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Project Summary/Abstract 
Regulations and technological upgrades have resulted in a steady decline in vehicle tailpipe 

emissions in California. However, these positive developments have not been able to fully 

compensate for the rapid growth of the motor vehicle fleet, the accompanying peak traffic and 

vehicular congestion on California roadways, and the increased area-based contributions from on-

road vehicles while off-road (such as shopping centers, parking lots, and freight distribution 

centers). Some communities in proximity to heavy traffic emissions sources continue to be 

disproportionately exposed. Another important on-road vehicle pollution source is non-exhaust 

emissions from tire and brake wear, which will become increasingly important as the benefits of 

implementation of tailpipe emission regulations become more widespread. Previous studies on the 

effects of air pollution on respiratory disease symptoms, such as asthma and chronic obstructive 

pulmonary disease (COPD) often used an individuals’ residential address in defining the location 

of air pollution exposure. Air pollution exposure can occur in the community, at work, at home, at 

school, and elsewhere; therefore, a residential address does not capture the full signature of 

exposure for an individual. 

Digital sensors fitted onto inhalers can capture the date, time, and location of rescue inhaler 

medication use (i.e., use of Short-Acting Beta Agonist for the acute relief of respiratory disease 

symptoms, referred to as SABA use here after) and identify activity space through sensor 

“heartbeats” — sensor checking into battery life every 3-4 hours with location information; 

thereby, offering an objective signal of respiratory disease symptoms and exposure space in real-

time. The spatiotemporally rich data in SABA use, locations of activity space, and extensive 

information on environmental exposures; however, raise methodological challenges in modeling 

the impacts of environmental exposures on respiratory disease symptoms. Recent advances in 

artificial intelligence and machine learning techniques like random forest, have boosted the 

potential of post-analyzing the high dimension patient data. The random forest modeling technique 

has the advantage over traditional linear mixed models in being free of assumption to the 

underlying data structure, in resistance to model overfit and multicollinearity, in dealing with 

interactions between simultaneous multiple pollutant exposures, and in increased accuracy in 

prediction. 
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In this project, the University of California, Berkeley (UCB) first conducted a systematic 

review on the impacts from air pollution, including criteria air pollutants and non-exhaust trace 

metals on respiratory disease outcomes. Second, UCB developed daily land use regression models 

(res: 30m) and surfaces (res: 100) for criteria pollutants nitrogen dioxide (NO2),  particulate matter 

with diameter less than 2.5 microns (PM2.5) and ozone (O3) for 2012-2019. Monthly models (res: 

30m) and surfaces (res: 100m) were also developed for six trace metals including chromium (Cr), 

manganese (Mn), nickel (Ni), lead (Pb), selenium (Se) and zinc (Zn). A spatially and temporally-

resolved rescue inhaler use dataset collected by ResMed and its sub-division Propeller Health 

using digital sensors for 3,386 patients across California were assigned air pollution exposure 

using the daily surfaces developed for the State and were used to identify the impacts of both on-

road tailpipe emissions and non-tailpipe trace metals emissions on sub-acute respiratory disease 

symptoms from January 1, 2012 to December 31, 2019 through advanced linear mixed models 

taking into consideration of excessive days without rescue inhaler use and a random forest 

modeling technique. In the health outcome model with simultaneous exposures to NO2, PM2.5 and 

O3, we found that all the three criteria pollutants were statistically significantly associated with 

rescue inhaler use after comprehensive control for confounding. Their respective exposure-

response functions were 1.002482 (95% CI: 1.001255 – 1.003710), 1.008790 (95% CI: 

1.007243 – 1.010340) and 1.005306 (95% CI: 1.003983 – 1.006630). The impact of trace metals 

on rescue inhaler use was found statistically non-significant, probably due to inefficient air quality 

monitoring and exposure assessment.  

The results of this project will help the California Air Resources Board (CARB) 

characterize the health effects of regulatory programs and identify disproportionally exposed 

communities and related sources. More importantly, the study will provide the information needed 

to include respiratory disease exacerbations as a new endpoint for CARB’s health analysis in 

regulatory processes. 

 

Executive Summary 
a. Background 

Regulations and technological upgrades have resulted in a steady decline in vehicle tailpipe 

emissions in California. However, these positive developments have not been able to fully 
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compensate for the rapid growth of the motor vehicle fleet, the accompanying peak traffic and 

vehicular congestion on California roadways, and the increased area-based contributions from on-

road vehicles while off-road (such as shopping centers, parking lots, and freight distribution 

centers). Some communities in proximity to the heavy traffic emissions sources continue to be 

disproportionately exposed. Further, the emissions from non-exhaust tire and brake wear (TBW) 

are, by contrast, becoming increasingly important as the benefits of implementation of tailpipe 

emission regulations become more widespread. It has been shown that even with zero tailpipe 

emissions, traffic will continue to contribute to particulate matter (PM) through non-exhaust 

emissions. 

When the location of exposure was provided, previous studies often used an individual’s 

residential address in defining the location of air pollution exposure. Air pollution exposure can 

occur in the community, at work, at home, at school, and elsewhere; therefore, a residential address 

does not capture the full signature of exposure for an individual. Digital sensors fitted onto inhalers 

can capture the date, time, and location of rescue inhaler use. The sensors also send out 

“heartbeats” every 3-4 hours: a signal from the sensor that reports battery life (lasts about 18 

months after a single charge) and records the Global Positioning System (GPS) locations when 

paired with a smartphone. Evaluating the signals of all heartbeats and rescue inhaler uses for an 

individual over time can help characterize an individual’s exposure space over time. 

b. Objective 

The objective of this study was two folds: First, UCB conducted a systematic review on 

the impacts from air pollution, including criteria air pollutants and non-exhaust trace metals on 

respiratory disease outcomes. Second, UCB and ResMed aimed to quantify the relationship 

between on-road vehicle emissions, including on-road exhaust criteria pollutants and non-exhaust 

trace metals, and sub-acute respiratory disease symptoms, which may include chest pain, shortness 

of breath, coughing or wheezing, in major metropolitan areas of California. We used rescue inhaler 

use as a proxy for the symptoms. The goal was to identify the impacts of both tailpipe and non-

tailpipe vehicle emissions on sub-acute respiratory disease symptoms represented by rescue inhaler 

use for health outcome data collected from January 1, 2012 to December 31, 2019 across 

California. 
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c. Methods 

In the literature review, we assessed impacts from criteria pollutants including nitrogen 

dioxide (NO2), particulate matter with diameter less than 2.5 microns (PM2.5) and 10 microns 

(PM10), ozone (O3), sulfur dioxide (SO2) and more than 10 trace metals considered toxic air 

contaminants on respiratory disease outcomes. The outcome measures were converted to odds 

ratios, and we standardized the effects of each criteria pollutant so comparisons could be made 

among different studies. Pooled analyses were also conducted to identify the overall size of impact 

of a pollutant on respiratory disease outcomes. In developing daily air pollutant surfaces, we 

applied a deletion/substitution/addition (D/S/A) V-fold cross-validation modeling technique that 

minimizes over-fitting to the data to maximize the probability that guarantees the models predict 

well at locations that have not been sampled. The air pollution surfaces were assigned to 

corresponding space-time activity space measured through digital sensors by patients. In health 

outcome modeling, we applied both linear mixed models with capability of dealing with excessive 

zeros and overdispersion in daily rescue inhaler use puffs and advanced machine learning 

algorithms to identify associations of daily air pollution exposure with daily rescue inhaler use in 

number of puffs. 

d. Results 

The literature review identified significant associations of respiratory disease outcomes 

with the criteria pollutants and trace metals. In air pollution modeling, we developed daily 

prediction models for the three criteria pollutants with adjusted R2 of 79.6%, 65.3% and 93.6%, 

respectively, for NO2, PM2.5 and O3. The models had greater performance than other daily models 

and had higher performance than some annual models. The prediction models for the six criteria 

pollutants were less effective compared to the criteria pollutants models and they lacked predictors 

that specifically targeted tire- and break-wear. In health outcome modeling, both advanced linear 

mixed models and random forest models identified that all the three criteria pollutants had 

significant (p < 0.001) and positive associations with daily rescue inhaler use. We identified, for 

example, in the linear mixed model with all the three criteria pollutants integrated in a single 

model, an effect of NO2 on 1 ppb (Part per Billion) increase, PM2.5 on 1 ug m-3 increase, and O3 

on 1 ppb increase, respectively, for a 0.25%, 0.88% and 0.53% increase in daily rescue puffs use. 
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The effect of exposure to trace metals were found statistically non-significant with daily rescue 

inhaler use. 

e. Conclusion 

We successfully conducted a literature review on the impacts from air pollution, including 

criteria air pollutants and non-exhaust trace metals on respiratory disease outcomes. In air pollution 

modeling, we are the first in literature that incorporated terabytes (TB) of comprehensive data 

sources for high spatial resolution daily (criteria pollutants) and monthly (trace metals) land use 

regression modeling development (res: 30m) and surfaces generation (res: 100m). Our research 

identified that exposures to NO2, PM2.5 and O3 were significantly associated with daily rescue 

inhaler use but the association with trace metals should be further explored with better exposure 

data. The results of this project will help CARB characterize the health effects of regulatory 

programs and help identify disproportionally exposed communities and related sources. More 

importantly, the project will also provide the information needed to include respiratory disease 

symptoms as a new endpoint for CARB’s health analysis in the regulatory processes. 

Background 
Regulations and technological upgrades have resulted in a steady decline in vehicle tailpipe 

emissions in California.1,2 However, these positive developments have not been able to fully 

compensate for the rapid growth of the motor vehicle fleet, the accompanying peak traffic and 

vehicular congestion on California roadways, and the increased area-based contributions from on-

road vehicles while off-road (such as shopping centers, parking lots, and freight distribution 

centers). Some communities in proximity to the heavy traffic emissions sources continue to be 

disproportionately exposed. Several studies have been published showing that communities 

exposed to on-road vehicle emissions are at greater risk for respiratory disease exacerbations.3-6 

Another important on-road vehicle pollution source is non-exhaust emissions from tire and brake 

wear, which will become increasingly important as the benefits of implementation of tailpipe 

emission regulations become more widespread. It has been shown that even with zero tailpipe 

emissions, traffic will continue to contribute to fine and ultrafine PM through non-exhaust 

emissions.7 

Previous studies on the effects of air pollution on respiratory disease have relied on 

aggregated and infrequently-reported acute respiratory disease outcome measures, such as 
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emergency department (ED) visits or hospitalizations, which lack temporal and spatial resolution 

due to annual aggregation and grouping to a zip code or county level.8-10 Other studies have used 

patient self-reported data to assess the location and frequency of symptoms,11 which could be 

fraught with missing data, errors, and are burdensome for the patients.12-14 When the location of 

exposure was provided, previous studies often used an individual’s residential address in defining 

the location of air pollution exposure. Air pollution exposure can occur in the community, at work, 

at home, at school, and elsewhere; therefore, a residential address does not capture the full 

signature of exposure for an individual. Significant exposure misclassification exists and health 

risks estimated from such data can lead to exposure measurement error and flawed findings.15 

Additionally, the effect of air pollution on respiratory disease has largely been assessed using 

single pollutant modeling approaches despite the fact that people are exposed to multiple pollutants 

simultaneously,16 which may interactively influence respiratory disease symptoms. Further, 

current studies typically assume the existence of a predefined structure of association between a 

predictor and a respiratory disease outcome before a model was developed. However, an 

association could be linear, non-linear, or piecewise. 

Digital sensors fitted onto inhalers can capture the date, time, and location of SABA use; 

thereby, offering an objective signal of respiratory disease symptoms in real-time. A previous 

feasibility study demonstrated such sensors can collect spatiotemporal data on the use of rescue 

medications.17 The sensors also send out “heartbeats,” which is a signal from the sensor that reports 

battery life and records the GPS locations when paired with a smartphone. Information from both 

SABA use and heartbeats is sent to the Health Insurance Portability and Accountability Act of 

1996 (HIPAA) compliant server for storage and analysis, and heartbeats of every 3-4 hours also 

report the battery status of the inhaler, which lasts about 18 months. The heartbeat indicates that 

the sensor is functioning properly, and able to transmit data; but that the inhaler has not been used 

since the last data transmission.  Evaluating the signals of all heartbeats and rescue inhaler uses 

for an individual over time, can help characterize each individual’s exposure space over time. UCB 

uses the heartbeat locations and locations of SABA use of a patient as his/her activity space for 

this project. However, the spatiotemporally rich SABA use data, location of activity space and 

extensive information on environmental exposure make modeling environmental impacts difficult 

issues to tackle. Recent advances in artificial intelligence and machine learning techniques have 

boosted the potential of post-analyzing the high dimension patient data.18-20 
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A recent systematic literature review19 indicates that machine learning algorithms are 

increasingly being applied to air pollution epidemiology. One of the key applications is modeling 

the health effects of air pollution mixtures,20-23 which could be highly correlated and with potential 

interaction, a challenge difficult to tackle with the traditional environmental epidemiology method.      

Random forest models, one of the most frequently used machine learning techniques in health-

related research,24 has an advantage over linear models because random forest models (1) make 

no assumption as to the underlying data structure, (2) are resistant to model overfit, 

multicollinearity and interaction among simultaneous multiple pollutant exposures, and (3) 

demonstrate enhanced prediction.25 Random forest models have been applied in epidemiology 

studies for variable selection26,27 and health outcome modeling28-30 and typically perform better 

than traditional epidemiology models.25,28 

The objective of this study was two folds: First, we conducted a systematic review on the 

impacts from air pollution, including criteria air pollutants and non-exhaust trace metals on 

respiratory disease outcomes. Second, we aimed to quantify the relationship between on-road 

vehicle emissions, including on-road exhaust criteria pollutants and non-exhaust trace metals, and 

sub-acute respiratory disease symptoms, which may include chest pain, shortness of breath, 

coughing or wheezing, in major metropolitan areas of California. We used rescue inhaler use as a 

proxy for the symptoms. The goal was to identify the impacts of both tailpipe and non-tailpipe 

vehicle emissions on sub-acute respiratory disease symptoms represented by rescue inhaler use for 

health outcome data collected from January 1, 2012 to December 31, 2019 across California. 

 
Task 1:  Literature Review 

UCB conducted a systematic literature review, using peer-reviewed journal papers, to 

expand the literature citied in the background section of this study on impacts from on-road vehicle 

emissions, including on-road non-exhaust pollutants on sub-acute respiratory disease symptoms. 

The following inter-connected steps were used to complete the review:  

A. Determine inclusion criteria that will include the: 

● Study population of children (<18 years), adults (≥18 years), and all ages. 

● Study intervention for individuals (1) exposed to air pollution, including NO2, PM2.5 

and PM10, O3 and SO2 (2) more than 10 trace metals considered toxic air contaminants 
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(including Aluminum, Iron, Magnesium, Sulfur, Nickel, Vanadium, Chromium, 

Arsenic, Manganese, Barium, Copper, Antimony, Zinc and Lead). 

● Study outcome for respiratory disease in asthma and COPD such as coughing, 

wheezing, shortness of breath, ED visits, hospitalizations, exacerbations and mortality, 

respiratory infections, and lung cancer. 

B. Identify the publications characteristics for studies: 

● Published in peer-reviewed journals. 

● Published between January 1, 2000, and January 1, 2021;  

● Written in English. 

C. Select the proper search databases and engines, including  

● PubMed 

● Medline 

● Web of Science Core Collection; and  

● Google Scholar 

D. Decide the search terms and selection process.  

The search category and search terms are listed in Table 1.  

Table 1. Literature review categories and search terms 
Category Search Terms 
Air pollutants PM2.5, PM10, NO2, O3, SO2 and trace metals 
Disease Asthma, COPD, respiratory disease 
Years of publication January 1st, 2000, through January 31st 2021 
Publication type Peer-reviewed journals 
Publication language English 

The following steps were used to select scientific publications for the literature review: 

1) Use one term from each category and combine them together (+) to create integrated 

search terms using the search databases and engines listed above. 

2) Merge together the selected publications and remove the duplicates. 

3) Obtain abstracts for the remaining publications selected from Step 2), screen and 

remove the publications that are not related to research topic. 

4) Obtain full text for the remaining publications selected from Step 3), screen and remove 

the publications that are not related to the topic. 
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We identified 519 papers considering the search criteria given in Table 1. After screening 

titles, 137 papers were selected for an abstract search. We evaluated the abstract of each paper and 

selected 54 papers for full-text screening. After full-text screening, 36 papers were included in the 

final review.  

UCB conducted the literature review with the final selected ones. The outcome measures 

were converted to odds ratios, and we standardized the effects of each criteria pollutant so 

comparisons could be made among different studies (see Appendix). Pooled analyses were also 

conducted to identify the overall size of impact of a pollutant on respiratory disease outcomes. We 

identified significant associations of respiratory disease outcomes with the criteria pollutants and 

trace metals. We further identified that the effects were greater for children exposed to NO2, PM2.5 

and SO2 while the effects were greater for adults exposed to PM10 and O3. 

We identified consistently significant associations of all the criteria pollutants and trace 

metals with a broad range of respiratory disease outcomes. After pooling all the effect estimates, 

we further identified that the associations were slightly greater for children for exposures to NO2 

(1.68 vs 1.14), PM2.5 (1.58 vs 1.25) and SO2 (1.38 vs 1.13), while the effects were slightly greater 

for adults for exposures to PM10 (1.10 vs 1.05) and O3 (1.40 vs 1.17).  

Table 2 summarizes the pooled effect estimates for all criteria pollutants for the three age 

categories we considered in the literature review: children, adults, and all. 

Table 2. Pooled effect estimates 
 PM2.5 PM10 NO2 O3 SO2 

Children 1.58(1.04-2.41) 1.05(0.99-1.11) 1.68(1.14-2.63) 1.17(1.05-1.31) 1.38(1.09-1.78) 
Adults 1.25(0.99-1.64) 1.10(0.94-1.33) 1.14(0.99-1.32) 1.40(1.14-1.81) 1.13(1.10-1.16) 

All 1.48(1.13-2.14) 1.25(1.04-1.51) 1.18(1.01-1.42) 1.28(1.12-1.47) 1.10(1.02-1.19) 

 Outdoor NO2 concentration is often considered a good marker of traffic-related air 

pollution (TRAP) and concentrations decline rapidly with increasing distance from highways and 

major roadways. PM2.5 has smaller spatial gradients compared to NO2 and regional sources 

contribute to PM2.5 concentrations. However, a major source of PM2.5, especially in high-income 

countries, is from traffic. SO2 air pollution can be generated from traffic, especially from diesel 

vehicles, and   industrial point sources such as coal-fired power plants, with a rapid decline with 

increasing distances from these point sources. 

The relatively greater impact from NO2, PM2.5 and SO2 on respiratory disease outcomes 

for children in our pooled analysis may be due to the greater probability of children living or having 
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physical activity in high air pollution areas for these pollutants.31-35 Because children’s lungs are 

not completely developed, their exposures to high levels of air pollution can affect both their short-

term and long-term respiratory health.36 Policymakers and stakeholders should adopt strategies to 

help children, especially those living in vulnerable communities, to reduce exposures to those 

sources in their neighborhoods. 

By contrast, the impact of O3 on respiratory disease outcomes was found to be relatively 

greater for adults. Due to the chemical reaction between O3 and traffic emission of nitrogen oxides 

that lead to generation of NO2, NO2 concentrations are higher near busy roadways while O3 are 

higher at locations farther away from busy roadways. We suspect that, compared to children, more 

adults might have moved away from living close to traffic sources to communities with less traffic-

related air pollution,37 thus leading to greater O3 exposure. 

It should be addressed that due to the limitation in the number of studies in each type of 

outcomes for specific criteria pollutant, we pooled the results for all types of outcomes together 

for each criteria pollutant and did the comparison across different types of outcomes. It is also 

worth noting that the impact of trace metals on human respiratory health is understudied and only 

3 studies38-40  were included in the pooled analysis in this review. 

Overall, this systematic review identified consistent and significant effects of ambient 

exposures to criteria pollutants and trace metals on a broad suite of respiratory disease outcomes. 

