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Research Summary:

Vehicles emit inhalable particulates from two major sources: the exhaust system, which has been extensively characterized and regulated; and non-exhaust
sources including brake-wear, tire-wear, and road dust resuspension. Increasingly stringent standards for exhaust emissions have led to the non-exhaust fraction
becoming increasingly important. Model predictions (both MOVES and EMFAC) suggest that traffic-related emissions of both PM2.5 and PM10 from non-exhaust
sources are currently on par with exhaust sources and will continue to increase in importance. Additionally, there is a growing concern over their potential toxicity
due to their high metal content. Given the increased relevance of non-exhaust emissions and associated health concerns, new studies are needed to better
estimate their magnitude and their impact on communities situated near major roadways. A greater understanding of the physical and compaositional
characteristics as well as overall emissions is needed for non-exhaust sources. Currently, a laboratory project is being funded to measure brake-wear particulate
matter (PM) under controlled laboratory conditions, but an additional study is needed to determine how those emissions behave in the real-world. The objective of
this project is to deploy a comprehensive measurement campaign near major roadway sites to capture a variety of driving behavior and fleet compositions. Real-
time instrumentation will capture transient effects and discern the influence of driving conditions (smooth freeway driving verses stop and-go) and fleet mix (light-
duty vs. heavy-duty). Filter measurements will help quantify total PM mass and identify tracers of individual non-exhaust sources. The information gathered will be
analyzed to derive emission factors of non-exhaust emissions and in particular individual sources such as brake and tire-wear. It will also be input into a dispersion
model to validate the derived emission factors and to estimate the potential exposure of downwind communities to these PM sources. The University of California,
Riverside (UCR) proposes to deploy a comprehensive suite of instruments designed to detect PM in a wide size range as well as tracers unigue to the individual
non-exhaust sources. The results of this project will be compared to current and future laboratory tests measuring brake and tire-wear PM under controlled

Also in the meeting description
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Research Motivation

* Brake and tire-wear will become
more significant contributors to
vehicle sourced PM

* new gasoline-powered cars and
passenger trucks will not be sold in

California by 2035 (N-79-20)

» The magnitude, physical and
chemical characteristics of non-
exhaust emissions need to be
characterized

A.CARB
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Figure 1. Primary PM2.5 emissions for on-road vehicles
are broken down by source type based on
EFMAC2021 emission inventory.
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Background

Non-tailpipe emissions are becoming
a larger fraction of total vehicle emissions
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Objectives

Study Objectives

* Measure time-resolved PM, ; and PM,,
mass at near road locations to quantify
exposure at near road locations.

* Measure real-time particle number
distribution and semi-real time metal
content analysis to distinguish brake and
tire PM from background and exhaust
particles.



Objectives

« Conduct source apportionment analysis
to determine contribution of brake and
tire particles to PM, ; and PM,,,.

« Determine unique tracers for brake and
tire-wear emissions from source
apportionment.

» Dispersion modeling to evaluate impact
of brake and tire wear particles on
nearby communities at downwind
locations.
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Monitoring Sites in Southern California
(January — February, 2020)
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PM, . and PM,, filter pairs were collected
upwind and downwind of highways

Bendix
PM,5
Cyclone

113 L/min

Andersen
%I PM,; Inlet

113 L/min

37.7 L/min
37.7 L/imin
Sl
37.7 L/min

(Mass and (Organics)

element) Quartz
(lons and
OCI/EC)

DRI Filter Sampler

ot

37.7 LImin
37.7 L/min
37.7 Limin

5

Filter
packs

Quartz
(Organics)

Quartz
(lons and
QOC/EC)

Teflon
(Mass and

element)

DRI Filter Sampler

PM, s Filter Sample
Collection

PM,, Filter Sample
Collection

Typical sampling periods:
* 0600-1000; 1000-1400; 1400-1800
e 1/28/2020-2/3/2020 (I-5); 18 sets
e 2/4/2020-2/10/2020 (I-710); 14 sets

e A total of 128 filters.
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Filters were analyzed for source markers

