
1

DEVELOPMENT OF THE CALIFORNIA DAIRY EMISSIONS 

MODEL (CADEM)

(Contract 19RD028)

Prepared for:

State of California Air Resources Board

Research Division

PO Box 2815

Sacramento CA 95812

Prepared by:

Ermias Kebreab1 and Jia Deng2

1University of California, Davis, One Shields Avenue

Davis, CA 90210 (530) 752 5907

2DNDC Applications Research and Training

Phone: 603-203-0186, Email: dengjia85@gmail.com

DRAFT FINAL REPORT

April 18, 2022



2

DISCLAIMER

The statements and conclusions in this report are those of the contractor and not necessarily 

those of the California Air Resources Board. The mention of commercial products, their source, 

or their use in connection with material reported herein is not to be construed as actual or implied 

endorsement of such products.
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ABSTRACT

The overall objective of this project is to develop, demonstrate, and transfer to California Air 

Resources Board (CARB) a comprehensive process-based model, the California dairy emissions 

model (CADEM), which can be applied to refine estimations of emissions of greenhouse gases 

(GHG) and nitrogen (N) gases from California dairy farms. Models for enteric fermentation from 

lactating dairy cattle and heifers were challenged with California-based data and the best 

performing models were selected. Additionally, manure-related outputs such as fecal and urine 

amount and composition, and water excretion models were developed. Multivariate models of 

GHG emissions, manure excretion, and water intake (Waterin), along with milk production, were 

developed for lactating cows, nonlactating cows, and heifers. Most equations predicted the 

response variables with reasonable accuracy, except Waterin, total urine (Ut), and urine carbon 

(Uc). No obvious differences were found between multivariate and univariate models because 

the correlation of random effects between traits was not strong; therefore, the univariate models 

were selected for CADEM. The emission and excretion models were then integrated with a 

modified Manure-DNDC. CADEM also simulated the impacts of feed additives on methane 

(CH4) emissions from dairy cows. The modifications to Manure-DNDC included incorporation 

of processes to simulate transfers and interactions of water, carbon (C), N, and phosphorus (P) 

among multiple slurry storage areas and between slurry storage areas and other components (i.e., 

housing, digesters, crop fields) within a dairy farm, distinguishing solid and liquid manure during 

manure transfer. New model interfaces have been developed to improve the usability of CADEM. 

In addition, the project team has trained CARB staff to gain proficiencies in CADEM and 

provided materials and guides on applying CADEM.
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EXECUTIVE SUMMARY

Background

About 50% of CH4 emissions in California are attributed to enteric fermentation and manure; 

therefore, achieving significant CH4 emission reduction from these sources will be critical to 

meeting Senate Bill (SB) 1383 goals of reducing methane emissions by 40% by 2030 from 2013 

levels. There are different methods for estimating GHG and reactive N gases emissions from 

dairy farms. For enteric fermentation, the most commonly used methodology worldwide is the 

Tier 1 or 2 models recommended by Intergovernmental Panel for Climate Change (IPCC, 2006). 

However, the models do not fully capture the complexity of enteric CH4 emissions. Although the 

IPCC (2006) models have been updated recently (IPCC, 2019) based partly on work conducted 

in California, it is highly recommended to use region-specific models. The Manure-DNDC 

model was developed to simulate biogeochemical cycles of C, N, and P in livestock farms and 

can be applied to simulate GHG, ammonia (NH3), and nitric oxide (NO) emissions from major 

components of livestock production facilities. However, Manure-DNDC estimates animal CO2 

emissions and C and N excreta primarily based on a prescribed fraction and a mass balance 

method that may not be able to fully represent impacts of feed ingredients and animal 

characteristics on GHG emissions and excretion from dairy cattle. Therefore, there is a need to 

integrate the animal-level and manure-/soil-level dynamics to estimate C and N dynamics in 

dairy operations with better accuracy than currently available methods. Therefore, the overall 

objective of this project is to develop, demonstrate, and transfer to CARB a comprehensive 

process-based model, the California dairy emissions model (CADEM), which can be applied to 

refine estimations of emissions of GHG and N gases from California dairy farms.
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Methods

The project team has developed CADEM by developing prediction equations for enteric CH4, N 

and C excretions from cows, and by improving the Manure-DNDC model. Several prediction 

equations developed over the years were challenged with data from California-based 

experiments and the best models were selected for inclusion in CADEM. Similarly, prediction 

equations for urine and fecal outputs including N and C contents were developed and integrated 

into CADEM. Univariate and multivariate prediction models were compared to determine model 

performance. Manure-DNDC has been modified to include various processes using mechanistic 

modeling principles. The results of the animal-based predictions for C and N excretions were 

used as an input for modified Manure-DNDC. 

Results

The improvements made through this project include: 1) integrating Manure-DNDC and UCD 

fermentation model to predict GHG emissions and manure excretion from dairy cattle, 2) 

incorporating processes to simulate mitigation of enteric CH4 emissions due to the use of two 

types of feed additives (i.e., 3NOP and nitrate), 3) incorporating processes to simulate transfers 

and interactions of water, C, N, and P among multiple slurry storage areas and between slurry 

storage areas and other components (i.e., housing, digester, crop fields) within a dairy farm, 4) 

distinguishing solid and liquid manure during manure transfer, and 5) developing new interfaces 

to improve the usability of CADEM. 

Conclusion

The CADEM simulations of carbon dioxide (CO2) and CH4 enteric fermentation emissions, 

productions of urine C, urine N, and total urine, and productions of fecal C, fecal N, and total 
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fecal from dairy cattle have been evaluated against field observations, and the results indicate 

that the CADEM can reliably predict these variables. Using the newly developed CADEM, the 

project team has performed a farm-scale simulation for a real dairy farm in California. The farm-

scale simulation demonstrates that the CADEM can be potentially applied to simulate C and N 

dynamics as well as GHG and NH3 emissions from major components within a real California 

dairy farm by equipping model input parameters (e.g., climate, soil, animal, feeding, farm 

structure, manure storage areas, manure management practices, and farming management 

practices for crop fields).
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Introduction

The agriculture sector represents nearly 60% of California CH4 emissions, 96% of which comes 

from enteric fermentation (51%) and manure management (45%) (https://ww2.arb.ca.gov/ghg-

inventory-data). California short-lived climate pollutant reduction strategy and SB 1383 have set 

a CH4 reduction goal of 40% below 2013 levels by 2030. To achieve this goal, several projects 

have been conducted to investigate GHG and multiple pollutants emissions from California 

dairies. The Dairy and Livestock Subgroup #3 organized under SB 1383 generated a document 

titled, “Dairy Research Prospectus to Achieve California’s SB 1383 Climate Goals”, which 

emphasized the need to 1) refine emission inventories using California-specific data in emissions 

estimation process and 2) evaluate the effectiveness of various mitigation strategies. These 

recommendations are based on the large variability of California dairy CH4 emissions due to the 

wide range of animal and waste management strategies employed in the State. Such variability is 

not fully reflected in CARB’s current emissions inventory due to the lack of California-specific 

data and a comprehensive modeling platform(s).

In dairy farms, emissions of GHG and N gas (i.e., NH3, nitrous oxide (N2O), NO, or dinitrogen 

(N2)) can begin soon after feed intake and continue through excretion and all the manure 

handling processes (Rotz, 2018). The processes involved in GHG and N gas emissions include 

enteric CH4 emissions, decomposition of organic manure, methanogenesis, hydrolysis of urea or 

uric acid, ammonium (NH4
+) dissociation, NH3 volatilization, nitrification, and denitrification 

among other processes (NRC, 2003). A number of factors, such as animal type and age, feed 

quantity and quality, housing conditions, manure treatment and storage, and manure land 

application, jointly with the local weather and soil properties, can impact these processes (NRC, 

2003; Rotz, 2018). The variability of these controlling factors results in large temporal and 
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spatial heterogeneity of GHG and gaseous N emissions from dairy farms (e.g., Arogo et al., 2006; 

Owen & Silver, 2015). In addition, the losses of various forms of C and N during one stage of 

manure treatment may influence the C and N losses during subsequent stages. The intricate 

transformation of C and N within the manure life cycle has further complicated the quantification 

and mitigation of GHG and gaseous N emissions at a farm scale (NRC, 2003, Rotz, 2018).