It contributes to better understanding of the size of the effect of the five criteria pollutants and trace 

metals that can be compared across various studies. The study also helped identify groups that are 

more vulnerable to adverse respiratory outcomes from air pollution exposure across available 

studies. The full literature review paper is included in the appendix of the project report. 

 

Task 2: Exposure Assessment, Health Dataset, and Analysis 
of Health Effects 

Our goal was to identify the impacts of both tailpipe and non-tailpipe vehicle emissions on 

sub-acute respiratory disease symptoms represented by rescue inhaler use for health outcome data 

collected from January 1, 2012 to December 31, 2019 across California. First, we applied D/S/A 

V-fold cross-validation land use regression modeling technique that minimizes over-fitting to the 

data to maximize the probability that guarantees the models predict well at locations that have not 

been sampled. The high spatial resolution air pollution surfaces were then generated using the 
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D/S/A modeling results and assigned to corresponding patients’ space-time activity space 

measured through digital sensors. In health outcome modeling, we applied both linear mixed 

models with capability of dealing with excessive zeros and overdispersion in daily rescue inhaler 

use puffs and advanced machine learning algorithms to identify associations of daily air pollution 

exposure with daily rescue inhaler use in number of puffs. 

Subtask 2.1: Development of Comprehensive Data Sources 
UCB developed comprehensive data sources to be used in air pollution exposure modeling. 

The data sources include daily traffic data, daily remote sensing data, daily weather data, one time 

land use and land cover data, daily criteria air pollutants, trace metals, stationary sources of 

emissions and highway pavement conditions data. 

Comprehensive Data Sources for Criteria Pollutants Modeling 
Acquire and process potential criteria pollutants predictors 

Daily traffic data: For daily traffic data, UCB used the data collected by the California 

Department of Transportation (CalTrans) Performance Measurement System (PeMS) 

(https://dot.ca.gov/programs/traffic-operations/mpr/pems-source). PeMS data are collected in 

real-time from nearly 40,000 individual detectors spanning the freeway system across all major 

metropolitan areas of the State of California and provide an archived data user service that provides 

over fifteen years of data for historical analysis. PeMS integrates a wide variety of information 

from Caltrans and other local agency systems including traffic flow, speed, occupancy, incident, 

toll charge, and other information. UCB used PeMS 5-minute road link/segment traffic flow data 

in the analysis. In PeMS, traffic flow (volume) is a quantity representing the number of vehicles 

that passed over each detector on the roadway in a given time period (i.e. 5-minute flow, hourly 

flow, etc.). The detector measured traffic flow covered 12.52% highway segments and we summed 

hourly traffic to daily traffic for all the stations across California. The following interconnected 

stages were then used to derive daily traffic for all the California highways for years 2012-2019:  

1) For a road segment with station traffic measure for a day, use all the station traffic measures 

on that road segment to generate a daily mean traffic for that road segment for that day. 

2) For those road segments without traffic measures for a day, assign them using the assigned 

segments from step 1 by matching route, county, district, route type and day, and find the 
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one with the smallest distance if having multiple matches. California has 58 counties which 

are included in one of the 12 CalTrans air districts (1 - Eureka, 2 - Redding, 3 - Marysville 

/ Sacramento, 4 - Bay Area / Oakland, 5 - San Luis Obispo / Santa Barbara, 6 - Fresno / 

Bakersfield, 7 - Los Angeles, 8 - San Bernardino / Riverside, 9 - Bishop, 10 - Stockton, 11 

- San Diego, 12 - Orange County). Highways in California are split into at least four 

different types of systems: Interstate Highways, U.S. Highways, state highways, and 

county highways. 

3) For those road segments without traffic being assigned from steps 1 & 2, assign them using 

the assigned segments from steps 1 & 2 by matching route, district, route type and day, and 

find the one with the smallest distance if having multiple matches. In this step county was 

not used as a restricting factor in daily traffic assignment. 

4) For those road segments without traffic being assigned from the above steps, assign them 

using the above assigned segments by matching route, county, district and route type, plus 

at most one day difference in data availability and find the one with the smallest distance 

if having multiple matches. 

5) Identify those not assigned and assign them using the assigned segments from above steps 

by matching county, district, route type and day and find the one with the smallest distance 

if having multiple matches. Here we removed the restricting factor of route number. 

6) Identify those not assigned and assign them using the assigned segments from the above 

steps by matching district, route type and day and find the one with the smallest distance if 

having multiple matches. Here we removed the restricting factors of route number and 

county. 

7.1) Identify those not assigned and assign them using the assigned state highway segments 

from the above steps by matching district and day. Here we removed the restricting factors 

of route number, route type and county. 

7.2) Identify those not assigned and assign them using the assigned U.S. highway segments 

from the above steps by matching district and day. Here we removed the restricting factors 

of route number, route type and county. 
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7.3) Identify those not assigned and assign them using the assigned interstate highway 

segments from the above steps by matching district and day. Here we removed the 

restricting factors of route number, route type and county. 

8) Identify those not assigned and assign them using the assigned segments from steps 1-4 by 

matching district and season to find the one with the smallest distance if having multiple 

matches. Here route number, county and route type are not required to match. 

Table 3 shows the daily traffic assignment statistics for the 12 California districts for years 

2012-2019. Overall, 12.52% California highways had daily traffic measurements for the study 

period, with ranges being from 0% (district 9) to 38.24% (district 12). We found that the districts 

with great population (i.e., metropolitan areas) had more roadways and more traffic measures. 

Those districts thus had smaller proportions of roadways being assigned traffic from greatly 

relaxed conditions (e.g., by gradually relaxing matching criteria on route, county, district, route 

type or day). The roadways in the vastly rural districts were the ones with much less proportion of 

traffic measures. Greater proportion of roadways were thus assigned through greatly relaxed 

conditions for those rural districts. 
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Table 3. The daily road traffic assignment statistics for 12 Caltrans districts in California for 
years 2012-2019. 

 
Note: RS = road segment; Cum RS = cumulative road segments, or the total number of road segments being assigned traffic from 
previous stages. In situations when districts 1, 2, & 9 had no CalTrans traffic measures, we used their neighboring traffic measures, 
respectively, from districts 4, 3 & 8 to start traffic assignments. 

NO2 remote sensing data: For NO2, UCB incorporated the tropospheric column densities 

of NO2 from the Ozone Monitoring Instrument (     OMI) NO2 level-3 data (0.25°×0.25° resolution, 

which is about 27 kilometer [km] X 27km) to develop NO2 daily surfaces.41 The OMI satellite 

retrievals have nearly global coverage on a daily basis, with a local bypass time of 12:00 p.m. -

15:00 p.m. UCB applied quality screening criteria similar to Zhan et al.,42 including terrain 

reflectivity < 30 percent, 0≤ solar zenith angle ≤85o, cloud fraction < 0.3, and a lack of row-

anomalies. Temporal linear interpolation algorithms were then used to fill pixels with missing 

observations: (1) if observations existed at the location of the missing pixel one day before and 

after the missing pixel, the mean value from the two observations was used as the missing pixel 

Stage RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%)
1 34,197 2.93 34,197 2.93 64,284 4.94 64,284 4.94 75,002 4.41 75,002 4.41
2 774 0.07 34,971 3.00 0 0.00 64,284 4.94 142,554 8.38 217,556 12.79
3 686,788 58.91 721,759 61.91 943,806 72.58 1,008,090 77.53 68,950 4.05 286,506 16.85
4 431,122 36.98 1,152,881 98.89 292,200 22.47 1,300,290 100.00 1,548 0.09 288,054 16.94
5 0 0.00 1,152,881 98.89 704,938 41.45 992,992 58.39
6 0 0.00 1,152,881 98.89 503,072 29.58 1,496,064 87.97

7.1 12,997 1.11 1,165,878 100.00 204,540 12.03 1,700,604 100.00

Stage RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%)
1 360,864 17.08 360,864 17.08 19,666 1.44 19,666 1.44 53,408 3.51 53,408 3.51
2 371,428 17.58 732,292 34.66 83,650 6.14 103,316 7.59 269,068 17.67 322,476 21.18
3 257,311 12.18 989,603 46.84 133,864 9.83 237,180 17.42 107,284 7.05 429,760 28.23
4 2,560 0.12 992,163 46.96 430 0.03 237,610 17.45 552 0.04 430,312 28.27
5 903,900 42.79 1,896,063 89.75 229,642 16.86 467,252 34.32 922,574 60.60 1,352,886 88.87
6 28,870 1.37 1,924,933 91.12 887,904 65.21 1,355,156 99.52 70,128 4.61 1,423,014 93.47

7.1 162,368 7.69 2,087,301 98.8 4,144 0.30 1,359,300 99.83 99,348 6.53 1,522,362 100.00
7.2 0 0.00 2,087,301 98.8 2,352 0.17 1,361,652 100.00
7.3 0 0.00 2,087,301 98.8

8 25,305 1.20 2,112,606 100

Stage RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%)
1 288,852 25.03 288,852 25.03 68,864 5.82 68,864 5.82 0 0.00 0 0.00
2 315,340 27.32 604,192 52.35 94,562 7.99 163,426 13.81 0 0.00 0 0.00
3 23,360 2.02 627,552 54.37 87,600 7.40 251,026 21.21 198,696 45.95 198,696 45.95
4 466 0.04 628,018 54.41 194 0.02 251,220 21.23 0 0.00 198,696 45.95
5 526,172 45.59 1,154,190 100 867,906 73.34 1,119,126 94.57 0 0.00 198,696 45.95
6 0 0.00 1,119,126 94.57 0 0.00 198,696 45.95

7.1 64,284 5.43 1,183,410 100.00 233,760 54.05 432,456 100.00

Stage RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%) RS (#) RS (%) Cum RS (#) Cum RS (%)
1 146,644 9.80 146,644 9.80 241,134 23.85 241,134 23.85 160,898 38.24 160,898 38.24
2 438,638 29.32 585,282 39.12 400,820 39.65 641,954 63.50 139,650 33.19 300,548 71.43
3 352,216 23.54 937,498 62.66 105,120 10.40 747,074 73.89 0 0.00 300,548 71.43
4 2,288 0.15 939,786 62.82 990 0.10 748,064 73.99 290 0.07 300,838 71.50
5 544,392 36.39 1,484,178 99.21 262,948 26.01 1,011,012 100.00 119,930 28.50 420,768 100.00
6 11,886 0.79 1,496,064 100.00

District #1 District #2 District #3

District #4 District #5 District #6

District #10 District #11 District #12

Note: RS= road segment; Cum RS=cumulative road segments; District 1, 2 and 9 had no traffic station measures and were treated the same as respectively 
neighboring districts in 4, 3 and 8.

District #7 District #8 District #9
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value; (2) if only one observation existed at the location of the missing pixel one day before or 

after the missing pixel, the observed value was then used as the missing pixel value; (3) if the one 

day before and after search could not find an interpolated value, this process was extended to look 

for observations two days before and after. All the remaining missing pixels after a maximum of 

two days search were not interpolated and kept as missing observations. The predictors are 

resampled through a mean function to have a spatial resolution of 0.25°×0.25°. The prediction 

models will then be used to update NO2 concentrations on tiles at dates without effective NO2 

measurements. 

PM2.5 remote sensing data: For PM2.5, UCB obtained Aerosol Optical Depth (AOD) data 

from the Moderate Resolution Imaging Spectroradiometer instruments onboard the National 

Aeronautics and Space Administration Terra and Aqua satellites. The Multiangle Implementation 

of Atmospheric Correction algorithm was used to derive 1 km resolution AOD surfaces.43 Due to 

extensive missing data presented at the 1 km resolution AOD surfaces, we further aggregated the 

daily AOD surfaces into monthly means.  

O3 remote sensing data: For daily O3 remote sensing surfaces, UCB used the OMI/Aura 

Ozone (O3) Differential Absorption Spectroscopy (DOAS) Total Column L3 1 day 0.25 degree x 

0.25 degree V3 (OMDOAO3e) data.44 This Level-3 global total column ozone product is derived 

from OMDOAO3 which is based on the Differential DOAS fitting technique that essentially uses 

the OMI visible radiance values between 331.1 and 336.1 nm. In addition to the total ozone column 

and its precision, OMDOAO3e also contains some ancillary parameters such as cloud fraction, 

cloud height, etc. Similar screening and interpolation algorithms as the one applied on NO2 remote 

sensing data were used to reduce missing daily data. 

Parcel-level land use data: UCB acquired statewide parcel data from CARB for 2017 for 

all the counties in California. The parcel data provides land use information at parcel level, such 

as agricultural, residential, commercial, industrial, government and institutions, open land, parks, 

and recreational facilities. For residential land use, the parcel data is further classed into single-

family homes, town houses, condominiums, and high-rise apartment buildings. The parcel data 

also includes building characteristics, including building age, type and existence of fireplace, gas 

ranges, and other information that can be used to calculate building-specific factors to characterize 

the indoor infiltration of pollutants. 
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Land cover data: UCB acquired the land cover data for year 2016 from the National Land 

Cover Database (NLCD). The NLCD provides a synoptic nationwide classification of land cover 

into 16 classes at a spatial resolution of 30 m. The 16 land cover classes were aggregated into eight 

major land cover types including forest, herbaceous/grassland, shrubland, developed, agriculture, 

wetlands, water and other, which includes ice/snow, barren areas. UCB also acquired tree canopy 

and percent impervious surfaces for 2016.  

Two-week interval vegetation index: UCB has acquired the 16-day interval (23 surfaces 

for a year) Normalized Difference Vegetation Index (NDVI) surfaces for California at a spatial 

resolution of 30 m45 for years 2012 to May 2019 for the study. 

GridMET meteorological data: UCB has acquired daily high-spatial resolution (~4-km, 

1/24th degree) surface meteorological data covering the contiguous U.S. for years 2012-2019. 

Primary climate variables collected include maximum temperature, minimum temperature, 

precipitation accumulation, downward surface shortwave radiation, wind-velocity, humidity 

(maximum and minimum relative humidity and specific humidity).  

Acquire and process other potential predictors 
Digital elevation model (DEM) – in meters: UCB acquired the national elevation dataset 

for California from the U.S. Geological Survey (USGS) (https://www.usgs.gov/the-national-map-

data-delivery) for 2011. The data included 45 1/3 arc-second (approx. 10 meters) raster DEM and 

were mosaicked into a single DEM raster for the entire State. 

Distance to coast – in meters: The California shoreline was derived from The National 

Assessment of Shoreline Change: A Geographic Information System (GIS) Compilation of Vector 

Cliff Edges and Associated Cliff Erosion Data for the California Coast 

(http://pubs.usgs.gov/of/2007/1112). These data are integrated into the GIS mapping tool to 

produce a geographic view of topographical changes in California’s coastline over time. The most 

recent view was created using data collected between 1998-2002.  

Distance to roadways – in meters: UCB used Business Analysts 2010 Street Carto map 

layer provided by the Environmental Systems Research Institute (ESRI in Redlands, CA) to derive 

distance to nearest highway (defined as feature class classification or FCC A1 and A2), to nearest 

major roadway (FCC A3) and to nearest local roadway (FCC A4). 
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Distance weighted cargo volume – TEU/Km: UCB acquired monthly and annual cargos 

for the Oakland, Los Angeles (LA) and Long Beach (LB) ports from corresponding port authorities 

for 2003 – 2012 periods. The boundary layer of the three ports was acquired from CalTrans 

(California Department of Transportation) for 2011. We used twenty-foot equivalent units (TEU) 

statistics for the cargo volumes in the three ports. TEUs are a standardized maritime industry 

measurement used when counting cargo containers of varying lengths. Because of the adjacency 

of LA and LB ports, we merged monthly and annual cargos and corresponding spatial boundary 

and treated them as a single LA-LB port complex. TEUs were first adjusted by corresponding 

distances to the Oakland and LA-LB ports through TEUs/Km and then added up to create a single 

distance weighted cargo volume for each location of interest for each year from 2004 to 2010. 

Location category – unitless: By using Business Analysts 2010 and the port boundary 

layer, UCB first separated the entire California roadway system into three parts: the first part 

includes locations within 500 m of FCC A1 or A2 allowing truck traffic, or within 500 m of any 

of the three ports (i.e., goods movement corridors or GMCs). The second part includes locations 

within 500 m of FCC A1 or A2 not allowing truck traffic or within 300 m of FCC A3 (i.e., non-

goods movement corridors or NGMCs). The third part includes locations not encompassed in the 

first and second parts (i.e., control areas or CTRLs). 

Acquire and process air pollution data (dependent variable in air pollution modeling) 
NO2 data from CalEPA monitoring: UCB downloaded and processed the California 

Environmental Protection Agency (CalEPA) daily pollutant concentrations of NO2 for the period 

of 01/01/2012 – 12/31/2019 across the State of California 

(https://www.arb.ca.gov/aqmis2/aqdselect.php & 

https://aqs.epa.gov/aqsweb/airdata/download_files.html). The unique number of NO2 monitoring 

stations for each year is listed in Table 4. The number of air quality monitoring stations for a 

specific year ranged from 106 to 113, with the minimum values below detection limit, the mean 

values close to 10 ppb and the maximum values over 60 ppb. 
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Table 4 CalEPA NO2 monitoring stations statistics 
Year # Sites Min (ppb) Mean (ppb) Max (ppb) 
2012 109 1.00 10.61 66.65 
2013 106 1.00 10.69 57.85 
2014 109 1.00 10.16 63.69 
2015 112 1.00 10 60.2 
2016 113 1.00 9.71 143.62 
2017 110 1.00 9.94 70.62 
2018 107 1.00 9.82 71.67 
2019 106 1.00 9.71 61.74 

 

NO2 data from research saturation monitoring: UCB also collected saturation-sampling 

data (Table 5) for NO2 using Ogawa monitors (https://ogawausa.com/passive-sampler/) in the Los 

Angeles Metro for 2012-2013, in the Alameda County for 2012-2013, and in the Sacramento 

Metro for 2016. In total, we deployed NO2 saturation sampling at 165 sites across three 

metropolitan areas throughout California. The Ogawa sampler is a high precision low-cost passive 

air monitoring sensor that has been widely used by scientific research to study air quality through 

saturation sampling technique.46-48 The saturation monitoring was designed to densely sample air 

quality in a region, though in a shorter period of time compared to government continuous 

monitoring, for the purpose of measuring the small area variations in pollutant concentrations.  

The minimum values were close to the detection limits and the higher ones ranged from 

6.65 ppb to 33.16 ppb. Those two-week Ogawa measurements were disaggregated to the daily 

concentrations for each region by matching location category to the CalEPA NO2 monitoring data:  

 

       (1) 

 where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑟𝑟  refers to the derived NO2 concentrations at site i, in location category j for 

day k in the two week sampling period in region r. 𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗,𝑘𝑘
𝑟𝑟  and 𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑟𝑟 refer to CalEPA all sites mean 

NO2 concentrations in location category j, respectively, for day k and for two week period. 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗𝑟𝑟  

refers to the Ogawa measured two-week NO2 concentrations at site i and in location category j. 
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Table 5. The research saturation sampling for NO2 conducted in Alameda, LA and Sacramento. 
Region   Year Month # Sites Min (ppb)   Mean (ppb) Max (ppb) 

Alameda County 2012 10 45 3.82 11.47 21.85 
2013 3 45 2.85 12.43 25.45 

LA Metro 2012 10 57 4.72 21.33 32.17 
2013 3 59 4.28 20.74 33.16 

Sacramento Metro 2016 5 61 0.54 3.24 6.65 
2016 12 64 3.64 8.68 12.51 

Note: Saturation samplings were conducted using Ogawa for a period of 14 days. 

 

NO2 data from Google Air mobile monitoring: UCB acquired Google Street Car Air 

monitoring data49 which had measurements collected using four Google Street View vehicles 

equipped with the Aclima mobile measurement and data integration platform from 05/28/2015 to 

06/07/2019.  Not all four cars were actively mapping over the entire time frame. Table 6 lists the 

dates of operation for each of the four cars.  Note that there may be gaps in the data when an 

individual car was not mapping due to operational, mechanical, or system difficulties.  

