

Energy & Homeland Security

The future of H2 internal combustion engines in California?

Aleš Srna

Principal Investigator and Senior R&D Engineer

asrna@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525 Strong global H2ICE development and demonstration activity

"Over 130 OEMs are interested in, planning or running H2 engine R&D projects" (Bosch, 2022) Small-series production underway for off-highway applications Short time-to-market can significantly accelerate heavy-duty transport decarbonization

H2ICEs can power heavy-duty vehicles with near-zero emissions Significantly lower raw NOx emissions possible relative to a diesel engine Developing low-NOx H2ICEs can mitigate emissions for hard-to-electrify off-road sectors H2ICE exhaust conditions favorable for efficient and durable after-treatment Unknowns regarding the N₂O emission

Most H2ICEs will initially lag behind FCEV and diesel heavy-duty vehicles in terms of efficiency Fuel-consumption parity might be achieved over time, initially ~10-20% fuel consumption penalty H2ICE projected to have short and long-term upfront cost advantages

The H2ICE's potential in North America is strongly dependent on legislation Stricter US NOx legislation will require additional development relative to global engine products

RELATIVE STRENGTHS OF H2ICE AND H2FC – TODAY'S TECHNOLOGY

Characteristic	H2ICE	H2FC	
Efficiency	Good: mid – high load	Excellent: low – mid load	Fuel Cell H2ICE
Cooling needs	Intermediate	High, critical for stationary and slow-moving applications	Gap, cross-over?
Emissions	NOx (and trace N ₂ O, CO ₂) Low with aftertreatment	None	Pow er flux 300 kW 300 kW
Durability	High	Improving with new R&D	at Coolant Exhaust
Robustness	High	Sensitive to vibration	pow er
Noble metal consumption	Low – intermediate (after-treatment)	High	[KVV] Fuel Cell H₂ Engine Powertrain Powertrain
Fuel purity	Tolerant to contaminants	High-purity H2 required	FCEV challenges and
Fuel flexibility	Diesel/NG backup	Can be flexible, efficiency penalty	changing regulatory framework prompted several
Upfront cost	Low	High	OEMs to invest into H2ICE as
Cold start	No issues	Temperature conditioning	an alternative H2 powertrain
Resale value	Depending on infrastructure	Unclear	

H2ICE TECHNICAL CONCEPTS DIFFERENTIATED BY FUEL INJECTION

Key challenges: power density, abnormal combustion, efficiency

"Generation 1" H2ICE technology ~2025 market introduction, retrofits

- Simplest system minimal engine modification, low-cost fuel system
- Typically low NOx emission

4

- + Simple to integrate with advanced ignition systems
- Loss of power density, efficiency
- Risks of back-fire into intake manifold, prone to pre-ignition
- Poor transient response, extreme turbocharging requirements

Key challenges: injection technology, abnormal combustion

"Generation 2" H2ICE technology ~2025-2030 market introduction

- Higher power density, improved efficiency, transient response
- + Moderate engine modification required
- No back-fire risk, reduced pre-ignition
- Somewhat higher NOx emission
- Residual pressure in "empty" tank
- Injection system with high durability required
- Development effort for optimization

Key challenges: High-pressure pump, NOx, fuel compression energy

"Generation 2+" technology, best efficiency Market readiness ~2025-2030

- + Best efficiency, power density, transient response
- + Reduced turbocharging req., moderate engine modification
- + No back-fire risk, no pre-ignition
- + Diesel pilot can be substituted with renewable fuels, single-fue concepts under development
- Higher NOx emission
- On-board compressor required

The continued engine development will address many shortcomings of the first H2ICEs on the market

Port-injection 7.8L H2ICE efficiency and raw NOx emissions

Comparable diesel engine (6.7L) raw NOx emission

Efficiency of H2ICE:

- Somewhat reduced efficiency
 - Diesel engine efficiency: up to 50%

> High-efficiency zones overlap with typical engine operating range in HD applications

NOx emissions:

- > >10X reduction in raw NOx emission vs.
 - typical diesel engine
 - ➢ H2ICE can fulfill current EURO6 legislation with no after-treatment
- > Very low idle NOx emission
- After-treatment will be needed for **EPA2027/EUR07**

Lower efficiency

Port-injection 7.8L H2ICE efficiency and raw NOx emissions

6

High-Pressure Direct-Injection H2ICE 13L HD engine efficiency and NOx emission

Diffusion combustion

Very-high efficiency High raw NOx emission Increased after-treatment required Higher cost (AT, fuel system)

The tradeoffs will likely be alleviated with maturing of H2ICE technology. Lower or equal tailpipe NOx to diesel engine expected for all technologies.