Several models have been developed at University of California, Davis (UCD) (e.g. Moraes et al., 

2014; Appuhamy et al., 2016; Niu et al., 2018) to estimate enteric CH4 emissions. However, the 

models were not linked to providing inputs for manure CH4 emission estimation. For estimating 

manure emissions, the Emission Factor (EF) method has often been utilized for quantifying GHG 

and N gas emissions at large regional scales (e.g., United States Environmental Protection 

Agency [USEPA], 2004). EFs are usually generated based on field measurements. However, the 

measured GHG and reactive N gas emissions data are still scarce and EF approaches based on 

the measurements are hard to capture the complex combinations of climate, soil, farm types, and 

manure management practices across different dairy farms. Modeling approaches ranging from 

statistical regression to processes-based models have been developed to fill the gap. Regression 

models are developed by relating gas emissions to some determining factors, such as animal type, 

feed quantity and quality, and climate among others (NRC, 2003). This kind of models may be 

constrained to the conditions under which the models have been developed (NRC, 2003; Rotz, 

2018). In addition, the regression models often lack mechanisms to include some management 

practices that could potentially reduce GHG and reactive N gas emissions (e.g., Chen et al., 2008; 

Pinder et al., 2004). In order to improve the quantification and mitigation of GHG and reactive N 

gas emissions, process-based models have drawn more attention in recent years (e.g., Li et al., 

2011; Pinder et al., 2004; Rotz, 2018). Equipped with detailed processes regarding GHG and N 
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gas production and emissions and specifications of farm facilities (Figure 1), these models are 

able to simulate gas emissions from various farm components (e.g., housing, manure storage, and 

field with manure application). This results in more refined predictions compared to the use of 

simple EFs that are commonly applied by the IPCC (Li et al., 2011; NRC, 2003; Rotz, 2018). 

Figure 1. Schematic representation of general framework of the model to be developed and on-
farm emission sources.

By considering both natural factors and farming management practices (FMPs) that control C 

and N dynamics, process-based models have been regarded as useful tools to quantify GHG and 

N gas emissions, and estimate the mitigation potential of changing FMPs (Butterbach-Bahl et al., 

2013; Chen et al., 2008). Manure-DNDC (Li et al., 2012) is an extended version of a process-

based soil dynamics model, DNDC (Li et al., 1992a, 1992b; Li, 2000). The latter has been 

extensively calibrated for California cropping systems and has been used for developing 

California CH4 emission inventory from rice paddies and N2O emission inventory from synthetic 

fertilizers and crop residue (CARB, 2018; Deng et al., 2018a, b; Figure 2). 
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Figure 2. The manure-DNDC framework.

Manure-DNDC contains fundamental processes describing the turnover of manure organic 

matter (Li et al., 2012). A relatively complete suite of biogeochemical processes, including 

decomposition, urea hydrolysis, NH3 volatilization, fermentation, methanogenesis, nitrification, 

and denitrification, have been embedded in Manure-DNDC, which allows the model to compute 

the complex transfer and transformations of C, N, and P in livestock production systems. In 

Manure-DNDC, two bridges have been built to link three basic parts, i.e., farm components (e.g., 

housing, compost, lagoon, anaerobic digester, and cropping field), environmental factors (e.g., 

temperature, moisture, air velocity, pH, redox potential, substrates concentration), and 

biogeochemical processes. The first bridge predicts environmental factors of the farm 

components based on primary drivers, such as climate, farm structure, characteristics of the 

facilities, animal type, feed quantity and quality, vegetation, soil properties, and farming 

management practices. The second bridge links the predicted environmental factors to the 

biogeochemical reactions (e.g., decomposition, fermentation, methanogenesis, nitrification, and 
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denitrification) that simulate the dynamics of C, N, and P in each farm component. Losses of C, 

N, and P through gas emission, runoff, or leaching are calculated as part of the biogeochemical 

cycles of the three elements across the livestock farm components (Figure 2) (Li et al., 2012). 

The model has been used to estimate GHG and NH3 emissions from isolated dairy facilities in 

several states (Deng et al., 2015; Li et al., 2012). 

Manure-DNDC has not been well parameterized for California dairies and does not incorporate 

all of the California dairy components that are sources of GHG and N gas emissions (e.g., solid-

liquid separation including settling basins). In addition, Manure-DNDC estimates animal CO2 

emissions and amount of C and N excreta primarily based on a prescribed fraction and a mass 

balance method (Li et al., 2012) that may not be able to fully represent impacts of feed 

ingredients and animal characteristics on GHG emissions and excretion from dairy cattle. To fill 

these gaps, this project has focused on development of CADEM. The overall objective of this 

project is to develop, demonstrate, and transfer to CARB a comprehensive process-based 

California dairy emissions model that can be applied to refine estimations of emissions of GHG 

and N gas from California dairy farms. The following specific objectives were addressed in the 

current study:

1. Compile data and review emissions of CH4, NH3, N2O, CO2, NO, and N2 from California 

dairies

2. Develop CADEM based on the Manure-DNDC and UCD enteric fermentation model to 

simulate GHG and N gas emissions. 

3. Expand CADEM to include simulations of CH4, NH3, N2O, CO2, NO, and N2 emissions 

from all dairy components. 

4. Calibrate, validate, and improve the CADEM
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5. Apply CADEM to estimate efficiencies of alternative dairy practices in mitigating CH4, 

NH3, N2O, CO2, NO, and N2 emissions from California dairies  

6. Produce an easy-to-use graphical user interface (GUI) of CADEM and train CARB staff 
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Diet Database Construction

A database that contains the composition of diets commonly fed at California dairy farms is 

required for an accurate prediction of GHG emissions from dairy cattle. Such a database was 

collated from dairy experiments performed in California that were published recently, that is 

from 2010 onwards. Before including studies in the database, dietary treatments were screened 

and data from treatments using specific supplements that are not described by common macro- 

and micro-nutrients were not included, which often resulted in the control treatment only. The 

database comprised 66 treatments from the following 13 studies: Cassinerio et al., 2015; Havlin 

et al., 2015; Naranjo et al., 2020; Niu et al., 2016; Rauch et al., 2012; Robinson et al., 2010; 

Robinson et al., 2011; Robinson et al., 2012; Roque et al., 2019; Swanepoel et al., 2010; 

Swanepoel et al., 2014; Swanepoel et al., 2018; Tewoldebrhan et al., 2017. Treatments that 

included supplements that are not easily described by commonly used dietary nutrients were 

removed from the dataset, which applied to: Robinson et al. (2010; 1 rumen protected lysine and 

1 rumen protected amino acids product), Robinson et al. (2011; 1 rumen protected lysine 

treatment), Cassinerio et al. (2015; 3 tomato seed treatments), Tewoldebrhan et al. (2017; 2 β-

mannanase treatments), Swanepoel et al. (2018; 3 treatments with rumen protected methionine, 

phenylalanine and tyrosine) and Roque et al. (2019; 2 β-mannanase treatments). 53 dietary 

observations were retained after the removal of these treatments, after which dietary nutrient 

content of neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, crude protein (CP), 

fat, ash, and P were calculated from dietary ingredient composition using Table values of the 

NRC (2001). Furthermore, samples were drawn from uniform distributions for body weight 

(BW), days in milk, and milk protein percentage. Boundaries for the uniform distribution were 

600 and 800 kg BW for Holstein cows and 450 and 550 kg BW for Jersey cows, 0 and 305 days 
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in milk with dry cows assigned 365 days in milk, 2.45% and 4.09% for milk protein percentage. 

Kernel densities, i.e. a non-parametric way to estimate the probability density function of a 

random variable, were then estimated per dietary and animal variable and are shown in Figure 3. 

These identify whether a certain variable is normally distributed or has skewed distribution that 

many necessitate further description. Most of the diet characteristics are normally distributed so 

it can be described by the averages. 

Figure 3. Density kernel plots for diet and animal characteristics of California dairy cattle.
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Development of Enteric Fermentation Model

Lactating dairy cows

Many equations have been developed to predict CH4 emissions from dairy cattle. Appuhamy et 

al. (2016) evaluated 40 CH4 emission predicting equations developed in North America, Europe, 

Australia, and New Zealand. Niu et al. (2018) built eleven equations to predict CH4 emissions. In 

order to find an appropriate equation, which can well represent CH4 emission by dairy cattle in 

California, data from three experiments (Niu et al., 2016; Tewoldebrhan et al., 2017; Roque et al., 

2019) conducted in California were used to evaluate the predictability of four equations, two of 

which were selected from Appuhamy et al. (2016):

CH4 = (1.23 DMI – 1.45 FA + 0.120 NDF)/0.05565     (1)

CH4 = exp (3.15 – 0.035 EE) DMI       (2)

The other two were selected from Niu et al. (2018):

CH4 = 49.5 + 2.57 NDF + 12.1 DMI       (3)

CH4 = 136 + 12.3 DMI – 2.96 EE       (4)

where CH4 = Daily methane emissions (g/d), DMI = Dry matter intake (kg/d), FA = Dietary fatty 

acid content (% of DM), NDF = Dietary NDF content (% of DM), EE = Dietary fat content (% 

of DM).