Table 6: Start and end date each instrumented Street View cars 
Car Start Date End Date 
Car A 05/03/2016 04/30/2019 
Car B 05/03/2016 06/08/2018 
Car C 05/28/2015 06/07/2019 
Car D 06/24/2015 11/05/2018 

 

Geographic location of data collection: Data was collected in several geographic regions 

of California including the San Francisco Bay Area, Los Angeles, and the northern San Joaquin 

Valley. Mapping occurred in targeted neighborhoods or cities within these regions. 

Data Overview: The dataset contains a table titled “California_Unified_2015_2019” which 

consists of the concentration of the pollutants O3, NO2, Nitrogen Monoxide (NO), Methane (CH4), 

Carbon Dioxide (CO2), Black Carbon (BC), PM2.5, and Ultrafine Particles (UFP) measured using 

four Google Street View cars equipped with fast time-response, laboratory-grade instruments. The 

data was collected at 1-Hz time resolution from 05/28/2015 to 06/07/2019 for roads in three 

regions of California - the San Francisco Bay area, Los Angeles, and the northern San Joaquin 

Valley (Table 7). Specific areas mapped varied by region based on desired spatial data coverage 

and science questions. Each data point is geolocated with latitude and longitude as well as the 

identity and speed of the car. 
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Table 7. Date range during which each Street View car mapped in the different regions of 
California 

Car ID SF Bay Area San Joaquin Valley Los Angeles 
Car A May - Sept 2016 

April - June 2017 
Sept - Oct 2017 
Jan 2018 - April 2019 

Dec 2016 - April 2017 
June 2017-Sept 2017 
Nov-Dec 2017 

Sept - Oct 2016 

Car B May - Sept 2016 
April - June 2017 
Sept - Oct 2017 
Jan 2018 - June 2018 

Dec 2016 - April 2017 
June 2017-Sept 2017 
Nov-Dec 2017 

Sept - Oct 2016 

Car C June 2015 - June 2019 
  

Car D June 2015 - Nov 2018 
  

 

Methods used for collection/generation of data: Four Google Street View vehicles were 

equipped with the Aclima proprietary mobile measurement and data integration platform. The 

vehicles were equipped with fast-response (1-Hz), laboratory-grade analyzers. NO2 was measured 

using cavity-attenuation phase-shift spectroscopy and O3 was measured using ultraviolet (UV) 

Absorption. Particle number concentration less than 2.5 micrometers in size (PM2.5) was measured 

using an optical particle counter with particle counts reported in 5 size ranges - 0.3 to 0.5 μm, 0.5 

to 0.7 μm, 0.7 to 1.0 μm, 1.0 to 1.5 μm, and 1.5 to 2.5 μm.  Ultrafine particle counts were measured 

using a condensation particle counter. 

Measurements and diagnostic parameters were logged from each instrument at 1-Hz via 

the onboard data acquisition and management system.  Data was continuously streamed to backend 

servers where processing and storage occurred. Data collection occurred on weekdays during 

typical work hours, between ~9 AM to ~5 PM. Driving plans, dates and times of data collection 

varied by region. 

Methods for processing the data: Timestamp adjustments to account for residence time in 

the tubing and instrument response was performed as documented in Apte, 2017 supplemental.50  

A snapping procedure was used to relocate each datapoint to the nearest road segment if needed. 

Environmental/experimental conditions: No extreme weather conditions were encountered 

during this sampling period that prohibited safe data collection. 

Quality-assurance procedures performed on the data: Algorithms developed at Aclima 

were used to identify and remove invalid data points using a combination of instrument status 
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indicators, filtering, and other methods. These data points resulted from times when the 

instruments were performing internal processes designed to ensure overall instrument performance 

or if one of the instruments was operating out of specifications. 

Selection of spatially non-correlated road segments for air pollution modeling: 

The intensive sampling of air pollutants created a situation that the concentrations 

measured on the majority of road segments were geospatially auto-correlated. To reduce spatial 

auto-correlation, UCB applied location-allocation algorithm to select 150 road segments for each 

of the following four regions: Alameda and Contra Costa; San Francisco and San Mateo; Los 

Angeles; Central Valley. Each region has 50 road segments selected from GMCs, 50 selected from 

NGMCs and 50 selected from CTRLs.  

For each region, we only maintained the road segments with more than 100 measurements 

(Figure 1 top left and bottom left). We then selected 50 road segments in the CTRLs (Figure 1 

middle right and bottom right) through a location-allocation algorithm51 that took into account 

variability in traffic pollution and the spatial distribution of residential land use. Briefly, the 

location-allocation algorithm involves a two-step algorithm that (1) builds a demand surface of 

spatial variation and (2) solves a constrained spatial optimization problem to determine locations 

for a pre-specified number of samplers – here 50 road segments. The demand surface was created 

using two criteria: first, samplers should be placed where the pollution surface is expected to 

exhibit high spatial variability (Figure 1 middle left), and second, population density should be 

relatively high (Figure 1 top right). To create an initial pollution surface across a region, we 

applicated the statewide land use regression (LUR) surfaces generated from our Health Effects 

Institute (HEI) grant.52 We also required those 50 sites selected in CTRLs should be located in 

residential area (Figure 1 top right). 
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Figure 1. Location-allocation algorithm in selecting road segments with Google Streetcar air 
quality measurements for reduced spatial auto-correlation. The top and middle rows are for 

selection of 150 road segments with the Google Streetcar measures in the Alameda and Contra 
Costa counties. The bottom row is for selection of 150 road segments with the Google Streetcar 

measures in the Los Angeles region. 
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Those selected 50 road segments were then used in a second location-allocation algorithm 

as pre-determined fixed sites and we further selected another 50 road segments in the NGMCs 

(Figure 1d) with only one demand surface – the surface of NO2 concentrations from the HEI grant 

– to reflect the spatial variability requirement. The selected 100 road segments were then further 

used in a third location-allocation algorithm as pre-determined fixed sites, and we further selected 

another 50 road segments in the GMCs (Figure 1d) with the surface of NO2 concentrations from 

the HEI grant as the demand surface. A total 150 road segments were selected for each of the four 

regions (Figure 1e for Alameda-Contra Costa and Figure 1f for Los Angeles).  

The Google Street View cars operated in a region followed similar vehicle driving pattern 

and sequence from one day to the other, creating a situation that some road segments, for example, 

were always sampled in the rush hours while others sampled in the non-rush hours. The measured 

concentrations do not reflect the daily mean pollutant concentrations generated on a road segment. 

Due to this reason, we applied detrending algorithm to convert Google Air measured hourly 

concentrations to corresponding daily concentrations through the following algorithm: 

     (2) 
  

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑟𝑟  refers to the daily detrended NO2 concentrations at road segment i, in location 

category j during hour k of day d in region r. 𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗,𝑘𝑘,𝑑𝑑
𝑟𝑟  and 𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗,𝑑𝑑

𝑟𝑟  refer to CalEPA all sites mean 

NO2 concentrations in location category j, respectively, during hour k in day d and 24 hour mean 

in day d. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑑𝑑
𝑟𝑟  refers to the Google Air measured NO2 concentrations on road segment i , 

in location category j during hour k in day d. Their adjusted concentrations on a road segment for 

a day were aggregated to daily concentrations means and used in our LUR modeling process 

together with those measured through CalEPA monitoring and through our research saturation 

sampling. Table 8 shows the statistics of the adjusted daily pollutant concentrations of NO2 on the 

selected road segments. Some location categories do not have full 50 road segments, due to the 

restriction of the location-allocation algorithm in selecting a further road segment when the 

neighboring road segment is also chosen. We found that the mean concentrations measured by 

Google Air are similar to CalEPA monitored values, but with the maximum values much higher, 

probably due to the fact that Google Air measured NO2 concentrations directly from close-range 

road vehicle emissions. 
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Table 8. The daily pollutant concentrations statistics of NO2 on the selected road segments. 
Region  Location #  Segments Min (ppb) Mean (ppb) Max (ppb) 

Alameda - 
Contra Costa 

GMC 49 1.04 22.89 102.74 
NGMC 49 0.09 25.4 121.99 
CTRL 50 0.48 17.26 145.87 

LA Metro 
GMC 50 3.65 48.26 260.25 
NGMC 50 2.15 32.28 145.7 
CTRL 50 0.51 22.39 138.39 

Central 
Valley 

GMC 50 0.01 29.13 262.89 
NGMC 50 0.55 16.95 211.17 
CTRL 49 0.24 8.8 67.26 

San 
Francisco - 
San Mateo 

GMC 49 0.01 19.81 117.24 
NGMC 50 0.13 18.65 209.34 
CTRL 50 0.07 16.3 213.91 

PM2.5 data from CalEPA monitoring: UCB downloaded and processed CalEPA daily 

pollutant concentrations of PM2.5 for the period of 01/01/2012 – 12/31/2019 across the State of 

California. The unique number of PM2.5 monitoring stations for each year is listed in Table 9. The 

number of air quality monitoring stations for a specific year ranged from 112 to 116, with the 

minimum values below detection limit, the mean values close to 10 ug/m3 and the maximum 

values over 500 ug/m3. Though Google Air also measured PM2.5 concentrations, they were 

measured by five binned particle counts, not mass. The Google Air PM2.5 measurements were thus 

not used in our study. 

Table 9. CalEPA PM2.5 monitoring stations statistics 
Year # Sites Min (ug/m3) Mean (ug/m3) Max (ug/m3) 
2012 114 1.00 9.26 168.30 
2013 112 1.00 10.36 167.30 
2014 116 1.00 9.48 190.25 
2015 112 1.00 9.35 270.17 
2016 115 1.00 8.57 104.79 
2017 116 1.00 9.85 557.08 
2018 120 1.00 10.99 411.70 
2019 117 1.00 7.48 98.92 

 

O3 data from CalEPA monitoring: UCB downloaded and processed CalEPA daily 

pollutant concentrations of O3 for the period of 01/01/2012 – 12/31/2019 across the State of 

California. The unique number of O3 monitoring stations for each year is listed in Table 10. The 

number of air quality monitoring stations for a specific year ranged from 178 to 194, with the 
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minimum values below detection limit, the mean values close to 32 ppb and the maximum values 

over 100 ppb. 

Table 10. CalEPA O3 monitoring stations statistics 
Year # Sites Min (ppb) Mean (ppb) Max (ppb) 
2012 194 0.00 32.89 91.65 
2013 187 0.00 31.69 90.06 
2014 186 0.00 32.87 92.94 
2015 186 0.00 32.70 100.82 
2016 186 0.00 32.77 95.77 
2017 185 0.00 33.57 99.00 
2018 181 0.00 33.11 96.41 
2019 178 0.00 32.63 94.53 

 

O3 data from research saturation monitoring: UCB also collected saturation-sampling 

data for O3 using Ogawa monitors in the Sacramento Metro for May and December 2016 (Table 

11). In total, we deployed O3 saturation sampling at 39 sites, with lower values identified in 

December and higher identified in May. The measured two-week values ranged from 6.58 ppb in 

December to 37.77 ppb in May. Those two-week Ogawa measurements were disaggregated to the 

daily concentrations by matching location category to the CalEPA O3 monitoring data in a way 

similar to eq. (1). 

Table 11. The research saturation sampling for Sacramento Metro. 
Region Year Month # Sites Min (ppb) Mean (ppb) Max (ppb) 
Sacramento 
Metro 

2016 5 39 17.86 31.53 37.77 
2016 12 38 6.58 9.95 28.12 

Note: Saturation samplings were conducted using Ogawa for a period of 14 days. 
 

O3 data from Google Air mobile monitoring: Google Air mobile monitoring data for 

O3 was collected at the same time with those for NO2. Please refer to section “NO2 data from 

Google Air mobile monitoring” for detail. We applied a procedure similar to those of NO2 in 

selecting road segments and applying diurnal data detrending for final air pollution modeling.  

Table 12 list the measured O3 statistics across four regions in California. Opposite to what 

we identified for NO2, O3 concentrations were normally greater in CTRL than in GMC. Overall, 

the low values were at near detection limit and high values were 50-60 ppb. 
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Table 12. The daily pollutant concentrations statistics of O3 on the selected road segments. 
Region Location # Sites Min (ppb) Mean (ppb) Max (ppb) 

Alameda - Contra 
Costa 

GMC 48 1.23 20.50 45.20 
NGMC 42 1.18 18.92 44.31 
CTRL 35 1.62 26.40 41.94 

LA Metro 
GMC 50 0.32 16.60 55.59 
NGMC 49 0.99 19.14 42.13 
CTRL 50 3.26 22.94 59.01 

Central Valley 
GMC 47 2.78 20.08 48.61 
NGMC 48 5.54 22.79 48.27 
CTRL 46 9.29 27.21 52.75 

San Francisco - 
San Mateo 

GMC 50 0.74 18.77 48.26 
NGMC 50 0.92 19.64 56.88 
CTRL 47 0.42 23.98 62.42 

 

Comprehensive Data Sources for Trace Metals Modeling 
Acquire and process potential trace metals predictors 

The data sources used as potential predictors for NO2 modeling were also used in our trace 

metals modeling, including remote sensing data, land use and land cover data, road traffic data and 

meteorological data. Further we added road surface and slope gradient data in enhancing modeling 

of trace metals. 

Surface roughness and pavement type: Given that surface roughness and pavement type 

have significant impacts on emissions of pollutants, especially for non-tailpipe vehicle emissions 

from tire- and brake-wear, UCB used the road International Roughness Index (IRI) and surface 

type data provided by the Highway Performance Monitoring System (HPMS) for all the public 

roadways in California for 2017 to model trace metals. IRI is obtained from measured longitudinal 

road profiles and calculated using a quarter-car vehicle math model and the response is 

accumulated to yield a IRI with units of slope (inches [in]/miles [mi] and m/km,). California 

roadways have a mean IRI of 80 in/mi with the maximum being 400 in/mi and the pavement 

surface types include unpaved local roadways, asphalt, jointed concrete, and continuously 

reinforced concrete. 

Roadway slope gradient: Because uphill tire-wear and downhill brake-wear have a 

significant impact on emissions of trace metals, UCB also used the statewide digital elevation 

models (DEM) at 30 m resolution to derive road network slopes for highways and major roadways 
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in California. Due to the stop-and-go nature at intersections, including highway ramps, UCB also 

generated intersection points of highway and major roadways across California and used it as a 

potential predictor for trace metals modeling. 

Acquire and process trace metals pollutants data 
Trace metals data from CalEPA monitoring: UCB has collected daily fine PM trace 

metals data, including Cr, Mn, Ni, Zn, Se and Pb from 48 CalEPA air quality monitoring stations 

for the 2012-2019 period. Because the trace metals were measured every 4th or 5th day in a week 

by CalEPA and there were significant number of measurements were zero (i.e., below detection 

limit), we opted to aggregate them into monthly means for our analysis. Table 13 displays the 

number of sites with effective measurements for each year and the monthly statistics in minimum, 

maximum and mean values. 

 Table 13. CalEPA trace metals monitoring statistics. 

Year # Sites Min 
(ug/m3) 

Mean 
(ug/m3) 

Max 
(ug/m3) Year # Sites Min 

(ug/m3) 
Mean 
(ug/m3) 

Max 
(ug/m3) 

Chromium (Cr) Nickel (Ni) 
2012 41 0 0.0012 0.0218 2012 41 0 0.0007 0.0150 
2013 39 0 0.0015 0.0303 2013 39 0 0.0006 0.0111 
2014 38 0 0.0009 0.0192 2014 38 0 0.0006 0.0061 
2015 35 0 0.0009 0.0146 2015 35 0 0.0006 0.0064 
2016 34 0 0.0008 0.0121 2016 34 0 0.0006 0.0074 
2017 32 0 0.0010 0.0094 2017 32 0 0.0006 0.0122 
2018 32 0 0.0013 0.0377 2018 32 0 0.0005 0.0117 
2019 32 0 0.0011 0.0103 2019 32 0 0.0005 0.0026 
Manganese (Mn) Zinc (Zn) 
2012 41 0 0.0018 0.0131 2012 41 0 0.0074 0.1678 
2013 39 0 0.0019 0.0122 2013 39 0 0.0057 0.0967 
2014 38 0 0.0018 0.0076 2014 38 0 0.0056 0.1435 
2015 35 0 0.0015 0.0130 2015 35 0 0.0090 0.2812 
2016 34 0 0.0016 0.0113 2016 34 0 0.0087 0.1610 
2017 32 0 0.0015 0.0180 2017 32 0 0.0083 0.6118 
2018 32 0 0.0017 0.0110 2018 32 0 0.0093 0.2274 
2019 32 0 0.0016 0.0128 2019 32 0 0.0076 0.1716 
Selenium (Se) Lead (Pb) 
2012 41 0 0.0005 0.0094 2012 41 0 0.0015 0.0218 
2013 39 0 0.0005 0.0151 2013 39 0 0.0011 0.0110 
2014 38 0 0.0005 0.0108 2014 38 0 0.0013 0.0316 
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2015 35 0 0.0004 0.0196 2015 35 0 0.0015 0.0354 
2016 34 0 0.0004 0.0090 2016 34 0 0.0015 0.0192 
2017 32 0 0.0004 0.0287 2017 32 0 0.0014 0.0417 
2018 32 0 0.0004 0.0268 2018 32 0 0.0016 0.0258 
2019 32 0 0.0002 0.0052 2019 32 0 0.0014 0.0234 

Trace metals data from research saturation monitoring: UCB acquired trace metals 

data from the University of California, Los Angeles (UCLA) Dr. Michael Jerrett’s research lab, 

which measured the six trace metals proposed in our research. The data were collected in 

September 2019 and February 2020 through gravimetric analysis, each for a period of 14 days. 

The data included both fine and coarse size fractions and we used the size of fine particles for our 

research. We identified that 24 sites of data were available for our analysis for the fall and 26 sites 

of data were available for the winter period (Table 14). Because the trace metals were sampled 

through gravimetric analysis, in a way different from traditional CalEPA daily measurements, all 

the measured two-week trace metals concentrations data were corrected to corresponding CalEPA 

monthly values by the ratios of research gravimetric analysis to the CalEPA real-time 

measurements through a site that was co-located with a CalEPA site. 

Table 14. Trace metals saturation monitoring statistics. 
Year Month Pollutant # Sites Min (ug/m3) Mean (ug/m3) Max (ug/m3) 
2019 9 Cr 24 0.21 1.29 2.38 
2019 9 Mn 24 0.55 2.78 7.19 
2019 9 Ni 24 0.11 0.51 0.84 
2019 9 Zn 24 1.22 6.86 12.49 
2019 9 Se 24 0.01 0.3 0.56 
2019 9 Pb 24 0.26 1.21 2.68 
2020 2 Cr 26 0.92 1.74 2.88 
2020 2 Mn 26 1.38 3.98 6.56 
2020 2 Ni 26 0.22 0.62 1.51 
2020 2 Zn 26 3.93 11.48 19.7 
2020 2 Se 26 0.08 0.4 0.81 
2020 2 Pb 26 1.12 2.65 10.59 
Note: Concentrations were calculated through gravimetric analysis for a two-week period. 
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Subtask 2.2: Daily Hybrid LUR Models and Air Pollution Surfaces 
for Criteria Pollutants 

UCB developed daily LUR models using the potential predictors described above for NO2, 

PM2.5, and O3 across California at a spatial resolution of 30m (more than 1 gigabyte (GB) for a 

raster). To save storage space and be able to assign exposures to space-time rescue mediation use 

and activity space, the daily surfaces were built for a spatial resolution of 100m (about 400 

megabytes (MBs)), which still maintain identifying the small area variations of pollutant 

concentrations in vulnerable communities.  

Generate buffer statistics on 30 m spatial resolution potential predictors 
A series of buffer statistics of 50-5000 m at an interval of 50 m were created for the 

potential spatial predictors with a spatial resolution of 30 m. They include daily traffic data, every 

two-week NDVI data, parcel-level land use data, NLCD land cover data, and NLCD % impervious 

and tree-canopy data. For each variable, e.g., industrial land use, a total of 100 buffered statistics 

(i.e., covariates) were generated. For all the potential predictors, with the inclusion of buffered and 

non-buffered variables, about 2500 covariates were identified for the prediction of a single 

pollutant concentrations at daily level. This increases the chance of identifying the optimal distance 

impact of a predictor and helps improve model performance. However, this also creates high-

dimension covariates that are highly correlated. To solve this issue, we applied data reduction 

strategy to reduce the number of covariates used in predicting a pollutant concentration. 

