H₂-ICE – A Zero-Impact Bridge to a Zero Emissions Future

SOUTHWEST RESEARCH INSTITUTE®

Dr. Terry Alger Executive Director, Sustainable Energy and Mobility

POWERTRAIN ENGINEERING

swri.org

1

Executive Summary

- Hydrogen-powered internal combustion engines offer a near-term solution to the challenges of decarbonizing sectors of the transportation industry that are less adaptable to electrification and offer a hedge against potential insurmountable challenges in mass-adoption of fuel cells
 - Immediate use of zero-carbon fuels
 - Built on existing industry infrastructure and ICE hardware
 - Ultra-low emissions of other greenhouse gasses
 - Ultra-low emissions of NO_X
 - Similar or better efficiency to fuel cells in the typical HD application operating range
- H₂-ICE combined with limited hybridization can yield even larger benefits
- At a minimum, H₂-ICE offers a bridge technology between today's diesel ICE trucks and future FCEV trucks – get low-GHG trucks to market faster and provide a market to attract infrastructure investment for H₂ production and filling stations

2

H₂-ICE "Other" GHG Emissions

Proper system design (control of H_2 slip and catalyst sizing/selection) will allow thermal management of the hydrogen exotherm to control N_2O emissions

Potential Configurations

Exotherm also enables reduced cold-start emissions

POWERTRAIN ENGINEERING

swri.org

SwRI's Joint Industry Program H₂-ICE **Demonstrating the ZEV Potential of an HD H₂ Application**

- SwRI is building a demo vehicle that will
 - Have similar efficiency to diesel
 - Run on SI H_2
 - Have NOx emissions < 0.02 g/hp-h
- Most components carry-over from stock 15 L CNG application

H₂-ICE NO_X Control

- Steady-state, engine-out NO_X emissions < 1.0 g/hp-hr combined with turbine-out temperatures > 300 °C full-map \rightarrow catalyst efficiency > 98%
- Engine can be expected to have certification emissions levels near 0.01 g/hp-hr with <u>no / minimal margin</u>
- Aftertreatment will retain oxidation catalyst and particulate filter to ensure tailpipe emissions remain below 2027 regulated levels

2000

H₂-ICE Aftertreatment – Comparison to Diesel AT

H₂-ICE vs. FC Truck Efficiency

Powertrain technologies behave differently under high loads.

Efficiency variations (lines on graph are illustrative)

¹Fuel-cell electric vehicle. ²Hydrogen internal combustion engine. ³Defining "maximum system output" as maximum output that system can supply continuously (including Booster), equaling 80% of FC system output. ⁴Battery-electric vehicle. Source: Lohse-Busch et al., Toyota Mirai case study (1st generation), July 2019; RL Deppmann

McKinsey & Company

Image source: https://www.mckinsey.com/industries/automotive-and-assembly/ourinsights/how-hydrogen-combustion-engines-can-contribute-to-zero-emissions

- The relative performance between FCEV and H₂-ICE depends on application
 - Class 8 Line-Haul tends to run at 50-75% of peak and H_2 -ICE will have similar H_2 -to-wheel efficiency
 - Class 7/8 Vocational has a mix of long idle times and operation at peak torque for each start.
 FCEV has an advantage at light load but a disadvantage at high torque.
- NOTES :
 - Some of the FCEV advantage in vehicle FE is due to the hybridized powertrain
 - H₂-ICE could be hybridized (at a lower cost compared to FCEV) to show same/similar vehicle fuel economy
 - H_2 -ICE is more tolerant of impurities in the fuel supply and potentially able to use lower-cost grades of H_2

POWERTRAIN ENGINEERING

Wrap-Up

- H₂-ICE provides a cost-effective, zero-impact bridge between diesel ICE and H₂-FCEV
 - Immediate, large-scale reduction in GHG combined with ultra-low NOx emissions
 - Low impact on current ICE architecture
- H₂-ICE can provide important incentives for infrastructure investments to enable future FCEV applications
- Hybridized H₂-ICE can deliver the same, or better, fuel economy than a FCEV