All the equations were selected based on the rank in the studies and the availability of the 

covariates. The three datasets contained 254 observations in total. None of the datasets provided 

the information on FA, thus the following equation developed by Palmquist et al. (2003) was 

used to estimate dietary FA content:
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FA = –0.98 + 1.03 EE         (5)

Root mean squared error of prediction (RMSEP) and concordance correlation coefficient (CCC; 

Lawrence and Lin, 1989) were used to evaluate the accuracy and precision of the four equations.

Table 1. Root mean square error of prediction (RMSEP) and concordance correlation coefficient 
(CCC) of four equations.

Equation RMSEP, % of mean observed value CCC

(1) 43.01 0.21

(2) 37.99 0.23

(3) 26.71 0.27

(4) 26.77 0.28

As shown in Table 1, equations 3 and 4 were very close and out-performed equations 1 and 2. 

The equation 3 was selected for use to estimate CH4 emissions in CADEM.

Through this project, we have integrated the UCD enteric model into CADEM to predict GHG 

emissions and manure excretion (i.e., volatile solid in manure, water, C, and N in urine and fecal 

parts of manure) from dairy cattle. Specifically, a group of the empirical equations developed by 

the UCD group (Table 2) has been seamlessly integrated into the code of the CADEM model. 

These equations can be used to simulate dairy CO2 emission, enteric CH4 emission, and dairy 

excretion (e.g., water, C, and N amounts in manure) from California dairy cattle. The predicted 

CO2 and CH4 emissions, as well as dairy excretion would be reported on a daily basis. The dairy 

excretion goes through other processes in manure life cycle (e.g., transfers from housing to 

manure storage areas and/or lands receiving manure, manure transformation through physical, 
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chemical, or biogeochemical processes). GHG emissions from manure storage areas and/or lands 

can be simulated by CADEM as well by tracking manure transfers and transformation.

Table 2. Equations for calculating dairy CO2 emission, enteric CH4 emission, and dairy 
excretion. The equations were from the UCD fermentation model.

Equations Notes

[6] CO2 flux = 0.55×DMI Daily CO2 flux

[7] CH4 flux = 49.5+12.1×DMI+2.57×NDF Daily enteric CH4 flux

[8] Urine = -7.742+0.388×DMI+0.726×CP+2.066×MPR Daily urine amount

[9] UrineC = -0.1601 +0.0082×DMI+0.0107×CP+0.00013×BW
Daily urinary C 

excretion

[10] UrineN = -166+5.75×DMI+13.1×CP
Daily urinary N 

excretion

[11]
Fecal water = 1.987×DMI+0.348×ADF-0.412×CP-

0.074×DM-0.0057×DIM

Daily fecal water 

amount

[12] FecalC = 0.169×DMI-0.034×CP+0.027×ADF-0.075×MPR
Daily fecal organic C 

excretion

[13] FecalN = -58.3+9.07×DMI+0.902×ADF+2.14×CP   
Daily fecal organic N 

excretion

[14] Volatile solids = -1.201+0.402×OMI+0.036×NDF-0.024×CP
Daily volatile solids 

excretion

Definitions of variables listed in equations
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ADF Acid detergent fiber content in feed

BW Cow body weight

CP Crude protein content in feed

DIM Days in milk

DM Dry matter content in fresh feed

DMI Daily dry matter intake rate

MPR Milk protein percentage

NDF Neutral detergent fiber content in feed

OMI Organic matter intake

The applications of the UCD fermentation model require new model input parameters of feed 

ingredients (e.g., organic matter (OM), fat, ADF, NDF, and lignin contents in feed; see Table 2). 

To facilitate the applications, the Manure-DNDC database of feed ingredients information has 

been expanded and updated to form the CADEM database by including the new required 

information. Currently, around 120 feed types with ingredients information have been included 

in the database (see Table 3 for the database example). In addition, we have created new model 

interfaces (Figures A1 and A2) to receive new input parameters (i.e., dry matter faction in feed, 

milk protein content, cow body weight, and days in milk), to calculate input parameters of feed 

ingredients based on feed types, and to allow model users to choose different options, the UCD 

fermentation model or the original functions in Manure-DNDC, for simulating dairy CO2 flux, 

enteric CH4 flux, and dairy excretion. These new interfaces provide flexibility in preparing 
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model inputs because they allow users to estimate feed ingredient parameters based on feed types. 

They also facilitate conducting simulations of dairy CO2 flux, enteric CH4 flux, and dairy 

excretion based on data availability.
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Table 3. Example of updated feed ingredients (in percentage) information.
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The CADEM interface has also been updated to allow model users to set feed additive input 

parameters, including type and amount, to apply the function of simulating impacts of feed 

additive on enteric CH4 emissions (please refer to the section of "Develop CADEM to simulate 

effects of feed additives on mitigating CH4 flux from cattle"). The new added processes and 

updated interface would enable CADEM to simulate the CH4 reduction potential of 3NOP and 

nitrate for both beef and dairy cattle. As more studies on impacts of feed additives on mitigating 

enteric CH4 flux is conducted, we expect that these equations would be updated and more types 

of feed additives would be included in CADEM.

Heifers

Enteric CH4 emissions from heifers may not be the same as lactating dairy cattle. Therefore, we 

evaluated 18 mathematical models developed by Moraes et al. (2014), Jiao et al. (2014), US EPA 

(dairy heifers), IPCC (2019), Van Lingen et al. (2018), and Charmley et al. (2016). Table 4 

shows the summary of the data (from experiments conducted over 40 years at the USDA Energy 

Metabolism unit (Bethesda, MD)) used for evaluation of heifer’s CH4 prediction equations and 

Table 5 shows model performance on predicting CH4 emission for heifers for the 18 equations:

Table 4. Summary of data (n=458) used for evaluation of heifer’s CH4 prediction equations

Variable Mean SD Minimum Maximum

Gross energy intake, MJ/d 100 27.37 47.37 185

DMI, kg/d 5.12 1.36 2.56 9.78

Ether extract (EE), % 3.51 1.46 0.67 7.55

NDF, % 42.38 15.12 17.88 78.29
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Forage, % 91.88 17.96 35.31 100

CH4 emission, g/d 114 32.62 46.63 230

Table 5. Model performance on predicting CH4 emission for heifers of 18 equations (n = 458)

Eq.
No.

Equation RMSPE, % 
of mean

RSR ccc Mean 
bias, % of 
MSPE

Slope 
bias,% of 
MSPE

15 Moraes et al. 2014 H 15.24 0.53 0.82 0.61 2.45

16 Moraes et al. 2014 H 18.74 0.65 0.77 3.88 3.58

17 Moraes et al. 2014 NL 26.35 0.92 0.62 67.25 0.33

18 Moraes et al. 2014 NL 24.06 0.84 0.66 62.19 0.69

19 Jiao et al. 2014 17.33 0.60 0.81 21.62 1.45

20 US EPA (dairy heifers) 16.40 0.57 0.82 15.81 0.43

21 IPCC 2019 15.27 0.53 0.85 0.01 3.37

22 Van Lingen et al. 2019 [12] 19.17 0.67 0.69 20.45 16.68

23 Van Lingen et al. 2019 [13] 23.22 0.81 0.62 32.66 0.19

24 Van Lingen et al. 2019 [14] 20.96 0.73 0.80 96.62 0.44

25 Van Lingen et al. 2019 [15] 19.58 0.68 0.67 12.75 10.02

26 Van Lingen et al. 2019 [16] 33.52 1.17 0.37 61.45 0.60

27 Van Lingen et al. 2019 [38] 17.09 0.60 0.75 5.23 15.62

28 Van Lingen et al. 2019 [39] 20.66 0.72 0.69 4.85 1.31

29 Van Lingen et al. 2019 [40] 27.82 0.97 0.71 45.89 0.09
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30 Van Lingen et al. 2019 [41] 18.86 0.66 0.70 12.89 6.37

31 Van Lingen et al. 2019 [42] 29.83 1.04 0.44 50.46 0.12

32 Charmley et al. 2016 16.13 0.56 0.82 10.99 0.23

The best models for predicting emission from heifers were IPCC (2019), Moraes et al. (2014), 

Van Lingen et al. (2019 model 38) and Charmely et al. (2016). Given that the IPCC (2019) is an 

internationally recognized standard (also developed with some California data) and easy to 

implement, we recommend the following IPCC (2019) to be used to estimate CH4 emissions 

from dairy heifers.