Apply data reduction strategy to reduce potential number of predictors 
To reduce the number of covariates and avoid high correlations between them for LUR 

modeling, we first created a correlation coefficient matrix between a pollutant and all the 

covariates. The absolute correlation coefficients between the covariate of the highest correlation 

with the pollutant and all the remaining covariates were calculated, and the covariates with an 

absolute correlation coefficient greater than or equal to 0.9 were removed. This process continued 

until no absolute correlation coefficient was greater than 0.9 between any remaining covariates. 

After applying the data reduction strategy, we maintained the number of predictors in a LUR model 

to be less than 100.  

Develop daily LUR models and surfaces for the criteria pollutants 
In developing daily LUR models for the criteria pollutants, we aimed at developing the 

models at its finest spatial resolution: 30 m. We also aimed to identify the optimal distance of 
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impact for a potential predictor and the models should be able to deal with multicollinearity among 

predictors and can reduce model overfit. Further, we wanted to avoid excessive number of 

predictors in the final models and allowed a maximum of 15 predictors (in addition to four 

Seasons) in a LUR model. Due to those considerations, we applied the D/S/A algorithm for our 

daily prediction models.53,54 The D/S/A algorithm is an aggressive model search algorithm, which 

iteratively generates polynomial generalized linear models based on the existing terms in the 

current 'best' model and the following three steps: (1) a deletion step, which removes a term from 

the model, (2) a substitution step, which replaces one term with another, and (3) an addition step, 

which adds a term to the model. The search for the 'best' estimator starts with the base model 

specified with 'formula': typically, the intercept model except when the user requires number of 

terms to be forced in the final model. Before searching through the statistical model space of 

polynomial functions, the original sample is randomly partitioned into V equal size subsamples. 

Of the V subsamples, a subsample is retained as the validation data for testing the model, and the 

remaining V-1 subsamples are used as training data. The cross-validation process is then repeated 

V times, with each of the V subsamples used exactly once as the validation data. The advantage 

of this method over the leave-one-out cross-validation technique is that the prediction errors are 

less impacted by single outliers, and compared to repeated random sub-sampling, all observations 

in the V-folds are used for both training and validation, and each observation is used for validation 

once. With each iteration, an independent validation dataset is used to assess the performance of a 

model built using a training dataset. This technique, therefore, minimizes over-fitting to the data 

to maximize the probability that the models will predict well at locations that have not been 

sampled. The D/S/A algorithm can deal with both linear and non-linear associations. However, for 

simplicity of model development and for the clear interpretation of the predictors selected for a 

model, we limited the predictors to be only on linear terms (the maximum sum of powers in each 

variable to be 1) and disallowed any interaction except corridor by year.  

 For NO2, the LUR was developed using the CalEPA daily NO2 monitoring data, our 

research saturation monitoring data, and the Google Air data UCB collected as a response variable. 

To integrate the three types of air quality measurements, we divided each type of air quality 

monitoring data equally into 10-folds and then merged corresponding folds of data into a large 10-

fold dataset, with each fold having equal presentation of the three types of air quality monitoring 

data. The predictors include daily traffic data, daily remote sensing pollutant data, daily weather 
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conditions, every 2-week NDVI index, one-time land use and land cover, and other traditional 

geographic features like DEM, distance to highways, major roadways, and ports. Due to seasonal 

changes, weekday and weekend variations, and annual reductions trend for some pollutants, UCB 

also included weekend, season, and year as predictors. Optimal distance of impact was first 

estimated and LUR run with optimal variables selected through a D/S/A algorithm. Table 15 shows 

the daily LUR model developed for NO2 for the State of California for years 2012-2019. The 

adjusted R2 is 79.6%. 

Due to the requirement of more than 3 GBs of storage space for a single statewide raster 

surface of spatial resolution of 30 m, we opted to build daily surfaces of NO2 concentrations using 

a spatial resolution of 100 m. Rather than creating a series of daily surfaces using a storage space 

of 9 TBs for the 2922 days for years 2012-2019, the 100 m spatial resolution surfaces required a 

storage space of less than 1.5 TBs. The reduced size of the daily NO2 surfaces also made exposure 

assignments feasible through an Amazon SageMaker cloud platform. The 100 m spatial resolution 

surfaces still maintain the ability to identify small area variations of pollutant concentrations, 

especially those heightened exposures endured by vulnerable communities. Figure 2 displays 

developed samples of daily and aggregated monthly, and annual NO2 surfaces for the State of 

California for year 2012. 

The daily PM2.5 and O3 models were developed separately; but, in a way, similar to the 

model used for deriving daily NO2 concentrations, with PM2.5 air quality data measured only from 

CalEPA monitoring data and O3 data measured from CalEPA, our research saturation monitoring 

and Google Air monitoring. In developing daily PM2.5 models and surfaces, monthly median rather 

than daily AOD values were used as a potential predictor due to extensive missing AOD values on 

daily measurements; while for both NO2 and O3, daily remote sensing data were applied as 

potential predictors. Table 16 & Table 17 show the daily LUR models developed, respectively, for 

PM2.5 and O3. The PM2.5 and O3 models explained, respectively, 65.3% and 93.6% variance in 

predicted concentrations. Figure 3 and Figure 4 display, correspondingly, samples of daily and 

aggregated monthly, and annual surfaces for PM2.5 and O3. 
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Table 15. Daily NO2 model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] 41.31525359 1.27380322 32.43456526 <0.001 

Season [Spring] 37.88236015 1.27857987 29.62846605 <0.001 

Season [Summer] 37.84886991 1.30048646 29.10362477 <0.001 

Season [Winter] 42.05274917 1.25767472 33.43690420 <0.001 

NDVI -0.00018156 0.00001679 -10.81666470 <0.001 

Week [Weekend] -2.32441019 0.03671236 -63.31410266 <0.001 

Distance to ports (m) -0.00000584 0.00000024 -23.88315011 <0.001 

NO2 from OMI 0.00000000 0.00000000 135.03776831 <0.001 

VKT (350m) 0.00006147 0.00000071 86.71347177 <0.001 

Developed high intensity (ha) 
(5000m)† 

0.00017474 0.00000231 75.62641371 <0.001 

Minimum relative humidity 
(%) 

-0.12444801 0.00102569 -121.3315915 <0.001 

Wind velocity at 10m (m/s) -0.93918093 0.01122917 -83.63763975 <0.001 

Roadway area (ha) (50m) 6.29933371 0.10347870 60.87565365 <0.001 

Minimum temperature (K) -0.09471578 0.00443069 -21.37721199 <0.001 

Percent impervious (%) (50m) 0.01781697 0.00091568 19.45772955 <0.001 

Developed low intensity (ha) 
(400m) 

0.01218760 0.00020753 58.72813594 <0.001 

Shrubs (ha) (3250m) -0.00009070 0.00000304 -29.82997246 <0.001 

Water (ha) (50m) -1.93161136 0.07029621 -27.47817093 <0.001 

Developed open space (ha) 
(50m) 

-0.19145437 0.01075227 -17.80594787 <0.001 

Residential (ha) (350m) -0.07513870 0.00236946 -31.71130369 <0.001 

Precipitation amount (mm, 
daily total) 

0.04020234 0.00378600 10.61868762 <0.001 
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Wetlands (ha) (550m) -0.02732793 0.00117326 -23.29238367 <0.001 

Observations 162570 
R2 / R2 adjusted 0.796 / 0.796 
Note: NDVI = Normalized Difference Vegetation Index. 

OMI = Ozone Monitoring Instrument. 

VKT = Vehicle Km Traveled. 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 

 

 

 

 

Figure 2. Example of daily, monthly and annual NO2 concentration surfaces (ppb) for year 2012. 
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Table 16. Daily PM2.5 model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] 90.21122937 1.04163758 86.60519819 <0.001 

Season [Spring] 88.15829132 1.04862676 84.07022866 <0.001 

Season [Summer] 89.58297126 1.06433106 84.16833306 <0.001 

Season [Winter] 90.66738819 1.02822904 88.17820237 <0.001 

AOD† 0.03232083 0.00014388 224.64103333 <0.001 

Wind velocity at 10m (m/s) -0.91353396 0.00935806 -97.62006415 <0.001 

Roadway area (ha) (5000m) § 0.00057177 0.00002919 19.58814640 <0.001 

Minimum temperature (K) -0.27202880 0.00361147 -75.32355385 <0.001 

Minimum relative humidity (%) -0.10749589 0.00109883 -97.82789738 <0.001 

DEM (m) -0.00355748 0.00006678 -53.26864451 <0.001 

Industrial (ha) (1850m) 0.00997592 0.00032603 30.59788510 <0.001 

Distance to ports (m) 0.00001155 0.00000027 42.05332038 <0.001 

Residential (ha) (850m) 0.00904293 0.00040292 22.44333719 <0.001 

VKT (350m) 0.00000772 0.00000073 10.62487610 <0.001 

NDVI -0.00035052 0.00001309 -26.76815385 <0.001 

Barren land (ha) (3000m) -0.00073488 0.00002057 -35.73111153 <0.001 

Shrubs (ha) (200m) -0.01737372 0.00087123 -19.94171252 <0.001 

Location category‡ -0.39053840 0.02256090 -17.31041212 <0.001 

Developed open space (ha) 
(4950m) 

-0.00007838 0.00000264 -29.65769646 <0.001 

Unknow land use (ha) (450m) -0.04719305 0.00195384 -24.15395733 <0.001 

Agricultural (ha) (50m) -2.88221319 0.13664311 -21.09300113 <0.001 

Observations 310720 
R2 / R2 adjusted 0.653 / 0.653 
Note: VKT = Vehicle Km Traveled. 
NDVI = Normalized Difference Vegetation Index. 
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DEM = Digital Elevation Model. 
†: AOD = Aerosol Optical Depth and monthly median values were used.  
‡: Location category: 1 = GMC; 2 = NGMC and 3=CTRL. 
§: The first paired parenthesis refers to unit of analysis and the second pair refers to circular 
buffer distance. 

 

 

 

Figure 3. Example of daily, monthly and annual PM2.5 concentration surfaces (ug m-3) in year 
2012. 
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Table 17. Daily O3 model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] -381.08768502 15.42996891 -24.69789066 <0.001 

Season [Spring] -374.82273040 15.42985672 -24.29204218 <0.001 

Season [Summer] -380.45822233 15.43082396 -24.65572955 <0.001 

Season [Winter] -381.66985531 15.42936058 -24.73659574 <0.001 

Year 0.14050221 0.00769760 18.25271874 <0.001 

Week [Weekend] 1.35484176 0.03871875 34.99187912 <0.001 

VKT (350m) -0.00006042 0.00000112 -53.96616312 <0.001 

Vapor Pressure (kPa) 5.25136585 0.02702161 194.33947191 <0.001 

DEM (m) 0.00988294 0.00005987 165.06931005 <0.001 

O3 from OMI 0.04894654 0.00074407 65.78241812 <0.001 

Minimum temperature (K) 0.37555432 0.00529035 70.98858639 <0.001 

Water (ha) (700m) † 0.00765764 0.00021231 36.06740612 <0.001 

Wind velocity at 10m (m/s) 0.67016975 0.01116061 60.04778299 <0.001 

Barren land (ha) (250m) -0.04829488 0.00222738 -21.68235173 <0.001 

Crops (ha) (5000m) -0.00003294 0.00000075 -44.11509667 <0.001 

Developed high intensity (ha) 
(100m) 

-0.16420518 0.00248647 -66.03947344 <0.001 

Wetlands (ha) (1600m) -0.00283386 0.00006554 -43.23768595 <0.001 

Government & Institutional 
(ha) (1800m) 

-0.00408827 0.00009946 -41.10571087 <0.001 

Developed low intensity (ha) 
(200m) 

-0.04221532 0.00079418 -53.15572993 <0.001 

Developed medium intensity 
(ha) (150m) 

-0.06929079 0.00096769 -71.60415741 <0.001 

Commercial (ha) (3200m) 0.00284461 0.00014036 20.26675566 <0.001 

Observations 258575 
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R2 / R2 adjusted 0.936 / 0.936 
Note: VKT = Vehicle Km Traveled. 
OMI = Ozone Monitoring Instrument. 
DEM = digital elevation model. 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 

 
 

 
 

Figure 4. Example of daily, monthly and annual O3 concentration surfaces (ppb) in year 2012. 

Subtask 2.3: Monthly Hybrid LUR Models for On-Road Non-
Exhaust Trace Metals 

The number of CalEPA government sites in trace metals measurements ranged from 32 to 

41 for a specific year. The measured concentrations were largely low, with mean monthly 

concentrations statewide (averaged from daily values) smaller than 0.002 ug m-3, except for Zinc 

for a mean of 0.006-0.009 ug m-3. Due to the fact that most of the trace metals were measured on 

the 4th or 5th day of a week and their concentrations measured had extensive zero days. Plus the 

fact that the saturation monitoring data were collected for a total of two weeks (see below), we 

opted to derive monthly concentrations for the trace metals in our modeling process. 
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The saturation monitoring of the trace metals was conducted in Los Angeles by Dr. Michael 

Jerrett’s research group. After calibration of the gravimetric analysis from Dr. Jerrett’s research 

group to the standard unit of measure in ug m-3 through a collocated sample site, we found that the 

measured concentrations of the saturation sampling sites in southern California were much higher 

than those averaged across the State, with the former ranged from 0.4 to 11.5 ug m-3 for a total of 

26 effective measurement sites. Similar procedures to LUR modeling for criteria pollutants were 

applied to derive monthly LUR models for the six trace metals. 

Generate buffer statistics on 30 m spatial resolution potential predictors 
Similar to processing potential predictors for the criteria pollutants modeling, we applied 

circular buffer statistics with a range of 100 – 15000 m for an interval of 100 m. Those predictors 

were described in detail in modeling criteria pollutants. Further, we created buffer statistics for the 

road surface types including the total acres (ha) of a specific road surface type in a specific buffer 

distance. For road surface roughness and slope gradient, the buffer statistics applied only to road 

segments in calculating mean surface roughness and slope gradient for a specific distance of 

impact. 

Apply data reduction strategy to reduce potential number of predictors 
 We applied the same data reduction strategies as those applied for the criteria pollutants 

modeling. The complete data sources included one-time land use and land cover information, 

monthly traffic flow, monthly weather conditions, monthly vegetation index, one time highway 

surface conditions (roughness and surface type), one-time roadway slope gradient, location 

category and distance to roadways. For those ones with buffer statistics, due to the buffer distance 

ranged from 100 m to 15000 m at an interval of 100, we created a total of 150 buffers for a single 

predictor. This process created more covariates than those used for criteria pollutants modeling. 

However, after data reduction, we still maintained the total number of potential 

predictors/covariates less than 100. 

Develop monthly LUR models and surfaces for the trace metals 
We integrated the data from the government regulatory continuous monitoring and the 

southern California saturation monitoring into a single modeling framework. The data from the 

southern California saturation monitoring were randomly separated into 10-folds of equal size. 

The government regulatory continuous monitoring data were also randomly separately into 10-
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folds of equal size. The two 10-folds of data were merged into corresponding folds (fold #1, #2, 

…, #10) to form a dataset of 10-folds. The V-fold cross-validation technique was then used for 

LUR modeling. This modeling approach makes sure that data from southern California is not 

predominantly used for building a model and the two types of data (the government regulatory 

monitoring and the southern California saturation monitoring) have equal presentation in the 

modeling process. The monthly models developed for the six trace metals were presented from 

Table 18 to Table 23, with prediction powers being 52%, 77%, 67%, 63%, 44% and 51%, 

respectively, for Cr, Mn, Ni, Pb, Se and Zn. 

Table 18. Monthly Chromium model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] -0.00044847 0.00015463 -2.90029132 0.004 

Season [Spring] -0.00076638 0.00016356 -4.68563157 <0.001 

Season [Summer] -0.00049386 0.00014799 -3.33706780 0.001 

Season [Winter] -0.00062043 0.00017005 -3.64845897 <0.001 

Percent Impervious (%) 
(1000m) † 

0.00004163 0.00000267 15.61843380 <0.001 

Developed Low Intensity (ha) 
(700m) 

0.00000108 0.00000012 8.66606414 <0.001 

Commercial (ha) -0.00000399 0.00000031 -12.69591453 <0.001 

Residential (ha) (12900m) 0.00000008 0.00000001 9.96272230 <0.001 

Industrial (ha) (1800m) -0.00000505 0.00000111 -4.54466003 <0.001 

Slope Gradient (degrees) 
(900m) 

68.44675493 29.39658033 2.32839174 0.020 

Crops (ha) (1200m) 0.00000137 0.00000033 4.11877984 <0.001 

Wetlands (ha) (400m) -0.00000624 0.00000240 -2.59807151 0.009 

Maximum Relative Humidity 
(%) 

0.00000550 0.00000210 2.62582687 0.009 

Observations 3170 
R2 / R2 adjusted 0.523 / 0.521 
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†: The content in the first pair of parentheses presents unit of analysis and the content in the 
second pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 

 
Table 19. Monthly Manganese model for the State of California. 

Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] 0.00210709 0.00018824 11.19348896 <0.001 

Season [Spring] 0.00171809 0.00019030 9.02831619 <0.001 

Season [Summer] 0.00153421 0.00020969 7.31670259 <0.001 

Season [Winter] 0.00169150 0.00017864 9.46885920 <0.001 

Maximum Relative Humidity (%) -0.0000128 0.00000188 -6.81645176 <0.001 

Developed Medium Intensity (ha) (100m) † 0.00003897 0.00000272 14.32512822 <0.001 

Crops (ha) (4400m) 0.00000009 0.00000000 18.12103758 <0.001 

Industrial (ha) (1200m) 0.00002702 0.00000129 20.98336051 <0.001 

Developed Low Intensity (ha) (100m) 0.00001393 0.00000322 4.32090223 <0.001 

Industrial (ha) (100m) -0.0025273 0.00022516 -11.2245076 <0.001 

Asphalt (ha) (100m) 0.00219813 0.00022618 9.71847803 <0.001 

Vapor Pressure (kPa) 0.00040950 0.00004838 8.46491184 <0.001 

Wind Velocity at 10m (m/s) -0.0001397 0.00002469 -5.65945968 <0.001 

Observations 3170 
R2 / R2 adjusted 0.775 / 0.774 
†: The content in the first pair of parentheses presents unit of analysis and the content in the second 
pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 
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Table 20. Monthly Nickel model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] -0.00007103 0.00002635 -2.69582823 0.007 

Season [Spring] -0.00012495 0.00002755 -4.53595808 <0.001 

Season [Summer] -0.00007939 0.00002636 -3.01147435 0.003 

Season [Winter] -0.00009771 0.00002794 -3.49663493 <0.001 

Industrial (ha) (600m) † -0.00000672 0.00000222 -3.03501645 0.002 

Crops (ha) (15000m) 0.00000000 0.00000000 11.84307201 <0.001 

Commercial (ha) (100m) -0.00036520 0.00003178 -11.49131134 <0.001 

Commercial (ha) (1900m) 0.00000300 0.00000043 7.02392195 <0.001 

Developed Low Intensity (ha) 
(500m) 

0.00000170 0.00000011 14.88077912 <0.001 

Asphalt (ha) (1000m) 0.00005032 0.00000369 13.63909698 <0.001 

Industrial (ha) (3200m) -0.00000143 0.00000014 -10.28884717 <0.001 

Developed Low Intensity (ha) 
(3000m) 

-0.00000004 0.00000001 -6.32253378 <0.001 

Percent Impervious (%) (500m) 0.00001247 0.00000103 12.09922588 <0.001 

Observations 3170 
R2 / R2 adjusted 0.667 / 0.666 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 
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Table 21. Monthly Lead model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] 0.00089106 0.00014690 6.06571715 <0.001 

Season [Spring] 0.00090684 0.00016395 5.53115887 <0.001 

Season [Summer] 0.00077776 0.00014945 5.20414043 <0.001 

Season [Winter] 0.00126383 0.00015556 8.12438783 <0.001 

Developed High Intensity (ha) (1900m) † 0.00000083 0.00000005 18.24019787 <0.001 

Crops (ha) (1100m) -0.00000955 0.00000049 -19.43597477 <0.001 

Asphalt (ha) (300m) 0.00019326 0.00007622 2.53566721 0.011 

Crops (ha) (1700m) 0.00000226 0.00000024 9.26337546 <0.001 

Crops (ha) (4100m) 0.00000032 0.00000002 14.73482053 <0.001 

Developed High Intensity (ha) (700m) -0.00000346 0.00000027 -12.97981443 <0.001 

Developed Low Intensity (ha) (400m) 0.00000337 0.00000035 9.59858255 <0.001 

Wind Velocity at 10m (m/s) -0.00017268 0.00003864 -4.46916803 <0.001 

Industrial (ha) (600m) 0.00004141 0.00000609 6.80289860 <0.001 

Industrial (ha) (2800m) -0.00000273 0.00000050 -5.41422849 <0.001 

Observations 3170 
R2 / R2 adjusted 0.628 / 0.626 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 
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Table 22. Monthly Selenium model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 
Season [Fall] -0.00017963 0.00005583 -3.21738551 0.001 

Season [Spring] -0.00018029 0.00005114 -3.52530874 <0.001 

Season [Summer] -0.00015972 0.00007374 -2.16604349 0.030 

Season [Winter] -0.00003939 0.00004496 -0.87599184 0.381 

Crops (ha) (4200m) † 0.00000015 0.00000001 26.53916117 <0.001 

CRCP‡ (ha) (1400m) 0.00040647 0.00002126 19.11806703 <0.001 

Crops (ha) (1000m) -0.00001058 0.00000055 -19.39659272 <0.001 

Crops (ha) (600m) 0.00002032 0.00000161 12.58813849 <0.001 

Commercial (ha) (200m) -0.00019384 0.00001432 -13.53211350 <0.001 

Barren Land (ha) (200m) 0.00023405 0.00003214 7.28161895 <0.001 

Developed Medium Intensity (ha) 
(200m) 

0.00000691 0.00000073 9.42621853 <0.001 

Road Roughness Index (m/km) 
(400m) 

0.00005621 0.00000602 9.34223707 <0.001 

Industrial (ha) (100m) 0.00089763 0.00018172 4.93975240 <0.001 

Vapor Pressure (kPa) 0.00013107 0.00003334 3.93069924 <0.001 

Industrial (ha) (2800m) -0.00000113 0.00000026 -4.41585385 <0.001 

Observations 3170 
R2 / R2 adjusted 0.447 / 0.444 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 
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Table 23. Monthly Zinc model for the State of California. 
Coefficient Estimates std. Error Statistic P-Value 

Season [Fall] 0.01258722 0.00153177 8.21745501 <0.001 

Season [Spring] 0.01051563 0.00168071 6.25667163 <0.001 

Season [Summer] 0.01235502 0.00155605 7.93999157 <0.001 

Season [Winter] 0.01331568 0.00160805 8.28063112 <0.001 

Crops (ha) (2800m) † 0.00001104 0.00000032 34.24752963 <0.001 

Crops (ha) (1100m) -0.00008087 0.00000634 -12.75167447 <0.001 

Commercial (ha) (2900m) 0.00006806 0.00000426 15.97803598 <0.001 

Commercial (ha) (200m) -0.00431677 0.00027451 -15.72511322 <0.001 

Tree canopy (%) -0.00009186 0.00002536 -3.62183753 <0.001 

Developed Open Space (ha) 
(6800m) 

-0.00000035 0.00000004 -9.74164927 <0.001 

Developed Low Intensity (ha) 
(100m) 

0.00020686 0.00004702 4.39905289 <0.001 

Wind Velocity at 10m (m/s) -0.00152850 0.00036609 -4.17520276 <0.001 

Asphalt (ha) (300m) 0.00315615 0.00054954 5.74325071 <0.001 

Barren Land (ha) (200m) 0.00313139 0.00066102 4.73724301 <0.001 

Distance to Ports (m) -0.00000001 0.00000000 -3.88054474 <0.001 

Wetlands (ha) (2300m) -0.00000159 0.00000059 -2.71278511 0.007 

Observations 3170 
R2 / R2 adjusted 0.509 / 0.507 
†: The content in the first pair of parentheses presents unit of analysis and the contents in the 
second pair represents distance of buffer. 
Threshold for significance is 0.05 and bold p values indicate it’s significant at 0.05 level. 
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Subtask 2.4: Development of Health Dataset 
Collection of patient level data 

Propeller Health, a sub-division in ResMed, led the development of a health cohort using 

data from the respiratory disease management platform. The patients have self-reported diagnosis 

of asthma or COPD and were recruited between January 1st, 2012 and December 31st, 2019. The 

digital medication sensors attached to patients’ SABA inhaler(s) recorded space-time locations of 

inhaler use, sensor heartbeats and resets. If patients used controller medication sensors, we also 

included the space-time locations of controller medication use. Patients for this study came from 

both urban and rural regions of California, and were enrolled via major medical systems in 

California, as well as directly through social media campaigns. Up to December 31, 2019, 6,752 

patients in California have been enrolled through 48 programs. After removing 3,366 patients that 

never synced (no rescue, heartbeat and reset events), 3,386 patients showed rescue, heartbeat and 

reset events (Table 24). 

Table 24. Patient level statistics 

Variable N (# Patients) Mean/% Std. Dev. Min Pctl. 25 Pctl. 75 Max 

Disease 3386       

... Asthma 3034 89.6%      

... COPD 352 10.4%      

Sex 3386       

... Female 2358 69.6%      

... Male 1028 30.4%      

Age 3386 37.773 17.115 4 25 50 90 

Plan w Controller (Y/N)‡ 3386 67.7% 46.8% 0% 0% 100% 100% 

Baseline Risk 3386       

... Very High 60 1.8%      

... High 722 21.3%      

... Medium 2286 67.5%      

... Low 318 9.4%      

‡: Plan w Controller (Y/N) indicates whether a patient had controller inhaler use plan. 

Of those 3,386 effective patients participated in the study, 2,955 (87.27%) lived in 

urbanized areas (UAs: urban areas with population over 50,000), 244 (7.21%) lived in urban 
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clusters (UCs: urban areas with population between 2,500 and 50,000) and 187 (5.52%) lived in 

rural areas. The cities with more than 15 patients spread across California (Figure 5) include Los 

Angeles (124), San Diego (112), Sacramento (97), Bakersfield (79), Stockton (71), Fresno (70), 

San Francisco (63), Modesto (47), Riverside (46), San Jose (43), San Bernardino (32), Long Beach 

(29), Lancaster (28), Oakland (28), El Cajon (27), Victorville (27), Hemet (24), Manteca (24), 

Anaheim (22), Tracy (22), Hesperia (21), Palmdale (21), Redding (19), Turlock (19), Chula Vista 

(18), Lodi (18), Oceanside (18), Fremont (17), Murrieta (17), Antioch (16), Clovis (16), Escondido 

(16), Garden Grove (16), Pomona (16), Visalia (16), Chico (15), Fontana (15), Moreno Valley 

(15), Sylmar (15). Across California, the cities include 473,501 rescue inhaler events, 158,748 

controller inhaler events, 1,448,700 heartbeats and 14,377 resets. 

 

Figure 5. The spatial distribution of the study subjects in California cities for years 2012-2019. 
Those cities with subjects < 15 were not shown to preserve the privacy of the participants.  
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Participants had on average 99 days of participation from January 1, 2012 to December 31, 

2019, with the 1st and 3rd quartile participating lengths being 33 and 253 days. Females represent 

69.6% of the patients, and the mean age is 37.8 with 1st, median and 3rd quartile ages being 25, 35, 

and 50, respectively (Table 24). Based on the Center for Disease Control and Prevention (CDC) 

statistics, the prevalence rates in asthma for women and men are, respectively, 10.4% and 6.7% 

for California residents. These numbers are proportionate to the composition of women to men in 

our study for 69.6% to 30.4%. Race-ethnicity information is not mandatory at enrollment; thus, 

Propeller Health does not have complete information on race-sources for the 3,386 patients. For 

all the patients, Propeller Health also collected data on whether a patient has a controller 

medication prescribed as part of the therapy, and if so, the prescribed and actual number of 

controller medication uses taken per week. There were 2,294 (67.7%) patients who had controller 

medication as part of their therapy (Table 24). 

Patients’ baseline risks of rescue inhaler use were determined based on the enrollment 

period Asthma Control Test (ACT) score for asthma patients and COPD Assessment Test (CAT) 

score for COPD patients. The ACT is a patient self-administered survey of five items with a four-

week recall on asthma symptoms and daily functions. The survey assesses the frequency of 

shortness of breath and general asthma symptoms, use of rescue medications, the effect of asthma 

on daily functioning, and overall self-assessment of asthma control. The CAT is a validated 8-item 

questionnaire widely used in clinical practice to quantify symptom burden and risk for 

exacerbation. The survey assesses respiratory symptoms (such as cough, sputum production, chest 

tightness and dyspnea), non-respiratory symptoms (such as lack of energy or sleep disturbance), 

and other manifestations of COPD on patient quality of life (such as limitations in doing activities 

at home or confidence leaving home). Ghobadi et al.55 classified the health impact from CAT 

scores into four categories: those of low, medium, high and very high impact. A low score in CAT 

indicates COPD status as well controlled with low risk for health impact. The CAT scores are 

ranked in an opposite direction to the ACT scores. 

To be consistent, we classified the ACT scores into four corresponding categories and the 

details about this categorization were presented in Table 25. We aimed to control for the potential 

impact of patients’ health conditions during enrollment on model outcome: rescue inhaler use in 

number of puffs per day. 
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Table 25. Rescue inhaler use risks associated with ACT and CAT scores. 

Inhaler Use Risk of Impact ACT CAT 
Low Health Impact > 20 < 10 
Medium Health Impact [10 – 19] [10 – 19] 
High Health Impact [5 – 9] [20 – 29] 
Very High Health Impact < 5 > 30 

Among those 3,386 patients, 60 (1.8%) patients were categorized as having very high 

baseline risk, 722 (21.3%) patients having high impact baseline risk, 2286 (67.5%) patients having 

medium impact baseline risk, and 318 (9.4%) patients having low impact baseline risk (Table 24). 

All the patients signed an agreement upon joining the Propeller Health program, which explicitly 

enables the collection of location data and the use of de-identified and aggregated data for public 

health-oriented analyses. 

Geocoding home address 
Participants’ home addresses were converted to geographical coordinates (latitude and 

longitude) to later fill missing event coordinates. Each geocoded home address has a confidence 

score, ranging from 0 to 1, where 0 reflects the inability to determine a confidence due to lack of 

a bounding box, and 1 indicates high precision. The score differs based on how close an address 

matches the standard address presented in the geocoding database. Non-standard address input 

from a patient or physician might reduce a geocoding score though the address input was correct. 

The extra information presented from an input like apartment number might also reduce the 

geocoding score. We considered geocoded home addresses as having high confidence if their 

confidence score is greater than 0.5.  For those patients whose geocoded home addresses are less 

than or equal to 0.5, we used mathematic modes (cluster centroids) of latitude and longitude of all 

the events of corresponding patients in three decimal places as geographical coordinates of home 

address (latitude and longitude). If the centroid data were not available (because patients did not 

enable their GPS service), we used zip code centroids corresponding to patients’ zip code as 

geographical coordinates of home address. 
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GPS determination for location-missing inhaler use events and days lack of 
inhaler use 

The Propeller Health digital sensors passively and objectively monitor SABA use for 

asthma and COPD by capturing the date, time, and location of uses. The digital health platform 

also tracks the use of controller medications, which are used daily to prevent symptoms long-term. 

The SABA sensors also collect a regular “heartbeat” signal to track battery life, and a “reset” signal 

whenever a sensor software restarted. The locations recorded by SABA use, controller medication 

use, heartbeat and reset events, when combined, can be used to evaluate where people have spent 

time and the level of air pollution exposure after assigned from modeled surfaces. The sensors 

send SABA use, controller medication use, heartbeat and reset data via Bluetooth to a paired 

smartphone and transmit the information to HIPAA-compliant servers.  

Among those participants transmitting data via a smartphone, geographical coordinate data 

were acquired for all medication use events, sensor heartbeats and sensor resets when available. 

For days with non-rescue inhaler events (controller inhaler, heartbeat, reset events) with 

geographical coordinates, we included those coordinates for exposure assignment. If there was a 

rescue inhaler event on a day without geographical coordinates, we assigned home address 

geographical coordinates to that rescue inhaler event. For non-rescue events without geographical 

coordinates, we did not assign any geographical coordinates. For days without any events and/or 

geographical coordinates, we assigned home address geographical coordinates to those days. This 

process enabled a detailed characterization of participant exposure through space and time. All 

participant data were stored in encrypted servers compliant with the HIPAA. Overall, there were 

2,276,336 events, 100% of which were assigned date and time, and 1,855,663 (81.5%) captured 

event geographical coordinates. The remaining events without geographical coordinates (420,673 

events, 18.5%) were retro-filled with home address locations. 

Exposure assignment and generation of daily statistics 
Each rescue inhaler use, controller medication use, heartbeat event or reset event were 

assigned daily concentrations of the three critical pollutants, monthly concentrations of the six 

trace metals, and daily maximum temperature and maximum relative humidity based on 

responding location and timestamp information. All the exposures within a day for a specific 

patient were aggregated into daily means and the number of puffs and inhaler use events were 

added up to form a daily total. 
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The daily mean (standard deviation) exposures to NO2, PM2.5 and O3 among the 3,386 

participants were, respectively, 8.3 (5.2) ppb, 10 (3.5) 𝜇𝜇𝜇𝜇 𝑚𝑚−3, and 35.4 (7.4) ppb (Table 26). The 

daily mean weather conditions for ambient temperature and relative humidity were, respectively, 

297 (7.3) k and 80 (18.3) %. The daily mean number of rescue puffs and rescue events per person 

were, respectively, 0.9 (2.6) and 0.5 (1.4).  

In typical clinic practices, asthma severity is assessed during the initial diagnosis of a 

patient while not taking long-term controller medication.56 After the initial stage of assessment, 

follow-up visits are mostly concerned with the level of control achieved on the given step of 

therapy, including well controlled, not well controlled, or very poorly controlled, based on the 

most severe component of the patient’s impairment.56 We do not have data on impairments; 

however, because Propeller Health sensors also measure space-time SABA use events, we used 

patient SABA use frequency to identify potential patient-level weekly health impact risk that might 

contribute to the daily rescue inhaler use (other than air pollution) in that week.57  When SABA 

use ≤ 2 days/week we considered impact on health outcome is low, 3-6 days/week considered as 

medium impact, and several times per day considered as high impact. This weekly health impact 

risk was used as a confounding control in our modeling the impact of air pollution on daily inhaler 

use. Of all the patient-day events, 34,467 (6.5%) were distributed in high health impact weeks, 

86,699 (16.3%) were distributed in medium health impact weeks, and 409,972 (77.2%) were in 

low health impact weeks (Table 26). We also controlled for seasonal variation. Of all the patient-

day events, 157,471 (29.6%) took place in Fall, 130,051 (24.5%) occurred in Spring, 128,050 

(24.1%) were in Summer, and 115,566 (21.8%) happened in Winter. 

Table 26. Patient-day exposure, inhaler use and health impact risks summary statistics 

Variable N† Mean/% Std. Dev. Min Pctl. 25 Pctl. 75 Max 

NO2 (ppb) 531138 8.303 5.222 1 4.388 11.394 52.004 

PM25 (ug m-3) 531138 10.046 3.478 1 7.964 12.049 43.456 

O3 (ppb) 531138 35.354 7.373 11.897 29.841 39.929 75.923 

Max Temperature (k) 531138 297.022 7.276 267.2 291.5 302.18
 

324 

Max Humidity (%) 531138 79.972 18.329 7.9 71 94 100 

# Puffs‡ 531138 0.864 2.639 0 0 0 100 

# Rescue Events‡ 
 

 

531138 0.503 1.408 0 0 0 20 
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The maximum number of daily rescue puffs were 100 and the maximum number of daily 
rescue events were 20. Figure 6 shows the distribution of the daily rescue puffs (left) and rescue 
events (right) for days with at least one puff/event for a total of 115,057 person days. Due to the 
substantial number of person days having rescue puffs and events, the rare occurrence of number 
of rescue puffs of 100 or rescue events of 20 for a day did not change the overall statistics of the 
daily rescue puffs and events. 

 

  

Figure 6. The distribution of daily rescue medication use puffs and events for the California 
participants in years 2012-2019. 

  

Weekly Health Risk 531138       

... High 34467 6.5%      

... Medium 86699 16.3%      

... Low 409972 77.2%      

Season 531138       

... Spring 130051 24.5%      

... Summer 128050 24.1%      

... Fall 157471 29.6%      

... Winter 115566 21.8%      

†: N = total patient-day events, summarized at patient and day integrated levels.  
‡: Puffs and rescue events refer to counts per person per day. 
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Subtask 2.5: Statistical Analysis of Health Effects 
UCB identified associations of sub-acute respiratory symptoms represented by SABA use 

with tailpipe air pollution from NO2, PM2.5, and O3, and on-road non-exhaust trace metals Cr, Pb, 

Mn, Ni, Se, and Zn for California. All the exposures experienced by an individual across a day 

were averaged to daily means and the total number of puffs from SABA use was used as modeling 

outcome. We modeled the effects separately for the three criteria pollutants and the six trace 

metals. 

Health effects of criteria pollutants through linear mixed model glmmTMB 
Model diagnostics 

The health outcome in this study is the number of rescue puffs experienced by an individual 

in a day: count data normally modeled through a Poisson regression. Before identifying the proper 

modeling framework, we assessed the outcome zero inflation and overdispersion. The Chi-square 

test showed a score of 318065 with a p value < 0.001, indicating significant zero inflation: 

extensive days without SABA use. Generalized linear mixed model fit by maximum likelihood 

(Laplace Approximation) [glmerMod] was applied to all the three pollutants and the weather 

conditions, and we found a dispersion score of 0.99. The score is lower than critical value of 1.2 

as low overdispersion magnitude,58 indicating our study subjects do not have significant 

overdispersion. R package Generalized Linear Mixed Models using Template Model Builder 

(glmmTMB version 1.1.2.3) was used to deal with zero-inflated mixed-effects for data in this study 

(days without any SABA use) (https://cran.r-project.org/web/packages/glmmTMB/index.html). 

Linear mixed glmmTMB modeling of air pollution effect  
The impact of individual air pollutants on SABA use was identified through a linear mixed 

model: 

   (3) 

Ysi and 𝐶𝐶𝑠𝑠𝑠𝑠, are respectively, the SABA use (i.e., total number of puffs) and air pollution (NO2, 

PM2.5 or O3) for patient s in day i. 𝑃𝑃𝑠𝑠𝑠𝑠  are the individual characteristics of patient s in day i such as 

baseline and weekly health impact. 𝑂𝑂𝑠𝑠𝑠𝑠 are other confounding factors like weather. Season is 

included in the model due to the seasonal variations in respiratory disease symptoms. 𝛽𝛽0 is the 

model constant; 𝛽𝛽1 is the coefficient for air pollution exposure; 𝛽𝛽2 and 𝛽𝛽3 are respectively vectors 

of coefficients for the individual characteristics and other confounding factors. 𝛾𝛾𝑠𝑠 is the random 

effect of patient s, and 𝜀𝜀𝑠𝑠𝑠𝑠 is the error term of patient s for day i. The random effects approach is 
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proven effective not only on dealing with panel data; but, also on processing unbalanced data when 

there are some individuals with one or a few observations.80 The comprehensive control for 

impacts from confounding factors included individual characteristics and respiratory disease status 

(age and gender, baseline ACT and CAT health impact, weekly individual level health impact, and 

weekly controller plan) and weather conditions. 

