

Impacts of Short-term Particulate Matter 2.5 Exposure on Work Loss Days

(Contract No: 19RD006)

PI: Ying-Ying Meng, DrPH Co-PI: Michael Jerrett, PhD

BUILDING KNOWLEDGE. INFORMING POLICY. IMPROVING HEALTH.

Special Thanks

- Data provision and assistance from the CHIS Group
- California Air Resources Board and California EPA
- Feng-Chiao Su, Barbara Weller, Bonnie Holmes-Gen from CARB

Reference:

https://stillstandingmag.com/2015/02/19/returning-worklife-loss/

https://www.open.edu/openlearn/health-sports-psychology/mental-health/grief-during-covid-19-supporting-our-colleagues-return-work-and-thrive-following-loss

Air Pollution

- One of the global scourges, has been raised as a public health concern due to its impacts on increasing morbidity and mortality
- **PM**_{2.5} is among the most damaging pollutants
 - can penetrate into the deepest parts of the lung and bloodstream
 - linked to a variety of adverse health effects including cardio-pulmonary disorders, diabetes, and central nervous system dysfunctions

HEALTH EFFECTS OF PM_{2.5}

Reference:

Background

Wildfire

- A frequent and dreadful threat across the U.S. in the recent years
- Total area burned in the western U.S. has been doubled 1984 – 2015
- Usually have a high proportion of smoldering fuel, a form of incomplete combustion, producing high levels of toxins

INFOGRAPHIC WILDFIRE Savs Kodas Wildfires are growing more destructive in the United States, especially but not only in the "THE **BIGGEST** AND American West. In 2015, a record 10 million U.S. acres burned, including tens of thousands in Colorado. Tennessee experienced one of its worst wildfires in 2016 **BADDEST** OF THEM The blazes will likely become more costly in the U.S. and abroad, according to Michael Kodas, associate director of CU Boulder's Center for Environmental Journalism and author ARE STILL TO COME. of the new book Megafire. In one recent year, 75 million acres burned in Russia alone. \$3 BILLION NINETEEN **78 DAYS** average annual amount U.S. FIREFIGHTERS LONGER IIS homes located nea government spent on wildfires in annual wildfire season in killed in Yarnell Hill Fire, southwest of decade before 2013, up from Prescott, Ariz., June 30, 2013 vestern U.S., 2015 vs. 1970 \$1 billion in 1990s MAJOR FACTORS CONTRIBUTING 10 MILLION ILS **TO WILDFIRES:** ACRES BURNED IN 2015 ASH ALE SAME 1970 AVERAGE ANNUAL ACREAGE BURNED PER DEC/ ACTUAL ANNUAL ACREAGE BUI

Reference: https://www.colorado.edu/coloradan/2017/12/01/infographic-wildfire

Research Gap

- Extensive studies investigating short-term air pollution exposure on health outcomes
 - measured via the endpoints such as hospitalization and ED visits
 - o fail to capture more subtle health impacts such as work loss
- Two papers on work loss published in the 1980s (Ostro 1987; Ostro and Rothschild 1989)
 - limited PM exposure information from airport visibility rather than actual measurements

^{*} Corresponding author.

https://doi.org/10.1016/j.envadv.2022.100179

Received 1 December 2021; Received in revised form 11 January 2022; Accepted 25 January 2022 Available online 27 January 2022

2666-7657/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

E-mail address: yymeng@ucla.edu (Y.-Y. Meng).

Study Objective

<u>To investigate the impact of short-term PM_{2.5} exposure on work loss</u> <u>due to sickness among adults living in California</u>

To investigate the health and economic impacts of work loss due to sickness related to daily total $PM_{2.5}$ and wildfire smoke exposures

Study Objective

(1) Data linking – California Health Interview Survey (CHIS) respondents' geocoded residential addresses to exposure data;

(2) Characterizing air pollution exposure distributions

(3) Logistic regression analyses –

- Association between short-term PM2.5 exposure and work loss due to sickness
- How wildfire smoke exposure influence the association

(4) **Investigating** health and economic impacts of work loss associated with daily total PM2.5 and wildfire-specific PM2.5 exposures on the BenMAP-CE platform.