Measurement Method m Potential Markers
PM mass

e Mineral dust: Al, Si, Ca, and K;
Brake wear: Cu, Sb, Ba, Fe, Zr, Mo, and
Sn;

e Tire wear: Zn;

e Concrete road wear: Ca and S

X-ray Fluorescence Elements from sodium (Na) to
(XRF) uranium (U)

Thermal/Optical Organic, elemental carbon (OC

Analysis and EC) and thermal fractions Tailpipe emissions

Water soluble ions CI, NOg", e Primary salt: Cl- and Na*
lon Chromatography SO,%, NH,*, Na*, Mg?*, K*, e Secondary salts: NO;, SO,%, and NH,*
and Ca?* e Biomass burning: K*

e Tire wear: alkanes (C3,-Cs;)
Tire wear: pyrene, benzo(ghi)perylene,

JEnfERIED Slgelies, Tugluelng fluoranthene, phenanthrene, and

Thermal desorption PAHs alkanes, cycloalkanes,

GC/MS dibenzopyrenes
hopanes, steranes, phthalates : o )
e Motor oil emissions: hopanes and
steranes
Rubber markers, including e NR:isoprene, dipentene
pyrolysis-GC/MS styrene, isoprene, butadiene, e BR: butadiene, vinylcyclohexene
dipentene, and e SBR: styrene, butadiene,
vinylcyclohexene vinylcyclohexene

ra-performance
Iﬁllalll_dcchromatography Benzothiazole and derivatives e  Tire wear .
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PM,, concentrations were 2-3 times of

PM, .; Up/downwind differences were small

PM Concentration ( pg/m3)
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1/28(1/29(1/29|1/29|1/30{1/30{1/30|1/31|1/31|1/31| 2/1 | 2/1 | 2/1 | 2/2[2/2 |2/2 | 2/3 | 2/3
. Date / Time
Date / Time

Average PM Concentrations (ug/m3)

Upwind Upwind Downwind  Downwind
PIV|2.5 PIV|10 PIV|2.5 PIV|1O

9.56 28.47 10.88 32.49
1-710 11.00 30.37 14.36 31.87

14



Mineral dust and carbon were major PM components

I-5 Downwind, PM, I-5 Downwind, PM,,
Others Others
8.0% 10.6%

Mineral dust

Mineral dust 44.8%

31.4% Main composition:
* PM, 5: Organic matter (OM;

oM 25.4% ~30—40%), mineral dust
37.2% (~30%), and elemental carbon

55%;;' (EC; ~10-15%)

o « PM,,: mineral dust (>40%), OM
B ea% TUNH /| O S0, (~25%); coarse NO,?
4% NH, 0.7% 3 4.9% .
1.1% 6.6% ® MOI’e OM and EC% n PM25

than PM,,; more dust and

others (elements and ions) in
1-710 Downwind, PM, 5 I-710 Downwind, PM,, PM
10

Others Others
8.2%

Mineral dust
27.9%

Mineral dust
42.0%

« OM=1.2 X OC

 Mineral dust = 2.2 XAl
+2.49XSi+1.63XCa +
242 XFe + 1.94 XTi

NH,* 26% 4129  37%
13.9% 3.5% 15



Differences are found between
upwind/downwind and I-5/I-710

PM, ; Composition

m -5 Upwind

m [-5 Downwind

® Hwy-710 Upwind

® Hwy-710 Downwind

Concentration (Hg/m?3)

Geological S0, NO;~ NH," EC OM Others
Major Composition
Downwind > Upwind
EC is ~20% higher at I-710 than I-5
SO,?% is similar — regional distribution
NO, and NH,* much higher at I-710, due to two high NH,NO, events
16