Due to the existence of excessive zeros, a zero-inflation component was also included in 

the glmmTMB modeling process. Due to the uncertainty of identifying which observation having 

greater zero-inflation, we applied the zero-inflated Poisson model with a single zero-inflation 

parameter applying to all observations (i.e., ziformula~1).  

Associations of individual air pollutant exposure with outcome 
For NO2 (Table 27), we identified significant (p < 0.001) and positive associations of daily 

NO2 exposure with daily SABA use, with 1 ppb increase in NO2 exposure for a day, the associated 

puffs would increase by 0.35%. For PM2.5 (Table 28), we also identified significant (p < 0.001) 

and positive associations of daily PM2.5 exposure with daily SABA use, with 1 ug m-3 increase in 

PM2.5 exposure for a day, the associated puffs would increase by 0.73%. For O3 (Table 29), we 

identified positive associations of daily O3 exposure with daily SABA use, with 1 ppb increase in 

O3 exposure for a day, the associated puffs would increase by 0.002%; however, the association 

was found statistically non-significant (p = 0.978). Further, we identified that increasing age, 

having controller inhaler use, baseline (enrollment) with low and medium risks, and weekly risks 

of low and medium were all significantly associated with less daily rescue inhaler use. By contrast, 

being male and having COPD were associated with greater daily rescue inhaler use but the 

associations were not statistically significant. All models indicated that there was a zero inflation: 

existence of excessive days for a patient without rescue inhaler use. 
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Table 27. The effect of NO2 on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 22.075035 4.487622 14.82044 – 32.880749 15.221878 <0.001  

NO2 1.003470 0.000486 1.002517 – 1.004423 7.149111 <0.001  

Max. Temp. 0.996055 0.000366 0.995339 – 0.996772 -10.76647 <0.001  

Max. Humid. 0.999572 0.000118 0.999341 – 0.999802 -3.641593 <0.001  

Sex [Male] 1.035101 0.042699 0.954707 – 1.122266 0.836333 0.403  

Age 0.992222 0.001260 0.989755 – 0.994695 -6.148450 <0.001  

Plan Controller 0.908805 0.037307 0.838548 – 0.984947 -2.329433 0.020  

Baseline Risk† 
[High] 

0.927480 0.147261 0.679446 – 1.266060 -0.474154 0.635  

Baseline Risk 
[Medium] 

0.625112 0.101055 0.455359 – 0.858149 -2.906263 0.004  

Baseline Risk 
[Low] 

0.388067 0.067008 0.276649 – 0.544357 -5.481990 <0.001  

Disease [COPD] 1.021780 0.084184 0.869415 – 1.200847 0.261514 0.794  

Weekly Risk‡ 
[Low] 

0.110116 0.000886 0.108393 – 0.111865 -274.2917 <0.001  

Weekly Risk 
[Medium] 

0.761164 0.003163 0.754991 – 0.767388 -65.68353 <0.001  

Zero-Inflated Model  

(Intercept) 0.662723 0.004642 0.653686 – 0.671885 -58.72902 <0.001  

Observations 531138  

†: Baseline risk is the potential impact of a patient’s health at the initial enrollment stage on outcome. 
Please refer to the patient ACT and CAT health impact classifications described above for detail. 
‡: Weekly risk is the potential impact of a patient’s health in a specific week during the study period on 
outcome. Please refer to the patient’s weekly health impact classification described above for detail. 
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Table 28. The effect of PM2.5 on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence 
Rate Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 22.154870 4.517322 14.85633 – 33.039011 15.194193 <0.001  

PM2.5 1.007275 0.000632 1.006037 – 1.008516 11.545380 <0.001  

Max. Temp. 0.995864 0.000366 0.995146 – 0.996583 -11.26248 <0.001  

Max. Humid. 0.999758 0.000118 0.999527 – 0.999990 -2.043799 0.041  

Sex [Male] 1.026518 0.042557 0.946406 – 1.113410 0.631303 0.528  

Age 0.991928 0.001273 0.989436 – 0.994426 -6.314811 <0.001  

Plan Controller 0.914008 0.037635 0.843143 – 0.990829 -2.183721 0.029  

Baseline Risk† 
[High] 

0.931593 0.147389 0.683213 – 1.270271 -0.447875 0.654  

Baseline Risk 
[Medium] 

0.626522 0.101020 0.456761 – 0.859377 -2.899856 0.004  

Baseline Risk 
[Low] 

0.390942 0.067305 0.278977 – 0.547843 -5.455327 <0.001  

Disease 
[COPD] 

1.030996 0.086203 0.875160 – 1.214582 0.365090 0.715  

Weekly Risk‡ 
[Low] 

0.109843 0.000897 0.108098 – 0.111616 -270.3257 <0.001  

Weekly Risk 
[Medium] 

0.760876 0.003162 0.754704 – 0.767099 -65.76154 <0.001  

Zero-Inflated Model  

(Intercept) 0.660736 0.004924 0.651155 – 0.670457 -55.60959 <0.001  

Observations 531138  

†: Baseline risk is the potential impact of a patient’s health at the initial enrollment stage on outcome. 
Please refer to the patient ACT and CAT health impact classifications described above for detail. 
‡: Weekly risk is the potential impact of a patient’s health in a specific week during the study period 
on outcome. Please refer to the patient’s weekly health impact classification described above for detail. 

 



66 | P a g e  
 

Table 29. The effect of O3 on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence 
Rate Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 20.416802 4.281919 13.535342 – 30.79684 14.382427 <0.001  

O3 1.000015 0.000533 0.998971 – 1.001059 0.027381 0.978  

Max. Temp. 0.996487 0.000444 0.995617 – 0.997357 -7.903062 <0.001  

Max. Humid. 0.999307 0.000119 0.999073 – 0.999540 -5.814957 <0.001  

Sex [Male] 1.033074 0.042514 0.953021 – 1.119852 0.790698 0.429  

Age 0.992163 0.001254 0.989709 – 0.994623 -6.226291 <0.001  

Plan Controller 0.909947 0.037333 0.839641 – 0.986140 -2.300144 0.021  

Baseline Risk† 
[High] 

0.929722 0.147328 0.681504 – 1.268348 -0.459846 0.646  

Baseline Risk 
[Medium] 

0.626139 0.101021 0.456392 – 0.859020 -2.901848 0.004  

Baseline Risk 
[Low] 

0.389878 0.067188 0.278125 – 0.546535 -5.465749 <0.001  

Disease 
[COPD] 

1.019627 0.083798 0.867931 – 1.197837 0.236501 0.813  

Weekly Risk‡ 
[Low] 

0.109859 0.000898 0.108113 – 0.111634 -270.195692 <0.001  

Weekly Risk 
[Medium] 

0.761084 0.003163 0.754911 – 0.767308 -65.702235 <0.001  

Zero-Inflated Model  

(Intercept) 0.661419 0.004769 0.652138 – 0.670832 -57.331417 <0.001  

Observations 531138  

†: Baseline risk is the potential impact of a patient’s health at the initial enrollment stage on outcome. 
Please refer to the patient ACT and CAT health impact classifications described above for detail. 
‡: Weekly risk is the potential impact of a patient’s health in a specific week during the study period on 
outcome. Please refer to the patient’s weekly health impact classification described above for detail. 
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Associations of simultaneous air pollutant exposure with outcome 
To evaluate the simultaneous environmental exposure impact, we first identified whether 

significant multicollinearities existed among the three criteria pollutants through a variance 

inflation factors (VIF) analysis. Multicollinearity inflates the variance of predictors and leads to 

biased coefficient estimation and a loss of power.59,60 A VIF score was calculated for each 

pollutant by doing a linear regression of the predictor on all other pollutants, and then obtaining 

the variance being explained value (R2) from that regression. Literature suggests that a VIF score 

lower than 2.5, which corresponds to an R2 of 0.60, indicates lack of significant multicollinearity. 

For the three criteria pollutants NO2, PM2.5 and O3, we identified their respective VIF scores were 

1.59, 1.46 and 1.11. This indicates that the three criteria pollutants do not have significant 

multicollinearity in their simultaneous exposure, and we included all those three criteria pollutants 

in a single glmmTMB model. Based on the integrated model, we identified that all the three criteria 

pollutants had significant (p < 0.001) and positive associations with daily rescue inhaler use (Table 

30), with the effect of NO2 on 1 ppb increase for a 0.25% increase in daily puffs, the effect of 

PM2.5 on 1 ug m-3 increase for a 0.88% increase in daily puffs, and the effect of O3 on 1 ppb 

increase for a 0.53% increase in daily puffs. 

Table 30. The multipollutant effect on daily rescue inhaler use in number of puffs after 
comprehensive confounding control. 

Coefficient Incidence 
Rate Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 40.208631 8.671167 26.348382 – 61.35989 17.129640 <0.001  

NO2 1.002482 0.000626 1.001255 – 1.003710 3.966870 <0.001  

O3 1.005306 0.000675 1.003983 – 1.006630 7.880484 <0.001  

PM2.5 1.008790 0.000790 1.007243 – 1.010340 11.172772 <0.001  

Max. Temp. 0.992891 0.000517 0.991878 – 0.993905 -13.69339 <0.001  

Max. Humid. 1.000460 0.000148 1.000171 – 1.000750 3.114965 0.002  

Sex [Male] 1.034575 0.042757 0.954078 – 1.121864 0.822473 0.411  

Age 0.992191 0.001263 0.989718 – 0.994671 -6.156177 <0.001  
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Plan 
Controller 

0.911073 0.037494 0.840472 – 0.987605 -2.263033 0.024  

Baseline 
Risk† [High] 

0.932345 0.147766 0.683394 – 1.271986 -0.442000 0.658  

Baseline Risk 
[Medium] 

0.629191 0.101529 0.458594 – 0.863250 -2.871255 0.004  

Baseline Risk 
[Low] 

0.391304 0.067446 0.279126 – 0.548565 -5.443638 <0.001  

Disease 
[COPD] 

1.020539 0.083992 0.868509 – 1.199182 0.247029 0.805  

Weekly Risk‡ 
[Low] 

0.110128 0.000899 0.108381 – 0.111904 -270.3552 <0.001  

Weekly Risk 
[Medium] 

0.761435 0.003165 0.755257 – 0.767662 -65.57978 <0.001  

Zero-Inflated Model  

(Intercept) 0.662611 0.004820 0.653232 – 0.672125 -56.58228 <0.001  

Patient-day 
Events 

531138  

†: Baseline risk is the potential impact of a patient’s health at the initial enrollment stage on outcome. 
Please refer to the patient ACT and CAT health impact classifications described above for detail. 
‡: Weekly risk is the potential impact of a patient’s health in a specific week during the study period 
on outcome. Please refer to the patient’s weekly health impact classification described above for 
detail. 

 

 

Health effects of criteria pollutants through random forest machine learning 
Using the random forest R package (version 4.6.14),61 we modeled daily rescue inhaler use 

in total number of puffs using the same parameters as those specified in the linear mixed 

glmmTMB models. Both glmmTMB and random forest models included variables to account for 

confounding such as individual level age, gender, baseline risks, controller on plan plus, potential 

weekly health impact and daily weather conditions. Based on the penalized partial dependence 

plots from random forest modeling (Figure 5), the same-day exposure impact from a unit increase 

using the linear trend for a pollutant was estimated to increase by 0.0058 (95% CI: 0.0053-0.0063), 

0.0058 (95% CI: 0.0050-0.0066) and 0.0029 (95% CI: 0.0022-0.0035), respectively, for NO2, 

PM2.5 and O3. The equivalent incidence rate ratios (through exponentiality) were respectively, 
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1.0058 (95% CI: 1.0053-1.0063), 1.0058 (95% CI: 1.0050-1.0066) and 1.0029 (95% CI: 1.0022-

1.0035), similar to the glmmTMB modeling results. 

Health effects of trace metals through linear mixed model glmmTMB 
Similar to model the criteria pollutants, we also conducted model diagnostics and found 

that, in addition to the condition of outcome of zero inflation and lack of overdispersion, the six 

trace metals did not have significant multicollinearity. The associations of individual and 

simultaneous trace metals air pollutant exposure with daily rescue inhaler use in number of puffs 

are presented in Table 31–Table 37. Across all the trace metals, we found that their associations 

were largely statistically non-significant after comprehensive control for confounding. Further, we 

identified that increasing age, having controller inhaler use, baseline (enrollment) with low and 

medium risks, and weekly risks of low and medium were all significantly associated with less daily 

rescue inhaler use. By contrast, being male and having COPD were associated with greater daily 

rescue inhaler use but the associations were not statistically significant. All models indicated that 

there was a zero inflation: existence of excessive days for a patient without rescue inhaler use. 

 

 
Figure 7. The penalized partial dependence plots of NO2, PM2.5 and O3 with daily rescue inhaler 

use in number of puffs (Y-axis), modeled through a random forest model and adjusted for 
potential confounding from patient individual characteristics, potential weekly health impacts 

and weather conditions. 
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Table 31. The effect of Cr on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 19.127199 3.919608 12.800307 – 28.581326 14.401056 <0.001  

Cr 0.291586 1.442333 0.000018 – 4734.103705 -0.249150 0.803  

Max. Temp. 0.996348 0.000375 0.995614 – 0.997083 -9.724210 <0.001  

Max. Humid. 0.999354 0.000117 0.999124 – 0.999583 -5.522074 <0.001  

Sex [Male] 1.042966 0.044718 0.958902 – 1.134400 0.981172 0.327  

Age 0.992306 0.001314 0.989734 – 0.994884 -5.834267 <0.001  

Baseline Risk 
[High] 

0.950448 0.149386 0.698459 – 1.293349 -0.323349 0.746  

Baseline Risk 
[Medium] 

0.643655 0.102982 0.470396 – 0.880729 -2.753765 0.006  

Baseline Risk 
[Low] 

0.396669 0.067813 0.283734 – 0.554557 -5.408733 <0.001  

Disease [COPD] 1.007374 0.082998 0.857157 – 1.183918 0.089178 0.929  

Weekly Risk 
[Low] 

0.111073 0.000991 0.109146 – 0.113033 -246.1877 <0.001  

Weekly Risk 
[Medium] 

0.762513 0.003183 0.756300 – 0.768777 -64.95515 <0.001  

Zero-Inflated Model  

(Intercept) 0.667437 0.005845 0.656079 – 0.678992 -46.16761 <0.001  

Observations 523699  
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Table 32. The effect of Mn on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 18.548667 3.717154 12.523677 – 27.472207 14.572838 <0.001  

Mn 0.000000 0.000000 0.000000 – 47.697289 -1.611333 0.107  

Max. Temp. 0.996595 0.000368 0.995873 – 0.997317 -9.228304 <0.001  

Max. Humid. 0.999230 0.000121 0.998993 – 0.999468 -6.352827 <0.001  

Sex [Male] 1.035093 0.044188 0.952010 – 1.125426 0.807945 0.419  

Age 0.992151 0.001310 0.989586 – 0.994723 -5.965616 <0.001  

Baseline Risk 
[High] 

0.945414 0.148406 0.695032 – 1.285994 -0.357589 0.721  

Baseline Risk 
[Medium] 

0.640333 0.102319 0.468157 – 0.875830 -2.789692 0.005  

Baseline Risk 
[Low] 

0.396832 0.067753 0.283974 – 0.554544 -5.413335 <0.001  

Disease [COPD] 1.009874 0.083057 0.859528 – 1.186519 0.119471 0.905  

Weekly Risk 
[Low] 

0.108807 0.000948 0.106965 – 0.110681 -254.5926 <0.001  

Weekly Risk 
[Medium] 

0.760776 0.003163 0.754602 – 0.767001 -65.76537 <0.001  

Zero-Inflated Model  

(Intercept) 0.669537 0.005687 0.658483 – 0.680776 -47.23193 <0.001  

Observations 535154  
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Table 33. The effect of Ni on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 19.054731 3.833831 12.845180 – 28.266071 14.648611 <0.001  

Ni 0.000000 0.000000 0.000000 – 6436482.17 -1.244378 0.213  

Max. Temp. 0.996462 0.000362 0.995753 – 0.997171 -9.758211 <0.001  

Max. Humid. 0.999342 0.000115 0.999118 – 0.999567 -5.727562 <0.001  

Sex [Male] 1.035196 0.044192 0.952106 – 1.125538 0.810287 0.418  

Age 0.992152 0.001310 0.989587 – 0.994724 -5.965409 <0.001  

Baseline Risk 
[High] 

0.945541 0.148426 0.695126 – 1.286166 -0.356737 0.721  

Baseline Risk 
[Medium] 

0.640430 0.102335 0.468228 – 0.875963 -2.788741 0.005  

Baseline Risk 
[Low] 

0.396935 0.067770 0.284047 – 0.554687 -5.411834 <0.001  

Disease [COPD] 1.009937 0.083061 0.859584 – 1.186589 0.120231 0.904  

Weekly Risk 
[Low] 

0.108813 0.000947 0.106972 – 0.110685 -254.8164 <0.001  

Weekly Risk 
[Medium] 

0.760840 0.003163 0.754665 – 0.767065 -65.74645 <0.001  

Zero-Inflated Model  

(Intercept) 0.669535 0.005681 0.658492 – 0.680764 -47.27738 <0.001  

Observations 535154  
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Table 34. The effect of Pb on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 18.970522 3.900548 12.678354 – 28.385443 14.312884 <0.001  

Pb 1.053431 23.244717 0.000000 – 6.382E+18 0.002359 0.998  

Max. Temp. 0.996367 0.000376 0.995630 – 0.997104 -9.646693 <0.001  

Max. Humid. 0.999346 0.000114 0.999124 – 0.999568 -5.759468 <0.001  

Sex [Male] 1.042950 0.044716 0.958889 – 1.134379 0.980832 0.327  

Age 0.992306 0.001314 0.989734 – 0.994884 -5.834386 <0.001  

Baseline Risk 
[High] 

0.950430 0.149383 0.698447 – 1.293323 -0.323467 0.746  

Baseline Risk 
[Medium] 

0.643631 0.102978 0.470379 – 0.880695 -2.754010 0.006  

Baseline Risk 
[Low] 

0.396654 0.067810 0.283723 – 0.554535 -5.408969 <0.001  

Disease [COPD] 1.007335 0.082994 0.857124 – 1.183871 0.088707 0.929  

Weekly Risk 
[Low] 

0.111073 0.000991 0.109146 – 0.113033 -246.1889 <0.001  

Weekly Risk 
[Medium] 

0.762512 0.003183 0.756299 – 0.768776 -64.95557 <0.001  

Zero-Inflated Model  

(Intercept) 0.667436 0.005845 0.656079 – 0.678991 -46.17061 <0.001  

Observations 523699  
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Table 35. The effect of Se on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 18.772892 3.801058 12.623605 – 27.917658 14.482781 <0.001  

Se 0.508799 0.936423 0.013802 – 18.756279 -0.367138 0.714  

Max. Temp. 0.996461 0.000369 0.995738 – 0.997184 -9.578335 <0.001  

Max. Humid. 0.999317 0.000115 0.999092 – 0.999542 -5.949706 <0.001  

Sex [Male] 1.035822 0.044338 0.952467 – 1.126472 0.822234 0.411  

Age 0.992161 0.001312 0.989594 – 0.994735 -5.953202 <0.001  

Baseline Risk 
[High] 

0.945491 0.148420 0.695086 – 1.286105 -0.357064 0.721  

Baseline Risk 
[Medium] 

0.640492 0.102347 0.468270 – 0.876056 -2.788061 0.005  

Baseline Risk 
[Low] 

0.396845 0.067757 0.283979 – 0.554568 -5.412979 <0.001  

Disease [COPD] 1.009550 0.083064 0.859196 – 1.186215 0.115514 0.908  

Weekly Risk 
[Low] 

0.108884 0.000954 0.107030 – 0.110770 -253.0195 <0.001  

Weekly Risk 
[Medium] 

0.760846 0.003163 0.754671 – 0.767071 -65.74239 <0.001  

Zero-Inflated Model  

(Intercept) 0.670291 0.005749 0.659118 – 0.681654 -46.64269 <0.001  

Observations 535154  
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Table 36. The effect of Zn on daily rescue inhaler use in number of puffs after comprehensive 
confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 18.622445 3.731495 12.574079 – 27.580188 14.594387 <0.001  

Zn 1.151632 1.247090 0.137898 – 9.617681 0.130374 0.896  

Max. Temp. 0.996476 0.000365 0.995760 – 0.997192 -9.634225 <0.001  

Max. Humid. 0.999308 0.000111 0.999090 – 0.999526 -6.216065 <0.001  

Sex [Male] 1.035078 0.044187 0.951997 – 1.125410 0.807622 0.419  

Age 0.992154 0.001310 0.989588 – 0.994725 -5.964042 <0.001  

Baseline Risk 
[High] 

0.945767 0.148459 0.695295 – 1.286468 -0.355217 0.722  

Baseline Risk 
[Medium] 

0.640453 0.102337 0.468247 – 0.875990 -2.788565 0.005  

Baseline Risk 
[Low] 

0.396930 0.067769 0.284045 – 0.554678 -5.411969 <0.001  

Disease [COPD] 1.009863 0.083056 0.859520 – 1.186504 0.119337 0.905  

Weekly Risk 
[Low] 

0.108810 0.000947 0.106969 – 0.110683 -254.7867 <0.001  

Weekly Risk 
[Medium] 

0.760812 0.003163 0.754638 – 0.767036 -65.75569 <0.001  

Zero-Inflated Model  

(Intercept) 0.669517 0.005682 0.658472 – 0.680746 -47.27387 <0.001  

Observations 535154  
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Table 37. The effect of simultaneous trace metals air pollution exposure on daily rescue inhaler 
use in number of puffs after comprehensive confounding control. 