California Health Interview Survey (CHIS)

- Continuous telephone survey with an annual target of 20,000 households
- A geographically stratified sample design, random-digit-dial (RDD) sampling method
- Covers dozens of health-related topics
- Multi-language interview: English, Spanish, Cantonese, Mandarin, Korean, Tagalog, or Vietnamese
- Adult population aged 18 and older, 2015-2018

CHIS adult respondents were asked

Q1: Which of the following were you doing last week?

(1) With a job or business but not at work

(2) Working at a job or business

(3) Looking for work

(4) Not working at a job or business

Q2: What is the main reason you did not work last week?

(1) taking care of house or family,
 (2) on planned vacation,
 (3) couldn't find a job,
 (4) going to school/student,
 (5) retired,
 (6) disabled,
 (7) unable to work temporarily,
 (8) on layoff or strike,
 (9) on family or maternity leave,
 (10) offseason,
 (11) sick, and
 (12) other.

Daily total PM2.5 Concentration

- Funded by the National Aeronautics and Space Administration (NASA) Health and Air Quality Applied Sciences (HAQAST) Program
- Spatial resolution at 3-kilometers
- Environmental data from
 - USEPA ground observation Air Quality System (AQS) database
 - NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
- Geostatistical surfacing algorithm
 - Including linear regression models, B-spline and Inverse Distance Weighted (IDW) smoothing models
 - A quality control procedure for the EPA AQS data,
 - A bias adjustment procedure for MODIS/Aerosol Optical Depth-derived $PM_{2.5}$ data

Reference:

[.] Al-Hamdan et al. 2019. Development and validation of improved pm2. 5 models for public health applications using remotely sensed aerosol and meteorological data. Environmental monitoring and assessment 191(2):1-16.

[.] Al-Hamdan et al. 2009. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: Potential use for environmental public health surveillance. J Air Waste Manag Assoc 59(7):865-881.

^{3.} Al-Hamdan et al. 2014. Environmental public health applications using remotely sensed data. Geocarto international 29(1):85-98.

^{4.} Diao et al. Satellite applications for analysis of surface pm 2.5 concentrations in California and contiguous US. In: Proceedings of the AGU Fall Meeting Abstracts, 2019a, Vol. 2019, GH21B-1212

Estimated annual average daily total PM_{2.5} concentration in California, 2015-2018.

Wildfire Smoke Exposure

- Community Multiscale Air Quality (CMAQ) modeling system (version 5.0 5.3)
- Spatial resolution at 12-kilometers
- Using SMARTFIRE emission to simulate the changes in air pollution concentration with and again without fires
- Incorporate multiple sources of fire activity such as Earth observations, federal, state, local, and tribal databases
- Emission factors were taken from the Fire Emission Production Simulator (FEPS) model
- Non-fire emissions sources are from the National Emissions Inventory (NEI).
- The difference between the two simulations isolates the wildfire-specific PM_{2.5} contribution

Reference:

- . Rappold et al. 2017. Community vulnerability to health impacts of wildland fire smoke exposure. Environ Sci Technol 51(12):6674-6682.
- 2. Sullivan et al. 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient pm2.5 organic carbon. Journal of Geophysical Research 113(D22).
- Wilkins et al. 2018. The impact of us wildland fires on ozone and particulate matter: A comparison of measurements and CMAQ model predictions from 2008 to 2012. Int J Wildland Fire 27(10).
- 4. Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ. 2007. An overview of the fuel characteristic classification system—quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research 37(12):2383-2393

Estimated annual average wildfire-specific PM_{2.5} concentration in California, 2015-2018.

