--------|
| - I                                      |          | þ                    |        |                |            |        | Exit    | Inlet         | liaghouse<br>Exit | Baghouse<br>Inici |        |         |         | Baghouse<br>Ly Exit | haghouse<br>Y Inle | ESP Exit | EST Inle |        |
| ut tul<br>Kfflctent                      |          | screens<br>not teste | l,     | burnur<br>text | 1          |        | 106     | 106           | 6.66              |                   |        |         |         | 97.6<br>solids cr   | 97.8<br>09 sbilo   | 84.2     | 100.3 ml | 6-783  |
| 1                                        |          | 1                    | :      | ufter<br>lost  | 1          |        | 149-    | Hay-<br>Huuse | nauci             |                   |        | Hone    |         | III                 | Hat                | esp      | 4        | 580    |
| au<br>au                                 |          | 30                   | 8      |                | 57         |        | 14      | 76            | 74                | 1.8               |        | 86      | BIÓ     | 95 -                | 9.2                | 87.5     | 82       | KVB    |
|                                          | ł        | ~                    | -      |                | -          |        |         | 10            | <u>م</u> .ا       | 1.7               | ·      | 5       | ~       | 1.4                 | -                  | -        | 4        |        |
| to the                                   | 1        | 12                   | 2      |                | 1          |        | B       |               | c                 | 3.5               | •      | 4       | -       | 1.2                 | -                  | 1.15     | -        |        |
|                                          |          | 46                   | 5.0    |                | 41         |        | 42      | ¢.            | 2                 | 66                | ×      | 5       | 2.5     | ~                   | <u>ا</u> ت         |          | æ        |        |
| TE Andres                                | UNE      | VN                   | AH.    |                | VH         | ION    | 1       | t<br>1        | 1                 | 1                 | 'NI.   | VN      | YN      | NN                  | IIA                | 1        | . 1      |        |
| 107kr                                    | ENTERNIS | 10.03                | 16.5   |                | 2.0        | MURICA | 1.10    | 10.56         | 0.125             | 2.161             | TURGIC | 0.072   | 840.0   | 40.82               | 170.4              | 19.5     | 15.01    |        |
| 14/1                                     | WIN VI   | 1.5                  | 5.B    |                | 2.0        | TAL F  | 2.2     | 21.6          | 0.07              | \$.46             | METAI  | 0.17    | 0.14    | 561                 | 607.               | 22.3     | 141.4    |        |
| 1.707.16                                 | Puolu    | 91 000 0             | 0.0154 |                | 1110.0     | Ŧ      | 0.00203 | 0.0591        | 0,00008           | 1.922             |        | 0.00263 | 0.00211 | 0410.U              | 0.205              | 0.0166   | 0.206    | a.     |
| Plant<br>Cystallon<br>Time<br>hr/yf      |          | 100                  | 700    |                | 2000       |        | 4080    | 4000          | 1040              | 1040              |        | 4774    | 4774    | 0120                | B 120              | 8064     | 8064     |        |
| A LE LE LE LE LE LE LE LE LE LE LE LE LE |          | 199.2                | 6.861  |                | 112        |        | 190     | 190           | 112               | 159               |        | 314.1   | 304.1   | 240                 | 225                | 181      | ITI .    |        |
| 8                                        | 1        | 1                    | ł      |                | 1          |        | 1       | !             | 1                 | 1                 |        | 6.9     | 6.B     | 4.4                 | 5.0                | 10.5     | 11.5     |        |
|                                          | Ĩ        | 16                   | 16     |                | ALK        |        | Air     | Air-          | Air               | ALC               |        | 5.7     | 5.7     | 16.3                | 15.8               | 9.5      | 0.5      |        |
| Flow<br>Flow                             |          | 124901               | 124901 |                | 1620       |        | 45194   | 20767         | 16623             | 11577             |        | 3180    | 3186    | 118764              | 22496              | 17551    | 19794    |        |
| Test No.                                 |          | 45                   | 4.1    | 375            | <i>LLE</i> |        | 145     | 141           | 345               | 34.J              |        | 105     | Iou     | 265                 | 26.J               | 365      | 36.1     | 0<br>4 |

|                           |          | 1             | [   |      | Sang-Bu<br>Banne |       |         |        |        |                |                | Faiting   | ata Metyli       | . mg            |                    |        |
|---------------------------|----------|---------------|-----|------|------------------|-------|---------|--------|--------|----------------|----------------|-----------|------------------|-----------------|--------------------|--------|
| umpaný/Industry<br>- Type | Test No. | Dete          | DAT | WUT  | Hate<br>Mist FM  | Tung- | I Mater | 1 Oven | 8.<br> | Prube<br>Catch | 10jm           | i ye tono | 1 jun<br>Cyclope | #iltar<br>Catch | Impanyer           | Tutal  |
|                           |          |               |     |      |                  | ORG   | ANIC S  | DLVEN  | T USE  |                |                |           |                  |                 |                    | -      |
| Spray Booth               | 275      | 2/14          | 800 | 817  | 4.1              | 68    | 88      | 234    | 103    | 76.7           | 41.5           | 5.2       | 7.6              | 0.1             | <u>9.0</u><br>44.5 | 192.6  |
| Spray Booth               | 27J      | 2/14 1378     | 189 | 197  | 0.99             | 68    | 83      | 23.1   | 106    | 11.0           | 2.0            | 4.9       | 8.1              | 0.8             | 6.0                | 39.5   |
| Spray Booth               | 315      | 2/28          | 945 | 956  | 3.99             | 71    | 90      | 249    | 102    | 49.8           | 6.6            | 2.8       | 6.2              | 4.8             | 21.2               | 152.3  |
| Spray Booth               | 31J      | 2/28<br>1978  | 235 | 239  | 0.99             | - 71  | 86      | -260   | 104    | 20.4           | 3.0            | 2.8       | 1.1              | 0               | 4.0                | 43.0   |
|                           |          | • • • • •     |     |      |                  |       | CHEMIC  | AL     |        |                |                | •         |                  |                 |                    |        |
| Boric Acid                | 175      | 12/14<br>1977 | 948 | 966  | 4.03             | 132   | in      | 400    | 95     | 70.5           | 153.8          | 5.5       | 3.6              | 2.6             | 1213.7             | 1460.1 |
| Boric Acid                | 173      | 12/14         | 50  | 52   | 0.95             | 136   | 95      | 370    | 231    | 1301.5         | 114.2          | 0.6       | 1.5              | 0.8             | 569.2              | 1999.7 |
| Fertilizer<br>Plant       | 195      | 1/5<br>1978   | 956 | 975  | 5.02             | 118   | 90      | 198    | 113    | 3.4            | 8.1            | 1.6       | 0.5              | 0.3             | 148.2              | 173.5  |
| Fertilizer<br>Plant       | 19J      | 1/5           | 196 | 201  | 1.03             | 147   | · 85    | 202    | 91     | 27.5           | 8980 <b>.9</b> | 0.4       | 0.5              | 0.7             | 01.1               | 9113.8 |
|                           |          |               |     |      |                  | H     | UOD PR  | DCESS  | ING    |                |                |           |                  |                 |                    |        |
| Sanding                   | 305      | 2/24<br>1978  | 765 | 773  | 4.01             | 78    | 94      | 80     | 94     | 13.4           | 10.1           | 2.6       | 0.8              | 2.2             | 24.8<br>55.4       | 109.3  |
| Sanding                   | JUJ      | 2/24<br>1978  | 125 | 126  | 1.05             | 78    | 75      | 76     | 82     | 49.6           | 32.3           | 21.3      | 23.8             | 0.7             | 3.9                | 135.8  |
| Sanding                   | 30 #5    | 2/24          | 64  | 69   | 1.01             | .77   | 78      | 78     | 130    | 235.4          | 1365.3         |           |                  | 23: .6          | 18.2               | 3854.0 |
| Resawing _                | 395      | 3/31<br>1978  | 977 | 988  | 4.17             | 75    | 83      | 66     | 109    | 41.0           | 110.9          | 14.5      |                  | 1.9             | 13.0<br>19.9       | 201.2  |
| Resawing                  | 39J      | 3/31<br>1970  | 93  | 98   | 0.8)             | 75    | 92      | 70     | 59     | 699.1          | 1504.7         | 2.3       | 4.5              |                 | 1.5                | 2217.4 |
| -                         |          |               |     |      | A                |       | PETRO   | LEUM   |        |                |                | 1-1       | h                |                 |                    |        |
| lleaters                  | 405      | 4/4<br>1978   | 916 | 1044 | 1.8              | 460   | 88      | 407    | 117    | 21.6           | 14.8           | 5.6       | 4.4              | 1.5             | 147.3              | 252.4  |
| FCC Unit                  | 415      | 4/18          | 861 | 962  | 4.01             | 525   | 98      | 388    | 91     | 1293.6         | 758.5          | 93.1      | 132.5            | 52.8            | 684 5<br>63.3      | 3078.  |

KVB 5806-783 (Continued)

4-15

|                            |          | 1       | Ι.      | T       |          |       | 13     |        | 86             |        |        | 90<br>35       | e Ir              |                  | Ð        | 2               |            |         |          |
|----------------------------|----------|---------|---------|---------|----------|-------|--------|--------|----------------|--------|--------|----------------|-------------------|------------------|----------|-----------------|------------|---------|----------|
|                            |          |         |         |         |          |       | Baghou | Inlet  | Baghou<br>Exit | Inlet  |        | Baghou<br>Exit | Baghous<br>Let Cy | :yclune<br>Inlet | Cyclon   | Cyclon<br>Inlet |            |         | p.       |
| ontrol                     |          |         |         |         |          |       | 97.5   | 31.5   | 1,06           | 1,99   |        | 6.36           |                   | 1a 98.4          | 0.99. bi | 0.99            |            |         | Not Test |
| 3                          |          | -       | 1       |         |          |       | BII    | ВН     | BH             | BH     |        | ВН             | 1                 | cyclo            | cyclu    |                 |            | Nonu    | ESP      |
|                            |          | 59      |         | 06      | 61       |       | 89     | 84     | 94             | 1.2    |        | 96             | 36                | 1                | 20       | 0.7             |            | 16      | 52       |
| Faitle                     |          | 5       | 15      | -       | 3        |       | 0.5    | 0      | -              | 0      |        | -              | 12                | ;                | 5        | E.9             | <b>!</b> . | 4.1     | 1-5      |
| revnt of                   |          | 5       | 4.4     | 2.5     | 9        |       | 0.5    | -      | -              | 0.2    |        | -              | 4                 | ł                | 11       | 0.3             |            | ~       | 4        |
| 2                          |          | 2       |         | 0       | 5        |       | 10     | 15     | 4              | 9.96   |        | 3              | 37                | 1                | 60       | 66              |            | 4.5     | 62       |
|                            | USE      | ¥2      | NA      | ¥1      | ¥1       |       | ;      | 1      | 1              |        |        | NN             | NA.               | HA -             | . 1      | 1               |            | 0.0062  | 1        |
| and other                  | THAN IO  | 14.7    | 2.56    | 5.0     | 5.7      | HICAL | 2.23   | 88.7   | 0.11           | 12.16  | NISSEX | 0.078          | 0.601             | 35.05            | 0.2      | 20.0            | HUATON     | 6,59    | 14.04    |
| Ā                          | NIC 5    | 5.8     | 5.1     | 6.9     | 7.4      | CIIID | 41.6   | 986    | 0.1            | 12.2   | MA D   | 0.1            | 0.6               | 36.5             | 0.2      | 17              | HELL       | 2.6     | EE . 23  |
| Ň                          | ORUM     | 11100.0 | 0.00325 | 0.00244 | 0.00282  |       | 0.0237 | 0.6105 | 0.00280        | 0.7154 | MC     | 0.0027         | 0.016H            | . 166.0          | 1100.0   | 0. 166          | ,<br>,     | 0.00424 | 0.055    |
| Plant<br>Operation<br>Time | 11/2     | 4000    | 4000    | 2750    | 2750     |       | 8736   | 9176   | 2000           | 2000   |        | 2000           | 2080              | 2080             | 2080     | 2080            |            | 91 J6   | U400     |
| Reption .                  | 818.     | 661     | 199     | 240     | 240      |       | 240    | 55     | 151            | 195 .  | ,      | £.261          | 120               | 70               | 240      | 120             |            | 240     | 240      |
|                            | 1.6      | :       | :       | 1       | 1        |       | 1      | 1      | 1              | 1      |        | 1              | 1                 | - 1              | 1        | 1               |            |         | 10.7     |
| Luc and                    | 6        | Air     | ALE     | ALC     | Air      |       | 20.9   | 20.9   | Air            | AIF    |        | ALL            | Air               | AIC.             | ALF      | Air             |            | 1.9     | 6.0      |
| a lue                      | DISCHA   | 00416   | 01400   | 13,400  | 235, 401 | İ     | 10948  | 16903  | 4688           | 6761   | 1      | 6114           | 4206              | 1964             | 6546     | 6701            |            | 16216   | 6611     |
|                            | Tott No. | 275     | LL2     | 315     | CIE.     |       | 175    | . 671  | 561            | 19.    |        | 305            | 30                | 58 OF            | 395      | LUE             |            | 405     | 415      |

### 4.2.1 KVB Boiler Tests

KVB set out to accomplish several objectives for the first few tests performed on the KVB boiler. These objectives were as follows:

- 1. To check out the test crew and to check out the equipment.
- Determine the time involved for completing the tests (i.e. set-up time, test time, tear down time, turn around time, lab analysis time).
- 3. Determine the accuracy and precision of the total particulate collection.
- 4. Determine the accuracy and precision of the size distribution.
- 5. Determine the effect of fuel sulfur on TSP and size distribution.
- Check out elemental and chemical analysis procedures of subcontractor laboratories at Armament Systems (X-ray, fluorescence) and Rockwell AMC (sulfates, nitrates, and carbon).
- Determine data reduction method for listing raw data (data sheets) and methods for calculating and plotting data (Section 3.2.3).
- Use the data to develop profiles and emission factors for industrial boilers.
- Determine if SO<sub>2</sub> would cause a weight change on the filters (i.e. pseudo particulates).

Due to the amount of effort involved in performing particulate tests using both the SASS and Joy train, three test runs were designed to accomplish the above objectives.

Two fuels were chosen with different sulfur contents but with similar characteristics--especially carbon, hydrogen, ash content and composition and heating value. These fuels were a No. 6 fuel oil with 0.28% sulfur and a Wilmington crude oil with 1.35% sulfur. The fuel analysis results of these two fuels are snown in Table 4-2.

Test 01 and Test 03 were done with both Joy and SASS trains running simultaneously using the high sulfur Wilmington crude at same boiler setting.

4-17

## FUEL OIL CHARACTERISTICS (a) TABLE 4-2. (Test 01, 02, & 03)

| ÷ 3:                 | No. 6    | Test 01 6 03     |    |
|----------------------|----------|------------------|----|
|                      | Fuel Oil | Wilmington Crude |    |
|                      |          |                  |    |
| API GRAVITY          | 23.0     | 22.6             |    |
| Heating Value        | (Ъ)      |                  |    |
| (HEV, Stu/15)        | 19150    | 18,810           |    |
| Viscosity, SUS2100"F | 324.     | 80               | -  |
| Flash Point, "F      | 245      | <u>*</u>         | ×. |
| Water & Sediment, %  | 0.12     |                  |    |
| Carbon Residue, %    |          |                  | •  |
| (Ramsbottom)         | 3.44     |                  |    |
| Copper Strip         | (c)      |                  |    |
| Corrosion            | S.T.     | · ·              |    |
| Carbon.              | 36.5     | 36.26            |    |
| Hydrogen. N          | 12.25    | 11.81            |    |
| Nitrogen. N          | 0.24     | . 59             |    |
| Sulfur, N            | C.28     | 1.35             |    |
| Ast. 1               | 0.016    | 0.017            |    |
| Oxvgen, & by         |          |                  |    |
| difference           | 0.60     | 0                |    |
| Asphaltenes, 3       | 0.58     | 4.96             |    |
| ,                    |          |                  |    |
| Vanadium, pom        | 15.      | 61               |    |
| Iron. Dom            | 12       | 16               | •  |
| Nickel, pom          | 12       | 26               |    |
| Calcium, pom         | 12       | 0.11             |    |
| Magnesium, ppm       | 7.8      | 0.29             |    |
| Sodium, ppm          | 12       | ND               |    |
| Silicon, ppm         | 15       | 0.24             |    |
| Manganese, ppm       | 0.18     | 0.11             |    |
| Aluminum, pom        | 3.2      | 0.41             |    |
| Barium, ppa          | 1.0      | 0.92             |    |
| Lead, ppm            | <1.2     | 0.20             |    |
| Tin. ppm             | 0.11     | 0.14             |    |
| Molybdenum, ppm      | 0.027    | ND               |    |
| Copper, ppm          | 0.059    | 0.004            |    |
| Zinc, ppm            | 0.54     | 0.75             |    |
| Titanium, ppm        | 0.086    | 0.32             |    |
| Cobalt, ppa          | 0.66     | 1.1              |    |
| Potassium, ppm       | Trace    | ND               |    |
| Chronius, pps        | 0.042    | 0.12             |    |
| Strontium, ppm       | 0.082    | Traca            |    |
| Boron, pps           | ND       | COK .            |    |
| Phosphorus, pps      | ND       | ND               | 1× |
| Cadmium, ppm         | 10       | ND               |    |

(a) All fuel analysis preformed by Truesdail Laboratories (b) Estimated from API gravity [Q = 22,32C - 3,780 (sg)<sup>2</sup>] (Ref. 3) (c) Slight tarnish (d) None detected

4-18

These two tests were exact repeats and were used to determine the precision of the sampling trains for TSP and size distribution. For Test 03, a Method 5 and an Andersen impactor were simultaneously used in addition to the SASS and Joy trains to determine the accuracy of the sampling trains for the TSP and size distribution. Test 01 was used to check out the test crew and equipment and determine the times involved for the different operations of the test. Test 02 was run with the low sulfur No. 6 fuel oil at the same boiler conditions as for Test 01 and 03.

Test 01, 02, and 03 were used to determine the effect of fuel sulfur content on TSP and size distribution (discussed in subsequent sections). All three were used to 1) evaluate the methods of analysis for major elemental composition and chemical content (discussed in Section 3.2.2), and 2) determine data sheet need for data reduction and method for data reduction and size distribution plots (discussed in Section 3.2.3). For test 01 a back-up filter was used to determine if SO<sub>2</sub> was adding weight to the filter.

A. Test Facility--KVB 80 HP boiler--

The KVB combustion laboratory has a 5,000,000 Btu/hr Scotch dry-back boiler having a combustion chamber three feet in diameter and eleven feet in length, with air supply up to 650 °F and 1 psig. Flue gas recirculation of up to 35% into the combustion air is possible. This unit, as shown schematically in Figures 4-2, 4-3 and 4-4, is equipped to fire nearly any type of gaseous, liquid, or solid fuel. The boiler, its flues, and the locations of its four sampling ports are shown schematically in Figure 4-5. The sampling ports are located in the vertical flue section on the right.





### LEGEND FOR FIGURES 4-3 and 4-4

- 1. Primary Air Duct
- 2.' Primary Air Valve
- 3. Staged Air Duct
- 4. Staged Air Valve
- 5. Staged Air Venturi
- 6. Staged Air Flexible Hose
- 7. Staged Air Injection Torus and Inlet Pipe, Variable Position
- 8. Water Injection Nozzle
- 9. Burner Support Cylinder
- 10. Air Register
- 11. Flame Detector
- 12. Ignitor
- 13. Burner
- 14. Ceramic Quarl 5-1/2" Throat Diameter
- 15. Observation Door
- 16. Fire Brick 25" Inside Diameter
- 17. View Ports

- 18. Watar Wall of Scotch Boiler
- 19. Steam Vent
- Fire Tubes (62 With Diameter 2-7/8")
- .21. Recirculation Gas Duct
- 22. Recirculation Gas Venturi(not shown)
- 23. Camper
- 24. Stack
- Temperatures:
- 25. Windbox
- 26. Hot End
- 27. Stack
- 28. Second Venturi
- 29. Recirc. Venturi (not shown).
- 30. Primary Air (not, shown)

### Pressures:

- 31. Windbox
  - 32. Secondary Venturi
- 33. Recirc. Venturi (not shown)

#### Cas Sample:

34. Stack

KVB 5806-783





XVB 5806-783

Instrumentation is available in the Combustion Laboratory for measuring fuel and air flows, temperatures (by thermocouple), and the concentrations of NO, CO,  $O_2$ , unburned hydrocarbons in the flue gas, and particulates.

# B. Particulate Test Set-up--

A velocity traverse of the stack flow was measured before each test at two locations six feet and eight feet above the transition section of the boiler exhaust plenum and nine feet below the top of the stack on a straight section. The velocity profile obtained is listed in Table 4-3. A 3/4 inch nozzle for the SASS train was positioned 4 inches into the stack at the 6 ft. height and a 3/8 inch nozzle for the Joy train was positioned 6 inches into the stack at the 3 ft. height. A 3/6 inch nozzle was also used for the Method 5 test and for the Andersen impactor test at the same location as the Joy train.

> Test 01 ran from 11:00 AM to 3:00 PM on 9/13/77 Test 02 ran from 10:00 AM to 2:00 PM on 9/15/77 Test 03 ran from 11:00 AM to 2:00 PM on 9/20/77

#### C. · Particulate Test Results--

The results of the tests (Test 01, 02, and 03) discussed in this section are listed in Table 4-1. Elemental composition, sulfate nitrate, and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Tables 4-4 -4-5, and 4-5 list the results from this analysis.

#### D. Discussion of Results--

1. The objective of checking out the test crew and equipment was well met. The crew executed the test in a routine fashion which was excellent performance considering this was only the first test. The equipment in general performed very well. A few malfunctions were encountered with the SASS train's temperature controllers. These were

4-23 .

KVB 5206-733



# TABLE 4-3. VELOCITY PROFILE IN KVB BOILER STACK

| Distance from<br>Edge of Duct | Point<br># | Velocity<br>ft/sec | Point<br>F        | Velocity<br>ft/sec |
|-------------------------------|------------|--------------------|-------------------|--------------------|
| 0.9                           | l          | 25.3               | 5                 | . 21.2             |
| 2.3                           | 2          | 24271              | <b>6</b>          | 22.4               |
| 5.5                           | R          | 24.7               | R                 | 24.7               |
| 3.2                           | . 3        | 24.7               | 7                 | 25.5               |
| 10.1                          | 4          | 24.7               | З                 | 25.8               |
| Geologian - Silin             | e e        |                    | ан <sub>146</sub> |                    |

# 4-24

KVB 5806-783

.

sent back to Acurex for repairs. Also it was found that the original filter design for the Joy train was too small. It did not have a large enough surface area to collect particulates for four hours without clogging the filter. A filter holder similar to and the same size as the SASS filter was manufactured and located in the Joy oven (discussed in Section 3.2.1  $\lambda$ -2). The length of time involved for the different parts associated with the test was determined as follows:

prepare trains for test set up equipment for test take stack sample tear down equipment process samples (KVB lab) analysis turn around

| a   |       | <i>P</i>  | man      | x            | hours |
|-----|-------|-----------|----------|--------------|-------|
| 8   | man   | hours     | , ;      | 2 <b>x</b> 4 |       |
| 12  | 18    | и         | · •      | 4x3          |       |
| 16  | n     | <b>rs</b> | 4        | 4×4          |       |
| 3   |       |           |          | 4x2          |       |
| 32  |       |           | × i      | 2x1          | 5     |
| 30  | days  | Armament  | Systems, | 30           | days  |
| Rod | ckwel | 1         | 1        |              |       |
| Tot | tal 6 | 0 days    |          |              |       |
| 74  |       | а. а.     |          |              |       |

Total man hours per test =

2. Accuracy and precision of the total particulate collection and size distribution--Simultaneous tests were done to compare the total paticulate collection and size distribution using the SASS train, the small cyclone train, the current method 5 procedure and an Andersen cascade impactor. The data from these tests (Test 015, 012, 013, 013, 035, 032, 03+5, 03A) are given in Table 4-1 along with the data from all the field cests.

The emissions obtained from the different methods used in Test 33 were compared to estimate the accuracy. Also compared were the size distribution curves for these tests. The curves are shown in Figures 4-6, 4-7, and 4-8 and the emission in gr/DSCF are as follows:

4-25



KVB 5806-783.





|        |                         | ⊊r/D                      | sæ                                                                                                              | •                    | of particl             | .es *               |                      |  |
|--------|-------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------------|----------------------|--|
| Test # | Merhod of<br>Collection | Emmis<br>With Lap.        | sion<br>W/O lap                                                                                                 | Less the<br>With imp | an 101mm<br>. w/o imp. | Less th<br>With imp | an lum<br>. w/o imp. |  |
| 035    | SASS                    | .0510                     | .0229                                                                                                           | 89                   | 74                     | 76                  | 47                   |  |
| 033    | Joy                     | .0365                     | .0276                                                                                                           | 64                   | 50                     | 58                  | 38                   |  |
| 03#5   | Method 5                | .0660                     | .0396                                                                                                           |                      |                        |                     |                      |  |
| 033    | Andersen<br>Lapactor    | -                         |                                                                                                                 | <u></u>              | 80                     |                     | 38                   |  |
|        | 24440                   | .0512                     | .0300                                                                                                           | - 76                 | 68                     | 67                  | 41                   |  |
|        | stand dev               | .0148                     | .0086                                                                                                           | 18                   | . 16                   | 13                  | 5                    |  |
| -      | s stand dev             | 29                        | 29                                                                                                              | 23                   | 23                     | 19                  | 13                   |  |
|        |                         | Lines on the second state | La constante de la constante de la constante de la constante de la constante de la constante de la constante de |                      | - W.1 (0.13)           |                     |                      |  |

\* Taken from curves in Figure 4-8 # TSP not determined for Andersen sampler

The reason for the two listings--one including impinger catch and one not including impinger--has something to do with psuedo particulates and is discussed in detail in Section 3.2.3 H. Also the EPA Method 5 does not include the impinger, whereas the SCAQMD and ARB methods do.

Based on the results from the above data (Test 03) the accuracy of the sampling trains for the TSP seems to be  $\pm 30$ %, and the accuracy of the size distribution curves is also  $\pm 30$ %. The  $\pm 30$ % comes from a conservative percent of standard deviation for each of the test methods.

The precision of the data was determined using the data from repeat tests, Test 01 and 03. These data are as follows:

|            | Partic    | ulate     |                 | of particle | s less chan* |          |
|------------|-----------|-----------|-----------------|-------------|--------------|----------|
| · ·        | enission  | . gr/DSCF | 10              |             | 11           | m        |
| Tast #     | With imp. | w/o 100.  | with imp.       | w/o imp.    | with imp.    | w/o imp. |
| 235        | .0510     | .0229     | <sup>'</sup> 89 | 74          | 76           | 47       |
| 033        | .0365     | .0276     | 64              | 50          | 58           | 38       |
| 015        | .0674     | .0414     | 84              | 74          | 63           | 40       |
| 013        | .0896     | .0579     | 65              | 45          | 56           | 30       |
| De 80      | .0611     | .0374     | 75              | 61          | 63           | 37       |
| stand      |           |           |                 |             |              |          |
| dev, d     | .0228     | .0157     | 13              | 14          | 9            | 7        |
| <b>١</b> σ | 37        | 42        | 17              | 24          | 14           | 19       |

\* taken from

Both the SASS train and the Joy train data for the two repeat tests were used to determine a mean, standard deviation and % of the standard deviation from the mean. The TSP in gr/DSCP from the above list shows that the SASS data falls close to the mean and is within the  $\sim$ 40%. The TSP for the two Joy runs is not as good as the SASS runs. This may be due to the small sample size (as a result of clogging of the filter and an early end to the test). Sill repeat utility boiler tests were done during the field test program. The results of these tests are discussed in Section 4.2.4 and show that the precision for the Joy train is about  $\pm$ 40%0 which is consistent with the result obtained here.

The precision of the size distribution curves is around ±20% from these data and about ±10% from the utility boiler tests discussed in Section 4.2.4. The agreement from SASS run to SASS run and from Joy run to Joy run is very close.

3. Chemical Composition of the Particulate Collection

Each of the five fractions (10µm cyclone, 3µm cyclone, 1µm cyclone, impinger, and filter catch) for Test 01, 02, and 03 were analyzed for major elements by x-ray fluorescence and for  $50\frac{2}{4}$ ,  $N0\frac{2}{3}$ , total carbon, inorganic carbon, and volatile carbon. These results are given in Tables 4-4, 4-5, 4-6.

Tables 4-7, 4-8, and 4-9 list the comparison of elementals from the fuel ash to the elemental from the particulate catch. The last column lists the  $10^{-4}$  lb/hr of elements that would be emitted from the fuel ash (calculated from fuel flow rate x ppm of elements in oil). The first five columns are the  $10^{-4}$  lb/hr of elements that are emitted from each fraction of the particulate catch (calculated from lb/hr of particulates x cut % of total x elemental % of cut). The next column is the sum of the  $10^{-4}$  lb/hr for each cut. The next column is the lb/hr x  $10^{-4}$  for each element normalized to 100% if the five fraction columns did not total 100%. This column can be compared to the last column for each element. The sum of the last column can be compared to the total particulate catch, and it should always be less than the total catch.