High correlations were found among
elements from common sources

(a) I-5 A PM,

(b) I-710 APM,g

Fe Si Ca Al /n Ti Cu Ba Sb Sr C Mn Zr Fe Si Ca Al K In Ti Ba Sb S Cr Mn Zr
Fe Fe
Si |0.31 Si [0.40
Ca |0.41 0.79 Ca |0.64 0.38
Al |0.26 0.81 0.68 Al (034 0.70 0.35
K 10.56 0.33 0.22 0.24 K |0.46 094 0.32 0.61
Zn |0.69 0.32 0.46 0.39 0.29 Zn |0.42 0.74 0.43 0.64 0.62
Ti |0.90 0.27 0.30 0.21 0.49 0.70 Ti |0.08 0.20 0.39 0.49 0.10 0.38
Cu |0.90 0.14 0.23 0.13 0.39 0.69 0.90 Cu |0.75 0.07 0.32 0.11 0.14 0.08 0.01
Ba [0.69 0.07 0.17 0.07 0.32 0.63 0.76 0.80 Ba |0.44 0.03 0.38 0.10 0.04 0.11 0.15 040
Shb (0.01 0.17 0.09 0.30 0.01 0.00 0.01 0.04 0.02 Sb |0.15 0.31 0.27 0.26 0.30 0.33 0.17 0.01 0.05
Sr 10.53 0.22 0.23 0.12 0.27 0.38 0.43 0.46 0.28 0.00 Sr (0.19 0.07 0.35 0.13 0.04 0.11 0.22 0.12 0.01 0.14
Cr [0.29 0.02 0.08 0.11 0.26 0.21 0.20 0.29 0.22 0.01 0.03 Cr |0.35 0.30 0.07 0.29 0.30 0.45 0.00 0.15 0.09 0.07 0.02
Mn|0.67 0.25 0.34 0.12 0.43 0.26 0.48 0.49 0.26 0.07 0.50 0.08 Mn|0.37 0.38 0.23 0.29 0.34 0.24 0.05 0.14 0.17 0.19 0.00 0.09
Zr |0.87 0.15 0.25 0.13 0.35 0.70 0.89 0.94 0.81 0.04 0.37 0.28 0.43 Zr |0.50 0.01 0.16 0.02 0.04 0.05 0.00 0.76 0.31 0.04 0.03 0.12 0.07
Mo|0.01 0.03 0.01 0.00 0.01 0.01 0.01 0.06 0.00 0.02 0.00 0.25 0.00 0.04] (Mo|0.01 0.10 0.02 0.13 0.09 0.07 0.01 0.01 0.03 0.23 0.07 0.17 0.30 0.05

Darker green R%20.8;

Brake wear: Ba, Cu, and Zr
Road dust: Al, Si, K, and Ca
(Measured by XRF)

: R?=0.6-0.8.




PAH Concentrations and Distributions
near |I-5 and |-710

m|-5 mHwy-710

rntrations (ng/m

* |-710 PAH concentrations are 47% higher than I-5
« Both highways have similar PAH distributions, except I-710 has higher fluoranthene
and pyrene 18



Tire particles show elemental and
organic differences

Percent of PM Mass (%)
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0.001

0.0001

0.00001

Li ———=.

Si
Michelin K3
6.1

Tire Particle Composition

® Michelin
m Copper
© o= = o = - - - - L0800 T2y
B22InrxXFFr>GCEL3238 24228 RsnaIgS~SarFrg3RE

BR+SBR

Chemical Species

NR: natural rubber

Zn OC EC NR BR+SBR BR: butadiene rubber
05 59 39 34 23 SBR: styrene-butadiene rubber
1.0 46 22 54 23
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Summary

Average concentrations of near-road PM, ; and PM,, were
10-15 and ~30 pg/m3, respectively.

Organic matter, mineral dust, and elemental carbon (EC)
were major PM components.