CH4 (MJ/d) = 0.063 × Gross energy intake (MJ/d)    (33)
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Multivariate and Univariate Models to Predict Greenhouse Gas Emission, 

Manure Excretion and Water Intake in Dairy Cattle

Several studies have investigated the mitigation strategies (e.g., Waghorn et al., 2008; Klop et al., 

2016; Honan et al., 2021), measurements (e.g., Pinares-Patiño et al., 2008; Hammond et al., 

2016), and prediction (e.g., Moraes et al., 2014; Appuhamy et al., 2016a; Niu et al., 2018) of 

enteric CH4 emissions for dairy cattle. Manure produced by animals generates CH4, N2O and 

NH3 through decomposition, hydrolysis, nitrification and denitrification processes (Li et al., 

2012). The organic matter (or volatile solids, VS) in manure is closely related to the potential 

CH4 production from manure and is used as a predictor for CH4 production in the 

Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology (IPCC, 2006). However, 

lignin in manure is resistant to anaerobic digestion and does not contribute to CH4 production, 

therefore VS without lignin, also known as biodegradable VS (dVS) is a better predictor for 

manure CH4 (Appuhamy et al., 2018). Various prediction models dealing with whole farm 

emissions, including emissions at animal, manure and soil levels have been developed in recent 

years (e.g., Li et al., 2012; Rotz et al., 2014). The quantification of detailed manure compositions, 

including carbon, nitrogen and water content, can provide inputs for these whole-farm models. 

Water intake (Waterin) is essential to milk production, and to predicting manure water excretion 

and overall water footprint at animal level. 

Most extant models for the prediction of GHG emissions, manure excretion and Waterin are 

univariate (e.g., Appuhamy et al., 2014; Niu et al., 2018). However, univariate models do not 

take correlations between response variables into consideration and may lead to model bias 

(Moraes et al., 2015). Van Lingen et al. (2018) developed a multivariate model to predict 

emissions and excretion for dairy cows, but the model only includes CH4, dVS and manure 



29

nitrogen as the response variables. In this study, we aimed to develop a multivariate model to 

predict CH4, CO2, VS, dVS, manure carbon and nitrogen, water intake for dairy cattle and 

compare them with univariate model to determine which equations should be used in CADEM. 

Most studies focus on the environmental effects of lactating cows alone, therefore, we expanded 

the model to include nonlactating cows and heifers to enable the assessment of environmental 

impact at the whole farm level.

Data sources

A dataset containing individual records of CH4 production, manure excretion and water intake 

from Holstein and Jersey lactating (n = 1111) and nonlactating (n = 591) cows, and Holstein, 

Jersey and Angus-Hereford cross heifers (n = 414) was assembled. Records were collected in 53 

trials at the former USDA Energy Metabolism Unit at Beltsville, Maryland from 1963 to 1995. 

Descriptive statistics for the variables used in this study are shown in Table 6. 

Table 6. Descriptive statistics of diet compositions, animal status emission and excretion for the 
dataset used in this study

Item* Lactating cows (n = 1111) Nonlactating cows (n = 591) Heifers (n = 414)

Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

CP, % of DM 16.2 (2.5) 5.2 23.5 16.0 (2.4) 4.9 21.8 15.6 (2.9) 10.4 23.6

NDF, % of DM 34.3 (7.5) 14.9 76.1 36.3 (10.0) 14.0 74.0 41.2 (14.9) 13.2 78.3

ADF, % of DM 20.0 (4.2) 7.7 47.1 21.6 (6.9) 5.0 47.4 24.6 (11.4) 4.3 48.3

Lignin, % of 

DM

4.4 (1.4) 0.5 9.4 4.8 (2.0) 0.8 14.3 5.2 (2.7) 0.4 13.5

EE, % of DM 2.8 (1.0) 1.0 7.0 2.7 (0.9) 0.8 7.6 2.9 (1.1) 0.9 6.3

Ash, % of DM 6.4 (1.1) 3.7 12.1 7.3 (2.3) 3.5 22.1 6.4 (1.9) 3.1 13.7
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DM, % of diet 65.3 (19.8) 30.2 97.4 67.9 (20.9) 19.4 98.7 56.2 (27.0) 19.7 97.0

DMI, kg 16.5 (4.3) 3.9 29.4 6.7 (2.0) 2.3 13.4 5.4 (1.6) 1.8 12.8

OMI, kg 15.4 (4.0) 3.6 27.3 6.2 (1.9) 2.1 12.8 5.0 (1.5) 1.7 11.9

DIM, d 162 (82.1) 11.0 488 - - - - - -

BW, kg 594 (88.6) 302 854 668 (88.4) 328 893 345 (72.9) 195 542.0

MY, kg/d 23.3 (10.3) 0.1 56.6 - - - - - -

mPro, % 3.3 (0.4) 2.3 5.8 - - - - - -

mFat, % 3.67 (0.75) 1.42 7.6 - - - - - -

CH4, g/d 298 (91.8) 68.3 551 162 (43.1) 42.4 322.9 119 (37.6) 47.9 248

CO2, kg/d 10.6 (2.1) 3.7 17.1 6.4 (1.3) 2.2 10.3 4.6 (1.1) 2.4 8.5

Waterin, kg/d 60.5 (28.3) 2.0 121.3 24.6 (14.9) 1.0 124.4 14.3 (10.8) 0.2 109.2

VS, kg/d 5.9 (1.8) 1.5 12.1 2.2 (0.9) 0.7 6.1 1.9 (0.7) 0.4 7.8

dVS, kg/d 5.3 (1.6) 1.4 11.4 2.0 (0.8) 0.7 5.8 1.7 (0.6) 0.4 7.6

FDM, kg/d 5.5 (1.8) 1.1 11.2 1.9 (0.8) 0.5 5.5 1.7 (0.6) 0.3 4.1

FW, kg/d 27.1 (10.2) 4.8 65.9 8.1 (4.1) 1.5 29.7 6.6 (3.0) 1.0 21.6

FC, g/d 2541 (798.2) 539 5208 882 (383.9) 215 2626 789 (302.2) 143 2017

FN, g/d 150 (54.8) 35.1 377.6 51.2 (19.1) 13.2 125.2 46.9 (18.3) 11.8 119.4

Ut, kg/d 17.5 (8.9) 4.4 138.3 15.9 (11.4) 2.5 103.8 9.6 (5.0) 1.8 31.8

UC, g/d 232 (99.9) 12.1 1925 137 (71.0) 29.2 1115 99.5 (78.7) 29.4 237.4

UN, g/d 152 (65.8) 22.3 363 108 (37.1) 17.0 248 71.7 (34.2) 18.1 212.5

* MY = milk yield, mPro = milk protein, mFat = milk fat, VS = volatile solids, dVS = 

biodegradable volatile solids, FDM = fecal DM, FW = fecal water, FC = fecal carbon, FN = fecal 

nitrogen, Ut = total urine, UC = urine carbon, UN = urine nitrogen
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Multivariate Model

A total of 12 variables, including CH4 (g/d), CO2 (kg/d), water intake (kg/d), VS (kg/d), dVS 

(kg/d), fecal DM (FDM, kg/d), fecal water (FW, kg/d), fecal carbon (FC, g/d), fecal nitrogen (FN, 

g/d), total urine (Ut, kg/d), urine carbon (UC, g/d) and urine nitrogen (UN, g/d), were predicted by 

a multivariate model for lactating cows, nonlactating cows and heifers. However, VS and dVS 

were not available directly in the dataset. Urine organic matter (OM) is approximately 4 times of 

urine carbon (Dijkstra et al. 2013), therefore, VS was calculated as the sum of measured fecal 

OM and 4 times the measured UC, i.e., VS = fecal OM + 4 UC (Appuhamy et al., 2018). Then 

dVS was obtained by subtracting fecal lignin from VS. 

A Bayesian multivariate model was constructed as follows:

Y = X B + Z1 Δ + Z2 Α + Ε [i]

where Y is an n × r matrix, with each row representing r (r = 12) response variables or columns 

of each observation; X (n × m), Z1 (n × j) and Z2 (n × k) are the design matrices relating B, Δ 

and Α to Y; B is an m × r matrix with each row representing the regression coefficients 

predicting each response variable; Δ is a j × r matrix with each row representing the study 

random effects on each response variable; Α is k × r matrix with each row representing the 

animal random effects on each response variable; E is an n × r error matrix; n, j, k, and m 

represent the number of observations, studies, animals, and covariates, respectively. Animal was 

included as a random effect because one animal was used in multiple studies and had multiple 

observations. To understand the distributions of error, study and animal random effect, consider 

Δ, Α and E matrices as stacked column-wise δ, α and ϵ vectors:

Δ = [δ1 δ2 … δr], Α = [α1 α2 … αr], Ε = [ε1 ε2 … εr]
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[ii]

where δp, αp and ϵp are the study random effect, animal random effect and error vectors, 

respectively for p = 1 to r. Then the distribution of δ, α and ϵ was:

[iii]

where Ij, Ik and In are identity matrices of order j, k and n, respectively; Gδ, Gα and Rϵ are 

unstructured covariance matrices of order r for δ, α and ϵ, respectively. Minimally informative 

distributions were specified for the priors so that the inference is mostly influenced by the 

observed data (Gelman et al., 2004). All the regression coefficients were set to follow a normal 

prior with 0 mean and variance equal to 1010. Inverse Wishart priors were specified for 

covariance matrices with degrees of freedom equal to 0.1 and scale matrix equal to 104 Ir, where 

Ir is an identity matrix of order r.