4-30

| Sample #                                        | l0µm<br>Cyclone<br>015-25 | 3µm<br>Cyclone<br>015-35 | lµm<br>Cyclone<br>015-45 | Filter<br>015-1C | Impinger<br>015-55 |
|-------------------------------------------------|---------------------------|--------------------------|--------------------------|------------------|--------------------|
| PERCENT OF CUT                                  | 24.4                      | 9.5                      | 5.6                      | 21.9             | 32.4               |
| XRF ANALYSIS                                    |                           |                          |                          |                  | a                  |
| Calcium                                         |                           |                          | ' t                      | t                | ÷                  |
| Chromium                                        | 0.36                      | t                        | t                        | t                |                    |
| Cobalt                                          |                           |                          |                          | t                | t                  |
| Iron                                            | . 1.0                     | É,                       | 1.5                      | ÷ د              | 3.3                |
| Nickel                                          | 0.55                      | t                        | 2.0                      |                  | 5.3                |
| Potassium                                       |                           |                          |                          |                  | t                  |
| (Sulfur)                                        | (6.4)                     | (5.6)                    | (6.5)                    | (11.0)           | 8.6                |
| Vanadium                                        | 0.3                       | t                        | 1.1                      |                  | 4.4                |
|                                                 |                           |                          | 2                        |                  |                    |
| <b>- 1- - - - - 2</b>                           |                           |                          |                          |                  | er en              |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> = 4 | 5.6                       | 3.5                      | 5.0                      | . 35             | 23                 |
| (Sulfur, from SO <sub>4</sub> )                 | (2.1)                     | (1.4)                    | (2.2)                    | (3.7)            | (2.8)              |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup>     | t                         | t                        | . t                      | NA               | 0                  |
| Total Carbon <sup>3</sup>                       | 37                        | .70                      | 80                       | 4.3              | 6.0                |
| (Volatile Carbon) <sup>3</sup>                  | ( た)                      | (t)                      | (t)                      | (3.1)            | (0)                |
| (Carbonates) <sup>3</sup>                       | (t)                       | (t)                      | (t)                      | (t)              | (NA)               |
| TOTAL ANALYZED                                  | 42                        | 74                       | 90                       | 39               | 42                 |
| BALANCE                                         | 58                        | 26                       | 10                       | 61               | 58                 |
|                                                 | 100%                      | 100%                     | 100%                     | 100%             | 100%               |

TABLE 4-4. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR INDUSTRIAL BOILERS (TEST 01)

t detected in concentration of <1%</p>

1 analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry-Section 3.2.2 A

3 analyzed by Oceanography carbon analyzer--Section 3.2.2 A

4 calculated from sulfates (sulfur-sulfate/3) to compare with sulfur from XRF

5 for values shown as X/Y, X is % of the element present and Y is the error (i.e.  $X^{n} \stackrel{*}{\leftarrow} Y$ )

() not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-31

| Sample #                                    | 10µm<br>Cyclone<br>025-25 | 3µm<br>Cyclone<br>025-35 | lum<br>Cyclone<br>025-45 | Impinger<br>025-IC | %<br>Filter<br>025-55 |
|---------------------------------------------|---------------------------|--------------------------|--------------------------|--------------------|-----------------------|
| PERCENT OF CUT                              | 15.0                      | 13.8                     | 20.5                     | 23.0               | 16.2                  |
| XRF ANALYSIS                                |                           | 8                        |                          |                    |                       |
| Calcium                                     | t                         | t                        | 3.3                      | t                  | t                     |
| Cobalt                                      |                           |                          |                          | с. <sub>10</sub>   | t                     |
| Iron                                        | t                         | t.                       | 1.3                      | t                  | 2.5                   |
| Nickel                                      | t                         | t                        | , t                      | t.                 | 3.8                   |
| Potassium                                   |                           |                          |                          |                    | ·                     |
| (Sulfur)                                    | (2.6)                     | (3.1)                    | (5.5)                    | (31)               | (19.3)                |
| Vanadium                                    | 8                         | t                        | t                        |                    | 1.7                   |
|                                             |                           |                          |                          |                    |                       |
| TOTAL                                       | ť                         | t                        | 4.6                      | · t                | 8.0                   |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 1.8                       | 1.9                      | 6.2                      | 63                 | 60                    |
| $(Sulfur, from SO_4)^*$                     | (0.9)                     | (1.0)                    | (7.8)                    | (10.5)             | (6.4)                 |
| Nitrate (H20 sol) <sup>2</sup>              | t                         | t                        | t                        |                    |                       |
| Total Carbon <sup>3</sup>                   | 59                        | 93                       | 84                       | · •                | 3.6                   |
| (Volatile Carbon) <sup>3</sup>              | (58)                      | (92)                     | (82)                     | -                  | -                     |
| (Carbonates) <sup>3</sup>                   | (t)                       | (t)                      | 1.51                     | -                  |                       |
| TOTAL ANALYZED                              | 61                        | 95                       | 95                       | 63                 | 72                    |
| BALANCE                                     | 39                        | 5                        | 5                        | 37                 | 28                    |
| 9                                           | 100%                      | 100%                     | 100%                     | 100%               | 100%                  |
|                                             |                           |                          |                          |                    |                       |

# TABLE 4-5. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR INDUSTRIAL BOILERS (TEST 02)

detected in concentration of <1%

t 1

analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry--Section 3.2.2 A

3 analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

5 for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

() not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-32

| Sample #                                    | l0um<br>Cyclone<br>035-17 | 3µm<br>Cyclone<br>035-18 | lum<br>Cyclone<br>035-12 | Impinger<br>035-6b | Filter<br>035-47 |
|---------------------------------------------|---------------------------|--------------------------|--------------------------|--------------------|------------------|
| PERCENT OF CUT                              | 14.2                      | 6.2                      | 6.7                      | 53.4               | 14.6             |
| XRF ANALYSIS                                |                           |                          |                          |                    |                  |
| Calcium                                     |                           | t                        | t                        | 1.5                | 8                |
| Chromium                                    |                           |                          | ×.                       |                    | t                |
| Cobalt                                      |                           | 3.                       | •                        | ť                  | 1.1              |
| Iron                                        | t                         | t                        | 1.7                      | 4.9                | t                |
| Nickel                                      | t                         | ' t                      | 2.2                      | 9.0                | . 5              |
| Potassium                                   |                           |                          |                          | t                  |                  |
| (Sulfur)                                    | (4.5)                     | (3.4)                    | (6.4)                    | (11.3)             | (13)             |
| Vanadium                                    | t ,                       | t                        | 1.3                      | 6.8                |                  |
| TOTAL                                       | t                         | t                        | 5.2                      | 22                 | 14               |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 2.0                       | 1.8                      | 3.5                      | 47                 | 25               |
| (Sulfur, from $SO_{4}^{=}$ ) <sup>4</sup>   | (1.5)                     | (1.1)                    | (2.1)                    | ( 4.0)             | ( 4.7)           |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | . t                       | t                        | t                        | -                  |                  |
| Total Carbon <sup>3</sup>                   | 44.                       | 62                       | 79                       | 5.9                | 4.7              |
| (Volatile Carbon) <sup>3</sup>              | (t)                       | (t)                      | ('t)                     | -                  | 4.0              |
| (Carbonates) <sup>3</sup>                   | ( t )                     | ('t)                     | (t)                      | -                  | (t)              |
| TOTAL ANALYZED                              | 46                        | 64                       | 88                       | 75                 | 44               |
| BALANCE                                     | 54                        | 36                       | 12                       | 25                 | 56               |
| 1. T                                        | 100%                      | 100%                     | 100%                     | 100%               | 100%             |
|                                             |                           |                          |                          |                    |                  |

# TABLE 4-6. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR INDUSTRIAL BOILERS (TEST 03)

detected in concentration of <1%

t

1

3

4

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry-Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur-sulfate/3) to compare with sulfur . from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are-accounted for in total carbon

#### KVB 5806-783

| TEST OI                         | . La | 375 lb/hr | fuel flow | 1 0.0312 1b/hr .                               | wh generated; O.                                | 118 lb/hr TSP co                                | ligered *                               |                                           |                                                          |                                                          |
|---------------------------------|------|-----------|-----------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Fraction<br>+ Praction<br>Units |      |           |           | 10 µm Cyclone<br>241<br>10 <sup>-4</sup> 1b/hr | )   m Cyclone<br>9.5%<br>10 <sup>-4</sup> 1b/hr | 1 µm Cyclone<br>5.6%<br>10 <sup>-4</sup> -1b/hr | Filter<br>228<br>10 <sup>-4</sup> 16/hr | Impingu.<br>39%<br>10 <sup>-4</sup> 1b/hr | Sum/Total <sup>1</sup><br>1001<br>10 <sup>-4</sup> 1b/hr | Puel<br>Analysis<br>Ash=0.0176<br>10 <sup>-4</sup> 1b/hr |
| Vanadium                        |      |           |           | 2.3                                            | 1.2                                             | 2.0                                             | 31                                      |                                           | 36                                                       | 110                                                      |
| Iron                            |      |           |           | 7.8                                            | 2.4                                             | 27                                              | 23                                      | 3.4                                       | 39                                                       | 29                                                       |
| Nickel                          |      |           |           | 4.3                                            | 2.1                                             | 3.5                                             | 11                                      | 1.2                                       | 48                                                       | - 48                                                     |
| Calctum                         |      |           |           |                                                |                                                 | 0.19                                            | 3.3                                     | 3.6                                       | 7.0                                                      | 0.2                                                      |
| Hagnesium                       |      |           |           | 0.78                                           | 0.)                                             | 0.14                                            | 0.7                                     | 1.2                                       | 3.2                                                      | 0.53                                                     |
| NULUM                           |      |           |           |                                                |                                                 |                                                 |                                         |                                           |                                                          |                                                          |
| llicone                         |      |           | ÷.,       |                                                |                                                 |                                                 |                                         | Ξ.                                        |                                                          | 0.44                                                     |
| Hanyanese                       |      |           |           | 0.7H                                           |                                                 |                                                 |                                         |                                           |                                                          | 0.2                                                      |
| Aluminum                        |      | -         |           |                                                |                                                 |                                                 |                                         |                                           |                                                          | 0.44                                                     |
| Barlum                          |      |           |           |                                                | . 0.3                                           | 0.14                                            | 0.7                                     |                                           | 1.2                                                      | 0.72                                                     |
| Lead                            |      |           |           |                                                |                                                 |                                                 |                                         |                                           |                                                          | 0.36                                                     |
| Tin                             |      |           |           | ł.                                             |                                                 |                                                 |                                         |                                           |                                                          | 0,25                                                     |
| Holybdenum                      |      |           |           | 0.78                                           |                                                 |                                                 |                                         |                                           |                                                          |                                                          |
| Coliber                         |      |           |           | 0./8                                           |                                                 |                                                 |                                         | 1.2                                       | 2.0                                                      | 0.056                                                    |
| Silver                          |      |           | · .       |                                                | •                                               |                                                 |                                         | 2                                         |                                                          | 0.007                                                    |
| Zinc                            |      |           |           | 0.70                                           | 0.3                                             | 0.18                                            | 0.7                                     | 1.2                                       | 3.2                                                      | 1.4                                                      |
| Titanium                        |      |           |           | 0.78                                           |                                                 | 0.12                                            | 0.7                                     |                                           | 1.6                                                      | 0.59                                                     |
| Cubalt                          |      |           |           | 0.78                                           | 0.1                                             | 0.18                                            | 11, 98                                  | 8.0                                       | 10                                                       | 2.0                                                      |
| Chromium                        |      |           |           | 2.0                                            | 0.48                                            | υ.ι                                             |                                         | 1.2                                       | 4.8 .                                                    | 0.22                                                     |
| Strontium                       |      |           |           |                                                |                                                 |                                                 |                                         |                                           |                                                          |                                                          |
| Putassium                       |      |           |           | × 1                                            |                                                 |                                                 | 2.1                                     |                                           | 2.3                                                      |                                                          |
| Sulfur                          |      |           |           | 50                                             | 17                                              | 12                                              | 60                                      | 150                                       | (200)                                                    | 25000                                                    |
| Sulfato                         |      |           |           | - 28                                           | 10                                              | 9.9.                                            | 160                                     | 440                                       | 140 .                                                    |                                                          |
| Nitrato                         | ×    |           |           | 0.62                                           | 1.4                                             | 0.57                                            |                                         |                                           | 2.6                                                      |                                                          |
| Tutal Carbon                    |      |           |           | 290                                            | 210                                             | 140                                             | 42                                      | 53                                        | 740                                                      |                                                          |
| Vol. Carbon                     |      |           |           |                                                |                                                 | đ                                               |                                         |                                           |                                                          |                                                          |
| Carbonate                       |      |           |           | 1.2 ~                                          | 0.78                                            | 0.27                                            |                                         |                                           | (2.2)                                                    | ÷                                                        |
|                                 |      |           |           |                                                | •                                               |                                                 |                                         | Total                                     | 1038 × 10-4                                              | lb/hr                                                    |
|                                 |      | 2         |           |                                                |                                                 | ÷.,                                             |                                         | TSP                                       | 3180 x 10-4                                              | lb/hr                                                    |

TABLE 4-7. MASS BALANCE FOR TEST 01

(1) Compare total column with fuel analysis column

4-34

| TEST 02                         | 183 16/hr                                      | of fuel; 0.029.                               | l lb/hr ash gener                               | ated; 0.128 16/1 | ir TSP collected                          |             |                            |                                |
|---------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------|-------------------------------------------|-------------|----------------------------|--------------------------------|
| Praction<br>1 Fraction<br>Units | 10 µm Cyclone<br>151<br>10 <sup>-4</sup> 1b/br | 3 µm Cyclone<br>14%<br>10 <sup>-4</sup> 1b/br | 1 µm Cyclone<br>21%<br>10 <sup>°°4</sup> 16/lor | Filter<br>lot    | liquager<br>11%<br>10 <sup>-4</sup> 11/br | Sum*<br>975 | Total <sup>1</sup><br>1005 | Fuel<br>Analysis<br>Ash=0.016% |
| 20010                           |                                                |                                               |                                                 |                  |                                           |             | _19_19/10                  |                                |
| Vanadium                        | 0,19                                           | 0.28                                          | 2.1                                             | 1.5              |                                           | 6.1         | 0.6                        | 27                             |
| Iron                            | 0.68                                           | 0.85                                          | 1.4                                             | 5.3              | 3.2                                       | 14          | 14                         | 22                             |
| Nickel                          | 0.38                                           | 0.58                                          | 2.5                                             | 8.0              | 0.52                                      | 12          | 12                         | 0.4                            |
| Calcium                         | 0, 38                                          | 1.2                                           | 8.7                                             | 0.48             | 1.0                                       | 14          | 15                         | 22                             |
| Hagnesium -                     |                                                | · *                                           |                                                 |                  |                                           | • .         |                            | 14                             |
| Sodiam                          |                                                |                                               |                                                 |                  | 540                                       |             |                            | 22                             |
| Silicone                        | · · ·                                          |                                               |                                                 |                  |                                           | 8           |                            | 27                             |
| Mangahese                       | 0.19                                           | 0.18                                          | 0.26                                            |                  | U.4                                       | 1.0         | 1.1                        | 0.33                           |
| Alcainum                        |                                                |                                               |                                                 |                  |                                           |             |                            | 5.9                            |
| bar í un                        | 0.19                                           | 0.18                                          | 0.53                                            |                  |                                           | 0.90        | 0.93                       | 1.0                            |
| Luad .                          |                                                |                                               | 0.26                                            |                  | 0.4                                       | 0.71        | 0.73                       | 2.2                            |
| Fin                             |                                                |                                               |                                                 |                  |                                           |             |                            | 0.2.                           |
| Holybdenum                      | 0.19                                           | 0.18                                          | 0.26                                            | 0.21             | U.4                                       | 1.2         | 1.3                        | 0.05                           |
| Copper                          | 0.19                                           | U.18                                          | 0.26                                            | 0.21             | U.4 -                                     | 1.2         | 1.3                        | 0.11                           |
| Silver                          | . 0 .                                          |                                               |                                                 |                  |                                           |             |                            | 0.01                           |
| Zinc                            | 0.19                                           | 0.18                                          | 0.26                                            | 0.42             | U. 4                                      | 1.3         | 1.5                        | 0.99                           |
| Fitanium                        |                                                | · -                                           |                                                 |                  | 0.4                                       | 0.4 -       | 0.41                       | 0.16                           |
| Cobalt                          | 0.19 -                                         | 0.18                                          | 0.26                                            | 0.43             | 0.56                                      | 3.3         | 3.4                        | 1.2                            |
| Chromium                        | 0.27                                           | 0.10                                          | 0.26                                            | 0.21             | U.52                                      | 1.4         | 1.5                        | 0.08                           |
| Strontium                       |                                                | 0.18                                          | 0.26                                            |                  | U. 4                                      | 0.84        | 0.87                       | 0.15                           |
| muterio                         | *                                              |                                               | 0.26                                            | 1.0              |                                           | 1.3         | 1.3                        |                                |
| julfur                          | 5.0                                            | 5.5                                           | 14                                              | 65               | 77                                        | 170         | 170                        | . 5100                         |
| Sulfate                         | 3.5                                            | 3.4                                           | 17                                              | 011              | 240                                       |             | 400 -                      |                                |
| litrate -                       | 0.19                                           | 0.18                                          | 0.26                                            |                  |                                           | 0.6)        | 0.65                       |                                |
| Fotal Carbon                    | 110                                            | 160                                           | 220                                             | 7.8              | *                                         | 390         | 410                        |                                |
| lol. Cathon                     |                                                |                                               |                                                 | 1017 EL.<br>(0)  |                                           | -           | T. C. 199                  |                                |
| aibonate                        | 0.41                                           | 1.0                                           | 4.0                                             |                  | -                                         | 5.4         | · (5.6)                    |                                |
|                                 |                                                |                                               | 41.5                                            |                  |                                           | 2.4         |                            |                                |
|                                 |                                                |                                               |                                                 | *                | en 1                                      | Tota        | 1 980 × 10 <sup>-4</sup>   | lb/hr                          |
|                                 |                                                |                                               | · ·                                             |                  | 2                                         | TSP         | 1280 x 10-4                | lb/hr                          |

# TABLE 4-8, MASS BALANCE FOR TEST 02

۰., .

(1) Compare total column with fuel analysis column \* Probe catch not analyzed

KVB 5806-783

|                | the fat I at           | nauther that the               | oh m/at three          | nut n thut the         | 10/11 121 0011001                |                        |             |                                      |
|----------------|------------------------|--------------------------------|------------------------|------------------------|----------------------------------|------------------------|-------------|--------------------------------------|
| *1.41.61W1     | 10 µm Cyclunu          | a two cyclosia                 | 1 pm Cyclone           | Filtur                 | յոնսունսյ                        | Sum                    | Tutal       | Puel<br>Analysis                     |
| kraction       | 10 <sup>-4</sup> 1b/hr | 6.24<br>10 <sup>-4</sup> 1b/hr | 10 <sup>-4</sup> 11/11 | 10 <sup>-4</sup> 16/40 | 10-4 Ib/lir                      | 10 <sup>-4</sup> 1b/hr | 1001        | Auh-0.0171<br>10 <sup>-4</sup> 11/hr |
| Valladium      | 91.0                   | 0.46                           | P. 1                   | 11                     | man grapping and a la succession | 23                     | 24          |                                      |
| tron           | 1.1                    | 0.71                           | 2.4                    | 15                     | 10                               | 30                     | a           |                                      |
| NICAUL         | 0.94                   | 0.77                           | 3.1                    | 24                     | 1.4                              | 34                     | Эb          |                                      |
| Calcium        |                        | 0.13                           | 0.34                   | 4.5                    | 7.6                              | 16                     | 100         |                                      |
|                |                        | ¢<br>k                         |                        |                        |                                  |                        |             |                                      |
| and Lua        |                        |                                | γ.,                    |                        |                                  |                        |             |                                      |
| SILICUIA       | 1                      |                                |                        |                        |                                  |                        |             |                                      |
| Hanyanu sa     | 0.10                   | 0.13                           |                        | 11.0                   | 1.2                              | . 1.9                  | 2.0         |                                      |
| Aluminum       | ×.                     |                                |                        |                        | lan<br>I                         |                        |             | ,                                    |
| Bactum         |                        | 0.13                           | 0.14                   | 11.0                   | 1.2                              | 2.0                    | 2.1         |                                      |
| [sud           |                        |                                |                        | 11.0                   |                                  | 11.0                   | 2E'0        |                                      |
| T.n            | •                      |                                |                        |                        | 1<br>A                           |                        |             |                                      |
| 1.1 ybdum      | 0,30                   | 0.13                           | 0.14                   | 0, 11                  | 1.1                              | 2.0                    | 2,1         |                                      |
| ព្រោះស្រុ      | 0.30                   | 0.11                           | . 0.14                 | ŗ.                     | 1.2                              | 1.6                    | 1.7         |                                      |
| Stiver .       |                        |                                |                        |                        |                                  |                        |             |                                      |
| , Inc          | 0.30                   | 0.13                           | u.14                   |                        | 1.2                              | 1.6                    | 1.7         |                                      |
| Ti Cantum      | 0.30                   | 0.13                           | 0.14                   | 0.11                   |                                  | 0,84                   | 16.0        |                                      |
| Urbal L        | 0.10                   | 0.13                           | 0.14                   | 0.62                   | 7                                | 14                     | 14          |                                      |
| Chromatum      | 0.40                   | 0.13                           | U.14                   | *                      | 0.2                              | 3.5                    | 3.6         |                                      |
| Struittue      | 0.10                   |                                | 0.14                   | 0.11                   | 1.2                              | 1.9                    | 2.0         |                                      |
|                |                        |                                |                        | 1.9                    |                                  | 1.9                    | 2.0         |                                      |
| Sultur         | 2                      | 1.1                            | 0.6                    | 36                     | ur, I                            | 200                    | 201         |                                      |
| sultatu        | 5.4                    | 2.3                            | 4.9                    | 140                    | 067                              | 440                    | 460         |                                      |
| Httrata        | 0.15                   | 60.0                           | 0.14                   | ·                      |                                  | 0. JH                  | 66.0        |                                      |
| Tutal Carbon - | 011                    | . 00                           | - 114                  | <b>h</b> B             | 14                               | 06E                    | 410         |                                      |
| Vol. Carlon    |                        |                                |                        |                        | 1.4                              | 47                     | (62)        |                                      |
| Cathonate      | 0.30                   | <b>U.</b> 3U                   | ći .0                  |                        |                                  | 1.1                    | 0.0         |                                      |
|                |                        |                                |                        |                        |                                  | Tutul                  | 1141 × 10"4 | lb/hr                                |
| ,<br>1         |                        |                                |                        |                        | •                                | TSP                    | 2100 × 10-4 | 1b/hr                                |

TABLE 4-9. MASS BALANCE FOR TEST 03

4-36

6

The value of sulfur from XRF analysis can be compared to the value of sulfate  $(SO_4^{-/5} = 96/32 = 3)$ . Divide the sulfate  $lb/hrxl0^{-4}$  by the sulfur  $lb/hrxl0^{-4}$ ; the quotient should be about 3.0. Tables 4-4, 4-5 and 4-6 are in the general form of an emission profile for these sources. The development of emission profiles is discussed in detail in Section 2.3.2.

4. The effect of sulfur content in fuel on size distribution and on total particulates--Goldstein and Siegmund (Ref. 4-1) pointed out that the fuel sulfur content is directly proportional to the ash plus asphaltene content of the fuel. Their data are shown by the line in Figure 4-9; the circle represents the KVB high sulfur fuel used for Tests 01 and 03, and the triangle represents that for the low sulfur fuel used for Test 02. Goldstein and Siegmund (Ref. 4-1) also determined that the particulate emissions are proportional to the fuel sulfur content. Their data are represented by the line in Figure 4-10. The KVB data are as noted.

The particulate emissions obtained by KVB for the three boiler tests follow this relationship. The particle size distribution is affected by the sulfur content of the fuel (Ref. 4-1). The lower sulfur fuel tends to produce a larger percentage of smaller particles than the higher sulfur fuel. KVB's data agrees with this. Figure 4-11 shows the particle size distribution for Goldstein's and KVB's data.

5. A recent study (Ref. 4-2) shows that different types of filter paper would gain weight when exposed only to SO<sub>2</sub> and water. For Test Ol, SASS, a back-up Reeve Angel filter was used in series with the SASS train filter. The first filter would collect all filterable particulates and the second Reeve Angel 934AH filter would only see very small particles, SC<sub>2</sub>, and flue gases. The Reeve Angel filter was desiccated and weighed in the usual way after the test. It was found that the Reeve Angel paper did not change in weight.

4-37







Also a test was designed as described below to determine any weight change. A gas stream of 831 ppm SO<sub>2</sub> from a gas cylinder was passed first through a Gelman AE filter paper, next through a Reeve Angel 934AH filter paper, and finally the volumes of gas were measured on a dry gas meter. Over 15 scf of gas was passed over the filters. The filters were processed in the normal way (desiccate and weigh). Neither the Gelman nor the Reeve Angel paper showed any weight change. Based on the data in Ref. 4-2, the Reeve Angel filters were used throughout the program.

# 4.2.2 #2 Fuel Oil-Fired Industrial Boiler

A. Process Description (Ref. 4-3) --

Boilers, heaters, steam generators, and similar combustion equipment fired with #2 fuel oil are used in commerce and industry to transfer heat from combustion gases to water or other fluids. The only significant emissions to the atmosphere from this equipment in normal operation, regardless of the fluid being heated or vaporized, are those resulting from the burning of fossil fuels. Differences in design and operation of this equipment can, however, affect production of air contaminants.

A boiler or heater consists essentially of a burner, firebox, heat exchanger, and a means of creating and directing a flow of gases through the unit. All combustion equipment--from the smallest domestic water heater to the largest power plant steam generator--includes these essentials. Most also include some auxiliaries. The number and complexity of auxiliaries tend to increase with boiler size. Larger combustion equipment often includes flame safety devices, soot blowers, air preheaters, economizers, superheaters, fuel heaters, and automatic flue gas analyzers.

The industrial boiler tested was a Babcock & Wilcox type H Stirling boiler as shown in Figure 4-12. It has a heating surface of 4950  $ft^2$ , a design pressure of 160 lb. It was built in 1946.

B. Particulate Test Setup--

Two sampling trains were used simultaneously to sample the exhaust gases of the boiler. The sampling station was located on the vertical section of the stack above the roof, at least 6 duct diameters from the nearest disturbance. The velocity profile in the stack is shown in Table 4-10. However, the velocity in the stack varied as the load varied to meet the steam demand of the plant. The steam demand varied from 10,000 to 28,000 lb/hr during the sampling time. This was a typical type of operation. The fuel for the boiler was low sulfur No. 2 fuel oil. The results of the fuel analysis is listed in Table 4-12.

4-41



Figure 4-12. An industrial water tube boiler (The Babcock & Wilcox Co., New York).



TABLE 4-10. VELOCITY PROFILE FOR INDUSTRIAL BOILER (TEST 16)

| Temperature     | 515 °F                   |
|-----------------|--------------------------|
| Static Pressure | 0.6 in. H <sub>2</sub> 0 |
| Steam Load      | 18-22,000 lb/hr          |

| Distance Fro  | m        | Velocity     |        |           |             |  |  |
|---------------|----------|--------------|--------|-----------|-------------|--|--|
| End of Port,* | inches   | Point No.    | ft/sec | Point No. | ft/sec      |  |  |
| 7-1/8         |          | ' l          | 20.1   | 7         | 18.6        |  |  |
| 12-1/2        |          | 2            | 22.8   | 8         | 21.5        |  |  |
| 20-3/8        |          | ·3           | 20.1   | 9.,       | 20.1        |  |  |
| 31-1/4        |          | R            | 18.6   | R         | 18.6        |  |  |
| 42-1/8        | 5        | 4            | 17.0   | 10        | 18.6        |  |  |
| 50            |          | 5            | 17.0   | 11        | 18.6        |  |  |
| 55-3/8        |          | 6            | 18.6   | 1,2       | 18.6        |  |  |
| * Includes    | 4-3/4" n | ipple length |        | Average   | 18.8 ft/sec |  |  |
| э «           |          |              | *      |           | 9170 SCFM   |  |  |

4-43

KVB 5806-783

20

### C. Test Results--

The results of the tests (16J and 16S) discussed in this section are listed in Table 4-1. Elemental compositions, sulfate, nitrate, and carbon analysis were determined for all fraction of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. An analysis of fuel composition was also performed.

D. Discussion of Results--

1. <u>Particle Size Distribution--Figure 4-13</u> is a plot of particle size (µm) vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3B. Two curves are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected in the impinger, it would seem that the effect of pseudo particulates would be insignificant. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particulates from industrial boilers for particle size distribution. The break-down of the particle size distribution, taken from Figure 4-13 including the impinger catch is as follows:

|      | 1   |        | Percent of | Particles       |                 |
|------|-----|--------|------------|-----------------|-----------------|
| 8    |     | >10 um | 10 - 3 um  | <u>3 - 1 µm</u> | <u>&lt;1 um</u> |
| Test | 16J | 0.7    | 0.9        | 1.4             | 97              |
| Test | 16S | 2.5    | 0.8        | 0.8             | 96              |

2. <u>Chemical Composition</u>--Table 4-11 lists the results from the chemical analysis of the particulate fraction for each of the tests discussed in this section. Sulfates are the most abundant species found in the particulate catches. Carbon, iron and nitrates are next in order. All other elements detected were found in concentrations less than 1%.

Using the results from the XRF analysis and the fuel analysis results (Table 4-12) a mass balance was determined for each train for the elements. This is listed in Table 4-13. The rate of elements  $(10^{-4} \text{xlb/hr})$  calculated from the ash content is compared to the total of the elements detected in

4-44



Figure 4-13. Particle size distribution for industrial boiler. (Test 16).