Higher concentrations of EC (19-26%) and particulate
PAHs (47%) were found near [-710 than near I-5, likely
due to more diesel vehicles on |-710.

High correlations were found for elements with common
sources, such as markers for brake wear (e.g., Ba, Cu,
and Zr) and road dust (e.g., Al, Si, K, and Ca ).

Differences in elemental and rubber abundances are
found in different tires.

20
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Average PM Chemical Composition
(Downwind — Upwind)

Mass

£ Carbon Fractions Elements
i — - - OPM2.5 0PM10
I o th . ] - i T
l T f Ii 1 1’.[' s ) i / / \{_

« The downwind-upwind difference may be entirely attributed to the
on-road traffic emissions (exhaust + non-exhaust). It is the starting
point of source apportionment



Chemical Mass Balance (CMB)
for Source Apportionment

F S. t+e;,

,j 7 j,k

* AC;,: Difference in species i concentrations between downwind and
upwind measurement at time k

* F;; Source profiles for source j, normalized to PM, 5 or PM,,
concentration

* S, Source contribution from source j at time k
* e, Deviation between measured and modeled species concentrations

« Solved for §;, by EPA CMB 8.2 or Hybrid Environmental Receptor
Model (Chen and Cao, 2018)

\S]
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Faction of PM Mass Faction of PM Mass

Faction of PM Mass

Examples of Source Profiles Explored

Brake Source Profiles (PM,,)

10

1

0.1
0.01
0.001
0.0001
0.00001

10

1

0.1
0.01
0.001
0.0001
0.00001

10

1

0.1
0.01
0.001
0.0001
0.00001

M Low Cu T High Cu

[P

M Tire

[J Dust

Brake profiles:
Dynamometer
studies (CRPAQS,
2004; CARB,
2020)

Tire profiles: Tire
dust collected in
the lab and

analyzed by DRI

Dust profiles: Dust
samples collected
at monitoring sites,
and analyzed after
resuspension by
DRI

Exhaust Profiles:
Dynamometer
studies (Gas-
Diesel Split Study
2001, CARB
database)

*Potential markers
for each profile
marked
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Example

of CMB Sensitivity Tests

Source Profile
Geological MADust (PM o) 8.21 +£0.50 4.26 + 0.47
CCDust (PM o) 2.58 +£0.28 2.52+£0.30 2.56 +0.29
MCDust (PM o) 3.33+0.79 3.44 +0.80
BEAKE-C 0.43 +0.19 0.52 +0.24 0.53+ 0.25 0.53 +0.25 0.55 £ 0.26 0.51 +0.25 0.52 +0.25
BEAKE-D 0.35+0.17 0.43+ 0.19 0.43 +0.19 0.44 +0.19 0.40 +0.18 0.40 +0.18
Tire COTIRE 0.18 +£0.27 0.10 = 0.26 0.18 +0.34 0.10 +0.32
LATIRE -0.53 £0.27 0.03 +0.26 0.11 +0.26
Gasoline CS-L 0.05 £ 0.02 0.05 £ 0.02
GAS 0.05 + 0.03 0.06 = 0.03 0.08 + 0.04 0.08 + 0.04 0.07 + 0.04
DIESEL 0.25 +0.21 0.17 +£0.22 0.12 +0.22 0.10 +0.21 0.21 +0.19 0.10 +0.22 0.19 +0.19
r 0.71 0.93 0.93 0.93 0.93 0.89 0.89
x? 8.28 0.75 0.77 0.75 0.84 0.63 0.69
%MASS 183.3 117.7 84.0 84.1 85.1 100.2 102.1

CMB sensitivity tests confirm that average Upwind-Downwind difference can be

explained by exhaust and non-exhaust emissions
Two brake wear profiles (low Cu and high Cu) are required to achieve an
acceptable solution