Environment International 178 (2023) 108045

Full length article

A R T I Handling

Keywords Air pollut Particulat Wildfire

Short-Term total and wildfire fine particulate matter exposure and work loss in California

Ying-Ying Meng^{a,*}, Yu Yu^{a,b}, Mohammad Z. Al-Hamdan^{c,d}, Miriam E. Marlier^b, Joseph L. Wilkins^{c,f}, Diane Garcia-Gonzales^b, Xiao Chen^a, Michael Jerrett^b

* UCJA Conter for Health Policy Research, University of California at Lea Angeles, CA, USA ¹³ Department of Environmental Health Sciences, Fielding School of Public Health, University of California et Lea Angeles, CA, USA ¹⁴ National Caretor for Comparational University on Engineering, School of Engineering, University of Maximppi, Oxford, MS, USA ¹⁵ National Caretor for Comparational University of Municipy, Conferd, MS, USA ¹⁵ School of Environmental and Fornat Sciences, University of Municipy, Conferd, MS, USA ¹⁵ School of Environment, Howed University, Waldington, Saatle, WA, USA ¹⁵ Interdisciplings/Studies Department, Howed University, Waldington, D.C., USA

CLEINFO	ABSTRACT
Editor: Hanna Boogaard	Background: Few studies investigated the impact of particulate matter ($PM_{2.5}$) on some symptom exacerbations
on s maller	 that are not perceived as severe enough to search nor monicul assistance, we almost to study the association of short-term failty total PM2_s exposure with work loss due to sickness among adults living in California. Methods: We included 44,544 adult respondents in the workforce from 2015 to 2018 California Health Interview Methods: We included 44,544 adult respondents in the workforce from 2015 to 2018 California Health Interview
due to sickness	survey data. Justy total P012 concentrations were made to responsents none autress from commuton spatial surfaces of PM22 senerated by a geostatistical surfacing algorithm. We estimated the effect of a 2-week average of daily total PM25 exposure on work loss using logistic regression models.
	Results: About 1.60% (weighted percentage) of adult respondents reported work loss in the week before the survey interview. The odds ratio of work loss was 1.45 (odds ratio [OR] = 1.45, 95% confidence interval [CI]: 1.03, 2.03) when a 2-week average of daily total $PM_{2.5}$ exposure was higher than 12 µg/m ² . The OR for work loss was 1.05 (05% CI: 0.98, 1.13) for each 2.56ug/m ² increase in the 2-week average of daily total $PM_{2.5}$ exposure and became stronger among those who were highly exposed to widther source is postfavely associated with work loss compared to those with lower widther sancke exposure (OR = 1.04, 95% CI: 0.79, 1.39). Conclusion: Our findings suggest that short-term ambient $PM_{2.5}$ exposure is postfavely associated with work loss due to sickness and the association was stronger among those with higher widther smoke exposure. It also indicated that the current federal and state $PM_{2.5}$ standards (annual average of 12 µg/m ³) could be further

1. Introduction

Ambient air pollution is the leading environmental cause of death, globally accounting for million deaths annually (Burnett et al., 2018). Fine particles with an aerodynamic diameter smaller than 2.5 μ m (PM_{2.5}), which can carry many toxic chemicals and penetrate the repiratory system more deeply and may enter into the bloodstream (Feng et al., 2016). have been associated with multiple adverse health outcomes, including cardio-pulmonary diseases, metabolic, central nervous system dysfunctions, and premature mortality ($Iu \ et al., 2022$). Although numerous studies have examined both the acute and chronic effects of $PM_{2,5}$ on health outcomes using medical and death records, few studies investigated the relationship between short-term $PM_{2,5}$ exposure and some acute condition exacerbations, such as coughs. These conditions may not be perceived as serious enough to necessitate medical assistance but may lead to a loss of productivity or work loss days (Zivin and Neidell, 2012). Exposure to $PM_{2,5}$ may induce direct physical disorders or psychological disconfronts such as headaches, which possibly alter the marginal return to an additional hour of labor supplied or an increment of effort exerted within any given hour.

* Corresponding author at: Center for Health Policy Research, University of California at Los Angeles, 10960 Wilshire Blvd, Suite 1550, Los Angeles, CA 90024, USA.

E-mail address: yymeng@ucia.edu (Y.-Y. Meng).

https://doi.org/10.1016/j.envint.2023.108045

Received 10 February 2023; Received in revised form 25 May 2023; Accepted 14 June 2023 Available online 17 June 2023 0160-412/0/2 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecoumons.org/licenses/by

0[60-4]20/9 2025 the Author(s). Published by Elsevier Ltd. This is an open access article under the CC. BT-NC-ND acense (http://creativecommons.org/acenses/by nc-nd/4.0/).