4-45

| ·                                           | SASS    | Joy<br>Filter | Joy<br>Impinger | SASS<br>Filter |
|---------------------------------------------|---------|---------------|-----------------|----------------|
| SAMPLE #                                    | 165-IC  | · 16J-5S      | 16J-IC          | 165-55         |
| PERCENT OF CUT                              | 84      | ' 19          | 68              | 9.4            |
| XRF ANALYSIS                                | ,       |               |                 |                |
| Calcium                                     |         |               |                 | 2.2/0.5        |
| Chromium                                    | t       |               |                 | ,              |
| Iron                                        | 2/0.3   | 3.9/0.5       |                 | 2.7/0.3        |
| Lead                                        |         | t             | · .             | t              |
| Nickel                                      | t       |               |                 |                |
| Sulfur                                      | (18/6)  | (24/10)       | (18/6)          | (11/3.1)       |
| Zinc                                        |         | t             |                 | t              |
| TOTAL <sup>1</sup>                          | 2.0     | 3.9           |                 | 4.9            |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 32      | 30 .          | 14.3            | 17.5           |
| (Sulfur, from $SO_{4}^{2}$ )                | (10.7)  | (9.9)         | (4.8)           | (5.8)          |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | 4.10    | 0.12          | 0.26            |                |
| Total Carbon <sup>3</sup>                   | 20      | 16            | 13              | 5.4            |
| (Volatile Carbon) <sup>3</sup>              | (17.84) |               | (9.0)           |                |
| Carbonates) <sup>3</sup>                    |         |               |                 | '              |
| TOTAL ANALYZED                              | 58      | 49            | 28              | 28             |
| BALANCE                                     | 42      | 51            | 72              | 72             |
|                                             | 100%    | 100%          | 100%            | 100% .         |

TABLE 4-11. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR TEST 16

t detected in concentration of <1%

5

()

1 analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry-Section 3.2.2 A

3 analyzed by Oceanography carbon analyzer--Section 3.2.2 A

4 calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y. X is 3 of the element present and Y is the error (i.e. X3  $\pm$  Y )

not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-46
FUEL ANALYSIS RESULTS TEST NO. 16--#2 FUEL OIL by Truesdail Laboratories, Inc.

| Carbon, %                                         |   |        | 86.63            | - |
|---------------------------------------------------|---|--------|------------------|---|
| Hydrogen, %                                       |   |        | 12.96            |   |
| Sulfur, %                                         |   |        | 0.38             |   |
| Ash, %                                            | • |        | 0.001            |   |
| Heat of Combustion:<br>Gross Btu/lb<br>Net Btu/lb | 4 | ,<br>, | 19,470<br>18,290 |   |

The results of the spectrographic analysis of the ash are as follows:

|           |     | Percent in Ash |
|-----------|-----|----------------|
| Iron      |     | 48             |
| Silicon   |     | 6.0            |
| Boron     |     | 0.55           |
| Manganese | 2   | 0.29           |
| Magnesium |     | 0.39           |
| Lead      | ·   | 1.7            |
| Nickel    |     | 0.85           |
| Aluminum  | ·   | 1.0            |
| Calcium   |     | 0.71           |
| Copper    |     | 0.23           |
| Silver    |     | 0.006          |
| Sodium    | č   | < 1.3          |
| Zinc      | · . | 0.47           |
| Titanium  | τ.  | 0.061          |
| Cobalt    |     | 0.080          |
| Chromium  | • • | 0.035          |
|           |     | 4              |

4-47

## TABLE 4-13. MASS BALANCE ELEMENTS FOR INDUSTRIAL BOILER (TEST 16)

|                                                |                                        | SASS                                           |                                        |                                           |                                            |                                             | YOL                                       |                                      |                                       |  |
|------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|--|
| Collector<br>• TSP Collected<br>Units of Table | 1mpinge<br>84%<br>10 <sup>-4</sup> 15/ | r Pilter<br>9.4%<br>hr 10 <sup>-4</sup> lb/hr. | 500<br>93.41<br>10 <sup>-4</sup> 15Air | Tetal I<br>1004<br>10 <sup>-4</sup> 1b/hr | Foel<br>Analysis<br>10 <sup>-4</sup> 1b/hr | laginger<br>68.24<br>10 <sup>-4</sup> 1b/hr | Pilter<br>18.35<br>10 <sup>-4</sup> 15/hr | 5um<br>975<br>10 <sup>-4</sup> 15/hr | 1001<br>1001<br>10 <sup>-4</sup> 1b/h |  |
| Bromine                                        | t                                      |                                                | t                                      | t                                         |                                            | t                                           | 44.7                                      | t                                    | t                                     |  |
| Iron                                           | 240                                    | 36.2                                           | 276                                    | 295                                       | 53                                         | t                                           |                                           | 49                                   | 56                                    |  |
| Nickul                                         | 53                                     |                                                | 53                                     | 56                                        | L                                          | t T                                         |                                           | t                                    | E.                                    |  |
| Calcium                                        | 5                                      | 29.5                                           | 42                                     | 45                                        | t                                          | 5                                           |                                           | 5                                    | t                                     |  |
| Ragnesium                                      |                                        | -                                              |                                        |                                           | t .                                        |                                             |                                           |                                      |                                       |  |
| Sillcon                                        |                                        |                                                |                                        |                                           | 6.6                                        |                                             |                                           |                                      |                                       |  |
| Manyanuse                                      | t                                      |                                                | 5                                      | t                                         | L I                                        | t                                           | 1.5                                       | t                                    | t                                     |  |
| Aluminum                                       |                                        |                                                |                                        | /21                                       | Ľ                                          |                                             |                                           |                                      |                                       |  |
| Laad                                           |                                        | E .                                            | k                                      | t                                         | 2                                          | t                                           | t                                         | t                                    | E                                     |  |
| Holybdenus                                     | t                                      |                                                | E                                      | L                                         |                                            |                                             |                                           |                                      |                                       |  |
| Coppur                                         | t                                      | · · ·                                          | t                                      | ι.                                        | Ľ                                          | ε                                           | •                                         | t í                                  | t                                     |  |
| Silver                                         |                                        | 1                                              | -                                      |                                           | t                                          |                                             |                                           |                                      |                                       |  |
| Zinc                                           | 5                                      | 5                                              | 5.                                     | 5                                         | L ·                                        | 5                                           | 5                                         | 5                                    | t                                     |  |
| Cobalt                                         | t                                      |                                                | t t                                    | t                                         | t                                          | L                                           | • •                                       | K                                    | <b>k</b>                              |  |
| Chromium                                       | 55                                     |                                                | 55                                     | 59                                        | L                                          | L I                                         |                                           | t                                    | Ł                                     |  |
| Potassium                                      |                                        |                                                |                                        |                                           |                                            | t                                           |                                           | t                                    | t.                                    |  |
| Sultur <sup>2</sup>                            | 2162                                   | 141                                            | 2303                                   | (2465)                                    | 4200                                       | 749                                         | 275                                       | 1024                                 | (1177) ·                              |  |
| Cadmium                                        | t                                      |                                                | . t                                    | t                                         |                                            | L                                           |                                           | t                                    | t                                     |  |
| Sulfate                                        | 3875                                   | 235                                            | 4110                                   | 4400                                      |                                            | 595                                         | 339                                       | 934                                  | 1075 -                                |  |
| Nitratu                                        | 492                                    |                                                | 492                                    | 527                                       |                                            | 10.8                                        | 1.4                                       | 12.2                                 | 14                                    |  |
| Total Carbon '                                 | 2362                                   | - 164                                          | 2526                                   | 2704                                      |                                            | 541                                         | 400                                       | 941                                  | 1081                                  |  |
| Volutile Carbon                                | 2148                                   |                                                | 2140                                   | (2300)                                    |                                            | 374                                         |                                           | 374                                  | (430)                                 |  |
| Salanium                                       | t                                      |                                                | L                                      |                                           |                                            | t                                           | . <b>t</b> -                              | t                                    | t                                     |  |
|                                                |                                        | Total Accounted fo                             | or by Analysia                         | 8,091                                     |                                            | TOLAL A                                     | ccounted for by                           | Analysis                             | 2,654                                 |  |
|                                                |                                        | Total Ca                                       | tch (1.e. TSP)                         | 14,300                                    |                                            |                                             | Total C.                                  | atch (TSP)                           | 6,100                                 |  |

1098 lb/hr fuel flow; 0.01 lb/hr particulate from ash; 1.43 lb/hr particulate from SASS, 0.61 lb/hr particulate from Joy

1. Values in "Total" column are obtained by dividing values in "Sum" column by the a TSP collected for the "Sum" column. This accounts for material collected in the probe and in other collectors not analyzed.

2. "Sulfur" value listed is from XM' analysis. "Sulfate" vlace is from wet chemical analysis and includes the sulfur plus the - oxygen in the sulfate value. Theoretically the "sulfate" value should equal 1/1 of the "sulfate" value.

[ ] Not included in the total.

each sampling train. Comparison of the mass rate of the elements (lb/hr) for the Joy train with that of the fuel is reasonable. However, the SASS train comparison indicates that there was some iron contamination in the sample. It is believed that this contamination was caused by oxidation of the nozzle. Several weeks after the test, rust was detected on the nozzle used for Test 165.

3. <u>Emission and Emission Factors</u>--Emission and emission factors can be listed with several different units. The following lists some of these emissions and factors.

| <u>Units</u>                                  | Test 165* | Test 16J | Frederiksen (Ref. 4-4<br>No. 25 No. 26 | } |
|-----------------------------------------------|-----------|----------|----------------------------------------|---|
| gr/DSCF                                       | 0.02      | 0.0087   | 0.0071 0.010                           |   |
| T/yr                                          | 6.2       | 2.7      | 2.9 4.3                                |   |
| lb/hr                                         | 1.43      | 0.61     | 0.67 0.97                              |   |
| lb/MMBtu                                      | 0.043     | 0.013    | 0.02 0.029                             |   |
| lb/1000 gal Burned                            | 10.0      | 4.3      | 4.7 6.8                                |   |
| <pre>lb/1000 gal Burned,<br/>(Ref. 4-5)</pre> | 2.0       | 2.0      | 2.0 2.0                                |   |
| % wt on fuel                                  | 0.13      | 0.058    | 0.064 0.093                            |   |

\* Results suspected to be in error--see Section 4.2.2 D2

Also the emission follows the Goldstein relation (Ref. 4-1) of emission vs % S, see Figure 4-10, Section 4.2.1 (i.e. the point 0.32% sulfur fuel ash particulate emission of 0.058% on fuel is on Goldstein's line).

## 4.2.3 Wood Waste Boiler

Sawdust, wood chips, and bark are used as fuel in boilers of lumber sawmills. These wood waste boilers have replaced nearly all of the conical (or teepee) burners formerly used to dispose of what was considered a waste product. The steam generated by the wood waste burners is typically used to heat the kilns in which the fresh-cut lumber is cured. The wood waste is collected at various processing stations, and delivered into a large silolike hopper. The waste is dampened to a 60 to 70% water content to prevent ignition. The waste is fed from the hopper into the boiler at a controlled rate to meet steam demand.

A. Boiler Description

The unit tested was a Wellons Hog Fuel Boiler, consisting of the following components:

- Babcock and Wilcox watertube boiler, 3952 ft<sup>3</sup> heating surface, 160 psig rated, and 125 psig operating.
- 2. Wellons Double Cell Type Furnace, with refractory lining, water cooled grates, 5'6" inside diameter.
- 3. Wellons Posi-Flo Storage Bin, 32000 ft<sup>3</sup> capacity, with automatic feed system to furnace.
- 4. Wellons Multi-Cone Collector, with 35 8" collector tubes.
- 5. Hagan Pneumatic Controls.
- 6. Three ft diameter, 40 ft high stack.

The rated steam load is 27,000 lb/hr maximum, 15,000 lb/hr average. It is operated continuously all year round. Fuel feed rate is 4500 lb/hr maximum, 2500 lb/hr average dry weight. The average heating value of the fuel is 8500 Btu/lb dry weight, and the ash content is 2% or less of the dry weight. The annual wood consumption is approximately 11,000 ton/year dry weight.

The unit is shown in Figure 4-14 which includes a step-by-step description of the process operations. Note that near the top of the conveyor the unit contains a sawdust screen which extracts the sawdust which contains 75% water and blows it with 600 °F exhaust gas through a cyclone which removes approximately 15% of the water before returning the sawdust to the surge bin.

B. Particulate Test Setup

A three inch diameter port was made in the three foot diameter stack located midway up the 30 ft high stack, 15 ft above the induced draft fan located at the base of the stack. Table 4-14 presents the velocity profile in the stuck, which was slightly unusual due to the asymmetric flow caused by the induced draft fan. A 0.75 diameter nozzle was used with the SASS train probe which was inserted 24 inches into the stream from the test port. Sampling occurred continuously from 12:00 noon to 2:10 pm, on October 13, 1977. Sampling rate was 6.5 ACFM  $\pm$  5% at 400 °F  $\pm$  10 °F. Total volume of gas sampled was 455 SCF. The test was stopped due to a clogged filter.

с.

rest Results

The following lists the actual weight collected in milligrams, mg and weight % of total for each fraction of the total catch:

| ·                       | mg   | Weight % of Total |
|-------------------------|------|-------------------|
| Probe                   | 30   | 1                 |
| Large Cyclone - 9.2 µm  | 126  | 3                 |
| Medium Cyclone - 3.8 µm | 515  | 12                |
| Small Cyclone - 1.3 µm  | 100  | 2                 |
| Filter                  | 347  | 8                 |
| Impinger water          | 2170 | 50                |
| Impinger extract        | 1041 | 24                |
| Total:                  | 4330 | 100               |

4-51

Fuel is conveyed(1)to the storage bin(2).. Posi-flo agitator(3)works its way around the feed-out cone, eliminating bridging or arches which occur along the cone side; fuel feeds down the agitator to the feed-out augers (4) which maintain a constant level of fual over the conveyor chain(5). The conveyor chain, fued-out augers and agitator operate only as necessary to keep a constant supply of fuel in the metering surge bin(6) whose variable speed augers are governed by the combustion controls to intch the steam loading on the boiler. The fuel passes through a screen (a) which separates the sawdust from the chips. The sawdust is heated and passes through a cyclone (6b) where the water in the wawdust is reduced by 10 to 15% and the sawdust Is introduced into the surge bin. The furnace feed auger(7)delivers a metered amount of fuel to the Wallons Cyclo-blast high temperature furnace cells where wood fuel quiffication and carbon combustion occurs in a small controlled pile on Wellons Water-cooled Gates(8)..Discharged grate cooling water is returned to the boiler feedwater system, conserving heat. Preheated primary combustion air is introduced under the grates, secondary and tertiary combustion air is injected through directional ports in the furnace walls above the fuel pile. Completion of combustion takes place in chamber(9) where radiant energy is directed to the radiant section of the boiler (1) .. Ash and entrained matter fall into the dropout chamber (10) .. Combustion gasses pass through a convection section of the boller and on through a multiclone collector (13) .. Particulate passes through a rotary seal [4] to a dump box [15] .. Stack gasses page through a combustion air preheater 16. .. The forced draft air from fan (20) circulates through the air preheater and is metered to the furnace through linear flow dampers (21) for proper fuel combustion. Stack gasses leave the air preheater, pass through an induced draft damper (17) which maintains a preset controlled pressure in the boiler combustion chamber ... Final journey of the stack gasses is through the induced draft fan (B) and out the exhaust stack (9) to atmosphere. Steam energy discharges through outlet (12) to process.

(2)

(18)

Figure 4-14. Wood chip and sawdust boiler.





4-52



TABLE 4-14. WOOD WASTE BOILER - STACK VELOCITY PROFILE (TEST 5)

4-53

The impinger water had turned a dark amber color by the end of the test. Later it was determined that 75% of the particulate was caught in the impinger. In Table 4-15 the results of XRF analysis of the various particulate samples are summarized. For each sample caught in the traps, as indicated, the percentage of each element is presented with the error indicated after the slash, i.e., 1.2/0.01 means  $1.28 \pm 0.018$ .

The results of the test discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Table 4-15 lists the results from this analysis.

The sulfate, nitrate, and carbon analyses results are also summarized in Table 4-15.

D. Discussion of Results--

1. <u>Particle Size Distribution</u> -- Figure 4-15 is a plot of particle size vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3B. Two curves are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected in the impinger (over three grams), it would seem that the effects of pseudo particulates would be negligible. Therefore, the impinger catch was believed to be properly included in the measurement of total suspended particulates from this waste wood boiler. Therefore the breakdown of particle size distribution is as follows:

|            | -6 |
|------------|----|
| > 10 µ m   | 1  |
| 3 - 10 µ m | 3  |
| 1 — Зµш    | 16 |
| < 1 µm     | 80 |

KVB 5806-783

4-54

## TABLE 4-15. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

| · ·                                         | 10µm<br>Cyclone | 3µm<br>Cyclone | lµm<br>Cyclone  | Filter    | Impinger |
|---------------------------------------------|-----------------|----------------|-----------------|-----------|----------|
| SAMPLE #                                    | 55-25           | 5S-3S          | 5s-4s           | 5S-5S     | 5S-IC    |
| Percent of Cut                              | 3               | 12             | 2               | 8         | 50       |
| XRF ANALYSIS                                |                 |                | 54              |           |          |
| Barium                                      | t               | t              | t               | t         |          |
| Calcium                                     | 6.5/1           | 14/2           | 10/2            | 3.3/0.4   | t        |
| Chlorine                                    |                 |                | * ·             | 2/0.4     | 2/0.8    |
| Iron                                        | 4.2/0.5         | 4.6/0.3        | 3.6/0.4         | t, '      | · .      |
| Manganese                                   | · t             | t              | · t             | t         | t        |
| Potassium                                   | 2.6/0.3         | 5.5/0.5        | 2.4/0.3         | 9.3/1.5   |          |
| Silicon                                     | 10              | 10             |                 | <i>x</i>  |          |
| (Sulfur)                                    |                 | (3.1/0.7)      | ) (<3)          | (8.8/1.5) | (2.1/0.7 |
| Tantalum                                    | t               | t              |                 |           |          |
| Zinc                                        |                 |                | t               | t         |          |
| Total Elements <sup>1</sup>                 | 23              | 34             | 16 <sup>.</sup> | 15        | 2.0      |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | t               | 1.2            | 2.3             | 7.0       | 2.4      |
| (Sulfur; from $SO_{4}^{\pm}$ )              | (t)             | (た)            | (セ).            | (2.3)     | (t)      |
| Nitrate (3,C sol) <sup>2</sup>              | t               | ' t            |                 | t         |          |
| Total Carbon <sup>3</sup>                   | 30              | 30             | t               | 23        | 7.0      |
| (Volatile Carbon) <sup>3</sup>              | (15.6)          | (7.4)          | (セ)             | ×.        | (7.0)    |
| (Carbonates) <sup>3</sup>                   | (3)             | (6.5)          | (t)             | (t)       |          |
| TOTAL ANALYZED                              | - 53            | 65             | 18              | 45        | 11       |
| BALANCE                                     | 47              | 35             | 82              | , 55      | 89       |
| × 1. z ×                                    | 100%            | 100%           | 100%            | 100%      | 100%     |

. IN PERCENT FOR WOOD WASTE BOILER (TEST 5)

detected in concentration of <1%

t

1

2

3

4 -

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X% ± Y )

not included in total-sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-55

2. <u>Chemical Composition--Table 4-15</u> lists the results from the chemical analysis of the particulate fraction for tests discussed in this section. Carbon was found to be most abundant followed by potassium, calcium, iron and carbonates.

3. Emission Factors--Based on this test alone, the following emission factors can be calculated at 4.3%  $CO_2$  and 16.6%  $O_2$ .

| A                     | A                                     |
|-----------------------|---------------------------------------|
| 0.15                  | grams TSP/Dry SCF Exhaust Gas         |
| 20 x 10 <sup>-6</sup> | 1b TSP/Dry SCF Exhaust Gas            |
| 0.3                   | grams TSP/Dry SCF Exhaust Gas         |
| 7                     | 1b TSP/hr of operation                |
| 30                    | Ton TSP/yr of operation               |
| ·l                    | lb TSP/Ton of dry wood waste          |
| 0.5                   | 1b TSP/Ton of stored wood waste (wet) |
| 0.7                   | 1b TSP/Ton of steam produced.         |



SASS Train With Impinger
 SASS Train Without Impinger

Figure 4-15. Particle size distribution for wood waste boiler (Test 05).

4-57

## 4.2.4 Utility Boilers

#### A. Boiler Description--

1. <u>Ppiler 1</u>--The first utility boiler tested was an opposed face-fired B&W supercritical 480 MW steam generator with 32 gas and residual oil burners. The unit operates at a supercritical pressure of approximately 3500 psig; the first water pass is through a division wall which divides the furnace in half. The feedwater pumps control the steam pressure. The firing rate is adjusted to maintain a 1000°F superheat temperature. The control of reheat temperature at 1000°F is accomplished by flue gas proportional dampers, reheat spray, and hopper flue gas recirculation. Full load for this unit is 480 MW and the current minimum load is 180 MW.

2. <u>Boiler 2</u>--The second utility boiler tested was a face-fired, balanced draft, 180 MW steam generator with 16 gas and residual oil burners. The unit operates at a supercritical pressure of approximately 1800 psig and the first water pass is through a division wall which divides the furnace into halves. The feedwater pumps control the steam pressure and the firing rate is adjusted to maintain a 1000°F superheat temperature. The control of reheat temperature at 1000°F is accomplished by flue gas proportional dampers, reheat spray, and hopper flue gas recirculation. Full load for this unit is 180 MW and the current minimum load is 80 MW.

B. Particulate Test Set-up--

Two sampling trains were used simultaneously for each of the particulate tests performed on utility boilers in order to have redundant tests for accuracy determination. Tests 11, 12, and 13 were planned as identical tests to determine precision. These three tests were performed on a clean boiler. Test 23 was run at the same condition and on the same boiler but after the boiler had been operating for a period of time long enough to be considered a dirty boiler (>12 weeks). Test 24 was conducted on a dirty boiler under low load conditions. Tests 32 and 33 were performed at high load and

4-58

dirty boiler condition; repeats of Test 23. However, for Test 32 the two sampling trains were run with equal sample volumes. This required over 13 hours of sampling time for the smaller Joy train. Tests 21 and 22 were performed on the second boiler at high and low load, respectively. The following comparisons can be made.

> High load vs low load High load vs low load Boiler 1 Boiler 2 Clean Boiler vs Dirty Boiler Repeats: Tests 11, 12 and 13; Tests 23, 32, and 33 Joy vs SASS for each test

 Boiler 1--The sampling stations for Boiler 1 were located on the vertical section of the steel-lined, reinforced concrete stack about 100 ft above ground level, and about 10 ft above the location where the gases enter the stack (see Figure 4-16). The internal diameter of the stack was 270".
 Because of the large diameter of the stack, a velocity traverse was not possible. Velocity was measured up to 50" into the stack from the north and from the east. However, the stack flow rate was determined from fuel combustion calculations because a complete velocity profile was not obtained. Table
 4-16 lists the stack flow rate for each test and sample train along with sample location, average stack velocity, ft/sec, during the test, nozzle diameter, stack temperature, static pressure of the stack, and boiler load.

2. The sampling station for Boiler 2 was located on the lower of two 12' x 12' horizontal ducts leading to the base of the concrete stack (see Figure 4-16). This station was about 50' above ground level and on the straight section of the duct about 40 ft downstream from the nearest bend and about 15 ft from where the flow enters the concrete stack. Because of the large diameter of the stack, a velocity traverse was not possible. Velocity was measured up to 50" into the stack from the west on the lower of the two ducts. However, the stack flow rate was determined from fuel combustion calculations because a complete velocity profile was not obtained. The particulate test set-up data are also given in Table 4-16.

4-59





Figure 4-16. Flue gas flow from utility boilers.

4-60

TABLE 4-16. PARTICULATE TEST SET-UP DATA FOR UTILITY BOILERS

|        |       | Sample Lo                                   | cat 1011 -        | •                                   |                              |                            |                                    |                                   |             |        |
|--------|-------|---------------------------------------------|-------------------|-------------------------------------|------------------------------|----------------------------|------------------------------------|-----------------------------------|-------------|--------|
| Tast 8 | Train | Distance<br>From internal<br>wall, inches - | Prom<br>Direction | Velocity<br>ft/sec<br>At Test Point | Nozzle<br>Diameter<br>inches | Stack<br>Temperature<br>*F | Static Pressure<br>Inchus of Water | Stack Flow<br>Calculated<br>DSCFM | Load<br>MHH | Boiler |
| 115    | SASS  | 34                                          | North             | 78.0                                | 3/8                          | 275                        | +1.0                               | 803,730                           | 472         | 1      |
| 113    | Joy   | 34                                          | East              | 42.1                                | 1/4                          | 275                        | +1.0 -                             | 833,730                           | 472         | 1      |
| 125    | SASS  | 34                                          | North             | 40.1                                | 3/8                          | 284                        | +1.0                               | 898,170                           | 276         | 1      |
| 123 .  | Joy   | 34                                          | East              | . 54.6                              | 1/4                          | 275                        | +1.0                               | 898,170                           | 276         | 1      |
| 135 #  | SASS  | 34                                          | North             | 88.6                                | 3/8                          | 281                        | +1.0                               | 913,230                           | 472         | 1      |
| 133 -  | Joy   | 34                                          | East              | 30.8                                | 1/4 _                        | 273                        | +1.0                               | 913,230                           | 472         | 1      |
| 235    | SASS  | 34                                          | North             | 76.1                                | 9/16                         | 297                        | +1.0                               | 849,434                           | 450         | 1 .    |
| 271    | . Joy | 34                                          | East              | 47.0                                | 5/16                         | 290                        | +1.0                               | 849,414                           | 450         | 1      |
| 245    | SASS  | 34                                          | North             | 46.1                                | 11/16                        | 222                        | +1.3                               | 481,018                           | 238         | 1      |
| 24J    | Joy   | 34                                          | East              | 23.0                                | 7/16                         | 220                        | +1.3                               | 481,018                           | 238         | 1      |
| 325    | SASS  | 34                                          | East              | 51.7                                | 5/8                          | 295                        | +1.0                               | 795,981                           | 453         | 1      |
| 323    | Joy   | 34                                          | East              | 51.7                                | 1/4                          | 292                        | +1.0                               | 795,981                           | 453         | 1      |
| 335    | SASS  | 34                                          | East              | 45.0                                | 5/8                          | 286                        | +1.0                               | 855,043                           | 455         | 1      |
| 333    | Juy   | 34                                          | East              | 45.0                                | 5/16                         | 286                        | +1.0                               | 855,043                           | 455         | 1      |
| 215    | SASS  | 53                                          | West              | 32.9                                | 5/8                          | 214                        | -0.8                               | 378, 394                          | 174         | 2      |
| 21.J   | Joy   | 65                                          | Hest              | 32.9                                | 5/16                         | 275                        | -0.8                               | 378, 394                          | 174         | 2      |
| 225    | SASS  | 53                                          | West              | 15.6                                | 1.0                          | 222                        | -0.75                              | 215,124                           | 90          | 2      |
| 223 *  | Joy   | 65                                          | Hest              | 15.6                                | 1/2                          | 225                        | -0.75                              | 215,124                           | 90          | 2      |

\*Bad data; not included in subsequent analyses

KVB 5806-783

4-61

#### C. Test Results--

The results of the eight valid tests for Boiler #1 and for Boiler #2 (Tests 11-13, 21, 22, 24, 32, 33) discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and carbon analysis were determined for all fractions of particulate catches which contained weight in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Tables 4-17 to 4-24 list the results from these analyses. A fuel analysis for each test is presented in Table 4-25. Using the results of the particulate and fuel analyses a material balance of elements was made, these are listed in Tables 4-26 to 4-33. Particle size distribution curves for each test are given in Figures 4-17 to 4-25

## D. Discussion of Results--

1. <u>Particle size distribution</u>-Figures 4-17 to 4-25 are plots of particle size (µm) vs accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two sets of curves are presented for each test, one including the impinger catch, and the other without it. The EPA Method 5 (Ref. 4-6) does not include the impinger catch. However, the local agency (SCAQME) does include the impinger catch. Also considering the large amount of material collected in the impinger, it would seem that the effects of pseudo-particulates would be small. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particulates from utility boilers for particle size distribution. The breakdown of the particle size distribution taken from Figures 4-17 to 4-25, including the impinger catch, is as follows:

#### 4-62

|          |                                             |                                           | The second second second second second second second second second second second second second second second s | And A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A |
|----------|---------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·        | SAMPLE #                                    | SASS<br>Impinger<br>(inorganic)<br>llS-IC |                                                                                                                | SASS<br>Filter<br>115-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | PERCENT OF CUT                              | 58 '                                      |                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | XRF ANALYSIS                                | а. <sup>1</sup>                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Barium                                      |                                           |                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Calcium                                     | 8                                         |                                                                                                                | 12/1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Cobalt                                      | ,<br>,                                    | Ŧ                                                                                                              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Iron                                        | t                                         |                                                                                                                | 4.9,/0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | Nickel                                      | t                                         |                                                                                                                | 13.6/1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | Potassium                                   |                                           |                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | (Sulfur)                                    | (12/4)                                    |                                                                                                                | (3.3/5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ×        | Titanium                                    |                                           |                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Vanadium                                    | < * *                                     |                                                                                                                | 2.1/0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *        | TOTAL <sup>1</sup>                          | 2.2                                       | ÷                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ×,       | Sulfates, H_O sol) <sup>2</sup>             | 15                                        |                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | (Sulfur, from SO) *                         | (4.9)                                     |                                                                                                                | (11.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>i</i> | Nitrate (H <sub>2</sub> O sol) <sup>2</sup> |                                           | 2                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Total Carbon <sup>3</sup>                   | 8.8                                       |                                                                                                                | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | (Volatile Carbon) <sup>3</sup>              | (7.7)                                     | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | (Carbonates) <sup>3</sup>                   | '                                         |                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | TOTAL ANALYZED                              | 26                                        |                                                                                                                | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | BALANCE                                     | 74                                        |                                                                                                                | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                             | 100%                                      |                                                                                                                | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| e        | detected in concentration of <1%            | 1                                         | 1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        | analyzed by x-ray fluorescanceSectio        | n 3.2.2 B                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2        | analyzed by wet chemistry-Section 3.2       | .2 A                                      | ,                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3        | analyzed by Oceanography carbon analyz      | ersection J.2.2 A                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## TABLE 4-17. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR UTILITY BOILERS (TEST 11)

4-63

calculated from sulfates (sulfur-sulfate/3) to compare with sulfur

for values shown as  $X/Y_{*}$ , X is V of the element present and Y is the

XRF analysis and volatile carbon and carbonate are accounted for in

not included in total-sulfur and sulfates are accounted for in sulfur

4

5

()

from NRF

total carbon

arror (i.e. X% = Y )

|                                             |                                           | x                       |                          | · · .  |
|---------------------------------------------|-------------------------------------------|-------------------------|--------------------------|--------|
| SAMPLE #                                    | SASS<br>Impinger<br>(inorganic)<br>125-IC | Joy<br>Filter<br>12J-55 | SASS<br>Filter<br>125-55 |        |
| WT. PERCENT OF CUT                          | 50                                        | 2.9                     | 23                       |        |
| XRF ANALYSIS                                |                                           |                         |                          |        |
| Barium                                      |                                           | Έ.                      |                          | ۰<br>۱ |
| Bismuth                                     | 2                                         | 2                       | .=                       | 7      |
| Calcium                                     |                                           |                         | 18/1.2                   |        |
| Chromium                                    | τ                                         |                         |                          |        |
| Cobalt                                      |                                           |                         | t, '                     |        |
| Iron                                        | 1/0.4                                     | 1.2/0.3                 | 4.2/0.05                 |        |
| Lead                                        |                                           | t                       |                          |        |
| Nickel                                      | t                                         | 6.5/0 8                 | 11/1.1                   |        |
| Potassium                                   |                                           |                         | · t                      |        |
| (Sulfur)                                    | (9.7/2)                                   | (30)                    | (37/6.5)                 |        |
| Titanium                                    |                                           |                         | t                        |        |
| Vanadium                                    |                                           | τ                       | 1.6/0.32                 |        |
| Zinc                                        |                                           | E                       | · t                      |        |
| TOTAL <sup>1</sup>                          | 1.0                                       | 8.0                     | 35                       |        |
| Sulfates, H <sub>2</sub> C sol <sup>2</sup> | 16                                        | 41                      | 40                       |        |
| (Sulfur, from SO,)                          | (5.3)                                     | (14)                    | (13)                     |        |
| Nitrate (H_O sol)2                          | . Se                                      |                         |                          |        |
| Total Carbon <sup>3</sup>                   | . 14                                      | 20                      | 9.5                      |        |
| (Volatile Carbon) <sup>3</sup>              | (13)                                      |                         |                          |        |
| (Carbonates) <sup>3</sup>                   |                                           |                         | x<br>X                   |        |
| TOTAL ANALYZED                              | 31 '                                      | 69                      | 35                       |        |
| BALANCE                                     | 69                                        | 31                      | 15                       |        |
|                                             | 100%                                      | 100%                    | 100%                     |        |
|                                             |                                           |                         |                          |        |