Covariates for model selection included breed, DMI, OM intake (OMI), days in milk (DIM), BW, 

age, milk yield (MY), milk protein (mPro), milk fat (mFat), and dietary contents of NDF, ADF, 

CP, EE, lignin and ash. Model selection was based on deviance information criterion (DIC). A 

decrease of DIC value by more than 10 units indicates a substantial improvement by an 

additional covariate (Spiegelhalter et al., 2002). Otherwise, the covariate was considered 

unnecessary. Given the multivariate model contained 12 response variables and 15 covariates, 

the computation load of a greedy search for the best model was extremely heavy. Instead, a 

bidirectional selection was conducted in this study (Draper and Smith, 1998). At each step, all 

possible additions and deletions of a single covariate were made, and the action that improves 
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DIC the most was taken. The procedure was repeated until no improvement can be made, or the 

improvement of DIC was less than 10 units, for each of the response variable one by one.

The Markov Chain Monte Carlo (MCMC) was generated using Gibbs sampling. After checking 

the MCMC convergence based on graphical methods, including trace, autocorrelation and 

running mean plots (Roy, 2020), the chain length was set to be 1.1 × 105 with the first 104 

iterations removed as burn-in and chain thinning of 25. All the models were developed using the 

MCMCglmm package (Hadfield, 2010) in R (version 4.1.2, R Foundation for Statistical 

Computing, Vienna, Austria).

Univariate Models

To compare performance of multivariate vs. univariate models given our dataset, all regression 

coefficients were estimated using a univariate Bayesian regression model based on similar 

procedures described above, except the multivariate structure was switched to a univariate one. 

The statistic model is as follows: 

yip = β0 + β1 xip1+ β2 xip2 + ··· + βs xips + δs + αa + eip  [iv] 

where yip is response variable p from observation i; β0 is the slope; xip1 to xips are covariates 

related to slopes β1 to βs; δs and αa are the study and animal random effects related to observation 

i; eip is the random error. The study, animal, and error terms are distributed as δs ~ N(0, σδ
2), αa ~ 

N(0, σα
2), and eip ~ N(0, σe

2), respectively. Similar to multivariate models, all the regression 

coefficients were set to follow a normal prior with 0 mean and variance equal to 1010. Inverse 

Wishart priors were specified for study, animal and error variances with degrees of freedom 

equal to 0.1 and scale parameter equal to 104.
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All the covariates in the univariate models were kept the same as those in multivariate models 

without selection, so that we could examine whether multivariate models predict the response 

variables better than univariate ones given the same set of covariates.

Model Evaluation

All the multivariate and univariate models for three animal groups were evaluated using the K-

fold cross-validation method (Efron and Tibshirani, 1993), in which folds were individual studies 

(K = number of studies). Each fold was used as a validation set, and its predicted response 

variables were calculated based on the model fitted from the remaining folds. The goodness of 

model prediction was assessed by the root mean square prediction error (RMSPE; Bibby and 

Toutenburg, 1977), RMSPE to standard deviation of observed values ratio (RSR; Moriasi et al., 

2007), mean bias (MB), and slope bias (SB). 

An independent test dataset containing CH4 emissions for lactating cows was used to examine 

the prediction accuracy of the CH4 emission equation developed in this study. The independent 

dataset was collected from the three trials conducted in the US, and included 161 observations, 

48 of which were from Niu et al. (2016), 36 of which were from Tewoldebrhan et al. (2017), and 

77 from Roque et al. (2019). The prediction accuracy of the equations developed in the current 

study was compared with three published equations (Table 7). Only the CH4 emission equation 

for lactating cows was examined due to the lack of independent data for the other variables.

Table 7. Methane prediction equations used for the comparison with our equation for lactating 
cows

Eq. Reference Prediction equation*

34 Niu et al., 2018 –126 + 11.3 × DMI + 2.30 × NDF + 28.8 × mFat + 

0.148 × BW
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35 Moate et al., 2011 e(3.15 – 0.035 × EE) × DMI

36 Moraes et al., 2014 –9.311 + 0.042 × GEI + 0.094 × NDF – 0.381 × EE + 

0.008 × BW + 1.621 × mFat

* mFat = milk fat (% of milk), GEI = gross energy intake (MJ/d)

The final selected multivariate models for lactating cows, nonlactating cows and heifers are 
shown in Table 8, 

Table 9, and Table 10, respectively. All the equations contained an intercept for lactating and 

nonlactating cows, but all the equations for heifers did not except FW, FC, and FN. The intercepts 

were excluded from those equations because they were highly varied (SD > 10 × mean), which 

could cause a model bias and undermine the cross validation. The most important factor of 

predicting GHG emissions and manure excretions was feed intake (DMI or OMI), which was 

contained in all the equations except the Ut equation for nonlactating cows. Compared to DMI, 

OMI excludes ash and should be theoretically more relevant to GHG emissions and manure OM 

excretions (Appuhamy et al., 2018). Although several equations contained OMI instead of DMI 

based on the model selection, we only found minor differences on the results of DIC and cross 

validation between models replacing DMI with OMI or vice versa, because of the small 

difference between DMI and OMI. Breed was not present in any equations in the final selected 

models. Similarly, Moraes et al. (2014) did not find any significant effects of breed on emissions 

when dietary compositions and animal status were considered, indicating a similar biological 

process of producing GHG production and manure excretions shared by bovine breeds 

(Klevenhusen et al., 2011).

Table 8. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), milk yield (MY, 

kg/d), fecal DM (FDM, kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, 
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kg/d), total urine (Ut, kg/d), urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS 
(kg/d) of lactating cows (n = 1111).

Eq. Selected model1 Model performance2 

RMSPE, % RSR MB, % SB, %

37 CH4 = –108.00 (13.96) + 17.65 (0.56) × DMI + 

3.04 (0.40) × ADF + 25.86 (1.95) × mFat – 

1.89 (0.22) × MY 

16.7 0.54 0.66 4.4 

38 CO2 = 2.77 (1.18) + 0.39 (0.019) × DMI + 

0.077 (0.033) × CP

7.5 0.38 0.58 4.5

39 Waterin = –19.98 (9.08) + 2.71 (0.28) × DMI + 

0.35 (0.11) × DM + 0.48 (0.11) × MY

42.5 0.91 0.47 1.1

40 FDM = –0.34 (1.23) + 0.38 (0.019) × DMI – 

0.084 (0.032) × CP + 0.047 (0.015) × ADF

10.6 0.33 0.13 0.15

41 FN = –62.71 (7.14) + 10.22 (0.19) × DMI + 

2.00 (0.33) × CP + 2.59 (0.56) × Lignin

14.9 0.41 0.14 3.1

42 FC = 149.3 (116.55) + 177.51 (2.56) × DMI + 

19.93 (2.29) × ADF – 42.22 (4.18) × CP + 

35.27 (11.36) × mFat – 111.47 (19.32) × mPro

10.8 0.34 0.18 0.50

43 Fw = –4.07 (2.69) + 2.08 (0.046) × DMI + 0.42 

(0.036) × ADF – 0.35 (0.076) × CP – 0.068 × 

(0.022) DM – 0.0076 (0.0016) × DIM

14.7 0.0011 0.23 2.4

44 Ut = 1.11 (2.84) + 0.65 (0.094) × DMI + 0.71 

(0.14) × CP – 0.24 (0.037) × MY

47.0 0.92 0.23 3.3

45 UN = –242.33 (11.69) + 9.59 (0.38) × DMI + 20.3 0.47 0.020 7.4
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16.24 (0.49) × CP + 0.053 (0.014) × BW – 2.47 

(0.15) × MY

46 UC = –215.88 (31.58) + 8.54 (0.84) × DMI + 

11.20 (1.35) × CP + 0.14 (0.035) × BW + 10.85 

(2.40) × Lignin

35.8 0.83 0.63 0.32

47 VS = –1.56 (1.10) + 0.41 (0.020) × OMI + 

0.061 (0.015) × ADF

10.4 0.35 0.84 0.016

48 dVS = –1.25 (1.10) + 0.37 (0.020) × OMI + 

0.025 (0.010) × NDF

11.3 0.37 0.73 0.011

1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI is 

in kg/d; CP, NDF, ADF and Lignin are in % of dietary DM; mFat = milk fat, %; mPro = milk 

protein, %; DM is % of as-fed diet; DIM = day in milk; BW is in kg; OMI = organic matter 

intake, kg/d.

2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 

= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 

of MSPE; SB = Slope bias, expressed as a percentage of MSPE. 

Table 9. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), fecal DM (FDM, 

kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, kg/d), total urine (Ut, kg/d), 
urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS (kg/d) of nonlactating cows 

(n = 591).