MPIN Matrix Confirms Source Markers

SPECIES®
0Cl1 -0.03 -0.04 0.02 -0.3
0C2 -0.03 -0.02 0.25 0.01 -0.05
0C3 0.01 0.12 -0.37 0.03
0C4 -0.01 -0.07 0.21 -0.03 -0.22
0C -0.03 0.01 0.14 0.02 0.33
EC -0.14 -0.04 -0.13 0.2
Al -0.06 -0.18 0.09 -0.04 -0.32
Si -0.13 -0.27 0.04 -0.04 -0.35
Ca -0.03 -0.16 0.1 -0.04 -0.32
Ti -0.43 -l -0.09 -0.03 -0.01
Mn 0.12 0.24 -0.08 -0.03 -0.01
Fe -0.25 -0.21 -0.08 -0.09
Cu -0.2 -0.07 -0.01 0.06
Zn 0.17 -0.11 -0.23 0.02 -[
Sb -0.13 0.28 -0.02 -0.01 -0.02
1! 0.3 -0.16 -0.03 0.08
INCDPY 0.02 0.02
BGHIPE -0.03 -0.01
CORONE |  -0.03 -0.01
hop17 0.29 0.13
hop19 0.01 -0.01
hop26 -0.02 -0.02 -0.01 0.19 -0.04
DEPHTH -0.01 0.01 -0.18 0.01 0.27

* The CMB modified pseudo-inverse
normalized (MPIN) matrix indicates
the most influential species for each
source type.

* For a sensitivity test, five to ten
different source combinations are
attempted until the best solution, in
terms of CMB fitting performance and
MPIN matrix, 1s attained.

MPIN of the best CMB solution with
values (>0.4) marked in red and moderate
values (0.2 — 0.4) marked in yellow to
confirm source markers
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Applying CMB to Near-Road PM, - Samples

Coast Corvette (I-5 Downwind)

e 40 W S. Sulfate
% 30 m S. Nitrate
= W Diesel
-E 20 B Gasoline
2 o & = . * . < -
Z 10 . & _ = B e . * W Tire
s = CELILEEE o
o 0
n W Road Dust
EN 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 MA
*
& 1/28 1/29 1/30 1/31 2/1 2/2 2/3
Date and Time
AQMD (Hwy-710 Downwind)
40
| S. Sulfate
* ¢ m S. Nitrate

30 L 2
M Diesel

m Gasoline
W Tire

L
& * &
= B s N = e — L
) 0 M Road Dust
12-16 06-10 10-14 14-18 06-10 10-14 1418 0610 10-14 1418 0610 0610 10-14 14-18 o MA
2/4 2/5 2/6 2/7 2/8 2/10 2/2
Date and Time

¢ Contribution (pg m=3)
P
]

PM,
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Applying CMB to Near-Road PM, : Samples

I-5 Coast Corvette, PM, ; (10.9 pg m3)

S. Sulfate Others
2% \\ 2% Brake

e 18%

Gasoline

‘x_mesel
12%

S. Nitrate__
9%

—

Road Dust
33%

Tire
12%

Hwy-710 AQMD, PM, - (14.4 pg m3)

Brake Gasoline
8% 2%

Diesel
13%
. ~_Tire

7%

Others
23%

S. Sulfate \7
5%

S. Nitrate
18% Road Dust

24%

28




Applying CMB to Near-Road PM,, Samples

Coast Corvette (I-5 Downwind)

a 60

E} 50 . ° * . W S. Sulfate
= 40 o ®  mS. Nitrate
S 30 ¢ * + ¢ * P ’ W Diesel
E 20 7S o o ¢ ™ Gasoline
= & i

Z 10 WTire

S 0 M Brake

S M Road Dust
= 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14

= + MA

1/28 1/29 1/30 1/31 2/1 2/2 2/3
Date and Time
AQMD (Hwy-710 Downwind)

— 60 * .

" * B S. Sulfate
£ 50 . .