## TABLE 4-18. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES FOR UTILITY BOILERS (TEST 12)

detected in concentration of <1% t analyzed by x-ray fluorescence--Section 3.2.2 B 1 analyzed by wet chemistry--Section 3.2.2 A 2 analyzed by Oceanography carbon analyzer--Section 3.2.2  $\lambda$ 3 'calculated from sulfates (sulfur=sulfate/3) to compare with sulfur 4 from XRF for values shown as X/T, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y ) 5 () not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-64

| SAMPLE #                                    | SASS<br>3µm<br>Cyclone<br>135-35 | SASS<br>Impinger<br>(inorganic)<br>13S-IC                                                                       | SASS<br>Filter<br>135-55 | Joy<br>Impinger<br>(inorganic)<br>13J-IC |
|---------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|
| PERCENT OF CUT                              |                                  | ter Westerner and Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual An |                          | . 72                                     |
| XRF ANALYSIS                                |                                  |                                                                                                                 |                          |                                          |
| Calcium                                     |                                  |                                                                                                                 |                          | t                                        |
| Chromium                                    | ж. ф.                            |                                                                                                                 |                          |                                          |
| Iron                                        |                                  |                                                                                                                 |                          | ,t                                       |
| Nickel                                      |                                  |                                                                                                                 |                          | ×                                        |
| Potassium                                   |                                  |                                                                                                                 |                          | 21                                       |
| (Sulfur)                                    |                                  |                                                                                                                 |                          | (18/6)                                   |
| · Vanadium                                  |                                  |                                                                                                                 |                          |                                          |
| Zinc                                        |                                  |                                                                                                                 |                          | t                                        |
| TOTAL                                       | э.                               |                                                                                                                 | *                        | t                                        |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> |                                  | *                                                                                                               |                          | 21                                       |
| (Sulfur, from SO) "                         | *                                |                                                                                                                 |                          | (6.9)                                    |
| Nitrate (H <sub>0</sub> sol) <sup>2</sup>   |                                  | 4 x                                                                                                             | · . ·                    | t                                        |
| Total Carbon <sup>3</sup>                   |                                  |                                                                                                                 |                          | 28                                       |
| (Volatile Carbon) <sup>3</sup>              | ÷                                |                                                                                                                 |                          | (23)                                     |
| (Carbonates) <sup>3</sup>                   |                                  | •                                                                                                               |                          | ۰.                                       |
| TOTAL ANALYZED                              |                                  | , ·,                                                                                                            |                          | 49                                       |
| BALANCE                                     |                                  |                                                                                                                 |                          | 51                                       |
|                                             | й. ,                             |                                                                                                                 |                          | 100%                                     |

# TABLE 4-19. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR UTILITY POILERS (TEST 13)\*

detected in concentration of <1%

t 1

2

3

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

Test 13S invalid

4-65

| SAMPLE #                                    | SASS<br>Filter<br>215-55 | SASS<br>Impinger<br>(inorganic)<br>21S-IC |   |
|---------------------------------------------|--------------------------|-------------------------------------------|---|
| WT. PERCENT OF CUT                          | 11                       | 59                                        |   |
| XRF ANALYSIS                                |                          | 4                                         | X |
| Iron                                        | 1/0.2                    | t                                         |   |
| Nickel                                      | 1.4/0.2                  |                                           |   |
| Selenium                                    |                          | t i                                       |   |
| (Sulfur)                                    | (6.2/2)                  | (19/4)                                    |   |
| Vanadium                                    | .t                       |                                           |   |
| TOTAL                                       | 1.4                      | t.                                        |   |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 55                       | 31                                        |   |
| (Sulfur, from $SO_{4}^{\overline{a}}$ )     | (18.3)                   | (10.4)                                    |   |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | t                        | < t                                       |   |
| Total Carbon <sup>3</sup>                   | 9.1                      | 9                                         |   |
| (Volatile carbon) <sup>3</sup>              |                          | (6)                                       |   |
| (Carbonates) <sup>3</sup>                   | 5 F.                     |                                           |   |
| TOTAL ANALYZED                              | 65                       | 40                                        |   |
| BALANCE                                     | 35                       | 60                                        |   |
|                                             | 100%                     | 100%                                      |   |

TABLE 4-20. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR UTILITY BOILERS (TEST 21)

detected in concentration of <1%

e

()

1 analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry--Section 3.2.2 A

3. analyzed by Oceanography carbon analyzer--Section 3.212 A

4 calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

5 for values shown as X/Y, X is 8 of the element present and Y is the error (i.e. X8  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

KVB 5806-783

4-66

|    | IN PERCENT                                                                                                             |                                       |                  |
|----|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|
|    | FOR TEST 22*                                                                                                           |                                       |                  |
|    | · · ·                                                                                                                  |                                       |                  |
|    | SAMPLE #                                                                                                               | SASS<br>Filter<br>225-55              | ,                |
|    | WT. PERCENT OF CUT                                                                                                     | 10                                    |                  |
|    | XRF ANALYSIS                                                                                                           |                                       |                  |
|    | Iron                                                                                                                   | 3.5/0.4                               |                  |
|    | Nickel                                                                                                                 | 4.8/0.5                               | •:               |
|    | (Sulfur)                                                                                                               | (27/10)                               |                  |
|    | Vanadium                                                                                                               | 1.3/0.2                               | 1 <sup>1</sup> . |
|    | TOTAL 1                                                                                                                | 10                                    |                  |
|    | Sulfates. H O sol <sup>2</sup>                                                                                         | 67                                    |                  |
|    | (Sulfur from SO-)                                                                                                      | (22)                                  |                  |
|    | Nitrare $(H \cap Sol)^2$                                                                                               | ( <i>LL</i> ),                        | <i>x</i>         |
|    | Total Carbon <sup>3</sup>                                                                                              | 7 5                                   |                  |
|    | (Volatile Carbon) <sup>3</sup>                                                                                         |                                       |                  |
|    | (Carbonates) <sup>3</sup>                                                                                              |                                       | · *              |
|    | TOTAL ANALYZED                                                                                                         | 84                                    | ×                |
| ī  | BALANCE                                                                                                                | 16                                    |                  |
|    |                                                                                                                        | 100%                                  |                  |
|    |                                                                                                                        |                                       |                  |
| t  | detected in concentration of <1%                                                                                       | ,                                     | · .              |
| 1  | analyzed by x-ray fluorescenceSection 3.2.2 B                                                                          |                                       |                  |
| 2  | analyzed by wet chemistrySection 3.2.2 $\lambda$                                                                       |                                       | . ,              |
| 3  | analyzed by Oceanography carbon analyzerSection 3.                                                                     | 2.2 A                                 |                  |
| 4  | calculated from sulfates (sulfur=sulfate/3) to compa<br>from XRF                                                       | re with sulfur                        |                  |
| 5  | for values shown as X/Y, X is % of the element prese error (i.e. X% $\pm$ Y )                                          | nt and Y is the                       |                  |
| () | not included in totalsulfur and sulfates are account NRF analysis and volatile carbon and carbonate are a total carbon | nted for in sulfur<br>coounted for in | *                |
| *  | Test 22J invalid                                                                                                       |                                       | ~                |
|    |                                                                                                                        |                                       |                  |

## TABLE 4-21. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

KVB 5806-783

4-67

| SAMPLE #                                    | SASS<br>Filter<br>245-55 | SASS<br>Impinger<br>(inorganic)<br>24S-IC | Joy<br>Impinger<br>(inorganic)<br>24J-IC |
|---------------------------------------------|--------------------------|-------------------------------------------|------------------------------------------|
| WT. PERCENT OF CUT                          | 14                       | 72                                        | 54                                       |
| XRF ANALYSIS                                |                          | • • •                                     |                                          |
| Barium                                      | t                        | a.<br>K                                   |                                          |
| Calcium                                     |                          | t                                         | t                                        |
| Chromium                                    |                          | t                                         | ж.,                                      |
| Iron                                        | 2.2/2.3                  | 2.5/0.3                                   | . t                                      |
| Lead                                        | , t.                     |                                           |                                          |
| Nickel                                      | 6.6/0.8                  | t                                         |                                          |
| (Sulfur)                                    | (26/10)                  | (22/7)                                    | (30/10)                                  |
| Vanadium                                    | t                        |                                           | × ·                                      |
| Zinc                                        | t                        | · ·                                       | ,                                        |
| TOTAL                                       | 9                        | 3                                         | t                                        |
| Sulfates, H <sub>2</sub> 0_sol <sup>2</sup> | 48                       | 24                                        | 25                                       |
| (Sulfur, from $SO_4^{-}$ ) <sup>4</sup>     | (16)                     | (8.1)                                     | (8.5)                                    |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | ÷ .                      |                                           |                                          |
| Total Carbon <sup>3</sup>                   | 12                       | 25                                        | 13                                       |
| (Volatile Carbon) <sup>3</sup>              | ž                        |                                           | 12                                       |
| (Carbonates) <sup>3</sup>                   |                          |                                           | t                                        |
| TOTAL ANALYZED                              | 69                       | 53                                        | 50                                       |
| BALANCE                                     | 31                       | 47                                        | 50                                       |
|                                             | 100%                     | 100%                                      | 100%                                     |

TABLE 4-22. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR TEST 24

t detected in concentration of <1%

1

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry-Section 3.2.2 A

3 analyzed by Oceanography carbon analyzer--Section 3.2.2 A

4 calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-68

XVB 5806-783

|   | the second second second second second second second second second second second second second second second se |                                           |                         |
|---|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
|   | SAMPLE #                                                                                                        | SASS<br>Impinger<br>(inorganic)<br>32S-IC | Joy<br>Filter<br>32J-5S |
|   | WT. PERCENT OF CUT                                                                                              | 66                                        | 16                      |
|   | XRF ANALYSIS                                                                                                    |                                           |                         |
|   | Barium                                                                                                          | s                                         | t                       |
| , | Calcium                                                                                                         | t                                         | 8.6/3                   |
|   | Chromium                                                                                                        | t                                         |                         |
|   | Cobalt                                                                                                          | , , , , , , , , , , , , , , , , , , ,     | t .                     |
|   | Iron                                                                                                            | t                                         | 1.9/0.3                 |
|   | Lead                                                                                                            |                                           | t.                      |
|   | Nickel                                                                                                          | t                                         | 7.9/0.9                 |
|   | Selenium                                                                                                        | t                                         | i -                     |
|   | (Sulfur)                                                                                                        | (15/5)                                    | (25/10)                 |
|   | Vanadium                                                                                                        |                                           | t                       |
|   | Zinc                                                                                                            | t                                         | t                       |
|   | TOTAL                                                                                                           | t                                         | 18.4                    |
|   | Sulfates, H <sub>2</sub> O sol <sup>2</sup>                                                                     | 24                                        | 59                      |
|   | (Sulfur, from SO <sub>a</sub> ) <sup>4</sup>                                                                    | (7.9)                                     | (20)                    |
|   | Nitrate (H <sub>2</sub> O sol) <sup>2</sup>                                                                     | ·                                         | ,                       |
|   | Total Carbon <sup>3</sup>                                                                                       | 18                                        | t                       |
|   | (Volatile Carbon) <sup>3</sup>                                                                                  | (9)                                       |                         |
|   | (Carbonates) <sup>3</sup>                                                                                       |                                           |                         |
|   | TOTAL ANALYZED                                                                                                  | 42                                        | 77                      |
|   | BALANCE                                                                                                         | 58                                        | 23                      |
|   |                                                                                                                 | 100%                                      | 100%                    |
|   |                                                                                                                 |                                           |                         |

TABLE 4-23. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR TEST 32

t detected in concentration of <1%

1

2

3

4

5

()

analyzed by x-ray fluorascance-Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfatas (sulfur-sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is t of the element present and Y is the error (i.e. Xt  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur XMP analysis and volatile carbon and carbonate are accounted for in total carbon

| States and states and |                                                    |   |                          |                                          |            |
|-----------------------|----------------------------------------------------|---|--------------------------|------------------------------------------|------------|
|                       | SAMPLE #                                           |   | SASS<br>Filter<br>335-55 | Joy<br>Impinger<br>(inorganic)<br>335-IC |            |
|                       | WT. PERCENT OF CUT                                 |   | 14                       | 31                                       |            |
|                       | XRF ANALYSIS                                       |   | ж н                      | <i>x</i>                                 |            |
| •                     | Barium                                             |   | t.                       |                                          |            |
|                       | Calcium                                            |   | 10/3                     | t                                        |            |
|                       | Chromium                                           |   |                          | ť                                        |            |
|                       | Cobalt                                             |   | t                        |                                          | ű.         |
|                       | Iron                                               |   | 3.6/0.5                  | 1.2/0.2                                  |            |
|                       | Nickel                                             |   | 6.3/0.7                  | t                                        |            |
|                       | Selenium                                           |   |                          | ť ť                                      |            |
|                       | (Sulfur)                                           |   | (30/10)                  | (16/5)                                   |            |
|                       | Vanadium                                           |   | t                        |                                          |            |
| a.                    | Zinc                                               |   | t                        | t                                        |            |
|                       | TOTAL*                                             |   | 20                       | 2                                        |            |
|                       | Sulfates, H <sub>2</sub> O sol <sup>2</sup>        |   | 59                       | . 23                                     | ۰ <i>۲</i> |
|                       | (Sulfur, from $SO_{\overline{A}}^{\overline{a}}$ ) |   | (20)                     | (7.8)                                    |            |
|                       | Nitrate (H <sub>2</sub> O sol) <sup>2</sup>        |   |                          |                                          |            |
| •                     | Total Carbon <sup>3</sup>                          | × | t                        | 20                                       |            |
|                       | (Volatile Carbon) <sup>3</sup>                     |   |                          | (20)                                     |            |
|                       | (Carbonates) <sup>3</sup>                          |   |                          |                                          |            |
|                       | TOTAL ANALYZED                                     |   | 79                       | 45                                       |            |
|                       | BALANCE                                            |   | 21                       | 55                                       |            |
|                       | · · · · ·                                          |   | 100%                     | 100%                                     |            |

TABLE 4-24. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR TEST 33

detected in concentration of <1% t analyzed by x-ray fluorescence--Section 3.2.2 B 1 analyzed by wet chemistry--Section 3.2.2 A 2 analyzed by Oceanography carbon analyzer--Section 3.2.2 A 3 calculated from sulfates (sulfur-sulfate/3) to compare with sulfur 4 from XRF for values shown as X/Y, X is of the element present and Y is the 5 error (i.e. X% ± Y , not included in total-sulfur and sulfates are accounted for in sulfur () XRZ analysis and volatile carbon and carbonate are accounted for in total carbon

TABLE 4-25.

FUEL MALYSIS RESULTS OF UTILITY BOILER #6 FUEL OIL

|                     |                              |             |                         | r.          |             |                         |                         |                         |
|---------------------|------------------------------|-------------|-------------------------|-------------|-------------|-------------------------|-------------------------|-------------------------|
| *                   | Test <sup>*</sup><br>21 & 22 | Test*<br>23 | Test <sup>e</sup><br>24 | Test*<br>32 | Test*<br>33 | Test <sup>†</sup><br>11 | Test <sup>†</sup><br>12 | Test <sup>†</sup><br>13 |
| Carbon, %           | 86.86                        | 86.68       | 86.50                   | 86.24       | 86.09       | 86.39                   | 86.35                   | 86.34                   |
| Hydrogen, N         | 12.51                        | 12.59       | 12.62                   | 12.72       | 12.61       | 12.93                   | 12.97                   | 13.02                   |
| Sulfur, 1           | 0.20                         | 0.20        | 0.19                    | 0.22        | 0.20        | 0.22                    | 0.22                    | 0.22                    |
| Ash, N              | 0.012                        | 0.015       | 0.012                   | 0.011       | 0.013       | 0.014                   | 0.009                   | 0.007                   |
| Moisture, %         | 0.12                         | 0.12        | 0.12                    | 0.26        | 0.70        | 0.05                    | 0.2                     | 0.05                    |
| Nitrogen, A         | ·                            |             |                         | 0.23        | 0.23        | 0.19                    | 0.21                    | 0.24                    |
| Oxygen, &           |                              |             | , <sup>1</sup> -        | 0.32        | 0.16        | 0.25                    | 0.25                    | 0.16                    |
| Heat of Combustion: |                              |             |                         |             |             |                         |                         |                         |
| Gross Btu/lb        | 19,310                       | 19,230      | 19,250                  | 19,260      | 19,250      | 19,278                  | 19,297                  | 19,255                  |
| Net Btu/15          | 18,170                       | 19,130      | 13,100                  | 18,100      | 18,100      |                         |                         |                         |
| Alphaltenes, %      | 0.44                         | 0.63        | 0.58                    | 0.66        | 0.56        |                         |                         |                         |
| Metals in % of Ash  |                              |             |                         |             |             |                         |                         |                         |
| Vanadium            | 3.9                          | 2.8         | 4.1                     | 9.0         | 8.2         | 1.93                    | 2.78                    | 3.00                    |
| Iron                | 19                           | 14          | 11                      | 10          | 15          | 3.14                    | 4.33                    | 3.00                    |
| Nickel              | 8.3                          | 11          | 12                      | 12          | 9.8         | 9.3                     | 14.4                    | 12.43                   |
| Sodium              | 13                           | 13          | 15 ,                    | 9.2         | 8.6         | 4.79                    | 5.11                    | 5.86                    |
| Calcium .           | 5.5                          | 4.4         | 4.8                     | 4.5         | 3.6         | 0.79                    | 1.00                    | 1.00                    |
| Silicon             | 1.2                          | 2.8         | 2.2                     | 2.0         | 2.2         | 2.0                     | 3.33                    | 2.29                    |
| Aluminum            | 0.43                         | 1.1         | 0.61                    | 3.5         | 6.1         | 0.86                    | 1.89                    | 1.57                    |
| Barium              | 0.31                         | 0.57        | 0.41                    | 0.42        | 0.42        | 0.86                    | 1.22                    | 1.24                    |
| Boron               | 0.051                        | 0.016       | 0.018                   | 0.011       | <0.008      | 0.01                    | 0.02                    | 0.02                    |
| Magnesium           | 2.5                          | 3.6         | 2.8                     | 4.2         | 3.8         | 1.79                    | 2.44                    | 2.57                    |
| Manganese           | 0.11                         | 0.28        | 0.13                    | 0.13        | 0.16        | 0.08                    | 0.12                    | 0.12                    |
| Lead                | 0.43                         | 0.85        | 0.70                    | 0.58        | 0.42        | 0.29                    | 0.54                    | 0.37                    |
| Tin .               | 0.11                         | 0.26        | 0.35                    | 0.16        | 0.19        | 0.58                    | 1.08                    | 1.57,                   |
| Chronium            | 0.067                        | 0.22        | 0.11                    | 0.15        | 0.19        | 0.07                    | 0.06                    | 0.05                    |
| Titanium            | 0.34                         | 0.17        | 0.25                    | 0.065       | 0.084       | 0.11                    | 0.14                    | 0.14                    |
| Copper              | 0.055                        | 0.77        | 0.092                   | 0.11        | 0.08        | 0.14                    | 0.17                    | 0.10                    |
| Silver              | 0.0024                       | 0.004       | 4 0.0023                | 0.0023      | 0.0024      | °t.                     | t                       | t.                      |
| Zinc                | 1.5                          | 1.0         | 1.2                     | 0.57        | 0.21        | 0.23                    | 0.41                    | 0.30                    |
| Cobalt              | 0.28                         | 0.31        | 0.31                    | 0.47        | 0.42        | 0.44                    | 0.47                    | 0.59                    |
| Strontium           | 0.11                         | 0.11        | 0.12                    | 0.075       | 0.073       | 0.10                    | 0.09                    | 0.09                    |
| Molybdenum          |                              |             |                         | 0.023       | 0.024       | 0.13                    | 0.12                    | 0.06                    |

\* Truesdail Laboratories Inc. † E. W. Saybolt & Co., Inc.

4-71

TABLE 4-26. MASS BALANCE FOR TEST 11

218,755 lb/hr fuel flow; 30.627 lb/hr particulate from ash; 65.03 lb/hr particulate from SASS Total SASS Filter SASS Impinger Sum Fuel Analysis Fraction 18% 1001 Ash=0.014% 68% 861 · Fraction 1b/hr lb/hr 1b/hr lo/hr lb/hr Units Vanadiv 0.24 0.83 0.24 0.28 Iron 0.58 1.35 0.08 0.77 J.66 Nickel 1.26 0.02 3.98 1.28 1.49 Calcium 1.45 0.01 0.37 1.70 1.46 Magnesium 0.77 Sodium 2.05 Silicon 0.86 Manganese 0.03 0.01 0.01 0.01 Aluminum 0.37 0.03 0.37 Sarium 0.03 0.03 0.01 Lead 0.13 0.01 0.02 0.02 Tin 0.25 Molybdenum 0.01 0.06 0.01 0.01 Copper 0.01 0.06 0.01 0.02 0.02 Silver 0.01 0.01 0.0002 0.01 Zinc 0.03 0.01 0.10 0.04 0.05 0.03 Titanium 0.05 0.01 0.14 0.05 Cobalt 0.19 Chronium 0.03 0.02 0.02 0.02 Strontium 0.01 0.01 0.02 0.04 0.02 0.05 Potassium 0.01 0.06 0.07 Sulfur 3.94 1.71 (6.57)2 481.3 5.65 Bromine 0.01 0.01 0.01 Sulfate 4.19 2.11 7.33 6.3 Nitrate ------Total Carbon 0.70 1.25 1.95 2.27 (1.28)2 Vol. Carbon -1.1 1.1 (0.01)<sup>2</sup> Carbonate 0.01 -0.01 Cadmium 0.01 0.01 0.01 Rubidium 0.01 0.01 0.01 Selenium 10.01 0.01 0.01 Arsenic 0.01 0.01 0.01 Gallium 0.01 0.01 0.01 Total 14.21 65.03 TSP

1 Compare total column with fuel analysis column

2 Not included in summation

кув 5806-783

|              | 5255   |          |                |            | x             | Jav           |          |
|--------------|--------|----------|----------------|------------|---------------|---------------|----------|
| fraction     | Filter | Impinger | 5um<br>78%     | Total      | Fuel Analysis | Filter<br>29% | Total    |
| Units        | Lb/hr  | 1b/hr    | lb/hr          | 15/hr      | Lb/hr         | lb/hr         | 15/hr    |
| Vanadium     | 0.2    |          | 0.2            | 0.26       | 0.5           | 0.1           | 0.34     |
| Iron         | G.53   | 0.30     | 0.83           | 1.1        | 0.77          | 0.16          | 0.55     |
| Nickel       | 1.4    | t        | 1.4            | 1.9        | 2.58          | 0.85          | 2.9      |
| Calcium      | 2.23   | e        | 2.2            | 2.8        | 0.18          |               |          |
| Magnesium    |        | e        | 5              | E.         | 0:44          |               |          |
| Sodaum       | 4      | ð.       |                |            | 0.91          |               |          |
| Silicone     |        | ,        |                |            | 3.6           | 4             | · · ·    |
| Manganese    |        |          |                |            | 0.02          |               | ,        |
| Aluminum     |        |          |                |            | 0.34          | c             | c        |
| Sarium       |        | . E      | t              | e          | J. 22         | 0.5           | 0.17     |
| Lesd         | e      | -        | ť              | e          | 0.10          | 0.02          | 3.37     |
| Tin          |        |          |                |            | 0.19          |               |          |
| Molybdenum   |        |          | ,              |            | 0.02          |               |          |
| Copper       |        | t        | e              | t ·        | 0.03          | •             |          |
| Silver       |        | e        | t i            | e          | 0.0001        |               | 1        |
| Zine         | 0.04   | E        | <del>د</del> ` | 0.05       | 0.07          | 0.02          | 0.07     |
| Titanium     | 0.04   | E        | <b>e</b>       | e          | 0.03          |               |          |
| Cobalt       | 0.04   | E        | t              | E          | 0.08          | ' t           | t        |
| Chronium     |        | 0.13     | 0.13           | 1.17       | 0.01          |               |          |
| Strontium    | t      |          | t              | E          | 0.02          |               |          |
| Potassium    | 0.08   | e        | t              | ۰.         |               |               |          |
| Sulfur       | 4.71   | 2.95     | 7.7            | (9.9)      | 485           | 3.94          | (13.5) 2 |
| Sromine      |        | t        | <b>e</b> 1     | t          | i.            | а.            |          |
| Sulface      | 5.02   | 4.9      | 9.9            | 12.7       |               | 5.38          | 18.36    |
| Nitrate      |        |          |                |            |               |               | ÷        |
| Tocal Carbon | 1.19   | 4.3      | 5.5            | 7.1        |               | 2.68          | 9.1      |
| Vol. Carbon  |        | 4.0      | 4.0            | (5.1)2     |               |               |          |
| Carbonate    |        |          |                | 100        | · ·           |               |          |
| Cadmium      |        | E        | t              | , <b>z</b> |               |               |          |
| Selenium     |        | t        | t              | t          | · · ·         |               |          |
| 31.sumath    | 0.04   |          | 0.04           | 0.05       |               |               |          |
| Gallium      | t      | ~        | <b>C</b> ( )   | Ľ          |               | 3             |          |
|              |        |          | Total          | 26.0       |               | Tota          | 1 31.6   |
|              |        |          |                |            |               |               |          |

220.497 lb/hr fuel flow: 19.84 lb/hr particulate from ash; 55.5 lb/hr particulate from SASS; 44.8 lb/hr particulate from Joy. t < 0.1 lb/hr.