Part I: Investigate the Association between Short-term PM_{2.5} Exposure on Work Loss

Reference: Meng et al. 2023. Short-term total and wildfire fine particulate matter exposure and work loss in California. Environment International 178, https://doi.org/10.1016/j.envint.2023.108045.

Study Method – Statistical Analyses

Summary of characteristics among the CHIS respondents in workforce, 2015-2018.

- 905 (weighted%= 1.69%) reported to have work loss due to sickness
- Comparing those who had work loss vs. no work loss, they were:
 - More 40 years old and above (78.2% vs. 52.6%)
 - More Hispanics (54.3% vs. 37.7%)
 - More living at 0-99% FPL (39.5% vs. 13.2%)
 - More had two or more comorbidities (35.3% vs. 8.3%)
 - Fewer covered by private insurance (20.5% vs. 62.8%)

Result

The odds of work loss due to sickness was found to increase along with higher 2-week average $PM_{2.5}$ exposure

- Model 1:adjusted for age, sex, income and race/ethnicity
- Model 2: plus smoking, comorbidity, interview year
- Model 3: Model 2 plus additional demosocioeeconomic factors and wildfire
- Model 4: Model 2 plus wildfire exposure
- ▲ Model 5: Model 4 plus meteorological factors

The odds of having work loss due to sickness increased by 5% (OR =1.05, 95% CI: 0.98, 1.13) for each 2.56 μ g/m³ (IQR) increase in the 2-week average of PM_{2.5} exposure

When stratified by sociodemographic risk factors

- Higher 2-week average PM2.5 exposure was consistently and positively associated with work loss in almost all categories
- High ORs of work loss were found among those

•••• Whose income level of 0-99% FPL (OR= 1.20, 95% CI: 1.02, 1.42)

Who lived in a duplex, building with 3 or more units, or mobile homes

(OR= 1.08, 95% CI: 1.01, 1.17)

Who had chronic conditions (OR= 1.09, 95% CI: 1.00, 1.18)

Influence of wildfire exposure on the association between short-term $PM_{2.5}$ exposure and work loss

Wildfire exposure	N	Cases	2-week average PM _{2.5} , per 2.56 μg/m ³ increase OR (95% CI)
Higher	26980	522	1.06 (1.00, 1.13)
Lower	17564	383	1.04 (0.79, 1.39)

Among those respondents who were highly exposed to wildfires, the OR of work loss due to sickness was 1.06 for each 2.56 μ g/m³ increase in 2-week average PM_{2.5} exposure relative to those with lower wildfire exposure

Higher wildfire and higher total PM_{2.5} exposures on work loss

2-week average PM_{2.5} concentration and wildfire exposure level

The odds ratio for work loss event among those exposed to a high level of $PM_{2.5}$ (≥ 12.05 µg/m³) who were also exposed to higher-level wildfire was 1.34, compared with those exposed to low level of $PM_{2.5}$ as well as low exposure to wildfire

Effect estimates (and 95%CIs) from other models for short-term PM2.5 exposure on work loss events.

	2-week average PM2.5 exposure					
Model comparison	per 2.56 µg/m³ increase	≥ 12.05 vs. < 12.05 $\mu g/m^3$				
	OR (95% CI)	OR (95% CI)				
Logistic Model (logit function) (Final weight + Replicate weight)	1.05 (0.98, 1.13)	1.44 (1.00, 2.10)				
Firth Model (to address rare event issues with final weight only)	1.048 (1.046, 1.050)	1.447 (1.436, 1.458)				
Poisson Model (Final weight +Bootstrap:1000 resample)	1.04 (0.98, 1.10)	1.38 (1.05, 1.74)				
Logistic Model (logit function) (Propensity score weighting method)	1.05(0.99, 1.12)	1.45(1.01, 2.10)				

Note: Models were adjusted for age, sex, income/poverty level, race/ethnicity, smoking status, comorbidity, interview year. Poverty level was assigned using the household incomes and number of persons in the household.