Coefficient Incidence Rate 
Ratios std. Error 95% CI Statistic P-Value 

Count Model 

(Intercept) 19.688438 4.129801 13.051644 – 29.700060 14.207021 <0.001  

Cr 0.083437 0.427900 0.000004 – 1934.991596 -0.484294 0.628  

Mn 0.000000 0.000000 0.000000 – 0.664038 -1.995169 0.046  

Ni 0.000000 0.000000 0.000000 – 0.042967 -2.070728 0.038  

Pb 333.89359 7471.042 0.000000 – 3.7127E+21 0.259696 0.795  

Se 2.491577 5.054353 0.046746 – 132.801005 0.450028 0.653  

Zn 6.015382 7.957908 0.449973 – 80.415604 1.356326 0.175  

Max. Temp. 0.996397 0.000396 0.995620 – 0.997173 -9.078667 <0.001  

Max. Humid. 0.999332 0.000132 0.999073 – 0.999591 -5.052439 <0.001  

Sex [Male] 1.042932 0.044742 0.958824 – 1.134417 0.979847 0.327  

Age 0.992308 0.001314 0.989736 – 0.994886 -5.831945 <0.001  

Baseline Risk 
[High] 

0.950356 0.149387 0.698370 – 1.293264 -0.323929 0.746  

Baseline Risk 
[Medium] 

0.643620 0.102987 0.470356 – 0.880708 -2.753838 0.006  

Baseline Risk 
[Low] 

0.396694 0.067823 0.283742 – 0.554609 -5.407861 <0.001  

Disease [COPD] 1.007252 0.082996 0.857039 – 1.183793 0.087699 0.930  

Weekly Risk 
[Low] 

0.111066 0.000992 0.109138 – 0.113028 -245.9894 <0.001  

Weekly Risk 
[Medium] 

0.762475 0.003183 0.756262 – 0.768740 -64.96192 <0.001  

Zero-Inflated Model  

(Intercept) 0.667429 0.005856 0.656049 – 0.679006 -46.08068 <0.001  

Observations 523699  
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Discussion and Conclusion 

Literature Review 
In this systematic review, we assessed the impact of exposures to criteria pollutants (NO2, 

PM2.5, PM10, O3 and SO2), and more than 10 trace metals that can be considered toxic air 

contaminants on respiratory disease outcomes, including airway inflammation, coughing, 

wheezing, exacerbations, ED visits, hospitalizations and mortality. We converted all the study 

outcomes in rate ratios (RRs) and percentage changes to odds ratios (ORs) and standardized the 

impact of exposure increase interval to make the studies comparable (see Appendix A). We further 

pooled the effects, separately, for children, adults, and all ages, for each pollutant of interest. We 

identified consistently significant associations of all the criteria pollutants and trace metals with a 

broad range of respiratory disease outcomes. The relatively greater impact from NO2, PM2.5 and 

SO2 on respiratory disease outcomes for children may be due to the greater probability of children 

living or having physical activity in high air pollution areas for these pollutants.31-35 Because 

children’s lungs are not completely developed, their exposures to high levels of air pollution can 

affect both their short-term and long-term respiratory health.36 Policymakers and stakeholders 

should adopt strategies to help children, especially those living in vulnerable communities, to 

reduce exposures to those sources in their neighborhoods. By contrast, the impact of O3 on 

respiratory disease outcomes was found to be relatively greater for adults. Due to the chemical 

reaction between O3 and traffic emission of nitrogen oxides that lead to generation of NO2, NO2 

concentrations are higher near busy roadways while O3 are higher at locations farther away from 

busy roadways. We suspect that, compared to children, more adults might have moved away from 

living close to traffic sources to communities with less traffic-related air pollution,37 thus leading 

to greater O3 exposure. 

It should be addressed that due to the limitation in the number of studies in each type of 

outcomes for specific criteria pollutant, we pooled the results for all types of outcomes together 

for each criteria pollutant and did the comparison across different types of outcomes. It is also 

worth noting that the impact of trace metals on human respiratory health is understudied and only 

3 studies38-40 were included in the pooled analysis in this review. Overall, this systematic review 

identified consistent and significant effects of ambient exposures to criteria pollutants and trace 
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metals on a broad suite of respiratory disease outcomes. It contributes to better understanding of 

the size of the effect of the five criteria pollutants and trace metals that can be compared across 

various studies. The study also helped identify groups that are more vulnerable to adverse 

respiratory outcomes from air pollution exposure across available studies. 

Exposure Assessment 
It is well known in environmental justice research that impacted communities (i.e., those 

of low income or visible minorities in a block group or zip code) face higher air pollution burden 

than advantaged communities. It is thus crucial to develop high spatial resolution air pollution 

surfaces to help identify exposure disparities those impacted communities experience in assessing 

their air pollution exposure. Large majority of exposure assessment uses air pollutant 

concentrations measured from the nearest government monitoring sites, which are normally 

sparsely distributed and reflect the background concentrations of a region. Using nearest 

government site as a location of exposure assumes the land use and land cover information of a 

community of interest to be the same as those of the government site, which could be incorrect. 

Some exposure assessment used government monitoring data through kriging or inverse distance 

weighting (IDW) techniques to interpolate exposure for a community. Those techniques used more 

government sites for exposure assessment; however, they still assumed the same land use and land 

cover information of the community to those of government sites. 

Land use regression applies land use, land cover and other related information to model 

pollutant concentrations measured at monitoring sites; and the developed model is used to predict 

pollutant concentrations in communities through those communities’ land use, land cover and 

other information. LUR modeling advances exposure assessment by utilizing land use, land cover 

and other related information at community of interest. Traditional LUR modeling approach, 

however, has two key shortcomings: (1) missing potential optimal predictors, including buffered 

distance of impact and (2) model overfit. All the LUR models applied in literature, except the ones 

developed by Dr. Su, used limited number of predictors with optimal distances of impact 

subjectively selected from 4-5 categories (e.g., distances of 250, 500, 750 and 1000 m). For a 

predictor in land use (e.g., commercial, industrial, and residential), land cover (e.g., forest, 

shrublands and developed), % tree canopy or % impervious, we derived buffer statistics for each 

predictor at distances of 50-5000 m at an interval of 50 m. When all the predictors and their 
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associated buffered statistics were calculated, we normally had 2000-3000 potential covariates in 

our modeling process to make sure we captured the optimal distance of impact from a predictor. 

The large majority of LUR models used all the data for both model construction and model 

effectiveness assessment. This creates a situation that model performance is only valid for the data 

used in model construction, not for the data that have never seen in the modeling process. It creates 

model overfit.62 In our modeling process, instead, we used a v-fold cross-validation strategy 

through LUR D/S/A machine learning algorithm to improve model fit: i.e., using a subset of the 

original dataset for model development 53,62. In our D/S/A V-fold cross-validation modeling, the 

original sample was randomly partitioned into V equal size subsamples. Of the V subsamples, a 

subsample was retained as the validation data for testing the model, and the remaining V-1 

subsamples were used as training data. The cross-validation process was then repeated V times, 

with each of the V subsamples used exactly once as the validation data. This technique, therefore, 

minimizes over-fitting to the data to maximize the probability that guarantees the models predict 

well at locations that have not been sampled. 

In this research, we used very comprehensive data sources for air pollution exposure 

modeling. The data sources included statewide daily traffic data on highways, daily remote sensing 

data, daily weather data, parcel level land use and detailed land cover data, every two-week 

vegetation index and tree canopy data. For traffic, we used road type category criteria of the nearest 

neighbor to derive daily highway roadway traffic, from the measured 4.6% roadways, for the entire 

California and those derived roadway traffic data were converted into daily traffic surfaces of 30 

m spatial resolution across California, plus buffer statistics 50-5000 m at an interval of 50 m 

through R programming. We also incorporated parcel level land use data for 40 million people 

living in the state of California from 58 counties in our modeling process using a spatial resolution 

of 30 m. The parcel level land use data included agricultural, residential, commercial, industrial, 

government and institutions, open land, parks, and recreational facilities. We also included 

comprehensive land cover (16 classes such as forest, shrubland, developed) data, every two week 

of vegetation index, tree canopy and impervious surface at a spatial resolution of 30 m and their 

corresponding buffer statistics 50-5000 m at an interval of 50 m through Google Earth Engine 

scripting. We also included daily remote sensing data in Ozone Monitoring Instrument for NO2 

and O3 at 25 km spatial resolution and daily Aerosol Optical Depth for PM2.5 at 1 km spatial 

resolution through R programming. Further, we included daily meteorological conditions data of 
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4 km spatial resolution through Google Earth Engine scripting. They were maximum and 

minimum temperature, precipitation accumulation, downward surface shortwave radiation, wind-

velocity, maximum and minimum relative humidity, and specific humidity. Other potential 

predictors of 30 m spatial resolution included elevation (digital elevation model), distance to coast, 

distance to ports, distance to highway roadways. Further, we were the first in literature to 

incorporate data from multiple air pollution measurement instruments into a single modeling 

framework, including those from government continuous monitoring across California, our 

research saturation monitoring in Los Angeles, Alameda and Sacramento counties, and Google 

Street Car mobile monitoring across San Francisco Bay (counties of Alameda, San Francisco and 

San Mateo), Los Angeles County and central valley regions. The capability of integrating data 

sources from various platforms into a single modeling framework enabled us to deal with TBs of 

data at statewide level in our LUR modeling process. 

Due to our LUR modeling process incorporating thousands of predictors and covariates, 

we are the only research team developing LUR models with data reduction strategies. The data 

reduction strategy typically reduces the number of covariates from 2000-3000 to 80-100 but still 

maintain the optimal and least collinear covariates in the modeling process. The random forest 

LUR modeling process ensures least collinearity of feature selection in the modeling process; 

however, it cannot reduce the number of predictors in the modeling process. Random forest 

modeling technique is thus predominantly used for situations like traditional LUR modeling with 

limited number of predictors. Further, our D/S/A machine learning algorithm can specify the 

number of covariates/predictors in the final model output after data reduction and the final selected 

models maintained only the most effective predictors. No other LUR algorithm in literature has 

that capability. Data reduction is necessary if a comprehensive data source in predictors is available 

and research wants to make sure that the final selected predictors are interpretable (e.g., green 

vegetation is associated with reduced air pollution and higher traffic is associated with greater level 

of air pollution). In our research, the final daily prediction models for the three criteria pollutants, 

had adjusted R2 of 79.6%, 65.3% and 93.6%, respectively, for NO2, PM2.5 and O3, greater 

performance than other daily models and higher than some annual models. 

Though we already generated TBs of data in exposure surfaces due to the high spatial 

resolution implemented in the study (30m for modeling and 100m for surface building), we did 

not take peak hourly exposures into consideration. No hourly pollutant surfaces were developed. 
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This limitation could be resolved in the future when support from computer clusters is available 

with hundreds of TBs of storage space plus great computing power.   

Health Outcome Modeling 
Previous studies on the effects of air pollution on respiratory disease relied on aggregated 

and infrequently-reported acute respiratory disease outcome measures, such as emergency 

department visits or hospitalizations, which lacked temporal and spatial resolution due to annual 

aggregation and grouping to a zip code or county level.8-10 Other studies used patient self-reported 

data to assess the location and frequency of symptoms,11 which could be fraught with missing data, 

errors, and are burdensome for the patients.12-14 When the location of exposure was provided, 

previous studies often used an individual’s residential address in defining the location of air 

pollution exposure. Air pollution exposure can occur in the community, at work, at home, at 

school, and elsewhere; therefore, a residential address does not capture the full signature of 

exposure for an individual. Significant exposure misclassification exists and health risks estimated 

from such data can lead to exposure measurement error and flawed findings.15 Digital sensors 

fitted onto inhalers can capture the date, time, and location of rescue inhaler medication use and 

identify activity space through sensor “heartbeats” — sensor checking into battery life every 3-4 

hours with location information; thereby, offering an objective signal of respiratory disease 

symptoms and exposure space in real-time. The combination of the best available spatiotemporal 

air pollution surfaces developed in our research and the activity space detected through sensor 

technology enabled us to have individual spatiotemporal exposures with the least misclassification. 

The spatiotemporally rich data in rescue inhaler use, locations of activity space, and 

extensive information on environmental exposure, however, raised methodological challenges in 

modeling the impacts of environmental exposures on respiratory disease symptoms. Traditional 

linear mixed models might not be sufficient in dealing with the frequent zeros in modeling health 

outcome data, as was seen here in rescue inhaler use puffs per person per day measure. We used 

glmmTMB, a linear mixed model capable of processing excessive zeros and overdispersion, to 

address these issues by creating two models: one dealt with normal count data with a Poisson 

function and the second dealt with the excessive zeros through a logit function. The random forest 

model, like other complex nonparametric models (e.g., neural networks, support vector machines 

and super learners), is becoming more common in predictive analytics, especially when dealing 
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with large observational datasets that do not adhere to the strict assumptions imposed by traditional 

statistical techniques (e.g., multiple linear regression assumes linearity, homoscedasticity, and 

normality).63 In our health outcome analysis, we found both glmmTMB and random forest 

modeling technique successfully predicted positive and significant impact of daily air pollution on 

daily rescue inhaler use in number of puffs after comprehensive control for confounding. 

Additionally, the effect of air pollution on respiratory disease was, similar to other health 

outcome analysis, largely assessed using single pollutant modeling approaches despite the fact that 

people were exposed to multiple pollutants simultaneously,16 which might interactively influence 

respiratory disease symptoms. Due to our ability to identify small area variations in pollutant 

concentrations and detect difference in environmental exposure burden between different 

communities, we found, contradictory to most health outcome studies, that the air pollution 

exposures from the criteria pollutants were not collinear. We thus were able to integrate exposure 

to all the three criteria pollutants into a single health outcome modeling framework and identified 

the marginal effect of each criteria pollutant on daily rescue inhaler use. 

Based on the separate air pollutant health effect modeling results, the exposure-response 

(daily air pollution exposure – daily rescue inhaler use puffs) functions were 1.003470 (95% CI: 

1.002517 – 1.004423), 1.007275 (95% CI: 1.006037 – 1.008516) and 1.00005 (95% CI: 

0.998971 – 1.001059), respective, for NO2, PM2.5 and O3 in per unit increase in air pollutant 

exposure. The impact of O3 exposure was shown not statistically significant. The integrated rescue 

inhaler use model with simultaneous exposure to the three criteria pollutants identified 

corresponding exposure-response functions of 1.002482 (95% CI: 1.001255 – 1.003710), 

1.008790 (95% CI: 1.007243 – 1.010340) and 1.005306 (95% CI: 1.003983 – 1.006630). All the 

three criteria pollutants were statistically significantly associated with rescue inhaler use after 

comprehensive control for confounding. Among the three criteria pollutants, we found that 

exposure to PM2.5 had the greatest impact on rescue inhaler use. For example, per 1 µg m-3 increase 

in PM2.5 exposure was associated with EXP(1.008790 - 1) =  0.00879% increase in rescue inhaler 

use puffs per person per day in the integrated model. In our study, more than 80% study subjects 

are adults. Those effects identified from this research may seem trivial; however, the 

corresponding 10 ppb, 10 ug m-3 and 30 ppb increase in exposure to NO2, PM2.5 and O3 would 

result in, respectively, a 2.5% (OR = (1.002482)^10 = 1.025), 9.1% (OR = (1.008790)^10 = 1.091) 

and 17.2% (OR = (1.005306)^30 = 1.172) increase in daily rescue puffs.64 These effects seemed 
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low compared to the pooled results identified in our literature research: with 10 ppb, 10 ug m-3 and 

30 ppb increase in exposure to NO2, PM2.5 and O3, we saw a corresponding 14% (95% CI: -1%-

32%), 25% (95% CI: -1%-64%) and 40.0% (95% CI: 14%-81%) increase in asthma symptoms for 

adults. During the study period, a patient sometimes did not have any rescue inhaler use or 

heartbeat events for a specific day. We attributed those days having exposure from home location. 

Because those days had zero rescue inhaler use (outcome of value 0), the impact of air pollution 

on rescue inhaler use identified from this study is thus the marginal exposure effect for days 

exposure being above typical home-based exposure from which a rescue inhaler use did not occur. 

In our previous research, we identified effects of a respective increase of 15.3%, 13.1% and 11.3% 

in daily rescue medication use from an IQR (NO2: 9.44 ppb, PM2.5: 5.8 µg m-3 and O3: 15.65 ppb) 

increase in exposure to NO2, PM2.5 and O3.65 Those effects would be equal to an increase of rescue 

medication use of 16.3%, 23.6% and 22.8% from a respective increase in NO2, PM2.5 and O3 

exposure of 10 ppb, 10 ug m-3 and 30 ppb. In that research, days for participants’ activity 

participation in the study but without activity space being identified were removed from analysis, 

rather than using home address as location of exposure as in the current CARB project. Though 

potential differences in population characteristics, air pollution exposure metrics and other 

impacting factors, we believe that our study findings were consistent with the literature research 

findings. 

Based on our D/S/A daily land use regression modeling results, The main sources 

contributing to elevated NO2 concentrations included traffic and highly developed urban areas 

(Impervious surfaces account for 80% to 100% of the total cover including apartment complexes, 

row houses and commercial/industrial land use). For PM2.5, the main sources of air pollution 

included those from traffic, industrial and residential land use. For both NO2 and PM2.5, open and 

vegetative spaces were the sinks of air pollution. For O3, however, the high concentrations were 

associated with greater open and high vegetation coverage. The near roadway traffic and 

developed urban land contributed to reduced O3 concentrations in a way opposite to the impact 

from NO2 and PM2.5. 

Given that most impacted communities live near roadways with high traffic, close to 

industrial sources or population densely distributed urban cores, these communities have great air 

pollution impact from NO2 and PM2.5. Greater air pollution from NO2 and PM2.5 tend to have 

greater impact on rescue inhaler use for those vulnerable communities than for other communities.  
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Regionwide, we expect that air pollution has the greatest impact on rescue inhaler use in Central 

Valley due to its high air pollutant concentrations from all the three criteria pollutants. Southern 

California has higher concentrations of NO2 and PM2.5 than San Francisco Bay, and we expect 

their impact on rescue inhaler use was much higher for those living in Southern California than 

those living in the San Francisco Bay Area. 

We believe the associations identified of the impact of air pollution on rescue inhaler use 

are more accurate than the ones that relied only on home or school address as location of exposure. 