1 Compare total column with fuel analysis column

2 Not included in summation

4-73

KVB 5006-783

## TABLE 4-29. MASS BALANCE FOR TEST 13

## 219.003 lb/hr fuel flow; 15.33 lb/hr particulate from ash; 68.5 lb/hr particulate from Joy

| Joy        Joy      Total      Total      Puel Analysis        % Fraction<br>Units      1004      1004      Acheo.0074        Junc      0.15      0.19      0.32        Yanadium      0.05      0.06      1.33        Iron      0.05      0.06      1.33        Stickel      0.05      0.06      1.33        Sodum      0.05      0.06      1.33        Sodum      0.05      0.06      1.33        Sodum      0.05      0.06      1.33        Sodum      0.05      0.06      0.212        Nargasium      0.05      0.06      0.212        Nargasium      0.05      0.06      0.017        Silicone      0.32      0.35      0.06        Suire      0.05      0.06      0.017        Suires      0.05      0.06      0.0007        Silver      0.05      0.06      0.0007        Suire      0.05      0.06      0.0007        Suire      0.05      0.06      0.0007 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>                                 |                               |        |                          |                                     |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|--------------------------|-------------------------------------|--------------------------------------|
| Fraction      Implinger<br>78%      footal<br>100hr      Presition        Arsenic      0.015      0.19      0.12        Yanadium      0.15      0.19      0.12        Yanadium      0.05      0.06      1.33        Iron      0.15      0.19      0.12        Nickel      0.05      0.06      1.33        Solum      0.05      0.06      0.23        Marganese      0.05      0.06      0.212        Numanum      0.05      0.06      0.212        Numanum      0.05      0.06      0.27        Sarum      0.05      0.06      0.21        Suiver      0.05      0.06      0.22        Suiver      0.05      0.06      0.0007        Suirc      0.05      0.06      0.005        Suiver      0.05 </th <th></th> <th></th> <th>Joy</th> <th>,</th> <th></th>                        |                               |        | Joy                      | ,                                   |                                      |
| Arsenic      0.15      0.19      0.12        Iron      0.05      0.06      1.33        Nickel      0.06      0.98      0.11        Solin      0.06      0.98      0.13        Naghesiun      0.06      0.98      0.13        Solin      0.05      0.06      0.93      0.13        Solin      0.05      0.05      0.012      0.03        Shilcone      0.05      0.05      0.012      0.17        Aluminum      0.13      0.13      0.13      0.13        Lead      0.05      0.06      0.064      0.17        Aluminum      0.05      0.06      0.061      0.17        Strium      0.05      0.06      0.061      0.07        Strium      0.05      0.06      0.007      0.0007        Strium      0.05      0.06      0.03      0.06      0.03        Strium      0.05      0.06      0.05      0.06      0.09        Strium      0.05      0.06      0.09      0.09      0                                                                                    | Fraction<br>Fraction<br>Onits | ,<br>, | Impinger<br>784<br>Ib/hr | Total <sup>1</sup><br>100%<br>1b/hr | Fuel Analysis<br>Ach=0.007%<br>lb/hr |
| Vanadium      0.15      0.19      0.12        Hron      0.05      0.06      1.33        Nickel      0.06      0.06      1.33        Calorum      0.06      0.09      0.11        Magnasum      0.06      0.09      0.13        Sodium      0.05      0.05      0.05        Silicone      0.05      0.05      0.012        Magnasum      0.13      0.13        Sarium      0.13      0.13        Lead      0.05      0.06      0.04        Tin      0.17      0.006      0.01        Silver      0.05      0.06      0.01        Silver      0.05      0.06      0.03                                                                                                                    | Arsenic                       |        | ,                        | · .                                 |                                      |
| Lron    0.15    0.19    0.12      Nickel    0.05    0.06    1.33      Calcourn    0.06    0.09    0.11      Nagnessium    0.63    0.13      Sodium    0.25    0.63      Suitcome    0.25    0.012      Angarese    0.05    0.05    0.012      Aluminum    0.13    0.13      Sarium    0.13    0.17      Sarium    0.05    0.06    0.64      Tin    0.05    0.06    0.64      Tin    0.17    0.17    0.17      Suiyodemun    0.05    0.06    0.01      Copper    0.05    0.06    0.01      Suiver    0.05    0.06    0.03      Zine    0.05    0.06    0.005      Strontum    0.05    0.06    0.005      Strontum    0.05    0.06    0.05      Sulfate    10.94    14,1      Strate    0.10    0.13      Sulfate    10.95    0.06   Sulfate    0.05    0.06                                                                                                                                                                                                      | Vanadium                      |        |                          |                                     | 0.32                                 |
| Nickel    0.05    0.06    1.33      Calcuts    0.06    0.09    0.11      Magnessinn    0.63      Soluts    0.63      Suitscone    0.25      Magnese    0.05    0.26      Alunanum    0.17      Sarun    0.13      Lead    0.05    0.06      Tan    0.05    0.06      Kulybdenun    0.05    0.06      Copper    0.05    0.06      Siler    0.05    0.06      Copper    0.05    0.06      Stinnun    0.05    0.06    0.01      Silver    0.05    0.06    0.007      Zine    0.05    0.06    0.001      Silver    0.05    0.06    0.005      Strantun    0.05    0.06    0.005      Strantun    0.05    0.06    0.005      Strantun    0.05    0.06    0.005      Strantun    0.05    0.06    0.005      Strantun    0.05    0.06    0.005      Strate<                                                                                                                                                                                                            | Iron                          |        | 0.15                     | 0.19                                | 0.32                                 |
| Calculan  0.06  0.08  0.11    Magnasium  0.23  0.23    Sodium  0.61  0.25    Sanganese  0.05  0.05  0.05    Aluminum  0.17    Sarium  0.13    Lead  0.05  0.06  0.04    Tin  0.17    Nolybdanum  0.05  0.06  0.04    Copper  0.05  0.06  0.01    Silver  0.05  0.06  0.01    Silver  0.05  0.06  0.03    Cobalt  0.05  0.06  0.03    Cobalt  0.05  0.06  0.005    Strontum  0.05  0.06  0.005    Sulfur  0.05  0.06  0.005    Sulfur  0.05  0.06  0.005    Sulfur  0.05  0.06  0.005    Sulfur  0.05  0.06  0.005    Sulfur  0.10  0.13  1    Nubitum  10.94  14,1  1    Sulfare  10.94  14,1  1    Sulfare  0.05  0.06  1    Nubitum  12.23  15.3) <sup>2</sup> 1    Vol. Carbon <td< td=""><td>Mickel</td><td></td><td>. 0.05</td><td>0.06</td><td>1.33</td></td<>                                                                                                                                                                                            | Mickel                        |        | . 0.05                   | 0.06                                | 1.33                                 |
| Magnasium      0.13        Sodium      0.63        Silicone      0.25        Manganese      0.05      0.012        Aluminum      0.17        Sarium      0.13        Lead      0.05      0.06        Tin      0.17        Molybdanum      0.17        Solium      0.17        Nolybdanum      0.17        Copper      0.05      0.06        Silver      0.05      0.06        Zinc      0.05      0.06      0.03        Titanium      0.05      0.06      0.03        Cobalt      0.05      0.06      0.03        Chromum      0.05      0.06      0.03        Stitur      0.05      0.06      0.03        Sulfate      0.05      0.06      0.09        Sulfate      10.94      14,1      Nitrate        Nol. Carbon      12.23      (15.3) <sup>2</sup> 14.88        Carbon      12.23      (15.3) <sup>2</sup> 14.81        Sulfate      0.05      0.06                                                                                                       | Calcium                       |        | 0.06                     | 0.09                                | 0.11                                 |
| Sodium      0.63        Silicone      5.25        Manganese      0.05      0.05        Aluminum      0.17        Barium      0.13        Lead      0.05      0.06        Tin      0.17        Mclybdanun      0.05      0.06        Copper      3.05      0.06      0.01        Silver      0.05      0.06      0.01        Silver      0.05      0.06      0.03        Zine      0.05      0.06      0.03        Titanum      0.05      0.06      0.03        Cobalt      0.05      0.06      0.005        Cobalt      0.05      0.06      0.005        Strontum      0.05      0.06      0.005        Sulfur      9.59      (12.4) <sup>2</sup> 482        Rubulum      10.94      14,1      14.88        Sulfare      0.10      0.13      14.88        Sulfare      0.10      0.13      14.88        Vol. Carbon      12.23      (15.a) <sup>2</sup> 14.1                                                                                                    | Machina Luni                  |        |                          |                                     | 0.23                                 |
| Silicone    2.25      Manganese    0.05    3.06    9.012      Aluminum    0.17    0.13      Barium    0.13    0.13      Lead    0.05    3.06    0.04      Tun    0.17    0.13      Kelyblenum    0.05    0.06    0.017      Kelyblenum    0.05    0.06    0.01      Copper    3.05    0.06    0.01      Silver    0.05    0.06    0.00      Zinc    0.05    0.06    0.03      Titanum    0.05    0.06    0.03      Cobalt    0.05    0.06    0.005      Chromum    0.05    0.06    0.005      Strontum    0.05    0.06    0.005      Sulfare    10.94    14,1    1      Nutation    12.03    (15.8) <sup>2</sup> 482      Rubidim    12.13    (15.8) <sup>2</sup> 482      Nol.    12.13    (15.8) <sup>2</sup> 1      Carbona Carbon    12.13    (15.8) <sup>2</sup> 1      Carbonate    0.05    0.06                                                                                                                                                          | Sodum                         |        |                          |                                     | 0.63                                 |
| Manganese      0.05      0.05      0.012        Minuminum      0.17      0.13        Lead      0.05      0.06      0.04        Tin      0.17      0.13        Keighenum      0.05      0.06      0.04        Copper      0.05      0.06      0.01        Silver      0.05      0.06      0.0007        Zinc      0.05      0.06      0.03        Titanium      0.05      0.06      0.03        Cobalt      0.05      0.06      0.03        Chomum      0.05      0.06      0.03        Stranum      0.05      0.06      0.03        Cobalt      0.05      0.06      0.03        Chomum      0.05      0.06      0.03        Stranum      0.05      0.06      0.03        Sulfare      10.94      14,1      14        Sulfare      0.10      0.13      14.88        Sulfare      0.05      0.06      12.23      (15.8) <sup>2</sup> Vol. Carbon      12.23      (15.8) <sup>2</sup> <td>Sullcone</td> <td></td> <td></td> <td></td> <td>0.25</td>                | Sullcone                      |        |                          |                                     | 0.25                                 |
| Alumanum    0.17      Barium    0.13      Lead    0.05    0.06    0.04      Tin    0.17    0.17      Mulybdenum    0.306    0.01      Copper    0.05    0.06    0.01      Silver    0.05    0.06    0.01      Silver    0.05    0.06    0.00007      Zinc    0.05    0.06    0.03      Titanium    0.05    0.06    0.03      Cobalt    0.05    0.06    0.005      Chromum    0.05    0.06    0.005      Stranium    0.05    0.06    0.005      Stranium    0.05    0.06    0.005      Stranium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Sulfate    10.94    14.1    14.1      Nitrate    0.05    0.06    12.23    (15.8) <sup>2</sup> Vol. Carbon    12.23    (15.8) <sup>2</sup> 12.23    15.8) <sup>2</sup> Carbonatee                                                                                                                                                                                                           | Mancanete                     |        | 0.05                     | 0.06                                | 0.012                                |
| Barium      0.13        Lead      0.05      0.06      0.04        Tin      0.17      0.17        Molybdanum      0.005      0.06      0.01        Copper      0.05      0.06      0.01        Silver      0.005      0.06      0.001        Zinc      0.05      0.06      0.031        Titanum      0.05      0.06      0.031        Cobalt      0.05      0.06      0.035        Cobalt      0.05      0.06      0.005        Cobalt      0.05      0.06      0.005        Cobalt      0.05      0.06      0.005        Stirum      0.05      0.06      0.005        Stirum      0.05      0.06      0.03        Sulfate      10.94      14,1        Nitrate      0.05      0.06      12.23        Vol. Carbon      12.23      (15.a) <sup>2</sup> 14.3        Vol. Carbon      0.05      0.06      14.3        Garbonate                                                                                                                                      |                               | 1      |                          |                                     | 0.17                                 |
| Lead      0.05      0.06      0.74        Tin      0.17      0.17        Melybdanum      0.05      0.06      0.01        Silver      0.05      0.06      0.01        Silver      0.05      0.06      0.03        Zinc      0.05      0.06      0.03        Titanium      0.05      0.06      0.06        Cobalt      0.05      0.06      0.06        Chronium      0.05      0.06      0.005        Stifur      0.05      0.06      0.005        Sulfur      9.59      (12.4) <sup>2</sup> 482        Rubidium      10.94      14,1      14        Nitrate      0.10      0.13      14.88        Vol. Carbon      12.23      (15.3) <sup>2</sup> 14        Vol. Carbon      12.23      (15.3) <sup>2</sup> 14        Garbonate      —      —      14.88      19.2        Wol. Carbon      0.05      0.06      0.06      14.1        Stime      0.05      0.06      14.1      14.1      14.1 </td <td>3.5-11-11</td> <td></td> <td></td> <td></td> <td>0.13</td> | 3.5-11-11                     |        |                          |                                     | 0.13                                 |
| Tin    0.17      Nolybdenun    0.206      Copper    1.05    0.06    0.01      Silver    0.00007    0.00007    0.00007      Zinc    0.05    0.06    0.03      Titanium    0.02    0.02    0.02      Cobalt    0.05    0.06    0.03      Cobalt    0.05    0.06    0.03      Chromium    0.05    0.06    0.005      Stifur    0.05    0.06    0.005      Sulfare    0.05    0.06    0.005      Sulfare    10.94    14,1      Mitrate    0.17    0.05    0.06      Vol. Carbon    12.23    (15.8) <sup>2</sup> 482      Vol. Carbon    12.23    (15.8) <sup>2</sup> 15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                   | Tend                          |        | 0.05                     | 0.06                                | . 0.64                               |
| Molybdanum    0.306      Copper    0.05    0.06    0.01      Silver    0.05    0.06    0.03      Zinc    0.05    0.06    0.03      Titanium    0.05    0.06    0.03      Cobalt    0.05    0.06    0.05      Cobalt    0.05    0.06    0.005      Chromium    0.05    0.06    0.005      Strontium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Sulfate    0.10    0.13    14.1      Nitrate    0.10    0.13    14.43    19.2      Vol. Carbon    12.23    (15.3) <sup>2</sup> 15.3    15.3      Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |        |                          |                                     | 0.17                                 |
| Copper    0.05    0.06    0.01      Silver    0.0007    0.0007      Zinc    0.05    0.06    0.03      Titanium    0.05    0.06    0.02      Cobalt    0.05    0.06    0.005      Cobalt    0.05    0.06    0.005      Chromium    0.05    0.06    0.005      Strontium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Sulfare    0.10    0.13    482      Rubulium    10.94    14,1    14,11      Nitrate    0.10    0.13    14.88      Total Carbon    12.23    (15.3) <sup>2</sup> 482      Vol. Carbon    12.23    (15.3) <sup>2</sup> 482      Carbonste    —    —    —      Bromine    0.05    0.06    —      Gallium    —    —    —    —      TSP    68.5    —    —    —                                                                                                                                                                                                                   | a gat                         |        |                          |                                     | 0.006                                |
| Silver    0.00007      Silver    0.00007      Zinc    0.05    0.06    0.03      Titanum    0.02    0.02    0.02      Cobalt    0.05    0.06    0.05      Chromum    0.05    0.06    0.05      Strontium    0.05    0.06    0.005      Strontium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Sulfar    9.59    (12.4) <sup>2</sup> 482      Rubidium    10.94    14,1    14,1      Nitrate    0.10    0.13    15.8) <sup>2</sup> Vol. Carbon    12.23    (15.8) <sup>2</sup> 15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                      | Compart                       |        | 0.05                     | 0.06                                | 0.01                                 |
| Silver    0.05    0.06    0.03      Titanum    0.05    0.06    0.02      Cobalt    0.05    0.06    0.06      Chromum    0.05    0.06    0.005      Strontium    0.05    0.06    0.005      Strontium    0.05    0.06    0.005      Strontium    0.05    0.06    0.009      Potassium    0.05    0.06    0.009      Sulfur    9.59    (12.4) <sup>2</sup> 482      Rubidium    10.94    14,1      Nitrate    0.10    0.13      Total Carbon    12.23    (15.8) <sup>2</sup> Vol. Carbon    12.23    (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper                        |        |                          |                                     | 0.0007                               |
| 2110  0.02    Titanium  0.02    Cobalt  0.05  0.06    Chromium  0.05  0.06    Strontium  0.05  0.06    Sulfur  9.59  (12.4) <sup>2</sup> Rubidium  0.10  0.13    Sulfate  10.94  14,1    Nitrate  0.10  0.13    Total Carbon  12.23  (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |        | 0.05                     | 0.06                                | 0.03                                 |
| Trianium    0.05    0.06    0.03      Cobalt    0.05    0.06    0.005      Chromuum    0.05    0.06    0.009      Strontium    0.05    0.06    0.09      Potassium    0.05    0.06    0.09      Sulfur    9.59    (12.4) <sup>2</sup> 482      Rubidium    10.94    14,1      Nitrate    0.10    0.13      Total Carbon    12.23    (15.8) <sup>2</sup> Vol. Carbon    12.23    (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2186                          | •      |                          | 4                                   | 0.03                                 |
| Cobalt  0.05  0.06  0.035    Chromum  0.05  0.06  0.005    Strontium  0.05  0.06    Sulfur  9.59  (12.4) <sup>2</sup> Rubidium  10.94  14.1    Nitrate  0.10  0.13    Total Carbon  12.23  (15.8) <sup>2</sup> Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71Canlum                      |        | 0.05                     | 0.06                                | . 0.06                               |
| Chrometum  0.003    Strontium  0.009    Potassium  0.05  0.06    Sulfur  9.59  (12.4) <sup>2</sup> Rubidium  10.94  14.1    Nitrate  0.10  0.13    Total Carbon  14.88  19.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobalt .                      |        | 0.05                     | 0.05                                | 0.005                                |
| Strontium  0.05  0.06    Potassium  0.05  0.06    Sulfur  9.59  (12.4) <sup>2</sup> Rubidium  10.94  14.1    Nitrate  0.10  0.13    Total Carbon  12.23  (15.8) <sup>2</sup> Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chrospins -                   |        | 0.05                     | 0.00                                | 0.003                                |
| Potassium  0.05  0.00    Sulfur  9.59  (12.4) <sup>2</sup> Rubidium  10.94  14.1    Sulfate  0.10  0.13    Total Carbon  14.88  19.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium  Total  34.3    TSP  68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strontium                     |        | 0.05                     | 2.06                                | 0.009                                |
| Sulfur  9.35  (12.4)  482    Rubidium  Sulfate  10.94  14.1    Nitrate  0.10  0.13    Total Carbon  14.88  19.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium      Total  34.3    TSP  68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Potassium                     |        | 0.05                     | 0.00 <sup>2</sup>                   |                                      |
| Rubidium      Sulfate    10.94    14.1      Nitrate    0.10    0.13      Total Carbon    14.88    19.2      Vol. Carbon    12.23    (15.8) <sup>2</sup> Carbonate        Bromine    0.05    0.06      Selenium    0.05    0.06      Gallium    Total    34.3      TSP    68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulfur                        |        | 9.39                     | (12-4)                              | 484                                  |
| Sulfate  10.94  14.1    Nitrate  0.10  0.13    Total Carbon  14.88  19.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium  Total  34.3    TSP  68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rubidium                      |        | 10.04                    | 14.1                                |                                      |
| Nitrate  0.10  0.13    Total Carbon  14.88  19.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium  Total  34.3    TSP  68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfate                       |        | 10-34                    | 14/1                                |                                      |
| Total Carbon  14.88  15.2    Vol. Carbon  12.23  (15.8) <sup>2</sup> Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium  Total  34.3    TSP  68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mitrate                       |        | 01-0                     | 0.13                                |                                      |
| Vol. Carbon  12.23  (15.8)    Carbonate     Bromine  0.05  0.06    Selenium  0.05  0.06    Gallium  Total  34.3    TSP 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Carbon                  |        | 14.88                    | 19.2                                |                                      |
| Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol. Carbon .                 |        | 12.23                    | (12.8)                              |                                      |
| Bromine      0.05      0.06        Selenium      0.05      0.06        Gellium      Total      34.3        TSF      68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbonate                     |        |                          |                                     |                                      |
| Selenium 0.05 0.06<br>Gellium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromine                       | ×.     | 0.05                     | 0.06                                |                                      |
| Gallium<br>Total 34.3<br>TSP 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selenium                      |        | 0.05                     | 0.06                                |                                      |
| Total 34.3<br>TSP 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gallium                       |        |                          |                                     |                                      |
| TSP 68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |        | Tota                     | 1 34.3                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |        | TSP                      | 68.5                                |                                      |

Compare total column with fuel analysis column

<sup>2</sup>Not included in summation

4-74

| Praction<br>Fraction | SASS Filter | SASS Impinger<br>73% | ടവമ<br>84% | Total <sup>1</sup>  | Fuel Analysia<br>Ash=0.012 |
|----------------------|-------------|----------------------|------------|---------------------|----------------------------|
| Units                | lb/hr       | lb/hr                | lb/hr      | lb/hr               | · 1b/hr                    |
| Boron                |             |                      |            |                     | 0.005                      |
| Arsaic               | 0.003       | * *                  | 0.003      | 0.003               |                            |
| Vanadium             | 0.01        |                      | 0.01       | 0.01                | 0.40                       |
| Iron                 | 0.03        | 0.08                 | 0.11       | 0.13                | 1.95                       |
| lickel               | 0.05        | 0.02                 | 0.07       | 0.08                | 0.85                       |
| Calcium              | 0.003       | ÷                    | 0.003      | 0.003               | 0.56                       |
| Agnesium             | ć.          | s 9.                 | ×.         |                     | 0.26                       |
| Sodium               | a           |                      | 30         |                     | 1.33                       |
| Silicone             |             |                      |            | 4                   | 0.12                       |
| langanese            |             | 0.02                 | 0.02       | 0.02                | 0.01                       |
| luminum              |             | •                    |            |                     | 0.04                       |
| Barium               |             |                      |            |                     | 0.03                       |
| lead                 | 0.003       |                      | 0.003      | 0.003               | 0.04                       |
| tin                  |             |                      |            |                     | 0.01                       |
| olybdenum            |             | 0.02                 | 0.02       | 0.02                |                            |
| Copper               |             | 0.02                 | 0.02       | 0.02                | 0.005                      |
| Silver               |             |                      |            |                     | 0.0002                     |
| Linc                 | 0.003       | 0.02                 | .0.023     | 0.03                | 0.15                       |
| Fitanium             |             |                      |            |                     | 0.03                       |
| Cobalt               | 0.003       | 0.02                 | 0.023      | 0.03                | 0.03                       |
| Chromium             | 7           | 0.02                 | 0.02       | 0.02                | 0.006                      |
| Strontium            | 0.003       | 0.02                 | 0.023      | 0.03                | 0.01                       |
| Potassium            | 0.003       | 0.02                 | 0.023      | 0.03                |                            |
| Sulfur               | 0.21        | 4.16                 | 4.37       | (5.17)2             | 1.71                       |
| Selenium             | 0.003       | 0.08                 | 0.083      | 0.1                 | ,                          |
| Sulfate              | 1.81        | 6.82                 | 8.63       | 10.21               | N K                        |
| Nitrate              | 0.01        | 0.03                 | 0.04       | 0.05                |                            |
| Total Carbon         | . 0. 30     | 1.97                 | -2.27      | 2.69                |                            |
| Vol. Carbon          |             | 1.31                 | 1.31       | (1.55) <sup>2</sup> |                            |
| Carbonate            | <b></b>     | ·                    |            | 1                   |                            |
| Bromine              | 3           | 0.02                 | 0.02       | 0.02                | · · ·                      |
| Zirconium            | ж.          | 0.02                 | 0.02       | 0.02                |                            |
| т. <b>•</b>          | т           |                      | Total      | 13.5                | 24                         |
| 1                    |             |                      | TSP        | 29.8                |                            |

85,316 lb/hr fuel flow; 10.25 lb/hr particulate from ash; 29.8 lb/hr particulate from SASS

1 Compare total column with fuel analysis column

2 Not included in summation

4-75

#### MASS BALANCE FOR TEST 22 TABLE 4-30.

| Fraction<br>% Fraction<br>Units | SASS Filter<br>10%<br>1b/hr | Sum<br>10%<br>15/1r | Total <sup>1</sup><br>100%<br>15/hr | Fuel Analysis<br>Ash=0.012%<br>1b/hr |
|---------------------------------|-----------------------------|---------------------|-------------------------------------|--------------------------------------|
| Boron                           |                             |                     |                                     | 0.002                                |
| Arsenic                         | 0.002                       | 0.002               | 0.02                                |                                      |
| Vanadium                        | 0.03                        | 0.03                | 0.29                                | 0.20                                 |
| Iron                            | 0.07                        | 0.07                | 0.69                                | 0.98                                 |
| Nickel                          | 0.10                        | 0.10                | 0.98                                | 0.43                                 |
| Calcium                         |                             |                     |                                     | 0.28                                 |
| Magnesium                       |                             |                     |                                     | 0.13                                 |
| Sodium                          |                             |                     |                                     | 0.67                                 |
| Silicone                        |                             |                     |                                     | 0.06                                 |
| Manganese                       | 0.002                       | 0.002               | 0.02                                | 0.005                                |
| Aluminum                        |                             |                     |                                     | 0.02                                 |
| Barium                          |                             |                     |                                     | 0.02                                 |
| Lead                            | 0.002                       | 0.002               | 0.02                                | 0.02                                 |
| Tin                             | •                           |                     |                                     | 0.005                                |
| Copper                          |                             |                     |                                     | 0.002                                |
| Silver                          |                             |                     |                                     | 0.0001                               |
| Zinc                            | 0.002                       | 0.002               | 0.02                                | 0.08                                 |
| Titanium                        |                             |                     |                                     | 0.02                                 |
| Cobalt                          | 0.002                       | 0.002               | G-02 .                              | 0.01                                 |
| Strontium                       |                             |                     |                                     | 0.005                                |
| Sulfur                          | 0.56                        | 0.56                | (5.49)2                             | 86                                   |
| Selenium                        | 0.002                       | 0.002               | 0.02                                |                                      |
| Sulfate                         | 1.38                        | 1.38                | 15.53                               |                                      |
| Nitrate                         | 0.0004                      | 0.0004              | 0.004                               |                                      |
| Total Carbon                    | 0.15                        | 0.15                | $(1.47)^2$                          |                                      |
| Vol. Carbon                     |                             |                     |                                     |                                      |
| Carbonate                       | -                           |                     |                                     |                                      |
| <i>. . . .</i>                  |                             | Tota                | 1 17.6                              |                                      |
|                                 | · *                         | TSP                 | 20.2                                |                                      |

43,174 lb/hr fuel flow; 5.18 lb/hr particulate from ash; 20.2 lb/hr particulate from SASS

1 Compare total column with fuel analysis column 2 Not included in summation

4-76

TABLE 4-31. MASS BALANCE FOR TEST 24

|                                 |                        |                          |                      | 101                                 |                                      |                          |                        |  |
|---------------------------------|------------------------|--------------------------|----------------------|-------------------------------------|--------------------------------------|--------------------------|------------------------|--|
| 6                               | -12                    | SAS5                     |                      |                                     |                                      | Jay                      |                        |  |
| Praction<br>V Praction<br>Units | Filter<br>14%<br>1b/hr | Impinger<br>75%<br>lb/hr | Suaa<br>89%<br>∐o/hr | Total <sup>1</sup><br>100%<br>1b/hr | Fuel Analysis<br>Ash=0.012%<br>lb/hr | Impinger<br>748<br>Lb/hr | Total<br>100%<br>1b/hr |  |
| Boron                           |                        |                          |                      |                                     | 0.002                                |                          |                        |  |
| Bromine                         | 0.006                  | 0.03                     | 0.036                | 0.04                                |                                      |                          | 20                     |  |
| Vanadi um                       | 0.055                  |                          | 0.055                | 0.06                                | 0.57                                 |                          |                        |  |
| Iron                            | 0.143                  | 0.86                     | 1.003                | 0.09                                | 1.52                                 | 0.12                     |                        |  |
| Wickel                          | 0.43                   | 0.16                     | 0.59                 | 0.66                                | 1.66                                 | 0.04                     | 0.05                   |  |
| Calcium                         |                        | 0.12                     | 0.12                 | 0.14                                | 0.66                                 | 0.13                     | 0.15                   |  |
| Magnesius                       | 8                      |                          |                      |                                     | 0.39                                 |                          |                        |  |
| Silicone                        |                        | 8                        |                      |                                     | 0.30                                 | x ·                      |                        |  |
| Manganese                       | 0.006                  | 0.03                     | 0.036                | 0.04                                | 0.02                                 | 0.04                     | 0.05                   |  |
| Alumanum                        |                        |                          |                      |                                     | 0.08                                 |                          |                        |  |
| Barium                          | 0.009                  |                          | 0.009                | 0.01                                | 0.06                                 |                          | *                      |  |
| Lead                            | 0.008                  | 0.03                     | 0.038                | 0.04                                | 0.10                                 | 0.04                     | 0.05                   |  |
| Cadmium                         |                        | 0.03                     | 0.03                 | 0.03                                | 0.05                                 |                          |                        |  |
| Nolybdenum                      |                        | 0.03                     | 0.03                 | 0.03                                | 8                                    |                          |                        |  |
| Copper                          | a 6                    | 0.03                     | 0.03                 | 0.03                                | 0:013                                | 0.04                     | 0.05                   |  |
| Silver                          | т.                     | 0.03                     | 0.03                 | 0.03                                | C.0003                               |                          |                        |  |
| Zino                            | 0.016                  | 0.03                     | 0.46                 | 0.05                                | 0.17                                 | 0.04                     | 0.05                   |  |
| Titaniùm                        |                        | 10                       |                      |                                     | 0.03                                 |                          |                        |  |
| Cobelt                          |                        |                          | s 1                  |                                     | 0.04                                 | 0.04                     | 0.05                   |  |
| Chronium                        |                        | 0.21                     | 0.21                 | 0.24                                | 0.02                                 | 0.04                     | 0.05                   |  |
| Strontium                       |                        | 0.03                     | 0.03                 | 0.03                                | 0.02                                 |                          |                        |  |
| Potassium                       | 4                      | 0.03                     | 0.03                 | 0.03                                |                                      |                          |                        |  |
| Sulfur                          |                        | 7.59                     | 7.59                 | (8,55) <sup>2</sup>                 | 220                                  | 13.18                    | (17,79)                |  |
| Selenium                        | 0.006                  | 0.03                     | 0.036                | 0.04                                |                                      | 0.04                     | 0.05                   |  |
| Sulfate                         | 3.11                   | 8.41                     | 11.52                | 12.97                               |                                      | 11.2                     | 15.11                  |  |
| Nitrate                         |                        |                          | c                    |                                     | ÷                                    |                          |                        |  |
| Total Carbon                    | 0.8                    | 8.63                     | 9.43                 | 10.62                               |                                      | 5, 71                    | 7.71                   |  |
| Vol. Carbon                     |                        | 1.04                     | 1.04                 | (1.17) <sup>2</sup>                 |                                      | 5.27                     | (7, 11)                |  |
| Carbonate                       |                        |                          | 1                    |                                     |                                      | 0.09                     | (0,12)                 |  |
|                                 |                        |                          | × , , ,              | total 26.3                          |                                      | 30.000<br>1              | Total 23.4             |  |
|                                 |                        |                          | . 1                  | SP 46.2                             |                                      |                          | 100 50 1               |  |
| I.                              |                        | •                        |                      |                                     | 2                                    |                          | 100 29.3               |  |

115,238 lb/hr fuel flow; 13.63 lb/hr particulate from ash; 46.2 lb ir particlate from SASS; 59.3 lb/hr particulate from Joy

1 Compare total column with fuel analysis column

2 Not included in summation

4-77

## TABLE 4-32. MASS BALANCE FOR TEST 32

210,857 lb/hr fuel flow: 23.19 lb/hr particulate from ash; 84.5 lb/hr particlate from SASS; 58.7 lb/hr particulate from Joy.

t < 0.1 lb/hr

| Fraction<br>Fraction<br>Units | SASS Impinger '-<br>76%<br>lb/hr | SASS Filter<br>10%<br>15/hr | Sum<br>86%<br>15/hr | Total<br>1000<br>1b/hr | Fuel Analysis<br>Ash=0.011%<br>1b/hr |
|-------------------------------|----------------------------------|-----------------------------|---------------------|------------------------|--------------------------------------|
| Boron                         |                                  | je -                        | T                   |                        | 0.003                                |
| Vanadium                      |                                  | 0.09                        | 0.09                | 0.1                    | 2.09                                 |
| Iron                          | 0.47                             | 0.09                        | 0.56                | 0.65                   | 2.32                                 |
| Nickel                        | 0.11                             | , 0.73                      | 0.34                | ° 0.98                 | 2.73                                 |
| Calcium                       | 0.13                             | 0.79                        | · 0.92              | 1.12                   | 1.34                                 |
| Magnesium                     |                                  |                             | r.                  |                        | 0.97                                 |
| Sodium                        | X                                |                             | 1                   |                        | 3.13                                 |
| Silicone                      |                                  |                             |                     | e.                     | 0.46                                 |
| Manganese                     | t                                |                             | · E                 | τ                      | 0.03                                 |
| Aluminum                      |                                  |                             |                     | ,                      | 0.31                                 |
| Barium                        | · .                              | t                           | t                   | t                      | 0.1                                  |
| Lead                          | œ                                | τ                           | t                   | τ                      | 0.13                                 |
| Tin                           |                                  |                             | 2                   |                        | 0.94                                 |
| Molybdanum                    | t                                |                             | τ.                  | E                      | 0.005                                |
| Copper                        | t                                |                             | e                   | t                      | 0.03                                 |
| Silver                        | a                                | · · ·                       |                     | ,                      | 0.0005                               |
| Zinc                          | t                                | `t                          | t                   |                        | 0.13                                 |
| Titanius                      |                                  |                             |                     |                        | 0.015                                |
| Cobalt                        | t                                | τ,                          | t,                  | z                      | 0.11                                 |
| Chromium                      | 0.11                             |                             | 0.11                | 0.13 .                 | 0.03                                 |
| Strontium                     | t                                |                             | . E                 | . t                    | 0.017                                |
| Cadmium                       | t                                |                             | t                   | . E .                  |                                      |
| Sulfur                        | 9.6                              | 2.3                         | 11.9                | (13.9)2                | 464                                  |
| Selenium                      | 0.13                             | x                           | 0.13                | 0.15                   |                                      |
| Sulfate                       | 15.2                             | 5.4                         | 20.5                | 24.0                   |                                      |
| Nitrate                       | 13.3                             |                             | 13.3                | 15.5                   | 1.                                   |
| Total Carbon                  | 11.5                             |                             | 11.5                | 13.4                   | а<br>10                              |
|                               | 3                                |                             | Tot                 | al 56                  |                                      |
|                               | 20                               |                             | TSP                 | 84.5                   |                                      |

1 Compare total column with fuel analysis column 2 Not included in summation

4-78

## TABLE 4-33. MASS BALANCE FOR TEST 33

209,055 lb/hr fuel flow; 27.18 lb/hr particulate from ash; 96.9 lb/hr particulate from SASS: 97.7 lh/hr particulate from Joy.

| Fraction<br>Fraction<br>Units | SASS Impinger<br>64%<br>lb/hr | SASS Filter<br>145<br>1b/hr | Suma<br>78%<br>Lb/hr | Total <sup>1</sup><br>100%<br>1b/hr | Fuel Analysis<br>Ast=0.013%<br>lb/hr |
|-------------------------------|-------------------------------|-----------------------------|----------------------|-------------------------------------|--------------------------------------|
| Boron                         |                               |                             |                      |                                     | 0.002                                |
| Arsenic                       |                               | 0.01                        | 0.01                 | 0.01                                | л.<br>Г                              |
| Vanadium                      |                               | 0.01                        | 0.01                 | 0.01                                | 2.2                                  |
| Iron                          | 0.7                           | .49                         | 1.19                 | 1.51                                | 4.1                                  |
| Nickel                        | 0.1                           | 0.87                        | 0.97                 | 1.23                                | 2.7                                  |
| Calcium                       | 0.09                          | 1.4                         | 1.13                 | 1.44                                | 1.3                                  |
| Magnesium                     | , · · ·                       |                             |                      |                                     | 1.0                                  |
| Sodium                        |                               |                             |                      |                                     | 2.3                                  |
| Silicone                      |                               |                             |                      |                                     | 0.6                                  |
| Manganese                     | 0.06                          |                             | 0.06                 | 0.08                                | 0.04                                 |
| Aluminum                      |                               | i a                         |                      |                                     | 1.7                                  |
| Barius                        | 0.06                          | 0.09                        | 0.15                 | 0.19                                | 0.1                                  |
| Lead                          | 0.06                          | 0.01                        | 0.07                 | 0.09                                | 0.1                                  |
| Tin .                         | ×                             | е                           |                      |                                     | 0.05                                 |
| Molybdenum                    | 0.06                          |                             | 0.06                 | 0.08                                | 0.006                                |
| Copper                        | 0.06                          |                             | 0.06                 | 0.08                                | 0.02                                 |
| Silver                        |                               |                             |                      |                                     | 0.0006                               |
| Zinc                          | 0.1                           | 0.05                        | 0.15                 | 0.19                                | 0.05                                 |
| Titanium                      | · ·                           |                             |                      |                                     | 0.02                                 |
| Cobalt                        | 0.06                          | 0.02                        | 0.08                 | 0.1                                 | 0.1                                  |
| Chromium                      | 0.2                           |                             | 0.02                 | 0.03                                | 0.05                                 |
| Strontium                     |                               | 0.01                        | 0.01                 | 0.01                                | 0.02                                 |
| Sulfur                        | 10                            | 4.2                         | 14.2                 | $(18.06)^2$                         | 420                                  |
| Bromine                       | 0.06                          |                             | 0.06                 | 0.08                                |                                      |
| Sulfate                       | 14.54                         | 8.14                        | 22.68                | 28.84                               |                                      |
| Nitrate                       | 12.63                         | 7.37                        | 20.0                 | 25.44                               |                                      |
| Total Carbon                  | 12.47                         |                             | 12.47                | 15.8E                               | ÷ .                                  |
| Vol. Carbon                   | 12.47                         |                             | 12.47                | (15.86) 2                           | 3                                    |
| Carbonate                     |                               |                             | •                    |                                     | · ·                                  |
| Cadmium                       | 0.06                          |                             | 0.06                 | 0.08                                |                                      |
| Selenium                      | 0.07                          |                             | 0.07                 | 0.09                                |                                      |
|                               | a*                            |                             | To                   | tal 75.5                            |                                      |
| · .                           |                               |                             | TS                   | P 96.9                              |                                      |

1 Compare total column with fuel analysis column

2 Not included in summation

4-79



Figure 4-17. Particle size distribution for utility boilers (Test 11).