Eq. Selected model1 Model performance2

RMSPE, % RSR MB, % SB, %
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49 CH4 = 45.43 (5.99) + 17.84 (0.48) × DMI – 

2.40 (1.11) × EE

15.9 0.59 1.6 0.58

50 CO2 = 2.87 (1.17) + 0.57 (0.057) × OMI 9.4 0.45 0.21 1.8

51 Waterin = 8.58 (4.21) + 1.15 (0.31) × DMI + 

0.91 (0.35) × Ash

60.7 1.0 1.1 0.68

52 FDM = –1.16 (1.24) + 0.35 (0.054) × DMI + 

0.023 (0.012) × NDF

14.9 0.35 0.46 0.37

53 FN = –27.14 (3.35) + 9.11 (0.18) × DMI + 1.16 

(0.16) × CP

14.7 0.39 1.9 1.6

54 FC = –526.36 (33.35) + 151.36 (2.56) × DMI + 

19.24 (0.82) × ADF 

13.9 0.32 2.5 1.3

55 Fw = –6.38 (1.33) + 1.58 (0.069) × DMI + 0.20 

(0.021) × ADF

21.0 0.42 4.1 0.48

56 Ut = 8.84 (2.78) – 0.14 (0.067) × ADF + 1.22 

(0.25) × Ash

69.8 0.98 1.0 0.0062

57 UN = –124.87 (9.79) + 12.16 (0.44) × DMI + 

8.15 (0.44) × CP + 0.44 (0.10) × NDF

19.1 0.56 8.64 0.36

58 UC = 5.68 (18.13) + 14.54 (1.54) × DMI + 3.90 

(1.62) × Ash

48.3 0.93 0.53 0.16

59 VS = –0.84 (1.24) + 0.36 (0.058) × OMI + 

0.039 (0.016) × ADF

15.5 0.39 0.97 1.33

60 dVS = –0.16 (1.18) + 0.32 (0.055) × DMI 19.2 0.49 3.7 0.077
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1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI is 

in kg/d; CP, NDF, ADF, EE and Ash are in % of dietary DM; OMI = organic matter intake, kg/d.

2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 

= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 

of MSPE; SB = Slope bias, expressed as a percentage of MSPE.

Table 10. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), fecal DM (FDM, 

kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, kg/d), total urine (Ut, kg/d), 
urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS (kg/d) of heifers (n = 414).

Eq. Selected model1 Model performance2

RMSPE, % RSR MB, % SB, %

61 CH4 = 16.64 (0.56) × DMI + 0.86 (0.12) × 

NDF

19.9 0.63 5.6 0.014

62 CO2 = 0.62 (0.070) × OMI 34.1 1.5 94.2 0.12

63 Waterin = 1.69 (0.23) × DMI + 0.093 (0.054) × 

DM + 1.18 (0.27) × Ash

82.8 1.1 44.1 2.9

64 FDM = 0.34 (0.066) × DMI 22.0 0.58 30.2 0.028

65 FN = –35.040 (20.10) + 9.40 (0.20) × DMI + 

1.17 (0.17) × CP + 1.57 (0.25) × Lignin + 2.22 

(0.48) × EE

16.7 0.43 1.4 1.3

66 FC = –369.69 (42.91) + 160.22 (2.56) × DMI + 

12.25 (0.79) × ADF

12.7 0.33 0.27 1.5

67 Fw = –2.75 (19.80) + 1.38 (0.075) × DMI + 

0.16 (0.028) × ADF – 0.098 (0.060) × CP

26.8 0.60 26.6 0.17
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68 Ut = 0.53 (0.11) × DMI + 1.27 (0.13) × Ash 43.9 0.84 10.6 1.5

69 UN = –71.25 (21.92) + 10.72 (0.43) × DMI + 

5.31 (0.35) × CP 

23.6 0.49 3.2 6.9

70 UC = 13.38 (2.12) × DMI 79.8 1.0 12.0 0.21

71 VS = 0.37 (0.066) × DMI 22.7 0.59 4.5 0.0048

72 dVS = 0.36 (0.069) × OMI 23.0 0.60 6.6 0.057

1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI 

is in kg/d; CP, NDF, ADF, EE and Ash are in % of dietary DM; OMI = organic matter intake, 

kg/d.

2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 

= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 

of MSPE; SB = Slope bias, expressed as a percentage of MSPE.

GHG Production

The prediction of enteric CH4 production (Eqs. 1, 13 and 25) involved DMI for all three animal 

groups, because DMI provides substrate for microbial fermentation to produce CH4 (Niu et al., 

2018). Dietary structural and non-structural carbohydrate concentrations have an impact on the 

profile of volatile fatty acids in the rumen (Bannink et al., 2008). Structural carbohydrates are 

positively correlated with CH4 production (Moe and Tyrrell, 1979; Bannink et al., 2008), which 

was represented through the positive coefficients of ADF and NDF in the CH4 production 

equations for lactating cows and heifers. However, Eq. 13 did not contain NDF or ADF, 

indicating other factors might have a more important effect for nonlactating cows. Dietary EE 

presented in the CH4 production equation for nonlactating cows had a negative coefficient, which 
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agrees with previous studies showing that inclusion of lipids in the diet has a CH4 mitigation 

effect (e.g., Beauchemin et al., 2008; Moate et al., 2011). However, the CH4 production equation 

for lactating cows contained MY and mFat instead of EE. The positive coefficient of mFat may 

be due to the relationship between acetate production and milk fat. Acetate is required for de 

novo milk fat synthesis, and it is also associated with the generation of hydrogen for 

methanogenesis in the rumen (Moraes et al., 2014). The negative coefficient of MY may be 

explained by the energy balance between CH4 emission and milk production, because the carbon 

in gas energy could be used for milk production if not eructated out as CH4. 

Kirchgessner et al. (1991) reported the estimation of CO2 production through DMI and BW. 

However, BW was not present in any CO2 production equations in this study, probably because 

the variance of BW was largely captured by DMI. Instead, the CO2 production equation for 

lactating cows (Eq. 2) contained CP as a covariate, which contributes to the respiration quotient 

and consequently affects the CO2 emission (Pedersen et al., 2008).

Water Intake

Besides DMI, dietary DM and ash were present in the Waterin equations (Eqs. 3, 15 and 27), 

which agrees with the previous study by Appuhamy et al. (2016b). However, the RMSPE of 

Waterin was large, especially for nonlactating cows and heifers (> 60%), indicating a poor model 

fit. Water consumption of animals is highly dependent on the ambient temperature (Khelil-Arfa 

et al., 2014), which was not available in our dataset and needs to be considered in future studies. 

Manure Excretion

The FDM of lactating cows (Eq. 4) was positively associated with ADF and negatively associated 

with CP, which suggests that increasing dietary lignocellulose decreases DM digestibility (Van 
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Soest, 1965) and increases in dietary CP tends to decrease FDM (Broderick, 2003). In the FDM 

equation for nonlactating cows (Eq. 16), NDF was present instead, probably in a similar role to 

ADF. However, CP was absent in Eq. 16, which agrees with Wilkerson et al. (1997) that fecal 

excretion for nonlactating cows is mainly dependent on DMI and dietary NDF level. Nennich et 

al. (2005) reported an equation to estimate fecal excretion for heifers using DMI and BW, 

however, we only found a significant effect of DMI on FDM for heifers (Eq. 28). 

Increasing dietary CP level can increase nitrogen excretion (Broderick, 2003), which was 

represented by the positive association of CP with nitrogen excretion (FN and UN) for all animal 

groups. Lignin was positively associated with FN for lactating cows and heifers (Eqs. 5 and 29), 

and NDF was positively associated with UN for nonlactating cows (Eq. 21), which might be due 

to the inhibition of fiber on digestibility (Lloyd et al., 1961). Previous studies reported a 

significant effect of BW on nitrogen excretion (Wilkerson et al., 1997; Appuhamy et al., 2014), 

however, we only found such effect on UN for lactating cows (Eq. 9). In addition, MY was 

negatively associated with UN, suggesting an increase of nitrogen efficiency with increasing MY 

(Wilkerson et al., 1997). Dietary EE was positively associated with FN for heifers (Eq. 29), 

which could be explained by the decrease of CP digestibility due to the increase of EE level 

(NRC 2001).

Fecal carbon was significantly associated with dietary ADF for all animal groups, and with CP 

for lactating cows (Eqs. 6, 18 and 30), which agrees with Nousiainen et al. (2009) who reported 

the positive and negative effects of CP and ADF on feed digestibility. Besides, mFat and mPro 

were also positively and negatively associated with FC for lactating cows, respectively, which 

could be due to the association between indigestible non-fiber carbohydrates and milk 

compositions (Firkins et al., 2001; Cabrita et al., 2007). Dietary CP and BW were positively 
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associated with UC for lactating cows (Eq. 10), which agrees with Appuhamy et al. (2014). 