IS H2ICE WELL SUITED FOR EXISTING AFTER-TREATMENT TECH.? PERFORMANCE OF SELECTIVE CATALYTIC REDUCTION OF NO_X?

Current understanding suggests that urea-SCR will be well-suited, efficient and durable for H2ICE De-NOx Unknowns about water vapor impact on SCR De-NOx and H2+aging impact on N₂O formation in SCR

Generic diesel engine exh. temperature map

HD H2ICE SCR temperature map

N_2O is primarily formed in the exhaust after-treatment system Two mechanisms of N_2O formation are relevant for H2ICE

H₂ reaction with NO over noble metal

catalyst

• $2NO + H_2 \rightarrow N_2O + H_2O$

8

- Diesel Oxidation Cat. and Ammonia Slip Cat contain Pt/Pd as catalysts
- Low-temperature pathway (150-250°C)
- A cold start issue, catalyst warm-up important

NH₃ oxidation, non-selective reduction in

SCR

- A range of reactions occurring on SCR
- Ammonia oxidation on ASC is a key source
- Some N₂O may be formed across the entire SCR temperature range
- More NOx and more urea dosing increase N₂O

N_2O is also a challenge for diesel vehicles equipped with SCR

Lower raw NOx emission, option to remove the ASC from after-treatment, and favorable exhaust temperature will likely significantly reduce H2ICE N₂O emission relative to diesel engines. H2ICE N₂O GWP <1% GWP of diesel expected

H2-ICE MINOR AND NON-REGULATED EMISSIONS NITROUS OXIDE, HYDROGEN, AMMONIA, CO₂, CO, PARTICULATES

H2ICE will emit significantly less pollutants and GHG that a diesel engine

AFTER-TREATMENT CONSIDERATIONS SIGNIFICANT AFTER-TREATMENT SIMPLIFICATION POTENTIAL

Proposed EPA27/EURO7 heavy-duty diesel after-treatment configuration

Can likely be omitted

Ammonia slip catalyst

Not needed in engines with very low raw NOx A source of N₂O Needed if targeting ultra-low NOx emission with higher urea dosing

Selective Catalytic Red.

Necessary for EPA27 Impact of water on catalyst deactivation not fully understood High De-NOx efficiency demonstrated in lab. Optimized SCR composition may be needed to minimize

UNPRECEDENTED R&D WAVE ON H2ICE LEGISLATION IS KEY DRIVER

11

¹EPA AVERT 2022 ²CEPAM2019v1.03 projections

H2ICEs are a viable low-emissions technology in heavy-duty transportation

- H2ICE equipped with modern exhaust after-treatment will result in very low tailpipe pollutant and GHG emissions
- Further after-treatment improvement should be targeted to minimize N₂O formation
- First-generation H2ICE's will have an efficiency/cost/emissions tradeoff
- > The efficiency gap vs. diesel and FCEV will reduce with continued development
- > >95% GHG reduction at tailpipe vs. diesel is possible even with worse-case assumptions

Legislation will determine the viability of H2ICE in North America

- > CO2 reduction and sales mandates (ZEV) likely the main driver for early H2ICE adopters
- > Additional development needed to make global market H2ICEs EPA/CARB2027 compliant
- Long-term viability of H2ICE primarily driven by H2 cost

Fossil fuel displacement by H₂ICE

H2ICEs provide for a smooth, continuous transition as H₂ supply and infrastructure develops and the existing fleet turns over

Key H2-ICE advantages in time