4-80

КЛВ 5306-783



4-81





4-82


Figure 4-20. Particle size distribution for utility boilers (Test 21).

4-83



OSASS Train Without Impinger

Figure 4-21. Particle size distribution for utility boilers (Test 22).

4-84



Figure 4-22. Particle size distribution for utility boilers (Test 23).

4-85



SASS Train With Impinger

SASS Train Without Impinger

Figure 4-23. Particle size distribution for utility boilers (Test 24).

4-86



Figure 4-24. Particle size distribution for utility boilers (Test 32).

4-87



Figure 4-25. Particle size distribution for utility boilers (Test 33).

4-88

. KVB 5806-783

| 54<br>1  |          |     | J   |     | 4 UI |      | TCTC. | <b>.</b> |
|----------|----------|-----|-----|-----|------|------|-------|----------|
| Test No. | >]       | Oum | 10- | 3µm | 3-   | -lµm | •     | <1µm     |
| 115      |          | 3   | 2   |     |      | l    |       | 94       |
| 11J      |          | 9   | 3   |     |      | 3    |       | 85       |
| 125      |          | 2   | 3   |     |      | 5    |       | 90       |
| 12J · ·  |          | 9   | . 3 |     |      | 3    |       | 85       |
| 13J      |          | 2   | Ó   |     | ·    | 0    | 91    | 98       |
| 23J      |          | 8   | 1   |     |      | 1    |       | 90       |
| 245      | <i>,</i> | 5   | 0,  | .5  |      | 0.5  |       | 94       |
| 24J      |          | 2   | ٥.  | . 5 |      | 0.5  |       | 97       |
| 32S      |          | 3   | 1   |     |      | 1    |       | 95       |
| 32J      |          | 0.1 | Ο.  | .9  |      | 3    |       | 96       |
| 335      | 1        | 4   | 4   |     |      | 5    |       | 87       |
| 33J      |          | 8   | 1   |     |      | l    |       | 90       |
| 215      |          | 0.3 | Ο.  | . 7 |      | 1    |       | 98       |
| 21J      |          | 0.9 | 0.  | . 4 | Ŧ    | 0.7  |       | 98       |
| 22S      |          | 0.1 | 0.  | 9   |      | 4    |       | 95       |
| Mean*    |          | 4   | 1   |     |      | 2    |       | 93       |

Waight

Darcant

For two of the tests (13J, 23J), the amount of matter collected in the middle cyclone was so small that when plotted on the size distribution curve it would appear to give a vertical line. For this reason the line for these two tests were not drawn. Care must be taken when projecting the size distribution curve to outside the range of 1-10 m. This is outside the range of the data and when projections are made the error in doing so is greatly increased.

\*Taken from Figure 4-26

4-89

Figure 4-26 is the particle size distribution range determined for the 18 utility boiler tests. The area between the solid lines is the particle size distribution range with the impinger catch, and the area between the dashed lines is without the impinger catch. The mean particle size including the impinger catch (i.e. particle size at the 50% point) is less than 0.1 µm.

3. <u>Particulate mass balance (elements in ash vs. elements in particulate catch)</u>--The mass of each element in the ash of the fuel going into the atmosphere as particulates (second law of thermodynamics). Table 4-26 lists the results of the fuel analysis for each of the fuels burned for each utility boiler particulate test. To calculate the mass rate of each element from the fuel analysis, the following equation was used:

(element 3/100) x (ash3/100) x (lb/hr of fuel burned) = lb/hr of element<sub>IN</sub> Chemical Composition

Tables 4-17 to 4-24 present the chemical composition for the various utility boiler tests. In each case the primary constituents of the particulate matter was found to be sulfates ranging from 20 to 50% by weight. The sulfur determined by XRF should be 1/3 of the percent of the sulfates determined by wet chemistry. The table shows sulfur based on the sulfate analysis and on the XRF analysis. The agreement is fair, sometimes the XRF value is higher and other times the sulfate value is higher. The sulfate value is the more reliable determined by accurate wet chemistry techniques. The XRF method for sulfur is only approximate because sulfur is on the low limit of the XRF sensitivity. the next largest constituent is total carbon averaging approximately 10% although values vary from 1 to 83%. The values reported are the average of two determinations and several apparent others were retested and confirmed.

The other elements detected in measurable quantities are iron, nickel, and to a lesser extent calcium. Traces of the following metals were also found: barium, cobalt, selenium, potassium, titanium, vanadium, and zinc.

4-90



A CONTRACTOR OF THE

Figure 4-26. Summary of particle size distribution for utility boilers (15 tests).

4-91

The results of this calculation for each element are listed in the left column in Table 4-26 to Table 4-33 for each test. To calculate the mass rate of each elemental from the chemical analysis of the particulate catches the following equation was used:

$$\frac{(\text{element } \$)}{100} \times (\frac{\$ \text{ fraction}}{100}) \times (\text{particulate emission lb/hr})$$
  
= lb/hr of element (out) for each fraction

The mass rate, 1b/hr of each element for the fractions are added and the percentage of the fractions are added. The sum of each element is divided by the sum of the fractions (decimal equivalent) to give the total mass rate, 1b/hr, of elements going out the stack. These are listed in Table 4-26 to Table 4-33.

In some cases, as in Tests 12 and 24, both SASS and Joy sampling trains had at least one fraction with large enough samples for chemical analysis. Thus a mass balance was done for each sampling train.

4. <u>Emissions and emission factors</u>--Emissions and emission factors can be listed for several different units. The list below shows some of these emissions and factors.

|          |           | 2mi  | \$51004  |           |                    |
|----------|-----------|------|----------|-----------|--------------------|
| Test #   | 91/2507   | TIYE | 15/75    | 15/New Tu | 15/1000 gal surmed |
| 115      | 0.0091    | 284  | 65.03    | 0.0154    | 2.29               |
| 113      | 0.0078    | 243  | 55-6     | 0.0132    | 1.96               |
| 125      | 0.0072    | 242  | 55.5     | 0.0130    | 1.94               |
| 123      | 3.0058    | 196  | 44.8     | 0.0105    | 1.56               |
| 135*     | 0.0271    | 928  | 212.4    | 0.050     | 7.47               |
| 133      | 0.0080    | 299  | 64.5     | 0.0162    | 2.41               |
| 238*     | 0.0285    | 921  | 210.3    | 0.0554    | 8.04               |
| 233      | 0.0084    | 268  | 61.3     | 0.3161    | 2.34               |
| 245      | 0.0112    | 202  | 44.2     | 0.0214    | 3.55               |
| 243      | 0.0144    | 259  | 49.3     | 0.0275    | 4.57               |
| 325      | 0.01.24   | 369  | 34.5     | 0.3211    | 3.09               |
| 323      | 0.0086    | 256  | 58.7     | 0.0147    | . 2.14             |
| 115      | 0.0132    | 423  | 36.9     | 3.0244    | 3.56               |
| 33.7     | 0.0133    | 427  | 97.7     | 0.0246    | 3.59               |
| 215      | 0.0092    | 130  | 29.8     | 0.022     | 2.77               |
| 21.7     | 3.0071    | 101  | 23.3     | 9.017     | 2.13               |
| 225      | 0.0109    | 87   | 20.2     | 0.323     | 3.70               |
| 22.7*    | 0.0046    | 38   | · 4.6    | 0.0099    | 1.57               |
| Average  | 0.0098    | 252  | 57.1     | 0,0185    | 2.77               |
| * Mor in | et tabel? | -    | mon (had | lates)    | 7.                 |

KVB 5806-783

The average emission factor for these tests is 2.77 lb/1000 gal. However, this value is about half the emission factor that the SCAQMD uses in the EIS system. This is because EIS system has not been updated since the new low sulfur (0.25%) regulation has been in effect. Figure 4-27 plots the emission factor vs fuel sulfur contents. Particulat : emission data from several sources have been obtained to generate this plot. The relationship from AP-42 (Ref. 4-7, top line) which uses only the front half of the particulate catch (does not include impinger catch) seems to be high compared to the obtained data. The relationship given by SCAQMD (Ref. 4-8) which is for the total catch (impinger catch included) seems correct for high sulfur fuel, but seems too high for lower sulfur fuels. The relationship given by Goldstein and Sigmond (Ref. 4-1) seems to fit most of the data presented here. What is the emission factor for the 0.25% sulfur fuel? The average of the 15 KVB/ARB tests was 2.77 lb/1000 gal and the average of six other particulate tests was 2.9 lb/1000 gal. The emission factor is suggested to be 3.0 lb/1000 gal.

# 4-93



Figure 4-27.

Emission factors as a function of fuel sulfur content for utility boilers.

4-94

### 4.2.5 Internal Combustion Engines

### A. Process Description--.

The internal combustion engines, for this study, are in general, large, heavy-duty, general utility reciprocating engines. These are generally used to generate electric power, to pump gas or other fluids, or to compress air for pneumatic machinery.

1. The function of the IC engine in Test 7 is to pump fluids. This is a Climax, gas fueled, reciprocating engine. The fuel was digested gas from a waste disposal operation.

2. The function of the IC engine in Test 15 is to generate electric power. This 2400 hp, turbocharged, diesel-fueled (EMD) engine was manufactured by Electro Motive Division, General Motors Corporation.

# B. Particulate Test Set-up--

1. Test 7, IC engine with digester gas fuel--Two sampling trains were used simultaneously at the same location on the exhaust duct of the IC engine. This sampling station was on the vertical section of the duct (5-1/8" diameter) leading to the atmosphere, at least six duct diameters from the nearest bend. The velocity profile in this duct is listed in Table 4-34 The particulate sample was taken through a 9/16" nozzle for the larger SASS train at Velocity Point 6 and through a 5/16" nozzle for the smaller Joy train at Point 7.

2. Test 15, IC engine with #2 diesel fuel--Only the smaller Joy train was used to sample particulates from this source. The sampling station was located on the vertical section of the duct (18-3/4" diameter) leading to the muffler (see Figure 4-28). The velocity profile in the duct is listed in Table 4-35. The particulate sample was taken through a 1/4" nozzle at Velocity Points 1, 3, and R for 80 minutes each.

C. Particulate Test Results--

The results of the tests (Test 7 and Test 15) discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and

4-95

KTB 5806-783



Figure 4-28. Schematic of IC engine (Test 15).

4-96



# TABLE 4-34. VELOCITY PROFILE FOR INTERNAL COMBUSTION ENGINE (TEST 7)

Static Pressure: 0.1" H<sub>2</sub>O

Velocity Distance from 30 end of duct Point # Point # ft/sec ft/sec 48.4 5 0.3" 1 46.9 47.7 1.3" 59.3 2 6 2.6" 58.1 R R ' 61.2 3.9" 59.3 60.6 7 3 4.8" 58.7 60.0 4 8 Average: 56.0 ft/sec 285 SCFM

4-97



TABLE 4-35. VELOCITY PROFILE FOR IC ENGINE

Temperature: 520°F

Static Pressure: +4-1/2" H20

|                             | Velocity   |          |            |        |  |
|-----------------------------|------------|----------|------------|--------|--|
| Distance from internal wall | Point<br># | ft/sec   | Point<br># | ft/sec |  |
| 0.6"                        | . 1        | 137      | 8          | 97     |  |
| 2.0                         | · 2        | 134      | 9          | 81     |  |
| 3.7                         | 3          | 142      | 10         | 72     |  |
| 6.0                         | 4          | 131      | 11         | 77     |  |
| 9.4                         | R          | 102      | R          | 93     |  |
| 12.7                        | 5          | 102      | 13         | 53     |  |
| 15.1                        | 6          | 118      | 14         | 104    |  |
| 16.8                        | 7          | 134      | - 15       | 113    |  |
| 18:1                        | 8          | 137      | 1.6        | 116    |  |
| . ,                         | Aver       | age: 108 | ft/sec     |        |  |

5508 SCFM

4-98

carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Tables 4-36 and 4-37 list the results from these analyses.

D. Discussion of Results--

1. <u>Particle size distribution</u>--Figure 4-29 is a plot particle size (µm) vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two curves are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected in the impinger, it would seem that the effect of pseudo particulates would be insignificant. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particulates from IC engines. The breakdown of the particle size distribution taken from Figure 4-29 including the impinger catch, is as follows:

| •0                       |        | Percent of | Particles |                       |
|--------------------------|--------|------------|-----------|-----------------------|
| •                        | >10um' | · 10-3µm   | 3-1um     | <lum_< th=""></lum_<> |
| Test 7S (digester gas)   | 0.6    | 0.15       | 0.35      | 99.1                  |
| Test 7J (digester gas)   | 0.8    | 0.4        | 0.6       | 98.4                  |
| Test 15J (#2 diesel oil) | 4      | 2          | 2         | 92                    |

Note that the size of particle appears to be smaller for IC engines burning digester gas than for IC engines using #2 diesel fuel.

2. <u>Chemical composition</u>--Tables 4-36 and 4-37 list the results from the chemical analysis of the particulate fraction for each of the tests discussed in this section. For Test 7, sulfates and carbon are most abundant, followed by chlorine. The fuel analysis of the diesel oil used for Test 15 is listed in Table 4-40. For Test 15, sulfates and carbon are most abundant followed by calcium on the filter.

3. Emissions and emission factors--Emissions and emission factors can be listed with several different units. The following lists some of these emissions and factors.

KVB 5806-783

|                             | FuelDigester Gas |          | Fuel#2 Diesel Oil |
|-----------------------------|------------------|----------|-------------------|
| Units                       | Test 7S          | Test 7.7 | Test 15J          |
| gr/DSCF                     | 0.04             | 0.02     | 0.03              |
| T/yr                        | 0.4              | 0.2      | 4.5               |
| lb/hr                       | 0.09             | 0.04     | 1.4               |
| lb/MMBtu                    | 0.06             | 0.03     | 0.1               |
| 1b/1000 gal burned          |                  |          | 8                 |
| lb/1000 gal burned (Ref. 1) | ·                |          | 13                |
| lb/million ft <sup>3</sup>  | 11.5             | 5        |                   |

#### 4.2.6 Portland Cement Manufacturing

a. Process Description (Ref. 4-10 to 4-12) -- Portland cement manufacture accounts for about 98% of the cement production in the United States. The more than 30 raw materials used to make cement may be divided into four basic components: lime (calcareous), silica (siliceous), alumina (argillaceous), and iron (ferriferous). Approximately 3200 pounds of dry raw materials are required to produce one ton of cement. Approximately 35% of the raw material weight is removed as carbon dioxide and water vapor. As shown in Figure 4-30, the raw materials undergo separate crushing after the quarrying operation, and when needed for processing, are proportioned, ground, and blended using the dry process.

In the dry process, the moisture content of the raw material is reduced to less than 1% either before or during the grinding operation. The dried materials are then pulverized into a powder and fed directly into a rotary kiln. Usually, the kiln is a long, horizontal, steel cylinder with a refractory brick lining. The kilns are slightly inclined and rotate about the longitudinal axis. The pulverized raw materials are fed into the upper and and travel slowly to the lower end. The kilns are fired from the lower end so that the hot gases pass upward and through the raw material. Drying, decarbonating, and calcining are accomplished as the material travels through a heated kiln, finally burning to incipient fusion and forming the clinker. The clinker is cooled, mixed with about 5% gypsum by weight, and ground to the final product fineness. The cement is then stored for later packaging and shipment. (Ref. 4-9)

KVB 5806-783

|                                             | 1. | •  | SASS<br>Filter | SASS<br>Impinger | Joy<br>Impinger |
|---------------------------------------------|----|----|----------------|------------------|-----------------|
| SAMPLE #                                    |    |    | 075-55         | 7S-IC            | 7J-IC           |
| PERCENT OF CUT                              | 1  |    | . 2            | 92               | 72.             |
| XRF ANALYSIS                                |    |    | a.             |                  | ,               |
| Calcium                                     |    |    | 2              | t                | t               |
| Chlorine                                    |    |    | 7.2            |                  | 20<br>F         |
| Potassium                                   | •  | ·, | <2             |                  |                 |
| (Sulfur)                                    |    |    | (5.2)          | (7.9)            | (22)            |
| Zinc                                        |    |    | 5              |                  |                 |
| TOTAL                                       |    |    | 13.0           | t                | t               |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> |    | ·  | 6.3            | 43               | 43              |
| (Sulfur, from SO_)                          | •  |    | (2.1)          | (14.5)           | (16)            |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> |    |    | A 1            | t                | 4.1             |
| Total Carbon <sup>3</sup>                   |    |    | 8.4            | 22               | 20              |
| (Volatile Carbon) <sup>3</sup>              |    |    |                | (18)             | (14.5)          |
| (Carbonates) <sup>3</sup>                   |    | 7  | ''             |                  |                 |
| TOTAL ANALYZED                              |    |    | 28             | 65               | 72 ΄            |
| BALANCE                                     |    |    | 72             | 35               | 28              |
|                                             | .' |    | 100%           | 100%             | 100%            |

TABLE 4-36. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR IC ENGINES (TEST 7)

t. detected in concentration of <18

1

3.

4

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry-Section 3.2.2 A

analyzed by Ocsanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is v of the element present and Y is the error (i.e. XV  $\pm$  Y )

not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

|                                              |                 | Joy                  | Joy        |
|----------------------------------------------|-----------------|----------------------|------------|
|                                              | Joy<br>Filter   | Impinger<br>Organics | Condensate |
| SAMPLE #                                     | 15 <b>J-</b> 55 | 15J-I0               | 15J-IC     |
| PERCENT OF CUT                               | 13.5            | 25.4                 | 31.9       |
| XRF ANALYSIS                                 | ÷               |                      |            |
| Calcium                                      | 4.7             |                      | t          |
| Chlorine                                     |                 | t                    |            |
| Iron                                         |                 |                      | t          |
| Potassium                                    | τ.              | · · ·                | t          |
| Silicon                                      |                 | t                    |            |
| (Sulfur)                                     | (5.3)           | (=)                  | (19)       |
| Vanadium                                     | t               | × .                  | · · ·      |
| TOTAL                                        | 5               | t                    | t          |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup>  | 8.2             | ÷                    | 20.4       |
| (Sulfur, from SO <sub>4</sub> ) <sup>*</sup> | (2.7)           | Ť                    | (7)        |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup>  |                 | $\frac{1}{2}$        |            |
| Total Carbon <sup>3</sup>                    | 5.34            | ÷                    | 1.14       |
| (Volatile Carbon)                            |                 | Ť                    | t          |
| (Carbonates) <sup>3</sup>                    |                 | ÷                    | (1.0)      |
| TOTAL ANALYZED                               | 19              | 3                    | 21         |
| BALANCE                                      | 81              | 97                   | 79         |
|                                              | 100%            | 1003                 | 100%       |

TABLE 4-37. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR IC ENGINES (TEST 15)

detected in concentration of <1%

ъ 1

2

4

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry-Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur IRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-102



# Particulate test set-up--

Two tests were done on the same cement kiln operating at approximately the same conditions, and at the same position on the stack downstream of the haghouse at about 100 ft above ground level on the straight section leading to the atmosphere. Watural gas was used as the fuel source for the first test, Test 9, and coal was used for the second test, Test 18. The velocity profiles in the stack for the two tests are listed in Table 4-39 Velocity points greater than 72 inches were not able to be measured for Test 9 and velocity points greater than 121 inches were not able to be measured even with the pitot tube extension for Test 13. Note that for Test 13, coal firing, the mean velocity in the stack is somewhat higher than the gas fired Test 9. This is as expected, considering the additional air needed to stoloniometrically compust the coal to produce the same bit value as natural gas for operating the process. For both tests the SASS sampling train was used with a 5/3" nozzle at Velocity Point 44.

C. Particulate Test Results--

The results of the two tests discussed in this section are listed in Table 4-1. Major elemental composition, sulfate, nitrate and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these proceduresare discussed in Section 3.2.2. Tables 4-40 and 4-41 list the results from this analysis.

D. Discussion of Results--

1. <u>Particle size distribution</u>--Figure 4-31 is a plot of particle size (um) vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two curves are presented, one including the impinger catch, and the other ignoring it. The size distribution curve for both tests ignoring the impinger catch are identical. However, when the impinger catch is included the curve shifts to the right; more so for the coal firing than gas. The breakdown of the particle size distribution including the impinger taken from Figure 4-31 is as follows:

|                     | Per   | cent of Particle | es    |        |          |
|---------------------|-------|------------------|-------|--------|----------|
| ×                   | >10um | 10-3Lm           | 3-125 | <1     |          |
| Test 9, gas fired   | 8     | 32               | 40    | 20     | <i>1</i> |
| Test 13, coal fired | 3     | 24               | 34    | 34     | ×        |
|                     |       | 4-106            |       | x.73 5 | 605-103  |



| Distance from<br>End of port | Velocity<br>Point # | Test 9<br>Velocity<br>ft/sec | Test 1<br>Velocit<br>ft/sec | .8<br>.7 <b>7</b> |
|------------------------------|---------------------|------------------------------|-----------------------------|-------------------|
| 6*.                          | 1                   | 31.1                         | 41.5                        |                   |
| 14-3/8                       | 2                   | 31.1                         | 42.7                        |                   |
| 23                           | 3                   | 32.6                         | 43.2                        |                   |
| 34-3/8                       | 4                   | 32.6                         | 4.15                        |                   |
| 50-1/2                       | 5                   | 30.3                         | 39.7                        |                   |
| 72                           | 2                   | 31.1                         | 37.8                        |                   |
| 93-1/2                       | 6                   |                              | 39.7                        | 11 C              |
| 109-5/8                      | 7                   |                              | 43.2                        |                   |
| 1.21                         | 8                   |                              | 42.7                        |                   |
| 6*                           | 11                  | 32.6                         | 46.0                        |                   |
| 14-3/3                       | 12                  | 36.8                         | 47.0                        | 5 <b>a</b>        |
| 23                           | 13                  | 34.8                         | 44.4                        |                   |
| 24-3/8                       | 14                  | 34.1                         | 43.2                        |                   |
| 50-1/2                       | 15                  | 31.1                         | 41.5                        |                   |
| 72                           | R                   | 31.1                         | 38.4                        |                   |
| 93-1/2                       | 16                  |                              | 39.0                        |                   |
| 109-5/8                      | 17                  | ***                          | 39.7                        |                   |
| 121                          | 18                  |                              | 39.0                        |                   |
|                              | Average             | 32.8 ft/sec                  | 40.2                        | ft/sec            |
| 3 g                          |                     | 128760 SCP                   | 154514                      | SCP               |

4-107

|                                             | 10µm<br>Cyclone | 3um<br>Cyclone | Filter   |
|---------------------------------------------|-----------------|----------------|----------|
| SAMPLE #                                    | 95-25           | 95-35          | 095-55   |
| PERCENT OF CUT                              | 28.7            | 36.5           |          |
| XRF ANALYSIS                                | 2               |                |          |
| Calcium                                     | 27/3            | 22/3           | 16.1/3   |
| Chromium                                    | ° t             | t              |          |
| Iron                                        | 1.2/0.1         | t              | ť,       |
| Potassium                                   | 1.4/0.3         | 1.5/0.3        | 2.4/0.4  |
| (Sulfur)                                    | (2.2/0.3)       | 4              | 1.4.5.4: |
| Titanium                                    |                 | x e            | t        |
| TOTAL                                       | 30              | 24             | 19       |
| Sulfates, H.O sol <sup>2</sup>              | 1.26            | 1.63           | 4.27     |
| $(Sulfur, from SO_{1}^{2})^{+}$             | (0.42)          | (3.56)         | (1.42)   |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | t               | t              | , t      |
| Total Carbon <sup>3</sup>                   | 16              | 19             | 6        |
| (Volatile Carbon) <sup>3</sup>              | (3.22)          | (2.66)         | 8        |
| (Carbonates) <sup>3</sup>                   | (8.79)          | (3.10)         |          |
| TOTAL ANALYZED                              | - 47            | 45             | 23       |
| BALANCE                                     | 53              | 55             | 77       |
| • 9                                         | 100%            | 1003           | 100%     |

TABLE 4-40. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR GAS FIRED CEMENT KULN (Test 9)

t detected in concentration of <1\*</p>

5

( )

1 analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry--Section 3.2.2 A

3- analyzed by Oceanography carbon analyzer--Section 3.2.2 A

4 calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is ) of the element present and Y is the error (i.e. X) of )

not included in total---sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

# 4-108

киз 5806<del>-</del>783

| SAMPLE #                                      | lum<br>Cyclone<br>185-45 | l0µm<br>Cyclone<br>185-25 | یسرد.<br>Cyclone<br>185-35 | Impinger<br>135-IC | Filter<br>185-55 |
|-----------------------------------------------|--------------------------|---------------------------|----------------------------|--------------------|------------------|
| PERCENT OF CUT                                | 9.9                      | 24.1                      | 30.5                       | 26.2               | 4.6              |
| XRF ANALYSIS                                  |                          | i.                        |                            |                    | 8                |
| Calcium                                       | 22/6                     | 17/4                      | 20/6                       | t                  | 22/7             |
| Iron                                          | 1.2/2                    | 1.1/2                     | t                          | ť                  | 1.7/0.2          |
| Nickel                                        |                          |                           |                            | t                  |                  |
| Potassium                                     | 1.5/0.4                  | 1.1/0.3                   | 1.6/0.5                    |                    | 1.5/0.5          |
| (Sulfur)                                      | (<3)                     | (2.7/9.7)                 | (5.2/0.2)                  | (40.10)            | .4.9/2)          |
| TOTAL                                         | 25                       | 20                        | 22                         | 2                  | 25               |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> . | 1.82                     | 3.8                       | 3.2                        | 70                 | 6.4              |
| (Sulfur, from SO )                            | (t)                      | (1.25)                    | (1.06)                     | (23)               | (2.1)            |
| Nitrate (H20 sol) <sup>2</sup>                | t                        | t                         | t                          | 3.2                |                  |
| Total Carbon <sup>3</sup>                     | 10                       | 9.8                       | 11.4                       | 4.1                | 4.7              |
| (Volatile Carbon) <sup>3</sup>                | (4)                      | (4.1)                     | (4.7)                      | 3.9                |                  |
| (Carbonates) <sup>3</sup>                     | (6.8)                    | (7.4)                     | (8.5)                      | ъ. <b>с</b>        | (4.4)            |
| TOTAL ANALYZED                                | . 37                     | 34                        | 37                         | 80                 | 36               |
| BALANCE                                       | 63                       | 66                        | 63                         | 20                 | 64               |
|                                               | 100%                     | 100%                      | 100%                       | 100%               | 100%             |

TABLE 4-41. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR COAL FIRED CEMENT KILN (TEST 19)

detected in concentration of <1%

1

2

3

5

( )

analyted by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry-Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2  $\lambda$ 

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is  $\lambda$  of the element present and Y is the error (i.e. XX f Y )

not included in total--sul. r and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

KVB 5806-783



Figure 4-31. particle size distribution for cement manufacturing (Test 09).