Increasing CP level is associated with increasing urinary purine, thus increases UC (Colmenero 

and Broderick, 2006). The prediction accuracy of UC was not high for all three animal groups 

(RMSPE > 35%), especially heifers (RMSPE = 79.8%), probably because there are factors 

outside the dataset needed to be considered, or a nonlinear model would fit better.

Dietary ADF was positively associated with FW across all the animal groups (Eqs. 7, 19 and 31). 

This could be due to the positive association of ADF with saliva input to the rumen, which in 

turn increases FW (Appuhamy et al., 2014). Dietary CP content was negatively associated with 

FW in the Eqs. 7 and 31, which could be explained by the elevated blood urea concentrations due 

to increasing CP intake, causing water transfer from gut to blood and ending up with less water 

in feces (Silanikove and Tadmore, 1989). Dietary DM and DIM were also negatively associated 

with FW for lactating cows because less dietary water content tends to decrease FW, and cows in 

early lactation excrete less water in feces (Appuhamy et al., 2014). 

Dietary CP was positively associated with Ut for lactating cows (Eq. 8), probably due to higher 

protein level leading to more urine (Gonda and Lindberg, 1994). Dietary sodium and potassium 

have shown significant effects on the urine output (Bannik et al., 1999; Spek et al., 2012), which 

could be the reason that dietary ash was present in the Ut equations for nonlactating cows and 

heifers (Eq. 20 and 32). However, the RMSPE of Ut for all animal groups was quite high (> 

40%). Given Ut is directly affected by Waterin, the absence of air temperature could lower the 

prediction accuracy for both variables.

Manure VS and dVS were predicted through feed intake (DMI or OMI) and structural 

carbohydrates (NDF or ADF), which is consistent with the negative relationship of dietary 

structural carbohydrates with feed digestibility (Lloyd et al., 1961). However, Eqs. 24, 35 and 36 
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included feed intake as the only covariate, which might be due to the higher NDF level in the 

diet and smaller DMI of nonlactating cows and heifers so that two covariates confounded with 

each other. 

Multivariate vs. univariate models

The results of both the coefficient estimation and cross validation were very close between 

multivariate and univariate models for all the animal groups. The difference between 

multivariate and univariate models is that multivariate models included the variance covariance 

between traits of study and animal random effects, while univariate models only considered the 

variance. For the ease of visualization, covariances were converted to correlations and are shown 

in Figures 4 and 5 for animal and study random effects, respectively. The average magnitude (i.e., 

the absolute value) of pairwise study effect correlations was 0.13 for lactating cows, 0.11 for 

nonlactating cows and 0.040 for heifers, and the average magnitude of pairwise animal effect 

correlations was 0.10 for lactating cows, 0.066 for nonlactating cows and 0.076 for heifers. The 

results indicate that covariances were relatively small compared to variance in this study, 

therefore the benefits of multivariate modeling were not obvious. Multivariate models have 

shown a superiority in some genetic studies (Calus and Veerkamp, 2011; Jia and Jannink, 2012), 

but only when the genetic correlation between traits is high (> 0.5).
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Figure 4. Heatmaps of pairwise correlations of animal random effects among CH4 (g/d), CO2 
(kg/d), milk yield (MY, kg/d), water intake (Waterin, kg/d), fecal DM (FDM, kg/d), fecal 

nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (FW, kg/d), total urine (Ut,

Lactating cow Nonlactating cow

Heifer
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Figure 5. Heatmaps of pairwise correlations of study random effects among CH4 (g/d), CO2 
(kg/d), milk yield (MY, kg/d), water intake (Waterin, kg/d), fecal DM (FDM, kg/d), fecal nitrogen 
(FN, g/d), fecal carbon (FC, g/d), fecal water (FW, kg/d), total urine (Ut, kg/d), urine nitrogen (UN, 
g/d), urine carbon (UC, g/d), VS (kg/d) and dVS (kg/d) for lactating cows, nonlactating cows and 

heifers.

Lactating cow Nonlactating cow

Heifer
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Comparison of the CH4 emission model with existing models

Three existing prediction equations of CH4 emission for lactating cows were compared with the 

one developed in this study (Eq. 1). The univariate and multivariate models were similar, so only 

multivariate models were included in the comparison. The equation from Moraes et al. (2014) 

was selected because it was also developed using the data from US. Appuhamy et al. (2016a) 

evaluated 40 CH4 equations for different regions, from which we selected the one (Moate et al., 

2011) ranking third in North America. Performance of the top three equations was close. The top 

two equations were not included because they require fatty acid as a model input, which was not 

available in our dataset. Niu et al. (2018) developed CH4 emission equations for different regions 

using an intercontinental dataset, and we selected the one performing the best in the US. 

The prediction accuracy of the three existing equations and the one developed in the current 

study is shown in Table 11. Our equation performed similarly to the one from Niu et al. (2018), 

but better than the one from Moate et al. (2011). Although the RMSPE of the equation from 

Moraes et al. (2014) was the smallest, MB and SB were much larger, especially MB, which 

indicates that the intercept did not fit well with the dataset. Overall, the CH4 emission equation 

for lactating cows developed in this study showed a decent prediction accuracy compared to 

three existing equations given the independent test dataset. We were only able to examine CH4 

emission for lactating cows due to the lack of other data. The prediction accuracy of other 

equations should be examined using a comprehensive dataset in future studies. The accuracy of 

prediction for dry cows by CADEM needs to improve with more data.
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Table 11. Prediction accuracy of CH4 emission for lactating cows using the equation developed 
in this study and three existing equations.

Eq. Model performance1

RMSPE, 

%

RSR MB, % SB, %

(1) This study 36.5 1.1 0.71 16.4

(a) Niu et al. (2018) 36.6 1.1 6.8 8.9

(b) Moate et al. (2011) 43.4 1.3 24.3 16.9

(c) Moraes et al. (2014) 22.9 2.0 60.1 19.9

1RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 

= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 

of MSPE; SB = Slope bias, expressed as a percentage of MSPE.
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Simulation of the Effects of Feed Additives on Mitigating CH4 Flux from 

Cattle

In addition to developing CADEM to predict GHG emissions and manure excretion from dairy 

cattle more accurately, the project team has discussed developing CADEM to simulate 

mitigation of feed additives on enteric CH4 flux. A series of equations developed by UCD 

(Dijkstra et al. 2018; Feng and Kebreab, 2020; Feng et al., 2020) have been incorporated into 

CADEM to calculate effects of two type feed additives (3-nitrooxypropanol (3NOP) and nitrate) 

on enteric CH4 flux mitigation for both dairy and beef cattle.

3-nitrooxypropanol

Following from the previous CARB project (Contract # 17RD018), we started working on 3NOP 

as the feed additive with the most potential application. Dijkstra et al. (2018) conducted a meta-

analysis on CH4 mitigating effects of 3NOP. The meta-analysis was updated in this project by 

adding data from Martinez-Fernandez et al. (2018) (beef; 1 study), Vyas et al. (2018) (beef; 2 

studies), Kim et al. (2019) (beef; 2 studies), Van Wesemael et al. (2019) (dairy; 2 studies), 

Melgar et al. (2020a) (dairy; 1 study), Melgar et al. (2020b) (dairy; 6 studies), Melgar et al. 

(2021) (dairy; 1 study), Aleum et al. (2021) (beef, 3 studies), Schilde et al. (2021) (dairy; 2 

studies) and Zhang et al. (2021) (beef; 2 studies). The updated forest plots for Standardized 

Mean Difference of CH4 production and yield are shown in Figure 6 and Figure 7.
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Figure 6. Forest plot showing 3NOP dose (mg/kg of DM) and standardized mean difference 
(mean difference = 3NOP treatment mean − control treatment mean) in CH4 production (g/d) for 

beef and dairy cattle studies.

Figure 7. Forest plot showing 3-nitrooxypropanol (3NOP) dose (mg/kg of DM) and standardized 
mean difference (mean difference = 3NOP treatment mean − control treatment mean) in CH4 

yield (g/kg of DMI) for dairy and beef cattle studies.
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The results of the mixed-effect models for CH4 production and yield were similar to the previous 

study, which indicated effectiveness of 3NOP at mitigating CH4 emissions (Table 12). As 

expected, the effect was positively associated with dose, and negatively associated with NDF. 

Moreover, 3NOP had stronger anti-methanogenic effects in dairy cattle than in beef cattle. The 

mean value of 3NOP dose was 118 mg/kg of DM, which was slightly lower compared to the 123 

mg/kg of DM in previous analysis. The overall mitigating effect of 3NOP was 30.6% at 118 

mg/kg inclusion level. In dairy cattle, the impact was 37.7% reduction while in beef cattle it was 

26.3% (Table 12).