*Other race/ethnicity includes African American only, American Indian/Alaska Native only, Native Hawaiian/Pacific Islander and two or more races

** Other housing type includes duplex, building with 3 or more units and mobile home.

Result - Sensitivity Analyses

Effect estimates (and 95%CIs) from logistic regression models for short-term (1 to 4week average) PM2.5 exposure (continuous, per IQRs increase) on work loss events.

Notes: Model 1 was adjusted for age, sex, income/poverty level and race/ethnicity; Model 2 was additionally adjusted for smoking status, comorbidity, interview year; Model 3 was additionally adjusted for smoking status, comorbidity, interview year, interview season, insurance coverage, occupation, urban/rural, length of living at current address, part/full time job; Model 4 was additionally adjusted for smoking status, comorbidity, interview year, temperature, precipitation, relative humidity, dew point, wind run and windspeed.

24

Exceedance days (PM2.5 \ge 35 µg/m3, per 1 day increase) and work loss events

Table. Frequency distribution of exceedance days during the 2-week period (week 2 and week 3 before the interview date) among CHIS respondents 2015-2018.

	Total		With	Work Loss Events	With N	o-Work Loss Events
	((n=44544)		(n=905)		(n=43639)
Frequency of exceedance days	Ν	% (Weighted)	Ν	% (Weighted)	Ν	% (Weighted)
Zero	43115	96.63%	871	93.5%	42244	96.8%
1-3	1193	2.85%	29	5.7%	1164	2.8%
4 - 6	1338	0.29%	5	0.8%	133	0.3%
7 - 9	64	0.17%	0	0.0%	64	0.2%
10 - 12	34	0.06%	0	0.0%	34	0.1%

Result - Sensitivity Analyses

Effect estimates (and 95%CIs) from logistic regression models for exceedance days (PM2.5 \ge 35 µg/m3, per 1 day increase) on work loss events.

- Positive association was found between short-term daily total PM2.5 exposure and work loss due to sickness
- The association was stronger among those who were highly exposed to wildfire smoke, compared to those with lower wildfire smoke exposure

Part II: Health and Economic Cost Estimates of Shortterm Total and Wildfire PM_{2.5} Exposure on Work Loss

Steps of Health and Economic Impact Calculation for Daily Total PM2.5

- 1. Repeated the analyses by rescaling the continuous exposure variable to **per 1µg/m3 increase** in 2-week average PM2.5 exposure prior to the interview date
- 2. Calculate the weekly incidence rate of the work loss days per person each year using CHIS data
- 3. Calculate the health impacts increased work loss days due to sickness for each $1-\mu g/m^3$ increase in daily total PM2.5 exposure based on the following equation adopted from BenMAP-CE:

 Δ Incidence = $\Delta y \times$ Population = $(y_1 - y_0) \times$ Population

 $\Delta y = [y_0 \times (e^{\beta \times \Delta PM} - 1)]$

- 4. Apply the updated California state-wide average daily salary (\$249.04 per day in 2015-2018 from the Bureau of Labor Statistics) to calculate the economic impacts related
- 5. Additionally, redo the above health and economic impact calculations using the coefficient (Ostro et al 1997), average annual incidence rate of work loss days per person and daily salary from BenMAP for comparison.

Coefficient ($\beta_{PM_{2.5}}$) of the PM_{2.5} effect estimate = 0.0193 (Std = 0.00143)

where exp ($\beta_{PM2.5}$) represents the odds ratio for work loss corresponding to per 1 µg/m3 increase in 2-week average PM2.5 exposure prior to the interview

- Model 1:adjusted for age, sex, income and race/ethnicity
- Model 2: plus smoking, comorbidity, interview year
- × Model 3: Model 2 plus additonal demosocioeeconomic factors and wildfire
- Model 4: Model 2 plus wildfire exposure

The odds of having work loss due to sickness increased by 2% (OR =1.02, 95% CI: 0.99, 1.05) for each 1 μ g/m³ increase in the 2week average of PM_{2.5} exposure