The mean particle size, including the impinger, for Test 18 is 15Lm and 23Lm<sup>+</sup> for Test 9; ignoring the impinger catch it is 27Lm for both tests. These results are similar to other size distribution data available in the literature (Ref. 4-13 and 4-14).

2. <u>Chemical Composition</u>-- Tables 4-40 and 4-4I list the results from the chemical analysis of the particulate fraction for each of the tests discussed in this section. Calcium is the most predominant species, as one would expect. Carbon is second most abundant. Its origin is most likely from the uncombusted fuel. The concentration of carbon is slightly more for coal firing than natural gas firing. Sulfate is third most abundant and tends to concentrate in the impingers. As expected, sulfate concentration is higher for coal firing than gas firing, due to higher sulfur content of the fuel. Nitrates also tend to end up in the impinger. Iron and potassium are in the range of 1% of the total particulates. All other elements listed were detected in trace amounts.

3. <u>Emissions and emission factors</u>--Emissions and emission factors can be listed with several different units. The following lists some of these emissions and factors based on these two tests alone.

|                 | Test 9 (gas) |   | Test 18 (coal) |
|-----------------|--------------|---|----------------|
| gr/DSCF         | 0.0056       |   | 0.0099         |
| T/yr            | 22           | 1 | 48             |
| lb/hr           | 5.9          | , | 12.5           |
| lb/ton produced | 0.21         |   | 0.43           |
| lb/bbl produced | 0.041        |   | 0.084          |

# 4.2.7 Calcination of Gypsum

Gypsum is a mineral that occurs in large deposits throughout the world. It is hydrated calcium sulfate, with the formula  $CaSO_4 \cdot 2H_2O$ . When heated slightly, the following reaction occurs:

 $CaSO_4 \cdot 2H_2O + CaSO_4 \cdot 1/2 H_2O + 1 - 1/2 H_2O(g); \Delta H = +19,700 cal.$ 

KVB 5806-783

If the heating is at a higher temperature, gypsum loses all of its water and becomes anhydrous calcium sulfate or "anhydrite." Calcined gypsum can be made into wall plaster by the addition of filler materials such as asbestos, wood pulp, or sand. Without additions, it is plaster of paris and is used for making casts and for plaster.

A. Description (Ref 4-15) --

The usual method of calcination of gypsum consists of grinding the mineral and placing it in a large calciner which holds about ten tons of gypsum. The temperature is raised to about 350°F with constant agitation to maintain a uniform temperature. The materials in the kettle, commonly known as "plaster of paris" and called "first-settle plaster by the manufacturers, may be withdrawn and marketed at this point, or it may be heated further to 400°F to give a material known as "second-settle plaster." First-settle plaster is approximately the half hydrate,  $CaSO_4.1/2 H_2O$ , and the second form is anhydrous. Practically all of the gypsum plaster sold is in the form of first settle plaster mixed with sand or wood pulp. The second form is used in the manufacture of plasterboard and other gypsum products. Gypsum may be calcined also in rotary kilns similar to those used for limestone. Figure 4-32 is a schematic of the calcinator which was tested for this study.

B. Test Set-up--

The best location for the sampling of particulate was at the baghouse exit, through a 3" test port located in the stack 3 ft above the roof (see Figure 4-32). The velocity profile in the stack is listed in Table 4-42 A one-inch nozzle was used to sample the particulate laden gases from Velocity Point 3. The KVB objective was to sample one complete batch. However, due to a minor difficulty of electrical power consumption for the sampling train the tail end of one batch and the front end of the next batch were sampled to approximate one complete batch time.

C. Test Results--

The results of this test (Test 06S) discussed in this section are listed in Table 4-1. Major elemental composition, sulfate, nitrate and

4-112



......





|     | Distance<br>From End<br>of Port | a<br>K | Velocity<br>Point # | Velocity<br><u>ît/sec</u> |
|-----|---------------------------------|--------|---------------------|---------------------------|
|     | 6-3/3                           |        | 1                   | 14.1                      |
|     | 9-3/8                           |        | 2                   | 18.6                      |
|     | 13-1/4                          |        | 3                   | 17.2                      |
|     | 18-1/5                          |        | 4                   | 13.6                      |
|     | 26                              |        | R                   | . 18.6                    |
|     | 33-1/2                          |        | 5                   | 17.2                      |
|     | 38-7/8                          |        | 6.                  | 15.7                      |
|     | 42-5/8                          |        | 7                   | 14:1                      |
| · . | 45-5/3                          |        | 8                   | 14.1                      |
|     | Average                         |        | . –                 | 16.4                      |

4-114

carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Table 4-43 lists the results from these analyses.

D. Discussion of Results--

1. <u>Particle size distribution</u>--Figure 4-33 is a plot of particle size (µm) vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two answers are presented, one including the impinger catch, and the other ignoring it. Considering the small amount (13% by wt.) of material collected in the impinger, it would seem that the effects of pseudo particulates would be present. Therefore, the impinger catch was believed to be properly not included in the measurements of the suspended particulates. The breakdown of the particle size distribution not including the impinger catch, taken from Figure 4-33, is as follows:

| by weight                | >10um | 10-3µm | 3-1;.m | <b>سز</b> 1> |
|--------------------------|-------|--------|--------|--------------|
| impinger not<br>included | • 6   | 44     | 43     | 7            |

The particle size distribution curve, Figure 4-33, indicates that the mean particle size is 3.0um. This size of particle has the greatest potential health effects.

2. <u>Chemical Composition</u>-Table 4-43 lists the results from the chemical analysis of the particulate fractions. Sulfates are the most predominant species present along with calcium, and seem to be evenly distributed over the entire size range. This is as expected. Gypsum is calcium sulfate. Iron was also found in each fraction in concentrations of around 0.3-1.2%. All other elements have low concentrations, 0.1% or less. Carbonates were found in the cyclone catches and not in the impinger or filter catches. The volatile carbon found in the impinger catch (34%) seems to be wrong, because there is no volatile carbon detected in the first and second cyclones and on the filter catches. We believe that possible methyl chloroform from the organic extraction of the impinger water may have contaminated this fraction.

4-115

| SAMPLE #                                    | l0um<br>Cyclone<br>065-25 | 3µm<br>Cyclone<br>65-35 | Filter<br>6S-3S | Impinger<br>65-IC | lum<br>Cyclone<br>65-45 |
|---------------------------------------------|---------------------------|-------------------------|-----------------|-------------------|-------------------------|
| PERCENT OF CUT                              | 40                        | 36                      | 2               | 10.5              | 5.7                     |
| XRF ANALYSIS                                |                           | r.                      |                 |                   |                         |
| Calcium                                     | 10.0                      | 8.8                     | 13.0            | 5.9               | 15                      |
| Chlorine                                    |                           |                         | t               | <i>v</i> .        |                         |
| Iron                                        | , t                       | t.                      | 1.25            | ' t               | t                       |
| Potassium                                   |                           | t                       |                 | t                 | t                       |
| Strontium                                   | ε,                        | t                       | . =             | ŧ,                | τ                       |
| (Sulfur)                                    | (1.0)                     | (8.6)                   | (22)            | (13)              | (30)                    |
| TOTAL                                       | 10                        | 9.7                     | . 15            | 7                 | 15                      |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 62                        | 57                      | 12              | 41.               | 61 '                    |
| (Sulfur, from SO )*                         | (20)                      | (19)                    | (4.12)          | (13)              | (20)                    |
| Nitrate (H_O sol)2                          | t                         | t                       |                 | t                 | t                       |
| Total Carbon <sup>3</sup>                   | 1.67                      | t                       | 1.10            | 38                | t                       |
| (Volatile Carbon) <sup>3</sup>              | а. —                      | r.                      |                 | (35)              | (0.04)                  |
| (Carbonates) <sup>3</sup>                   | t                         | t '                     |                 |                   | t                       |
| TOTAL ANALYZED                              | 74                        | 57                      | 28              | , 86              | 76                      |
| BALANCE                                     | 26                        | 43                      | 72              | 14                | 24                      |
| · · · ·                                     | 100%                      | 100%                    | 100%            | 100%              | 100%                    |

TABLE 4-43. CHEMICAL COMPOSITION IN PERCENT FOR GYPSUM CALCINATOR (TEST 6)

detected in concentration of <1%

analyzed by x-ray fluorescence-Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

t 1

2

3

5

()

analyzed by Oceanography carbon analyzer--Section 3.2.2  $\lambda$ 

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is 3 of the element present and Y is the error (i.e. X3  $\pm$  Y )

not included in tocal--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon



Figure 4-33. Particle size distribution for calcination of gypsum (Test 06)

KVB 5806-783

3. <u>Emissions and emissions factors</u>--Emission factors can be listed with several different units. The following lists some of these emissions and factors based on this test alone:

| 0.056 | gr/DSCI | 7       |
|-------|---------|---------|
| 9.4   | T/yr    |         |
| 2.2   | lb/hr   |         |
| 0.2   | lb/ton  | produce |

## 4.2.8 Brick Manufacturing--Clay Grinding Process

A.

Process Description (Ref. 4-16) --

The manufacture of brick and related products such as clay pipe, pottery, and some types of refractory brick involves the mining, grinding, screening, and blending of the raw materials, and the forming, cutting or shaping, drying or curing, and firing of the final product.

Surface clays and shales are mined in open pits; most fine clays are found underground. After mining, the material is crushed to remove stones and stirred before it passes onto screens that are used to segregate the particles by size.

The basic flow diagram of a brick manufacturing process is shown in Figure 4-34.

B. Particulate Test Set-up--

The heaviest grain loading of particulate from brick manufacture comes from the clay grinding and screening process. For this reason KVB tested the grinding operation. The major fraction of particles is generated by the grinding and screening operations which are controlled by a baghouse (see Figure 4-35).

To evaluate the efficiency of the baghouse, the inlet and exit duct were sampled for particulate. The larger SASS sampling train was used to sample the exit duct and the smaller Joy sampling train was used to sample the inlet duct. However, due to the geometry of the inlet ducts of the

4-118



and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

South and the the state of the second state of the second state of the second state of the second state of the

Figure 4-34. Basic flow diagram of brick manufacturing process. "P" denotes a major source of particulate emissions.

4-119



4-120

1.
baghouse leading from the screens and grinder, only the section of duct attached to the grinding operation was accessible for sampling. A 2" sampling port was cut into this section on a long straight section, 20 ft from the nearest bend (see Figure 4-35). The velocity profile in the inlet duct, at this location, and in the baghouse exit is given in Table 4-44 A 3" sampling port was cut in the exit duct at the underside of the roof (Figure 4-35). It was not possible to sample beyond this point because the roof was unsafe for walking. This section of the duct was only two ft above the fan. Therefore, the turbulence was high. Also only 1/3 of the flow through the baghouse came from the clay grinding operation. It was determined by difference that the other 2/3 came from the screening operation and leaks in the system. It was necessary to assume that the inlet stream from the grinler was representative of the inlet stream from the screen un order to determine baghouse efficiency.

The particulate samples were taken at Velocity Point 6 through a 3/8" nozzle with Joy sampling train for the baghouse inlet and through a 7/16" nozzle Velocity Point 5 with SASS sampling train for the baghouse exit.

C. Test Results--

The results of the tests discussed in this section, Tests 85 and BJ, are listed in Table 4-1. Major elemental composition, sulfate, nitrate and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Table 4-45 lists the results from these analyses for Test 8J and 8S.

D. Discussion of Results--

1. Efficiency of the bachouse--The efficiency of a control device is calculated from the following equation:

efficiency = [(wt in - wt out)/wt in] x 1003

where the wt in and wt out does not include the impinger catch.

4-121



Temperature: 75°F Static Pressure: -2.1"H<sub>2</sub>O Temperature: 34°F Static Pressure: +1.2"H\_D\_

| Distance from<br>End of Port | Velocity<br>Point #  | Velocity<br>ft/sec | Distance from<br>End of Port | Velocity<br>Point # | Velocity<br>ft/sec |
|------------------------------|----------------------|--------------------|------------------------------|---------------------|--------------------|
| 3/4"                         | 1                    | .44.1              | 1"                           | 1                   | 39.1               |
| 3"                           | 2                    | 44.5               | 3"                           | 2                   | 52.1               |
| 6"                           | R                    | 46.2               | 6"                           | 3                   | 63.1               |
| Э"                           | 3                    | 50.1               | 8"                           | 4                   | 59.2               |
| 11-1/4"                      | 4                    | 53.9               | 10"                          | 5                   | 75.8               |
| 3/4"                         | 5                    | 50.1               | i3"                          | 6                   | 33.5               |
| 3"                           | 6                    | 45.2               | 15"                          | 7                   | 47.3               |
| 5"                           | R                    | 46.9               | 8"                           | . 8                 | 66.9               |
| <b>9</b> "                   | 7                    | 46.9               | . 8"                         | 9                   | 71.4               |
| 11-1/4"                      | ä                    |                    |                              | 4 ¥                 |                    |
|                              | Average<br>2175 SCFM | 47.5               |                              | <sup>а</sup> к      | 51.5<br>6020 SCFM  |

KVB 5806-753

|                                             |                              | A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |
|---------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE #                                    | Joy<br>10Lm Cyclone<br>3J-25 | SASS<br>10Lm Cyclone<br>85-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PERCENT OF CUT                              | 98.5                         | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XRP ANALYSIS                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Barium                                      | t                            | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calcium                                     | 0.95/0.1                     | 1.3/0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Iron                                        | 2.4/0.3                      | 2.9/0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Manganese                                   | π                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Potassium                                   | 1.2 0.1                      | 1.2/2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Silicon                                     | 17                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Sulfur)                                    |                              | (2.1, 0.6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Titanium                                    | ' 'e,                        | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOTAL                                       | 23                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | t                            | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Sulfur, from $SO_{\overline{A}}^{=}$ ) *   | · (t)                        | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrate (H,O sol) <sup>2</sup>              | "t.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Carbon <sup>3</sup>                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Volatile Carbon) <sup>3</sup>              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Carbonates) <sup>3</sup>                   | ±.                           | ່ ະ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOTAL ANALYZED                              | 21                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BALANCE                                     | 79                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             | 100%                         | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | 8 n                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# TABLE 4-45. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES FROM BRICK GRINDING OPERATION (TEST 8)

t detected in concentration of <1%

1

2

analyzed by x-ray fluorescenca--Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

- 4 calculated from sulfates (sulfur-sulfate/3) to compare with sulfur from XRF
- 5 for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )
- () not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-123

However, in this case the mass of matter going into the baghouse has two origins; the grinding operation and the screening operation. The grain loading from the grinder was measured, but the grain loading from the screening operation was not. It was assumed that the grain loading was similar to the loading for the grinder. Thus the efficiency of the baghouse was calculated.

 $[[3(1.169) - 0.0064]/3(1.169)] \times 100\%$ 

= 99.8%

The factor 3 comes from the flow split--1/3 of the total flow is from the grinder.

2. <u>Particle size distribution</u>-Figure 4-36 is a plot of particle size (Lm) vs accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two plots are presented for each train, one including the impinger catch, and the other ignoring it. In this case the loading of the large cyclone on the Joy train overwhelms the impinger catch so that there was negligible difference between the "with" and "without" curves. Considering that there were no gases present which would cause pseudo particulates, it would seem that only the very fine particles which would find their way through the filter would end up in the impinger. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particles. The breakdown of the particle size distribution including the impinger catch is as follows:

|                  | 8.    | Percent of Particles |        |      |  |
|------------------|-------|----------------------|--------|------|--|
|                  | >101m | 10-31.1              | 3-1:im | <11m |  |
| Inlet (Test 85)  | 98.6  | 0.85                 | 0.3.   | 0.15 |  |
| Outlet (Test 85) | 44    | 4                    | 4      | 48   |  |

explained as follows referring to the sketch below. The sketch shows a conceptual particle size distribution for the inlet and outlet of the baghouse (99.8% of the particulate matter is removed). The inlet



KVB 5806-783

distribution shows 98.6% of the particles with size >10µm. The baghouse removes nearly all the material that is >10µm and a much lesser amount of the very fine materials, <1µm. Some of the coarse material in the outlet can be attributed to "sneakage" which is material that leaks around the bag points or through small holes in the bags, etc. The net result is an apparent bimodal distribution.



The mean particle size of the particulate material entering the baghouse is greater than 10µm, and the mean particle size exiting the baghouse is about 2µm.

4-126

3. <u>Chemical Composition</u>--Table 4-45 lists the results from the chemical analysis of the particulate fraction for each of the tests discussed in this section (inlet-Test 8J and outlet-Test 8S). Silicon is the most predominant species. Iron, titanium, calcium, and carbonates are next in order. All other elements detected were in low concentrations

4. <u>Emission and emission factors</u>-Emission and emission factors can be listed with several different units. The following lists some of these emissions and factors.

|                 | Inlet (Test 8J) |    | Outlet (Test 8S) |
|-----------------|-----------------|----|------------------|
| gr/DSCF         | 1.169           |    | 0.0064           |
| T/yr            | 26.6            |    | 0.4              |
| lb/hr           | 21.5            |    | 0354             |
| 1b/ton produced | 0.7             | ×. | 0.01             |

#### 4-127

## 4.2.9 Glass Melting Furnace

Soda-lime glass is produced in large, direct-fired, continuous melting furnaces, and other types of glass are melted in small batch furnaces having capacities ranging from only a few pounds to several tons per day. Air pollution from small batch furnaces is minor, but the production of soda-lime glass creates problems of air pollution control.

A. Description (Ref. 4-17) --

A complete process flow diagram for the continuous production of soda-lime glass is shown in Figure 4-37. Silica sand, carbonates, cullet (broken glass), and other raw materials are transferred from railroad hopper cars and trucks to storage bins and other raw materials are received pre-packaged. These materials are withdrawn from the storage bins, weighed, and blended in a mixer. The mixed batch is then conveyed to the batch charged to the side of the furnace.

Two basic configurations are used in designing continuous, regenerative furnaces--end port, Figure 4-38 and side port, Figures 4-39 and 4-40. In the side port furnace (type of furnace tested in Test 20) the flame passes in one direction across the melter for 15-20 minutes, then the flow is reversed during the next time cycle. The side port design is commonly used in large furnaces with melter areas in excess of 500 square feet.

In the end port configuration (type of furnace tested in Test 28 and 35) the flames travel in a horizontal U-shaped path across the surface of the glass within the melter. Fuel and air are mixed at the port and ignite in the furnace and discharge through a second port adjacent to the first on the same end wall of the furnace. While the end port design has been used extensively in smaller furnaces with melter areas from 50 to 300 square feet, it has also been used in furnaces with melter areas up to 800 square feet.

KVB 5806



Figure 4-37. Flow diagram for soda-lime

glass manufacture (Ref. 4-17).

4-129

mai



Figure 4-38. Glass melting furnace (end port). Similar to the furnace on Tests 28 and 35 (Ref. 4-17).

1-130



4-13

Figure 4-39. Glass melting furnace (side port). Similar to Test 20 furnace (Ref. 4-17).



Figure 4-40. Glass melting furnace (side port) with ESP. Similar to Test 20 furnace.

4-132

KVB 5806-733

1.0

### B. Particulate Test Setup--

1. Test #20, flint glass melting furnace with an electrostatic precipitator--Two sampling trains were used simultaneously to sample the inlet and exit of the ESP. The inlet station was located on the horizontal duct (53-1/2 inch diameter) leading to the ESP (see Figure 4-41). Two 2-1/3 inch diameter test ports were provided at least six duct diameters from the nearest bend or obstruction. Table 4-48 lists the velocity profile in the inlet duct at a static pressure of -5.2"H<sub>2</sub>O and 540°F. Due to the small diameter of the port openings, the velocity points for distances greater than 36-1/2 inches into the stack were not able to be measured. The particulate sample was taken through a 5/16" diameter nozzle at Velocity Point #17.

The sampling ports for the ESP exit were located on the vertical section of the stack leading to the atmosphere, approximately 80 ft above ground level. Table 4-47 lists the velocity profile in the exit stack. The particulate sample was taken through a 3/4" nozzle at Velocity Point #18.

2. Test #28 and Test #35, flint glass melting furnace having no particulate control equipment--These two tests were done on the same glass melting furnace operating at approximately the same conditions, and at the same position on the stack at about 60 ft above ground level on the straight section leading to the atmosphere. An accidentally melted vacuum line during Test #28 resulted in no data for the small Joy sampling train. Both Sass and Joy sampling trains were run simultaneously for Test #35. The velocity profile for both these tests are listed in Table 4-48. For both SASS tests (Test 28 and Test 35) a nozzle diameter of 7/8 inch was used at velocity point #12, and a nozzle diameter of 7/16 inch was used for the Joy train on Test #35 at velocity point #3.

#### C. Test Results--

The results of the three tests discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Tables 4-49, 4-50, and 4-51 list the results from this analysis for Tests 20, 28, and 35 respectively.



Figure 4-41. Flow diagram for glass furnace with ESP control.

4-134

## TABLE 4-46. VELOCITY PROFILE (TEST 20S)



71436 acfm

KVB 5806-783

## TABLE 4-47. VELOCITY PROFILE (TEST 20S)



| Distance from | Velocity |        |            |              |  |  |  |  |
|---------------|----------|--------|------------|--------------|--|--|--|--|
| End of Port   | Point #  | ft/sec | Point *    | ft/sec       |  |  |  |  |
| 5-5/8         | 1        | 34.8   | 13         | 33.7         |  |  |  |  |
| 9-1/4         | 2        | 36.9   | 14         | 38.9         |  |  |  |  |
| 13-1/8        | з        | 37.9   | 15         | 39.9.        |  |  |  |  |
| 17-7/8        | 4        | 36.9   | 16         | 39.9         |  |  |  |  |
| 23-1/2        | 5        | 37.9   | 17         | 39.9         |  |  |  |  |
| 31-5/8        | 6        | 37.9   | - 18       | 38.9         |  |  |  |  |
| 43            | R        | 40.8   | R          | 33.9         |  |  |  |  |
| 54-3/8        | 7        | 40.8   | - 19       | 38.9         |  |  |  |  |
| 62-1/2        | 8        | 39.9   | 20         | 38.9         |  |  |  |  |
| . 68-1/8      | 9        | 37.9   | 21         | 37.9         |  |  |  |  |
| 72-7/8        | 10       | 38.9   | 22         | 38.9         |  |  |  |  |
| 76-3/4        | <u> </u> | 37.9   | 23         | 37.9         |  |  |  |  |
| 80-3/8        | 12       | 34.8   | 24         | 35.9         |  |  |  |  |
|               | Aver     | age 3  | 8.1 ft/sec | and Allerian |  |  |  |  |
| · · ·         |          |        | 75856 acfm |              |  |  |  |  |

KVB 5306-783



## TABLE 4-48. VELOCITY PROFILE FOR GLASS MELTING FURNACE (TEST 28 & 35)

|                              |            | Velocity | v Test #29 |        |            | Velocity Test #35 |            |        |  |
|------------------------------|------------|----------|------------|--------|------------|-------------------|------------|--------|--|
| Distance from<br>End of Port | Point<br># | ft/sec   | Point<br># | ft/sec | Point<br># | ft/sec            | Point<br># | ft/sec |  |
| 5.1"                         | ĩ          | 35.5     | 9          | 37.6   | 1          | 36.9              | 9          | 34.3   |  |
| 8.5                          | 2          | 38.5     | 10         | 37.6   | 2          | 40.3              | 10         | 30.1   |  |
| 12.9                         | 3          | 40.4     | 11         | 37.6   | 3          | 45.1              | 11         | 36.9   |  |
| 18.9                         | 4          | 41.3     | . 12       | 38.5   | 4          | 46.0              | 12         | 39.9   |  |
| 27.5                         | R          | 43.6     | R          | 40.4   | R          | 48.4              | R          | 39.8   |  |
| 36.1                         | 5          | 45.6     | 13         | 43.1   | 5          | 54.3              | 13         | 44.3   |  |
| 1                            | 6          | 50.3     | 14         | 44.8   | 6          | 50.7              | 14         | 46.0   |  |
| 46.5                         | 7          | 47.2     | 15         | 45.6   | 7          | 49.1              | 15         | 4610   |  |
| 49.9                         | 8          | 44.9     | 16         | 44.8   | 8          | 47.6              | ie         | 44.3   |  |

4-137

|                                             |     | I          | nlet                |     | Impinge     | er Catch |
|---------------------------------------------|-----|------------|---------------------|-----|-------------|----------|
| ,                                           |     | lum Cyclon | e Filter            | •   | Outlet      | Inlet    |
| SAMPLE #                                    |     | 20J-4S     | 203-55              |     | 205-IC      | 20J-IC   |
| PERCENT OF TOTAL CATCH                      |     | 24.3       | 57.0                |     | 91.2        | 14.5     |
| XRF ANALYSIS                                |     |            | ingen 147 hartorgan |     |             |          |
| Arsenic                                     |     | t          | t                   |     | а.<br>      | ,        |
| Calcium                                     |     | 2.8/0.4    | 1                   |     |             | t        |
| Chromium                                    |     | t          | t                   |     |             |          |
| Cobalt                                      | ,   |            |                     |     |             | t        |
| Iron                                        |     |            |                     |     | t.          |          |
| Lead                                        | • • | t          | t,                  |     |             |          |
| Potassium                                   |     | 2.1/0.5    | 2.3/1               |     |             |          |
| Selenium                                    |     | 1          | t ·                 | * : | 4.6/0.5     | 3.6/0.4  |
| (Sulfur).                                   | x   | (24/7)     | (30/10)             |     | (10/3)      | (15/4)   |
| Tin                                         | к   | t          | 4.6/0.6             |     | 20 <b>•</b> |          |
| TOTAL                                       | , I | 5          | 7                   | з   | 5           | 4        |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | ·   | 60.91      | 53.83               |     | 21.36       | 43.25    |
| (Sulfur, from $SO_4^{\vec{1}}$ )            |     | (20.3)     | (18)                | ,   | (7.1)       | (14.4)   |
| Nitrate (H20 sol) <sup>2</sup>              |     |            |                     |     | t           | х з      |
| Total Carbon <sup>3</sup>                   |     | 13         | 2.46                |     | 12          | 17       |
| (Volatile Carbon) <sup>3</sup>              | •   | (9)        |                     |     | (12)        | (12)     |
| (Carbonates) <sup>3</sup>                   |     |            |                     |     |             |          |
| TOTAL ANALYZED                              |     | 79         | 82                  |     | 37          | 64       |
| BALANCE                                     | .×. | 21         | 18                  | X   | 63          | 3€'      |
| *<br>*                                      |     | 100%       | 100%                |     | 100%        | 100%     |
|                                             |     |            |                     |     |             |          |

TABLE 4-49. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR TEST 20

detected in concentration of <1%

t 1

2

3

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry-Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is  ${\$  of the element present and Y is the error (i.e. X%  $\pm$  X )

not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

|                                             |             | · •     |
|---------------------------------------------|-------------|---------|
| SAMFLE #                                    | 285-5S      | 285-IC  |
| PERCENT OF CUT                              | 73.24       | 16.28   |
| XRF ANALYSIS                                |             |         |
| Arsenic                                     | 2.6/0.3     |         |
| Calcium                                     | t           |         |
| Chromium                                    | t ·         | t ·     |
| Iron                                        |             | t       |
| Lead                                        | τ           |         |
| Molybdenum                                  |             | t       |
| Nickel                                      | <b>*</b> ,• | ťt      |
| Potassium                                   | 2.0/0.3     |         |
| Selenium                                    |             | 3.8/0.4 |
| (Sulfur)                                    | (26/10)     | (20/7)  |
| TOTAL                                       | 3           | 4       |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | 60          | 29      |
| (Sulfur, from SO,) *                        | (.20)       | (9.55)  |
| Nitrate (H_O sol) <sup>2</sup>              |             | ,<br>,  |
| Total Carbon <sup>3</sup>                   |             | 29      |
| (Volatile Carbon) <sup>3</sup>              |             | (29)    |
|                                             |             |         |
| TOTAL ANALYZED                              | 63          | 60      |
|                                             | 37          | 40      |
| BALANCE                                     |             |         |

TABLE 4-50. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT (TEST 28)

calculated from sulfates (sulfur-sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is  ${\bf \hat v}$  of the element present and Y is the error (i.e. X  ${\bf \pm}$  Y )

()

not included in total—sulfur and sulfates are accounted for in sulfur NRF analysis and volatile carbon and carbonate are accounted for in total carbon

|                                | IN PERC                         | ENT (TEST :             |                           |                          |                            |
|--------------------------------|---------------------------------|-------------------------|---------------------------|--------------------------|----------------------------|
| SAMPLE #                       | Joy<br>lµm<br>Cyclone<br>35J-4S | Joy<br>Filter<br>35J-55 | Joy<br>Impinger<br>35J-IC | SASS<br>Filter<br>355-55 | SASS<br>Impinger<br>35S-IC |
| PERCENT OF CUT                 | 35.93                           | 25.31                   | 25.40                     | 65.82                    | 14.69                      |
| XRF ANALYSIS                   |                                 |                         |                           |                          |                            |
| Arsenic                        | 2.1/0.3                         | 1.9/0.3                 | 3.7/0.5                   | 1.4/0.3                  | t                          |
| Calcium                        | 1.1/0.2                         |                         | t                         | t.                       | t                          |
| Chromium                       | t,                              | t                       |                           | t                        | t ·                        |
| Iron                           |                                 |                         | t                         |                          | t,                         |
| Lead                           | t                               | t                       |                           | t                        | 4                          |
| Nickel                         | 4                               |                         |                           | ×.                       | t                          |
| Potassium '                    | 2.9/1                           | 3.7/0.6                 | t,                        | 3.1/0.6                  | ·, t,                      |
| Selenium                       |                                 |                         | 3.5/0.5                   |                          | 6.7/0.7                    |
| (Sulfur)                       | (21/8)                          | (27/10)                 | (14/4)                    | (24/8)                   | (13/4)                     |
| Zinc                           |                                 |                         | t                         | *                        | t                          |
| TYOTTAT                        | -<br>-                          | 6                       | ,<br>Я                    | 6                        | 8                          |
| Sulfates, H O sol <sup>2</sup> | 62                              | 67                      | 22                        | 59                       |                            |
| $(5u)$ fur, from $50^{-1}$     | (20, 80)                        | (72 19)                 | (7 48)                    | (19.51)                  | (11 23)                    |
| Nitrate (H 2 sol)              | (20100)                         | +                       | NE                        | . (+2.31)                | (11)                       |
| Total Carbon                   |                                 |                         | 31                        |                          | 22                         |
| (Volatile Carbon)              | y                               |                         | 1791                      |                          | (20)                       |
| (volactie Carbon)              |                                 |                         | (20)                      |                          | (20)                       |
| TOTAL ANALYZED                 | 67                              | 73                      | 61                        | 65                       | 64                         |
| BALANCE                        | 33                              | 27                      | 39                        | 35                       | 36                         |
| • •                            | 100%                            | 100%                    | 100%                      | 100%                     | 100%                       |

TABLE 4-51. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

t detected in concentration of <1%

1 analyzed by x-ray fluorescence--Section 3.2.2 B

2 analyzed by wet chemistry--Section 3.2.2 A

3 analyzed by Oceanography carbon analyzer--Section 3.2.2 A

4 calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

5 for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

() not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-140

### D. Discussion of Results--

1. Electrostatic precipitator — Using the solid weight data (does not include impinger catch) from both sampling trains for the inlet and exit to the ESP, the efficiency was calculated to be 98.2%. If the total catch is used the efficiency is 83%. The added weight in the impingers may be due to pseudo particulates (i.e. gases that react to form particles  $SO_3 + H_2O + H_2SO_4$ ). Baghouses and scrubbers are also available and are efficient as the control equipment reported here.