Ty H S. Nitrate
= 40 Diesel

S 30 . : . . [ |ese-

E 20 . . . M Gasoline
= b ® * W Tire

= 10

S o W Brake

EE' 12-16 06-10 10-14 14-18 06-10 10-14 14-18 06-10 10-14 14-18 06-10 06-10 10-14 14-18 W Road Dust
o + MA

2/4 2/5 2/6 2/7 2/8 2/10
Date and Time
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Applying CMB to Near-Road PM,, Samples

I-5 Coast Corvette, PM,, (32.5 pg m3)
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Small Differences Between Downwind and Upwind
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Summary

* Averaged over the upwind and downwind
samples, contributions of the non-exhaust
fractions (brake + tire) to PM, - exceed those of
exhaust fractions (diesel + gasoline) for |-5 (29—
30% vs. 19-21%) while they are comparable for
Hwy-710 (15-17% vs. 15-19%).

* For PM,,, the non-exhaust contributions are 2 — 3
times the exhaust contributions

* Brake wear particles are generally more abundant
than tire wear particles, though there is a higher
uncertainty in the tire wear contribution estimates
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Overview

Objective: We aim to assess the impact of exhaust and non-
exhaust emissions on the downwind communities.

Challenges: Simulations require setting up boundary conditions
(BC) and selecting emission profiles (EP). Uncertainties related
to BC and EP lead to uncertainties in the modeling results.

Strategy: In our modeling efforts, we try to leveraging the field
measurements to constrain the simulations as much as possible
to reduce modeling uncertainties. We implemented a two-domain
approach to execute this strategy.




Two-domain approach

Inlets

Y¢ Anaheim
NR site




Quasi-steady conditions captured by the field

measurements
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BC and EP for the Community Domain
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Effect of deposition

dM/dlogDp (ug/m*3)
dMrdiogDp (ug/m*3) [ SRR s e mri7es02
350+01

1.6e+02

148402
29e+01 N @ g, 00 W B ¢ e, U | [ 13et02
256e+01 1.2e+02
SV A .. Y 000 O ' . W 00 N e
20001 8.7e+01
O . WML T 2B SN W ) aEE
oot 5.8e+01

"

448401
8.80+00

oooooo
5.9e+00

w/o deposition w/ deposition w/o deposition w/ deposition
4.5 um (brake PM?) 10 um (Road dust?)
Deposition leads to 1 to 2% reduction in Deposition leads to 5 to 7% reduction in the
the Community domain. Community domain.

38



Summary

We developed a two-domain approach to take advantage of the field
measurement data to greatly reduce the uncertainties in modeling
inputs while making the computational costs manageable.

Our results suggest that the deposition can reduce particle mass
concentrations by 1 to 2% for the size range pertain to brake PM in
the downwind community and by 4-7% for the size range relevant to
road dust.

The implication is while non-tailpipe particles have relatively higher
deposition velocity compared to the exhaust particles, deposition of
non-tailpipe particles are less significant compared to that of the
exhaust particles as such near-road communities are exposed to
non-tailpipe emissions close to the concentration experienced at the
location closest to the road.
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Aerodynamic

Results from the CARB dynamometer
study, SAE 2020-01-1637
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Takeaways

* Average concentrations of near-road
PM, ;: and PM,, were 10-15 and ~30
ug/m3, respectively.

* Averaged over the upwind and
downwind samples, contributions of the
non-exhaust fractions (brake + tire) to
PM, - exceed those of exhaust fractions
(diesel + gasoline) for -5 (29-30% vs.
19-21%) while they are comparable for
Hwy-710 (15-17% vs. 15-19%).

* For PM,,, the non-exhaust contributions
are 2 — 3 times the exhaust contributions



Takeaways

 Particle size distribution measured at
near road shows the brake mode
observed in the laboratory test.

* The deposition can reduce particle mass
concentrations by 1 to 2% for the size
range pertain to brake PM in the
downwind community and by 4-7% for
the size range relevant to road dust.
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