2-week average PM2.5 concentration prior to interview

Models	2-week average PM_{2.5} exposure, <i>per l μg/m³ increase</i> OR (95% CI)
Logistic Model (logit function) (Final weight + Replicate weight)	1.02 (0.99, 1.05)
Firth Model (to address rare event issues with final weight only)	1.020 (1.019, 1.021)
Poisson Model (Final weight +Bootstrap:1000 resample)	1.02 (0.99, 1.04)
Logistic Model (logit function) (Propensity score weighting method)	1.02 (0.99, 1.04)

Health and Economic Impact Estimates of Work Loss Associated with Daily Total PM2.5

Estimated number and cost of work loss days associated with PM_{2.5} exposure (per 1µg/m³ increase) in California, using the incidence rate calculated by CHIS weighted data and updated salary rate, 2015-2018.

Year	Weekly work- loss-day incidence rate per person (CHIS)	Avg work loss days per year in CA (Cawley et al. 2021)	Annual incidence rate of work loss days per person	β (CHIS)*	Delta ΔPM _{2.5} (µg/m³)	$\Delta \mathbf{y} = [y_0 \times (e^{\beta \times \Delta PM} - 1)]$	Population in CA (BenMAP listed)	Work loss days estimate (∆ Incidence = ∆ Incidence rate × Population)	Median daily wage (\$)**	Economic cost due to work loss per year (\$)
2015-2018	0.017	3.26	2.863	0.0193	1	0.0557829	24,932,520	1,390,808	249.04	346,366,706
2015	0.017	3.26	2.948	0.0193	1	0.0574502	24,707,640	1,419,460	237.30	336,837,867
2016	0.020	3.26	3.316	0.0193	1	0.0646245	24,868,644	1,607,124	242.17	389,197,239
2017	0.016	3.26	2.777	0.0193	1	0.0541160	25,013,056	1,353,606	253.30	342,868,331
2018	0.014	3.26	2.422	0.0193	1	0.0471999	25,140,738	1,186,641	263.38	312,537,479

Note: *According to our study, for each 1 μ g/m³ increase in 2-week average PM_{2.5} level, the odds of work loss were 1.02 (95% CI: 0.99, 1.05). Beta = 0.0193, Std = 0.0143.

** The median daily wage rate referred here was from the state-wide average daily salary in California in 2015-2018 from the Bureau of Labor Statistics (https://www.statista.com/statistics/305761/california-annual-pay/).

Estimated number and cost of work loss days associated with PM_{2.5} exposure (per 1µg/m³ increase) in California, using both the coefficient (Ostro 1987) and incidence rate adopted from BenMAP, 2015-2018.

Year	Weekly work-loss-day incidence rate per person (BenMAP)	Annual incidence rate of work loss days per person	β (Ostro)*	Delta ∆PM _{2.5} (µg/m³)	$\Delta \mathbf{y} = [y_0 \times (e^{\beta \times \Delta PM} - 1)]$	Population in CA (BenMAP listed)	Work loss days estimate (∆ Incidence = ∆ Incidence rate × Population)	Median daily wage (\$)**	Economic cost due to work loss per year (\$)
2015-2018	0.042	2.17	0.0046	1	0.010005	24,932,520	249,450	189.6	47,283,191
2015	0.042	2.17	0.0046	1	0.010005	24,707,640	247,200	182.7	45,163,401
2016	0.042	2.17	0.0046	1	0.010005	24,868,644	248,811	186.6	46,428,064
2017	0.042	2.17	0.0046	1	0.010005	25,013,056	250,255	191.2	47,848,846
2018	0.042	2.17	0.0046	1	0.010005	25,140,738	251,533	197.7	49,728,060

Note: *For each 1 μ g/m³ increase in 2-week average of fine particles, the Beta = 0.0046, Std = 0.0021.

** The median daily wage rate referred here was from BenMAP calculations for the wildfire-specific PM2.5 exposure related economic impact.