2. <u>Particle size distribution</u>--Figures 4-42 and 4-43 are a plot of particle size (µm) vs accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two answers are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected on the filter, it would seem that pseudo particulates were present. Therefore, the impinger catch was believed to be properly not included in the measurements of the suspended particulates from glass furnaces for particle size distribution. The break-down of the particle size distribution, not including the impinger catch, is as follows:

|               | 1          |   |        | Percent of | Particles | <b>~</b> |
|---------------|------------|---|--------|------------|-----------|----------|
|               |            |   | >10 µm | 10-3 µm    | 3-1 µm    | <1 µm    |
| Controlled (T | est 20S)   | 1 | . 14   | 13         | 25        | 58       |
| Uncontrolled  | (Test 20J) |   | .7     | .5         | 1.8       | 36       |
|               | (Test 283) |   | .6     | .8         | 1.6       | 97       |
|               | (Test 35S) |   | 6      | 3          | 4         | 87       |
| **            | (Test 35J) |   | 2.5    | 2          | 2.5       | 93       |

Figur: 4-43 is the size distribution plot for Test 28 and Test 35. Note that the uncontrolled emissions from these two glass furnaces have a mean particle size of less than 0.1 µm and that the controlled emissions with ESP have a mean particle diameter of about 1 µm.

4-141



Figure 4-42. Particle size distribution for glass furnace (Test 20).

XVB 5806-783



Figure 4-43. Particle size distribution for glass furnace. (Tests 28 & 35)

3. <u>Chemical composition</u>--Tables 4-49, 4-50, and 4-51 list the results from the chemical analysis of the particulate fraction for each of the tests discussed in this section. Sulfates are the most predominant species present and seem to be evenly distributed over the entire size range. Note that the sulfate concentration is about halved for the controlled particulates. Nitrates seem to appear more strongly in the impinger catches.

4. <u>Emission factors</u>--Emission factors can be listed with several different units. The following lists some of these emissions and factors.

|                   | Controlled |          | Uncontrol | led      |          |
|-------------------|------------|----------|-----------|----------|----------|
| Units             | Test 205   | Test 20J | Test 28S  | Test 35S | Test 35J |
| gr/DSCF           | .0062      | .0364    | .0612     | .0594    | .0469    |
| T/yr              | 8.0        | 37       | 30.2      | 25.5     | 27.8     |
| lb/hr             | 1.83       | 8.59     | 7.19      | 6.06     | 6.62     |
| lb/MMBtu          | .02        | .11      | .19       | .19      | .20      |
| lb/ton glass melt | ed .14     | .67      | 1.56      | 1.31     | 1.43     |
| lb/hr*            |            | 9.26     | 10.85     | 9.96     | 9.96     |

\* calculated from the following equation

 $x_{1} = a + 0.0226(s_{2})^{2} - 0.329 x_{2} - 4.412 x_{3} - 0.9379 x_{4} - 0.635 (x_{5})^{2} + 6.170 x_{5}$ 

(Ref. 4-17)

where

 $x_1$  = particulate emissions, lb/hr  $x_2$  = process wt, lb/hr-ft<sup>2</sup> melter  $x_3$  = wt fraction of cullet in charge  $x_4$  = checker volume, ft<sup>3</sup>/ft<sup>2</sup> melter  $x_5$  = melter area, ft<sup>2</sup>/100 a = constant involving two nonqualitative independent factors

= constant involving two honqualitative independent factors
relating the type of furnace (side port or end port) and
type of fuel (U.S. Grade 5 fuel or natural gas).
a = -0.493 end port--U.S. Grade 5 fuel oil
a = -0.623 side port--U.S. Grade 5 fuel oil
a = -1.286 end port--natural gas

a = -1.416 side port--natural gas.

4-144

KVB 5806

#### 4.2.10 Fiber Glass Wool Manufacturing .

A. Process Description--

Glass fiber products are manufactured by melting various raw materials to form glass (predominantly borosilicate), drawing the molten glass into fibers, and coating the fibers with an organic material. The two basic \_ypes of fiber glass products, textile and wool, are manufactured by different processes. A typical flow diagram for wool products is shown in Figure 4-44.

In the manufacture of wool products, which are generally used in the construction industry as insulation, ceiling panels, etc., glass marble is fed directly into the forming line. The marbles are melted with natural gas at 1250°F. The liquid glass passes through fine holes, which produces 1/64" fibers. These fibers are converted to wool as they pass through high velocity gas jets. A secondary blower directs the wood through the collecting surface. The organic binder is sprayed onto the hot fibers as they fall from the forming device. The fibers are collected on a moving, flat collecting surface and transported through a curing oven at a temperature of 400°F to 600°F (200° to 315°C) where the binder sets. Depending upon the product, the wool may also be compressed as a part of this operation. The major particulate emissions from the fiber glass wool manufacturing processes are from the forming line and curing oven.

B. Particulate Test Set-up--

Two sampling trains were used simultaneously to sample one of two exhaust ducts from the forming line. The velocity profile in this duct is listed in Table 4-52. Note that the velocities across the stack were very uneven. Two velocity points were chosen for sampling which had values similar to the average velocity. Velocity point 9 was used for the smaller Joy train with a 5/16" nozzle and velocity point 14 was used for the larger SASS train with a 11/16" nozzle.

4-145





KVB 5806-783

# TABLE 4-52.

-52. VELO

VELOCITY FROFILE FOR FIBER GLASS MANUFACTURING

(TEST 38)

| 1                          | 5 | 10 | 15 | 20 | 25              | Joy sample point 5/16" nozzle      |
|----------------------------|---|----|----|----|-----------------|------------------------------------|
| Temperature: 160°F         | 4 | T  | 14 | 19 | 24              |                                    |
| Static Pressure: +0.55"70" | 3 | 8  | 13 | 18 | 23              | SASS sample point<br>11/16" nozzle |
| "2 <sup>°</sup>            | 2 | 7  | 12 | 17 | 22 <sup>.</sup> | а<br>ж                             |
|                            | 1 | 6  | 11 | 16 | 21              |                                    |

| Distance<br>From End |         |        | Velocity | 1      | e <sup>1</sup> | 9<br>8<br>8 |
|----------------------|---------|--------|----------|--------|----------------|-------------|
| of port              | Point # | ft/sec | Point #  | ft/sec | Point #        | ft/sec      |
| 8                    | 1       | 60.3   | 11       | 50.5   | 21             | 7,5         |
| . 22                 | 2       | 60.3   | 12       | 48.6   | 22             | 7.5         |
| 36                   | 3       | 55.6   | 13       | 46.7   | 23             | 17.1        |
| 50                   | 4       | 53.9   | 14       | 43.5   | 24             | 27.0        |
| 64                   | 5       | 50.5   | 15       | 38.2   | -25            | 2.3.4       |
|                      |         |        |          |        |                |             |
| 8                    | 6       | . 57.2 | 16       | 31.9   |                |             |
| 22                   | 7       | 53.9   | 17       | 27.0   | , *            |             |
| 36                   | . 8     | 51.2   | 18       | 34.1   |                |             |
| 50                   | 9       | 43.5   | 19       | 41.8   |                |             |
| 64                   | 10      | 47.7   | -20      | 40.5   | 1<br>1         |             |

Average: 40.9 ft/sec

70,019 SCFM

KVB 5806-783

## C. Test Results--

The results of the two tests (385 and 38J) discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Table 4-53 lists the results from this analysis.

D. Discussion of Results--

1. <u>Particle size distribution</u>--Figure 4-45 is a plot of particle size (µm) vs accumulated weight percent, the latter plotted on a probability scale as explained in Section 4.2.3 B. Two sets of curves are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected in the impinger catch, it would seem that the effects of pseudo particulates would not be significant. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particulates from fiber glass forming lines. The breakdown of the particle size distribution including the impinger catch is as follows:

|        | 2.<br>  |      |      | Percent or | Particles |      |      |     |
|--------|---------|------|------|------------|-----------|------|------|-----|
| Test # | Greater | than | 10µm | 10-3µm     | 3-1µm,    | Less | than | lµm |
| 385    |         | 0.6  |      | 0.2        | 0.2       |      | 98.9 |     |
| 38J    |         | 0.2  |      | 0.2        | 0.4       |      | 99.2 |     |

Both sampling trains gave very similar size distribution curves which had a mean size of less than 0.1 $\mu$ m. However, during the test at this glass fiber forming line, larger particles (1/2 - 1" diameter discs) were occasionally observed. It appeared that these particles had been formed by agglomeration on the wall of the duct and had then broken loose.

2. <u>Chemical composition of the particulate matter--Table 4-53 presents</u> the chemical analysis of the particulate fraction for each of the tests discussed in this section. Carbon in the form of volatile carbon is the most abundant species, followed by chlorine, nitrates, and sulfates. Most of the elements tended to be fairly evenly distributed over the size range except for chlorine and potassium. Chlorine tended to concentrate in the impingers;

4-148

| SAMPLE #                                    | SASS<br>Filter<br>385-55 | SASS<br>Impinger<br>385-IC | Jcy<br>Impinger<br>38J-IC |
|---------------------------------------------|--------------------------|----------------------------|---------------------------|
| PERCENT OF CUT                              | 12                       | 86                         | 76                        |
| XRF ANALYSIS                                |                          | а. "                       |                           |
| Chlorine                                    | 2.5/0.5                  | 25/8                       | 7.8/2                     |
| Iron                                        | Υ.                       | t,                         | 2                         |
| Potassium                                   | 3.9/1                    | a.<br>                     |                           |
| (Sulfur)                                    | (<3)                     | (< 3)                      | (<4)                      |
| TOTAL                                       | . 7                      | 25                         | 8                         |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | t                        | t                          | t                         |
| (Sulfur, from $SO_{\overline{A}}^{-}$ ) "   | (t)                      | (t)                        | ' t                       |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | t t                      | t                          | t                         |
| Total Carbon <sup>3</sup>                   | 15                       | 21                         | 46                        |
| (Volatile Carbon) <sup>3</sup>              | k                        | (18)                       | (42)                      |
| (Carbonates) <sup>3</sup>                   |                          |                            |                           |
| TOTAL ANALYZED                              | 22                       | 46                         | 54                        |
| BALANCE                                     | 78                       | 54                         | 46                        |
| · · ·                                       | 100%                     | 100%                       | 100%                      |

TABLE 4-53. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES

IN PERCENT FOR FIBER GLASS WOOL MANUFACTURING (TEST 38)

detected in concentration of <1%

t

1

2

3

4

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry-Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is % of the element present and Y is the error (i.e. X%  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon



manufacturing (Test 38)

potassium ended up mostly on the filter. The low carbon value on the SASS filter and the absence of volatile carbon can be attributed to the fact that the filter is held in a 400°F oven which bakes off the volatile portion of the carbon.

3. Emission and emilsion factors -- Emission and emission factors can be listed with several different units. The following lists some of these emissions and factors.

| Units                           | Test #38S | Test #38J | Average |
|---------------------------------|-----------|-----------|---------|
| gr/DSCF                         | 0.0170    | 0.0136    | 0.0153  |
| T/yr                            | 84.0      | 67.2      | 75.6    |
| lb/hr                           | 19.2      | 15.4      | 17.3    |
| lb/ton produced                 | 32.0      | 25.6      | 28.8    |
| lb/uncontrolled<br>ton produced |           | ÷         | 57.6    |
| per AP-42 (Ref. 4-18)           |           |           |         |

#### 4.2.11 Asphalt Roofing Manufacture

Α.

Process Description (Ref. 4-19) --

The manufacture of asphalt roofing felts and shingles involves saturating fiber media with asphalt by means of dipping and/or spraying. Although it is not always done at the same site, preparation of the asphalt saturant is an integral part of the operation. This preparation, called "blowing," consists of oxidizing the asphalt by bubbling air through the liquid asphalt for 8 to 16 hours. The saturant is then transported to the saturation tank or spray area. The saturation of the felts is accomplished by dipping, high-pressure sprays, or both. The final felts are made in various weights: 15, 30, and 55 pounds per 100 square feet (0.62, 1.5, and 2.7 kg/m<sup>2</sup>). Regardless of the weight of the final product, the material distribution is approximately 40% dry felt and 60% asphalt saturant.

Figure 4-46 is a schematic drawing of the production line for manufacturing asphalt shingles similar to the asphalt roofing tested in this study. The major sources of particulate emissions from asphalt roofing

4-151



Figure 4-46. Schematic for manufacturing asphalt shingles, mineral-surfaced rolls and smooth rolls (Test 25).

4-152

plants are the asphalt blowing operations and the felt saturation. The felt saturator was the part of the operation tested in this study. The form of particulate was mostly asphalt mist.

#### B. Particulate Test Set-up--

The location of the particulate sampling was at the end of the duct from the control device leading to the atmosphere (see Figure 4-46). The velocity profile in the duct at this section is listed in Table 4-54.

Both sampling trains were used near the same point to obtain more precise data (duplicate tests). The larger (4 SCFM) SASS train was run with a 5/8" nozzle at Velocity Point 4 and the small (1 SCFM) Joy train was run at 5/16" nozzle at velocity point 5. The test was done in the morning of 1/31/78.

C. Test Results--

The results of the two tests (25S and 25J) discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, and carbon analyses were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Table 4-55 lists the results from this analysis.

D. Discussion of Results--

1. <u>Particle size distribution</u>--Figure 4-47 is a plot of particle size (µm) vs. accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two sets of curves are presented, one including the impinger catch, and the other ignoring it. Considering the large amount of material collected in the impinger, it would seem that this fraction should be properly included in the measurements of the suspended particulates. The matter in the impinger is mostly organics. These are aerosols and solvents that were condensed in the impingers. Also because of the very small weight percent of matter captured in the cyclones of the small 1 CFM Joy train, it is believed that this size distribution data for the Joy train is not as accurate as the SASS train. The breakdown of the particle size distribution for the SASS test is as follows:

4-153



TABLE 4-54. VELOCITY PROFILE FOR ASPHALT ROOFING (TEST 25)

| 1.1 |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |

| Distance from<br>Edge of Stack | . Velocity<br>Point #                                                                                           | Velocity<br>ft/sec | Velocity<br>Point # | Velocity<br>ft/sec |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|
| 1.3"                           | · 1                                                                                                             | 31.5               | · 11                | 26.3               |
| 5.9*                           | 2                                                                                                               | 41.1               | 12                  | 44.3               |
| 10.5"                          | a 3 <sup>a</sup>                                                                                                | 38.6               | 13                  | 41.6               |
| 16.3"                          | 4 .                                                                                                             | 37.3               | 14                  | 35.5               |
| 24.6"                          | 5 .                                                                                                             | 35.2               | 15                  | 33.0               |
| 36.0"                          | R                                                                                                               | 33.78              | R                   | 33.0               |
| 47.4"                          | - 6                                                                                                             | 35.2               | 16                  | 34.5               |
| 55.7"                          | 7                                                                                                               | 37.9               | 17                  | 36.6               |
| 61.5"                          | 8                                                                                                               | 39.2               | 18                  | 40.5               |
| 66.1*                          | 9                                                                                                               | 42.2               | 19                  | 42.3               |
| 70.0"                          | 10                                                                                                              | 44.0               | 20                  | 39.8               |
| а – с<br>а                     | a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l | Average: 37.0      | )                   |                    |
| · · ·                          |                                                                                                                 | 45521 SCFM         |                     |                    |

4-154

KVB 5806-783

### TABLE 4-55. CHEMICAL COMPOSITION

IN PERCENT FOR ASPHALT ROOFING MANUFACTURE

(TEST 25)

| SAMPLE #                                    | Impinger<br>255-IC        |
|---------------------------------------------|---------------------------|
| PERCENT OF CUT                              | 13<br>(wate residue only) |
| XRF ANALYSIS                                |                           |
| Calcium                                     | 3.4/0.7                   |
| Chlorine                                    | 12/3                      |
| Chromiua                                    | t                         |
| Cobalt                                      | 1.8/0.3                   |
| Iron                                        | 2.1/0.3                   |
| Manganese                                   | t                         |
| Nickel                                      | t                         |
| Potassium                                   | t                         |
| Selenium                                    | . t                       |
| (Sulfur)                                    | (20/7)                    |
| Zinc                                        | t                         |
| TOTAL <sup>1</sup>                          | 22                        |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup> | . 23                      |
| $(Sulfur, from SO_4)$                       | • (7)                     |
| Nitrate (H <sub>2</sub> O sol) <sup>2</sup> | <u>.</u> .                |
| Total Carbon <sup>3</sup>                   | 24                        |
| (Volatile Carbon) <sup>3</sup>              | (23)                      |
| (Carbc.iates) <sup>3</sup>                  |                           |
| TOTAL ANALYZED                              | 69                        |
| BALANCE                                     | 31                        |
| α<br>κ                                      | 100%                      |

detected in concentration of <1%

t 1

2 3

4

5

()

analyzed by x-ray fluorescence--Section 3.2.2 B

analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur=sulfate/3) to compare with sulfur from XRP

for values shown as X/Y, X is t of the element present and Y is the error (i.e. Xt  $\pm$  Y )

not included in total--sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-155



KVB 5806-783
|      |          | Greater than 10µ | 10-31m | <u>3-1µm</u> | Less than lum |
|------|----------|------------------|--------|--------------|---------------|
| With | impinger | 2.3              | 2.8    | 4            | 91 •          |
| Less | impinger | 18               | 40     | 31           | 11            |

Percent of Particles

From Figure 4-47 the mean particle size is  $0.01\mu m$  including the impinger. and  $4\mu m$  without the impinger.

An appropriate reminder here is that the SCAQMD includes the condensible material. However, it is believed that condensible material of this type should not be used to determine the size distribution of <u>solid</u> particles.

2. <u>Chemical composition of particulates</u>--Table 4-55 lists the results from the chemical analysis of the impinger fraction for the SASS train. Unfortunately, this was the only fraction with a large enough sample for chemical analysis. The organic fraction (85%) of the impinger catch (which is 85.4% of the total catch) was not analyzed for major chemical composition because it was believed to be mostly volatile carbon. It was not possible to analyze this fraction, methyl chloroform extract, for chemical composition because of the tarry nature of the sample (see Section 3.2.26). Of the 15% of the impinger catch that was analyzed, volatile carbon was the most abundant species. Sulfates were next abundant followed by calcium and iron. All other elements detected were in small amounts (<1.0%).

3. <u>Emissions and emission factors</u>-Emissions and emission factors can be listed with several different units. The following lists some of these emissions and factors.

| Units         | Test 255   | ž <sup>3</sup> | Test 25J |
|---------------|------------|----------------|----------|
| gr/DSCF       | <br>0.0075 |                | 0.0078   |
| T/yr          | 10.4       |                | 10.5     |
| lb/hr         | 2.94       |                | 2.98     |
| lb/ton of     | * 5        |                | ×.       |
| felt produced | 0.28       | a.             | 0.28     |

4-157

## 4.2.12 Asphaltic Concrete Batch Plants

Α.

Process Description (Ref. 4-20 & 4-21) --

Plants produce finished asphaltic concrete through either batch or continuous aggregate mixing operations. Different applications of asphaltic concrete require different aggregate size distributions, so that the raw aggregates are crushed and screened at the quarries. The coarse aggregate usually consists of crushed stone and gravel, but waste materials, such as slag from steel mills or crushed glass, can be used as raw material.

As processing for either type of operation (batch or continuous) begins, the aggregate is hauled from the storage piles and placed in the appropriate hoppers of the cold-feed unit. The material is metered from the hoppers onto a conveyor belt and is transported into a gas or oil-fired rotary. dryer.

As it leaves the dryer, the not material drops into a bucket elevator and is transferred to a set of vibrating screens where it is classified by size into as many as four different grades. At this point it enters the mixing operation.

In a batch plant, which was the type tested in this program, the classified aggregate drops into one of the four large bins. After all the material is weighed out, the sized aggregates are dropped into a mixer and mixed dry for about 30 seconds. The asphalt, which is a solid at ambient temperatures, is pumped from heated storage tanks, weighed, and then injected into the mixer. The hot, mixed batch is then dropped into a truck and hauled to the job site. Figure 4-48 illustrates a batch plant similar to the one tested and indicates the location of particulate sources in the operation. There are many sources of fugitive particulate emissions as shown in the sketch. In this program the ducted emissions controlled by a baghouse were characterized, as were the partially controlled emissions entering the baghouse.



Figure 4-48, Batch hot-mix asphalt plant. "P" denotes particulate emission points.

KVB 5806-783

4-159

## B. Particulate Test Set-up--

Two trains were used simultaneously to sample the inlet and outlet of the baghouse. The inlet station was located on the vertical duct approximately 12 ft ahead of the bend entering the baghouse. The velocity profile of the inlet duct was taken through the three 3" diameter ports provided. The velocity profile in the inlet and exit ducts of the baghouse are listed in Table 4-56.

The outlet sample station was located on the horizontal section of the duct about eight ft upstream of the fan. In the interest of the safety of the crew, the velocities were not taken through the vertical port. Therefore Velocity Points 10 through 15 were obtained by swinging the pitot tube. A 7/16" nozzle was used at Velocity Point #3 on the outlet duct and a 5/16" nozzle was used at Point #3 of the inlet duct.

C. Particulate Test Results--

The results of the two tests (Test 29S and 29J) discussed in this section are listed in Table 4-1. Elemental composition, sulfate, nitrate, ind carbon analysis were determined for all fractions of particulate catches which contained weights in excess of 100 mg. The details for these procedures are discussed in Section 3.2.2. Due to the very heavy loading on the inlet side of the baghouse, the cyclones and filter in the small sampling train had filled to total capacity and caused a pressure drop during sampling which resulted in stopping the sampling.

D. Discussion of Test Results--

1. Efficiency of the baghouse--Using the solid catch data (i.e. without the impinger catch) from both sampling trains for the inlet and exit, the baghouse efficiency was calculated to be 99.95%. Using the total catch, the efficiency would be 99.92%.

2. <u>Particle size distribution</u>--Figure 4-49 is a plot of particle size (µm) vs accumulated weight percent, the latter plotted on a probability scale as explained in Section 3.2.3 B. Two sets of curves are presented, one including the impinger catch, the other ignoring it. Considering the large amount of material collected upstream of the filter, it would seem that the

KVB 5806-783

160



## TABLE 4-56. VELOCITY PROFILE--ASPHALT BATCH PLANT (TEST 29)



UP

| Distance<br>End of 1 | e from<br>Port | Velocity<br>Point # | Velocity<br>ft/sec | Distance from<br>End of Port | Velocity<br>Point # | Velocity<br>ft/sec |
|----------------------|----------------|---------------------|--------------------|------------------------------|---------------------|--------------------|
| 8"                   |                | . 1                 | 30.2               | 5"                           | · 1                 | 68.8               |
| 20"                  |                | 2                   | 30.2               | 9-3/8"                       | 2                   | 76.3               |
| 32"                  |                | 3                   | 34.1               | 14-5/8"                      | 3                   | 85.3               |
| 44"                  |                | . 4                 | 37.2               | 22-3/8"                      | 4                   | 85.3               |
| 8"                   |                | 5                   | 31.9               | 33"                          | R                   | 95.4               |
| 20"                  | · `            | 6                   | 36.7               | 43-5/8"                      | 5                   | 95.4               |
| 32"                  |                | 7                   | 38.2               | 51-3/8"                      | 6                   | 85.3               |
| 44"                  | ·              | 8                   | 41.8               | 56-5/8"                      | 7                   | 85.3               |
| 8"                   |                | 9                   | 37.2               | 61"                          | 8                   | 81.0               |
| 20"                  |                | 10                  | 34.1               | 37"                          | 10                  | 95.4               |
| 32"                  |                | 11                  | 28.9               | 35"                          | 11                  | 81.0               |
| 44"                  |                | 12                  | 28.3               | 34"                          | 12                  | 89.5               |
|                      | Avera          | ge: 34.1 ft/        | sec ·              | 34"                          | 13                  | 85.3               |
|                      | 3              | 75337 scf           |                    | 35"                          | 14                  | 73.9               |
|                      |                | 4                   |                    | 37"                          | 15                  | 68.8               |

Average: 84.6 ft/sec

75354 scf

4-161



4-162

effects of pseudo particulates would be insignificant. Therefore, the impinger catch was believed to be properly included in the measurements of the suspended particulates from asphaltic concrete plants. As a result of the filling of the cyclones in the Joy train, a particle size distribution curve could not be made. It is estimated from visual examinations that the mean particle size for the inlet is greater than 100µm. The breakdown of the particle size distribution for the baghouse outlet including the impinger is as follows:

|          |   | Percent of Particles |      |      |     |     |   |       |      |      |     |
|----------|---|----------------------|------|------|-----|-----|---|-------|------|------|-----|
|          | 7 | Greater              | than | 10µm | 10- | Зµт | 1 | 3-1µm | Less | than | lum |
| Test 29S |   |                      | 60   |      |     | 6   |   | 4     |      | 30   |     |

The mean particle size for the baghouse outlet is approximately 60um. Although the baghouse has a high efficiency some of the coarser particles still penetrate, no doubt due to small leaks in and around the bags.

3. <u>Chemical composition of particulates</u>--Table 4-57 lists the results from the chemical analysis of the particulate fraction for the tests discussed in this section. Although silicon is not detected with XRF (see Section 3.2.2 B), it is clear that silicon is the most abundant element in these samples. The unanalyzed portion of Table 4-57` is primarily SiO<sub>2</sub> and other compounds of silicon.

4. <u>Emissions and emission factors</u>--Emissions and emission factors can be listed with several different units. The following lists some of these emissions and factors for these tests:

|                             | Controlled | Uncontrolled |
|-----------------------------|------------|--------------|
| Units                       | Test 295   | Test 29J     |
| gr/DSCF                     | 0.00776    | 11.485       |
| T/Yr                        | 1.56       | 2079.9       |
| lb/hr                       | 4.34       | 5777.5       |
| lb/ton produced             | 0.02       | 34           |
| lb/ton produced (Ref. 4-22) | 0.1        | 45           |
|                             |            |              |

4-163

| SAMPLE #                                                  | l0µm<br>Cyclone<br>295-25 | Filter<br>295-55 | l0µm<br>Cyclone<br>29J-25 |
|-----------------------------------------------------------|---------------------------|------------------|---------------------------|
| WT. PERCENT OF CUT                                        | 62                        | 3.6              | 54                        |
| XRF ANALYSIS                                              | ,                         | 2                |                           |
| Arsenic                                                   | t,                        |                  |                           |
| Barium                                                    | t                         | а.<br>Э          | t ·                       |
| Calcium                                                   | 2.4/0.3                   | 10/3             | 1:9/0.3                   |
| Chromium                                                  | Ę                         |                  | t                         |
| Iron                                                      | 3.6/0.5                   | 1/0.1            | 4.3/0.5                   |
| Potassium                                                 | 1.5/0.5                   | ,                | 1.5/0.2                   |
| Silver                                                    | t                         |                  |                           |
| (Sultur)                                                  | (<8)                      | (<4)             | (<3)                      |
| Titanium                                                  | t                         | t                | t                         |
| TOTAL                                                     | 8.                        | 11               | 8                         |
| Sulfates, H <sub>2</sub> O sol <sup>2</sup>               | 2                         | e                |                           |
| (Sulfur, from SO <sub>4</sub> <sup>=</sup> ) <sup>4</sup> | (t)                       |                  |                           |
| Nitrate (H20 sol) <sup>2</sup>                            | t                         |                  | •                         |
| Total Carbon <sup>3</sup>                                 | r,                        |                  | t                         |
| (Volatile Carbon) <sup>3</sup>                            |                           |                  |                           |
| (Carbonates) <sup>3</sup>                                 |                           |                  | (t)                       |
| TOTAL ANALYZED                                            | 10                        | 11               | . 8                       |
| BALANCE                                                   | 90                        | -89              | 92                        |
|                                                           | 100%                      | 100%             | 100%                      |

TABLE 4-57. CHEMICAL COMPOSITION OF PARTICULATE SAMPLES IN PERCENT FOR ASPHALT BATCH PLANTS (TEST 29)

detected in concentration of <1%

ŧ.

1

3

4

ŝ

analyzed by x-ray fluorescence-Section 3.2.2 B

2 analyzed by wet chemistry--Section 3.2.2 A

analyzed by Oceanography carbon analyzer--Section 3.2.2 A

calculated from sulfates (sulfur-sulfate/3) to compare with sulfur from XRF

for values shown as X/Y, X is t of the element present and Y is the error (i.e. Xt  $\pm$  Y )

() not included in total—sulfur and sulfates are accounted for in sulfur XRF analysis and volatile carbon and carbonate are accounted for in total carbon

4-164