We understand that severity of asthma or COPD has direct impact on rescue inhaler use. To 

identify the real impact of air pollution on rescue inhaler use, we included comprehensive 

confounding control. In addition to integrating typical confounding variables (e.g., age and gender, 

baseline ACT and CAT scores), we also controlled for the impact of daily weather conditions on 

rescue inhaler use. We also included control for whether a patient had controller medication use 

plan for every week while being in the study. Based on the most severe component of 

impairment,56 an patient’s asthma and COPD severity could be identified as well controlled, not 

well controlled, or very poorly controlled. We do not have data on the impairments from rescue 

inhaler use. However, because Propeller Health sensors also measure space-time rescue inhaler 

use events, we used patient weekly rescue inhaler use frequency to identify potential patient-level 

weekly health impact risk that might contribute to the daily rescue inhaler use (other than air 

pollution) in that week.57  When rescue inhaler use ≤ 2 days/week we considered the health impact 

on outcome is low, 3-6 days/week considered as medium impact, and several times per day 

considered as high impact. This weekly health impact risk was used as a confounding control in 

our modeling the impact of air pollution on daily inhaler use. We understand that this strict 

confounding strategy might over control the impact of air pollution on rescue inhaler use: A week 

of high rescue inhaler use (e.g., several times a day throughout a week) might be due to the impact 

of weekly high air pollution from extreme events such as wildfires but we contributed those 

impacts to patient’s high weekly health risk rather than air pollution. This process, however, 

guaranteed that the impact of a patient’s high weekly health risk from his/her own conditions was 

always controlled for in assessing associations between air pollution and rescue inhaler use. 

In summary, our literature review found that exposures to air pollutants NO2, PM2.5 and O3 

were significantly associated with respiratory systems and associated ED visits, hospitalizations 

and even mortality. Using rescue medication use as an endpoint, our study confirmed that 
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instantaneous air pollution exposures are significantly associated with adverse asthma symptoms. 

Our study further added to literature the significant association of air pollution with asthma 

symptoms including those for ED visits and hospitalizations. Previous studies typically used home 

address as location of exposure or using short-term (e.g., 1 week) mobile monitoring as exposure 

space, locations of exposure for those study subjects could be significantly biased. Combining high 

spatiotemporal exposure surfaces, year-round activity space and locations of rescue medication 

use, we were able to accurately identify space-time air pollution exposure and precisely estimate 

the impact of air pollution on asthma symptoms. Further, most studies identified separate effects 

of individual air pollutants on asthma symptoms, not taking into consideration that study subjects 

were simultaneous exposed to multiple pollutants.  Our study was able to integrate three types of 

air pollutants into a single health outcome model, effectively identifying the marginal effects of 

each pollutant on rescue medication use. Further, we also included the number of days per week 

with rescue medication use as a proxy for ongoing disease status, aiming to adjust for each 

subject’s individual variability in disease severity to better assess the impact of air pollutant 

exposure alone. We believe that our study design had the least exposure misclassification 

throughout the literature on identifying the associations of air pollution with asthma symptoms. 

We could not focus the study on children due to the requirement of ownership of a 

smartphone though alternative techniques exist. We did not have enough children in our study and 

most of the study subjects were adults. If we could have enough children in our study, we would 

expect seeing greater rescue inhaler use per person per day due to the greater physical activity 

children normally have and the fact that their lungs are more sensitive to environmental exposure 

impacts.  

Our goal was to identify the impact of space-time air pollution exposure on rescue inhaler 

use. We assumed that higher air pollution exposure was associated with greater rescue inhaler use. 

It does not matter whether an exposure happened during an earlier or later study period. The air 

pollution exposure for a space-time rescue inhaler use or heartbeat was based on the daily air 

pollution surfaces developed for the study. If it was true that long-term trend of air pollution 

exposure did exist, we could safely say, based on our modeling results, that later years of exposure 

incurred less rescue inhaler use. 

Due to the fact that the large majority of patients lived in urban areas or urban clusters (and 
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their activity space occurred also largely in urban areas), We did not differentiate between urban 

and rural on association between air pollution and rescue inhaler use. However, based on our 

modeling results, we expected that those lived in urban areas had greater impact from traffic, urban 

development (e.g., densely apartment complex and commercial land use) and industrial land use, 

and they experienced higher NO2 and PM2.5 exposure impact. In rural area, patients were more 

impacted by open space and vegetation distribution for higher O3 concentrations. 

For trace metals, we identified that most of the trace metals were measured on the 4th or 5th 

day in a week and their measured concentrations were largely low, with mean monthly 

concentrations statewide (averaged from daily values) smaller than 0.002 ug m-3, except for Zinc 

for a mean of 0.006-0.009 ug m-3. We also found that their concentrations measured had extensive 

days with a value of 0. Since most of the measured concentrations were < 0.005 ug m-3, the 

variations measured through government and saturation monitoring might reflect the random 

oscillation around instrument detection limits. Still, we applied the most comprehensive data 

sources to build monthly land use regression models for the six trace metals, with prediction 

powers between 0.4 to 0.7, and we anticipated less prediction power than the models developed 

for the criteria pollutants. Further, our aim was to identify the impact of trace metals from tire- and 

break-wear. We expected that road roughness index, surfaces types, road slope gradients and 

traffic would be significant predictors for trace metals concentrations; however, this largely did 

not happen and the trace metal surfaces built thus might not be the real trace metals space-time 

concentration distributions. This partially contributed to the non-significant association between 

modeled trace metals exposures and rescue inhaler use. 
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Appendix: Literature Review Method 
We investigated the effect of increased exposure for different criteria pollutants including 

PM2.5, PM10, NO2, O3, SO2, and trace metals including Aluminum, Iron, Magnesium, Sulfur, 

Nickel, Vanadium, Chromium, Arsenic, Manganese, Barium, Copper, Antimony, Zinc and Lead. 

For health outcome measures, we included coughing, wheezing, shortness of breath, ED visits, 

hospitalizations, exacerbations, and mortality for respiratory diseases, including asthma, chronic 

obstructive pulmonary disease (COPD), respiratory infections and lung cancer. 

Conversion of Outcomes to OR  
Not all studies included in this review reported the results in the same scale. Estimated 

outcomes associated with an increase of exposure to the air pollutants are reported in terms of 

either OR, RR or percentage increase and 95% Confidence Intervals (CI). We converted all 

reported results to ORs plus associated CIs for the purpose of comparing results from different 

studies and, moreover, pulled all the effects together and identified the overall size of impact of a 

pollutant on respiratory disease outcomes. 

To convert the results reported in percentage increase to OR, we exponentiated the reported 

results and lower/upper CI values from the corresponding studies, as presented in the following 

set of formulas: 

 
Also, in order to convert the results reported in RR to OR, the following conversion was 

used:  

 
where risk0 is the risk of having a positive outcome in the control or unexposed group. Similarly, 

the associated lower and  upper CIs can be calculated as: 
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Standardization of Exposure Increase Ranges 
Furthermore, not all studies used the same exposure increase interval to assess association 

with respiratory diseases. We standardized all the reported results so that the results were 

comparable between various studies. To make the results comparable between different studies, 

we standardized the OR’s through the following conversions: 

 
where OR(xs) is the standardized OR for pollutant x when its exposure increase interval is set at xs. 

Moreover, xg and OR(xg) represent standardized exposure increase interval and associated OR. 

Based on the potential exposure levels from current studies, we used interquartile ranges of 10 

ppb, 10 µg m-3, 10 µg m-3, 10 ppb and 30 ppb, respectively, for NO2, PM2.5, PM10, SO2 and O3 in 

standardizing exposure level of increase.  

Tables A1-A6 list all the effect estimates and corresponding standardized ORs. 

Pooled Analysis 
We excluded the studies that were deemed significant outliers, such as OR greater than 4.0. 

After standardizing the reported results from studies, effect pooled analysis was performed for 

each pollutant in three different age categories including children (<18 years), adults (≥18 years), 

and all ages. The Meta-Analysis package with R was used to pool the effects, separately, for 

children, adults, and all ages, separately, for NO2, PM2.5, PM10, SO2, O3 and trace metals. Studies 

with mixed ages were evaluated separately from those studies focused on just children or adults to 

avoid the potential repeated counting of children and adults in the all-ages category (i.e., we did 

not pool the effects from children, adults, and all age groups to form a category of all subjects).  
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Table A1: PM2.5 associations with respiratory disease outcomes 

Papers Study 

group 
Outcome 

Reported 

OR/RR(CI) 

Standardized 

OR(CI) 

Hansel et al. 2019 children uncontrolled asthma 1.59(1.26-2.00) 2.44(1.56-3.79) 

Fan et al. 2016 children asthma ED 1.04(1.02-1.05) 1.04(1.02-1.05) 

Brauer et al. 2007 children wheezing 1.20(1.00-1.40) 1.74(1-2.77) 

Brauer et al. 2007 children doctor-diagnosed asthma 1.30(1.00-1.70) 2.21(1.00-4.99) 

Brauer et al. 2007 children ear/nose/throat infections 1.20(1.00-1.30) 1.74(1.00-2.21) 

Brauer et al. 2007 children flu 1.20(1.00-1.40) 1.74(1.00-2.77) 

Mar et al. 2004 children trouble breathing 1.13(0.86-1.48) 1.13(0.86-1.48) 

Mar et al. 2004 children coughing 1.17(0.98-1.40) 1.17(0.98-1.40) 

Mar et al. 2004 children sputum production 1.06(0.92-1.22) 1.06(0.92-1.22) 

Huang et al. 2019 adults susceptibility to COPD 1.29(1.01-1.65) 1.30(1.01-1.68) 

Lamichane et al. 2018 adults reduced lung function due to COPD 1.34(0.89-2.02) 1.34(0.89-2.02) 

Mirabelli et al. 2016 adults any asthma symptoms 1.03(1.01-1.06) 1.40(1.12-1.77) 

Fan et al. 2016  adults asthma ED 1.02(1.01-1.03) 1.02(1.01-1.03) 

Cortez-Lugo et al. 2015 adults COPD cough 1.39(1.05-1.99) 1.39(1.05-1.99) 

Cortez-Lugo et al. 2015 adults COPD phlegm 1.26(1.02-1.72) 1.26(1.02-1.72) 

Mar et al. 2004 adults wheezing 1.04(0.86-1.26) 1.04(0.86-1.26) 

Yu et al. 2020 all respiratory mortality 1.02(1.01-1.03) 1.25(1.15-1.30) 

Fan et al. 2016 all asthma ED 1.01(1.01-1.02) 1.01(1.01-1.02) 

Rasschou-Nielsen et al. 2013 all lung cancer 1.18(0.96-1.46) 1.39(0.92-2.13) 

Rasschou-Nielsen et al. 2013 all adenocarcinoma 1.55(1.05-2.29) 2.40(1.10-5.24) 
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Kloog et al. 2013 all PM-related mortality 1.60(1.50-1.80) 1.60(1.50-1.80) 

Katanoda et al. 2011 
all 

mortality due to lung cancer and 

respiratory diseases 
1.24(1.12-1.37) 1.24(1.12-1.37) 

 

Table A2: PM10 associations with respiratory disease outcomes 

Papers Study 

Group 
Outcome 

Reported 

OR/RR(CI) 

Standardized 

OR(CI) 

Weinmayr et al. 2010 children asthma symptoms 1.03(1.01-1.05) 1.03(1.01-1.05) 

Weinmayr et al. 2010 children coughing 1.01(1.00-1.03) 1.01(1.00-1.03) 

Mar et al. 2004 children trouble breathing 1.04(0.95-1.15) 1.04(0.95-1.15) 

Mar et al. 2004 children coughing 1.09(1.02-1.16) 1.09(1.02-1.16) 

Mar et al. 2004 children sputum production 1.08(0.98-1.17) 1.08(0.98-1.17) 

Magzamen et al. 2018 adults inhaler use due to COPD 1.07(1.03-1.10) 1.09(1.04-1.13) 

Lamichane et al. 2018 
adults 

reduced lung function due to 

COPD 
1.39(0.85-2.25) 1.39(0.85-2.25) 

Mar et al. 2004 adults wheezing 1.01(0.93-1.09) 1.01(0.93-1.09) 

Mar et al. 2004 adults trouble breathing 1.02(0.96-1.08) 1.02(0.96-1.08) 

Mar et al. 2004 adults sputum production 1.01(0.92-1.12) 1.01(0.92-1.12) 

Rasschou-Nielsen et al. 2013 all lung cancer 1.22(1.03-1.45) 1.22(1.03-1.45) 

Rasschou-Nielsen et al. 2013 all adenocarcinoma 1.51(1.10-2.08) 1.51(1.10-2.08) 

Analitis et al. 2006 all respiratory mortality 1.00(1.00-1.01) 1.00(1.00-1.01) 
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Table A3: NO2 associations with respiratory disease outcomes 

Papers Study 

Group 
Outcome 

Reported 

OR/RR(CI) 

Standardized 

OR(CI) 

Hasunuma et al. 2016 children persistence of asthmatic symptoms 1.02(0.99-1.06) 1.22(0.90-1.79) 

Belanger et al. 2013 children asthma severity 1.37(1.01-1.89) 1.88(1.02-3.57) 

Belanger et al. 2013 children wheezing 1.49(1.09-2.03) 2.22(1.19-4.12) 

Belanger et al. 2013 children night symptoms due to asthma 1.52(1.16-2) 2.31(1.34-4.00) 

Belanger et al. 2013 children medication use due to asthma 1.78(1.33-2.38) 3.17(1.77-5.66) 

Takenoue et al. 2012 children asthma development 1.13(1.03-1.25) 1.13(1.03-1.25) 

Takenoue et al. 2012 children wheezing 1.05(1.02-1.08) 1.05(1.02-1.08) 

Weinmayr et al. 2010 children asthma symptoms 1.03 (1.00-1.06) 1.06(1.00-1.12) 

Migliaretti and Cavallo 2004 children asthma hospitalizations 1.03(1.01-1.05) 1.05(1.01-1.10) 

Magzamen et al. 2018 adults inhaler use due to COPD 1.04(1.01-1.08) 1.05(1.01-1.09) 

Lamichane et al. 2018 adults reduced lung function due to COPD 1.14(1.00-1.30) 1.28(1.00-1.64) 

De Mrco et al. 2002 adults asthma attack 1.13(0.98-1.32) 1.13(0.98-1.33) 

De Mrco et al. 2002 adults chest tightness 1.11(0.98-1.26) 1.11(0.98-1.27) 

De Mrco et al. 2002 adults wheezing 1.11(0.96-1.28) 1.11(0.96-1.29) 

Ghozikali et al. 2016 all COPD hospitalizations 1.01(1.00-1.02) 1.01(1.00-1.03) 

Li et al. 2016a all COPD exacerbations 1.02(1.00-1.02) 1.04(1.01-1.03) 

Katanoda et al. 2011 
all 

mortality due to lung cancer and 

respiratory diseases 
1.17(1.10-1.26) 1.17(1.10-1.26) 

Sunyer et al. 2002 all mortality due to asthma 1.63(0.93-2.86) 1.49(0.94-2.37) 
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Table A4: O3 associations with respiratory disease outcomes 

Papers 

Study Group Outcomes 

Reported 

OR/RR(CI) 

Standardized 

OR(CI) 

Pepper et al. 2020 children asthma rescue inhaler use 1.12(1.07-1.20) 1.22(1.13-1.38) 

Gent et al. 2003 children chest tightness(1-hr) 1.26(1-1.48) 1.15(1-1.26) 

Gent et al. 2003 children shortness of breath(1hr) 1.22(1.02-1.45) 1.13(1.01-1.25) 

Gent et al. 2003 children chest tightness(8-hr) 1.33(1.09-1.62) 1.19(1.05-1.33) 

Gent et al. 2003 children shortness of breath(8hr) 1.30(1.05-1.61) 1.17(1.03-1.33) 

Pepper et al. 2020 adults asthma rescue inhaler use 1.09(1.07-1.12) 1.16(1.12-1.22) 

Day et al. 2017 adults pulmonary inflammation 1.20(1.05-1.40) 1.72(1.14-2.73) 

Silverman and Ito 2010 adults asthma HA 1.22(1.2-1.34) 1.31(1.16-1.49) 

Khaniabadi et al. 2017 all cardiopulmonary mortality 1.06(1.02-1.10) 1.42(1.15-1.76) 

Khaniabadi et al. 2017 all COPD hospitalization 1.04(1.02-1.06) 1.28(1.16-1.44) 

Ghozikali et al. 2016 all COPD hospitalization 1.02(1.01-1.03) 1.13(1.05-1.20) 
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Table A5: SO2 associations with respiratory disease outcomes 

Papers Study 

Group 
Outcomes 

Reported 

OR/RR(CI) 

Standardized 

OR(CI) 

Greenberg et al. 2016 children asthma severity 1.10(1.05-1.16) 1.24(1.11-1.38) 

Smargiassi et al. 2009 children asthma emergency department visits 1.10(1.00-1.22) 1.16(1.00-1.37) 

Smargiassi et al. 2009 children asthma hospitalization 1.42(1.10-1.82) 1.74(1.16-2.58) 

Mercan et al. 2020 adults asthma hospitalization 1.07(1.06-1.08) 1.19(1.17-1.21) 

Mercan et al. 2020 adults COPD hospitalization 1.07(1.06-1.08) 1.18(1.15-1.21) 

Li et al. 2016b adults COPD mortality 1.04(1.01-1.06) 1.09(1.03-1.16) 

Kan et al. 2010 adults respiratory mortality 1.01(1.00-1.02) 1.04(1.02-1.06) 

Ghozikali et al. 2016 all COPD HA 1.01(1.00-1.01) 1.01(1.00-1.03) 

Li et al. 2016a all COPD exacerbations 1.01(1.00-1.02) 1.03(1.00-1.06) 

Katanoda et al. 2011 
all 

mortality due to lung cancer and respiratory 

diseases 
1.26(1.07-1.48) 1.26(1.07-1.48) 
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Table A6: Trace metal associations with respiratory disease outcomes 

Papers 
metal 

Exposure 

increase 

Study 

Group 
Outcomes 

Reported 

OR/RR(CI) 

Wu et al. 2019 Lead - children risk for active asthma 1.24(1.08-1.42) 

Wu et al. 2019 Lead - children Wheezing 1.19(1.04-1.38) 

Mao et al. 2018 Copper - all asthma susceptibility 1.04(0.20-1.87) 

Mao et al. 2018 Iron - all asthma susceptibility 2.83(0.47-5.18) 

Pollitt et al. 2016 Aluminum 54.2 ng/m3 children airway inflammation due to asthma 1.04(0.99-1.10) 

Pollitt et al. 2016 Iron 59.4 ng/m3 children airway inflammation due to asthma 1.01(0.96-1.06) 

Pollitt et al. 2016 Magnesium 15.1 ng/m3 children airway inflammation due to asthma 1.02(0.97-1.09) 

Pollitt et al. 2016 Sulfur 179.0 ng/m3 children airway inflammation due to asthma 1.03(0.98-1.09) 

Pollitt et al. 2016 Nickel 0.9 ng/m3 children airway inflammation due to asthma 1.01(0.97-1.05) 

Pollitt et al. 2016 Vanadium 2.18 ng/m3 children airway inflammation due to asthma 1.05(0.97-1.14) 

Pollitt et al. 2016 Chromium 2.98 ng/m3 children airway inflammation due to asthma 1.01(0.99-1.04) 

Pollitt et al. 2016 Arsenic 0.79 ng/m3 children airway inflammation due to asthma 1.04(0.94-1.16) 

Pollitt et al. 2016 Manganese 2.21 ng/m3 children airway inflammation due to asthma 0.99(0.95-1.02) 

Pollitt et al. 2016 Barium 9.42 ng/m3 children airway inflammation due to asthma 1.09(1.03-1.17) 

Pollitt et al. 2016 Copper 10.4 ng/m3 children airway inflammation due to asthma 1.02(1.00-1.04) 

Pollitt et al. 2016 Antimony 23.4 ng/m3 children airway inflammation due to asthma 1.02(0.86-1.24) 

Pollitt et al. 2016 Zinc 18.2 ng/m3 children airway inflammation due to asthma 0.99(0.96-1.03) 
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