Steps of Health and Economic Impact Calculation for Wildfire-Specific PM2.5

- 1. Repeated the analyses by rescaling the continuous exposure variable to **per 1µg/m3 increase** in 2-week average PM2.5 exposure prior to the interview date
- 2. Input CMAQ models with fire (all emissions, fire and non-fire sources) and without fire sources (non-fire sources only) emissions run for each year into the BenMAP-CE platform:

To isolate wildfire-specific PM2.5 concentrations

by subtracting the daily averages of the control from the daily average baseline CMAQ concentrations

3. Calculate the health and economic impacts - increased work loss days due to wildfire smoke exposure only using same equation and the annual incidence rate and median daily salary incorporated in BenMAP-CE platform

 Δ Incidence = $\Delta y \times$ Population = $(y_1 - y_0) \times$ Population

 $\Delta y = [y_0 \times (e^{\beta \times \Delta PM} - 1)]$

4. Repeat the health and economic impact calculations using the coefficient derived from our study , but with average annual incidence rate of work loss days per person and daily salary of BenMAP.

Health and Economic Impact Estimates of Work Loss Associated with Wildfire-specific PM2.5

Table. BenMAP calculated (Meng 2022) number of work loss days and economic cost associated with wildfire-specific PM_{2.5} exposure in California, 2015-2018.

Year	Endpoint	Author	Delta (ΔPM _{2.5} Concentration)	Population	Work Loss Days	Economic Cost due to Work Loss
2015	Work Loss Days	Meng	0.71	24,707,640	708,206	129,381,224
2016	Work Loss Days	Meng	1.02	24,868,644	1,016,952	189,764,176
2017	Work Loss Days	Meng	2.82	25,013,056	2,659,312	508,400,000
2018	Work Loss Days	Meng	2.67	25,140,738	2,652,724	521,826,144

Note: For each 1 μ g/m³ increase in 2-week average daily total PM_{2.5} level, the odds of work loss were 1.02 (95% CI: 0.99, 1.05). Beta = 0.0193, Std = 0.0143.

Table. BenMAP calculated (Ostro 1987) number of work loss days and economic cost associated with wildfire-specific PM_{2.5} exposure in California, 2015-2018.

Year	Endpoint	Author	Delta (ΔPM _{2.5} Concentration)	Population	Work Loss Days	Economic Cost due to Work Loss
2015	Work Loss Days	Ostro	0.71	24,707,640	170,562	31,159,792
2016	Work Loss Days	Ostro	1.02	24,868,644	247,405	46,166,012
2017	Work Loss Days	Ostro	2.82	25,013,056	673,870	128,828,672
2018	Work Loss Days	Ostro	2.67	25,140,738	651,289	128,117,200

Note: For each 1 μ g/m³ increase in 2-week average of fine particles, the Beta = 0.0046, Std = 0.0021. Δ PM_{2.5} Concentration was automatically calculated and reported by BenMAP.

- Each 1-µg/m³ increase in daily total PM_{2.5} exposure will lead to 1.1-million to 1.6-million work loss days, and the related economic loss was 310 to 390 million dollars.
- The wildfire smoke alone could contribute to 0.7-million to 2.6-million work loss days and with a related economic loss of 129 521 million dollars per year between 2015-2018.
- Our findings suggest that current standard BenMAP estimates could underestimate the related health and economic impact when using Ostro's estimate coefficient, current BenMAP incidence rate and salary rate.

Our study has **improved** estimates in several ways:

- Study sample size
- Exposure assessment methods
- Statistical methods (e.g. sample weights)
- Annual incidence rate of work loss calculated using CHIS data
- Updated median daily salary rates

Total PM2.5 Exposure and Work Loss due to Sickness

- Air pollution, especially PM2.5, has been evidenced to cause various diseases
- Can carry many toxic chemicals and penetrate the respiratory system more deeply and enter into the bloodstream
- Conventional primary PM2.5 are commonly composed of dust from roads and black or elemental carbon from combustion sources, as well as fossil fuels combustion, which resulted from multiple moderately volatile and potentially toxic elements including the chalcophile elements
- Our study joined a small number of studies and added the empirical evidence that short-term PM2.5 exposure was associated with work loss due to sickness

Different Composition and Higher Toxicity of Wildfire-related PM_{2.5}

Previous studies have suggested:

- Wildfire-related PM2.5 is more toxic than PM2.5 from conventional sources (Holm et al., 2009; Wegesser et al. 2009)
 - $\circ~$ Different composition of $\mathrm{PM}_{2.5}\,\mathrm{during}$ smoke waves
 - Influenced by vegetation types, combustion efficiency and weather conditions such as moisture content, fire temperature and wind conditions

Reference:

(1) Holm, S.M., Miller, M.D., Balmes, J.R., 2020. Health effects of wildfire smoke in children and public health tools: a narrative review. J Expo Sci Environ Epidemiol.
 (2) Wegesser, T.C., Pinkerton, K.E., Last, J.A., 2009. California wildfires of 2008: coarse and fine particulate matter toxicity. Environ Health Perspect. 117 (6), 893–897.
 (3) https://www.iqair.com/us/newsroom/how-to-protect-yourself-from-wildfire-smoke.

Higher Toxicity of Wildfire-related PM_{2.5} (Animal Studies)

Figure 3. Protein content of lung lavage fluid supernatant of mice instilled with the indicated amounts of wildfire $PM_{10-2.5}$ or $PM_{2.5}$. *p < 0.05 compared with control.

Figure 6. Representative lung sections from mice instilled 24 hr with 100 μ g wildfire PM_{2.5}. (A) Whole lung (low-magnification; bar = 500 μ m); boxes indicate areas shown in higher magnification in (B) and (C). (B) Centriacinar lung region showing the prominent accumulation of numerous inflammatory cells within alveolar airspaces. (C) Distal alveolar region with a diffuse increase in septal cellularity and occasional inflammatory cells within the alveolar airspaces. Arrows indicate areas of inflammatory cell influx. Bar = 100 μ m in (B) and (C).

Reference: Wegesser TC, Pinkerton KE, Last JA. California wildfires of 2008: coarse and fine particulate matter toxicity. *Environ Health Perspect*. 2009;117(6):893-897.

Discussion

Other Impacts from Wildfire Smoke

- Wildfire could also exert various impacts and risks on mental health or psychiatric conditions such as depression, sleeping disturbance and anxiety disorders
- Rising evidence has indicated that mental or psychological health disorders can lead to an increased risk of cardiovascular-metabolic diseases both directly via biological pathways and through risky health behaviors

At the center of the diagram are human figures representing adults, children, older adults, and people with disabilities. The left circle depicts climate impacts including air quality, wildfire, sea level rise and storm surge, heat storms, and drought. The right circle shows the three interconnected health domains that will be affected by climate impacts--Medical and Physical Health, Mental Health, and Community Health.

Image source: U.S. Global Change Research Program. 2016. The impacts of Climate Change on Human Health in the United States: A Scientific Assessment.

Reference: https://www.chestfamily.com/

Strengths

Limitations

CHIS data

A population-based dataset representing Californians
 Enable to investigate subacute health outcomes that cannot derived from medical records

High Geo-location quality

State-of-the-art modeling estimates for both total $PM_{2.5}$ and wildfire exposures

One of the few recent studies in North America exploring air pollution associated work loss due to sickness

Exposure measurement error

□ Lack of information regarding indoor sources

Selection bias

Limitations related to exposure models

Conclusion

- Positive association was found between short-term PM_{2.5} exposure and work loss due to sickness.
- The association was stronger among those who were highly exposed to the wildfire smoke, compared to those with lower wildfire smoke exposure.
- The current federal and state PM_{2.5} standards (annual average of 12 μg/m³) could be further strengthened to protect the health of the citizens of California.
- Current National Ambient Air Quality Standards even do not count for the highly PM_{2.5} exposed days due to the wildfire events, while the wildfire-generated PM_{2.5} might be more toxic due to their different compositions.

Acute Health and Economic Impacts of Particulate Matter 2.5 on Work Loss Days (2015-2018)

Study Team and Collaborators

Thank you!

Dr. Xiao Chen

Dr. Yu Yu

Dr. Joseph Wilkins