Table 12. Estimates of overall 3-nitrooxypropanol (3NOP) effect size and of explanatory 
variables from random- and mixed-effect models for relative mean difference (MD, %) in CH4 

production (g/d) and yield (g/kg of DMI)

Variable and model CH4 production CH4 yield

Mean SE P-value Mean SE P-value

Random-effect model

    Overall 3NOP effect size -30.57 2.91 < 0.0001 -27.13 2.89 < 0.0001

Mixed-effect model with 3NOP dose as the only covariate

    Overall NOP effect size -30.47 2.69 < 0.0001 -27.13 2.64 < 0.0001

    NOP dose (mg/kg of DM) -0.11 0.036 0.0017 -0.12 0.036 0.0010

Final mixed-effect model 

    Dairy cattle overall NOP effect 

size

-38.18 3.33 < 0.0001 -34.86 3.43 < 0.0001

    Beef cattle overall NOP effect -26.05 2.76 < 0.0001 -21.07 2.99 < 0.0001
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size

    NOP dose (mg/kg of DM) -0.23 0.034 < 0.0001 -0.22 0.036 < 0.0001

    NDF content (g/kg of DM) 0.15 0.022 < 0.0001 0.12 0.025 < 0.0001

The following formula was developed in order to integrate the effect of 3NOP on enteric CH4 

mitigation of dairy cattle in CADEM:

CH4 reduction = max((-38-0.23×(3NOP-118)+0.15×(NDF-333)), -60%) (73)

For beef cattle, the following equation was used in CADEM:

CH4 reduction = max((-26.1-0.23×(3NOP-118)+0.15×(NDF-333)), -81.0%)  (74)

where: CH4 reduction  = enteric CH4 reduction per day (%), 3NOP = 3-nitroxypropanol dose 

(mg/kg of DM) and NDF = dietary neutral detergent fiber concentration (g/kg of DM).

Nitrate

Effect of nitrate on enteric CH4 mitigation of dairy cattle was incorporated into CADEM using 

the equation developed by Feng and Kebreab (2020) from previous CARB project (Contract # 

17RD018):

CH4 reduction = max((-20.4-0.911×(Nitrate-16.7)+0.691×(DMI-11.1)), -27.6) (75) 

The effect of nitrate on enteric CH4 mitigation of beef cattle was integrated as follows:

CH4 reduction = max((-10.1-0.911×(Nitrate-16.7)+0.691×(DMI-11.1)), -29.4) (76)

where: CH4 reduction  = enteric methane reduction per day (%), Nitrate = nitrate dose (g/kg of 

DM) and DMI = dry matter intake (kg/day).
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Integration of UCD Model with Manure-DNDC in CADEM

We have integrated the UCD enteric model into CADEM to predict GHG emissions and manure 

excretion from dairy cattle. The model integration processes included coding the empirical 

equations (Table 2), developing new GUI to read input parameters, converting the input 

parameters to the parameters in the equations, reporting enteric GHG emissions, and linking 

manure excretion with processes of simulating manure transfers and transformation. In order to 

check if the UCD fermentation model has been error-freely incorporated into CADEM, we 

compared simulations from CADEM and outputs from the UCD fermentation model. The 

compared variables included CO2 flux, CH4 flux, urine C and N productions, fecal C and N 

productions, total urine production, and fecal water production. We collected relevant animal and 

feed information, and estimated CADEM input parameters based on this information. In total, 65 

cases were evaluated for each variable. The simulations of these variables between CADEM and 

the UCD fermentation model were very close (Figure 8 and Figure 9). These results indicate that 

the UCD fermentation model for calculating GHG emissions from dairy cattle and manure 

excretion were correctly incorporated into CADEM.
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Figure 8. Comparisons in CH4 and CO2 fluxes between CADEM simulations and outputs from 
the UCD model.

Figure 9. Comparisons in productions of (a) urine C, (b) fecal C, (c) urine N, (d) fecal N, (e) total 
urine, and (f) fecal water between CADEM simulations and outputs from the UCD model.
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Expand CADEM to Simulate C, N, and P Dynamics of Multiple Slurry 

Manure Storage Areas 

In order for CADEM to simulate GHG and N gas fluxes from major components within 

California dairy farms and to better represent conditions of California dairies, we have also 

improved CADEM's processes of simulating water, C, N, and P dynamics in slurry manure 

storage areas. The original version of Manure-DNDC can simulate only one slurry storage area 

(e.g., single lagoon), although there are often multiple slurry storage areas in real dairy farms in 

California. Furthermore, the Manure-DNDC model cannot simulate slurry storage areas that are 

operated in series (i.e., a downstream slurry storage area receives water, C, N, and P outputs 

from an upstream slurry storage area), although this management practice is common in 

California dairies. In order to improve the model's flexibility and applicability in simulating 

California dairy farms, we have incorporated new processes to simulate transfers and interactions 

of water, C, N, and P between two slurry storage areas on a daily basis. The water, C, N, and P of 

an upstream slurry storage area can be loaded into a downstream slurry storage area and can 

influence manure transformation, GHG and N gas productions, and other biogeochemical 

processes of the downstream slurry storage areas. This new function would enable CADEM to 

simulate two slurry storage areas that are operated in series, such as the structure with a setting 

basin followed by manure storage lagoon. The old interface (Figure A3a) has also been updated 

to allow users to set input parameters (e.g., climate, properties, and manure management 

practices) of different slurry storage areas (Figure A3b). 

In addition to simulating transfers and interactions of water, C, N, and P between two slurry 

storage areas, the CADEM has been expanded to comprehensively simulate transfers and 

interactions of water, C, N, and P among major components in a dairy farm, including housing, 
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slurry manure storage areas, compost, digesters, and crop fields with manure amendments. 

Specifically, new processes to simulate transfers and interactions of water, C, N, and P between 

slurry storage areas and other components (i.e., housing, digester, crop fields) within a dairy 

farm have been incorporated (Figure 10). With these new processes, the model can simulate 

manure transfers among these components (e.g., removal of manure from housing to multiply 

slurry storage areas, manure transfers from slurry storage areas to digester, compost, and/or crop 

field) and impacts of manure transfers on water, C, N, and P dynamics in each component.

Figure 10. Old (a) and new (b) framework of simulating manure transfers among different 
components in a dairy farm.
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Processes to distinguish liquid and solid fractions of manure during manure transfers were also 

added in CADEM, so that liquid and solid manure could be transferred among farm components 

in different amounts. The liquid fraction of manure contains free water and dissolved organic C 

and nutrients, including urea, ammonium, and nitrate. The solid fraction of manure contains non-

dissolved organic C and P. For example, model users can set more liquid fraction than solid 

fraction when transferring manure from digester to slurry storage areas. The CADEM can also 

distinguish solid and liquid fractions of manure that transfers from housing and/or manure 

storage areas to fields. For example, the CADEM can simulate the scenario that one field 

receives all liquid manure while another field receives all solid manure from manure storage 

areas. The original Manure-DNDC can only simulate the scenario of receiving bulk manure 

including both solid and liquid fractions. These new functions provide more flexibility in 

tracking changes of manure characteristics during manure transfers and improve simulations of 

water, C, N, and P dynamics in farm components.

Several old interfaces have also been updated. The new developed interfaces allow model users 

to set input parameters (e.g., lagoon properties and manure management practices) of different 

slurry storage areas (Figure A4), removal of manure from housing to multiple slurry storage 

areas (Figure A5), manure transfers between digester and slurry storage areas (Figure A6), and 

remove liquid and solid fractions of manure applied into crop fields (Figure A7).
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Model Validation

We have reviewed reports and papers from relevant studies to identify field data that can be used 

to improve, calibrate, and validate CADEM. We have focused on field data of emissions of GHG 

and N gas from dairy cattle and farm components or manure properties. Through this project, we 

have compiled comprehensive observations of CO2 and CH4 emissions and manure excretion 

(including total manure as well as C and N amounts in manure) from dairy cattle (Liu et al., 2016; 

Moraes et al., 2014; Roque et al., 2019; Tewoldebrhan et al., 2017). The dataset includes over 

1100 (1121 to 1436) data points for each variable and represents different animal and feeding 

conditions and does not include data used to develop enteric methane equations. The dataset also 

includes relevant model input information of dairy cattle and feeding properties.

We have tested CADEM simulations of CO2 and CH4 emissions, productions of total urine and 

urine C and N, and productions of total fecal and fecal C and N from dairy cattle against these 

field observations. The simulations of GHG emissions from manure have not been evaluated 

because field observations with adequate frequency and some relevant model input parameters 

were not available. The CADEM was driven by animal and feeding input parameters, including 

DMI, DM, MPR, BW, DIM, CP, ADF, and NDF. The simulations of CO2 flux, CH4 flux, 

productions of total urine and urine C and N, and productions of total fecal and fecal C and N 

were compared against corresponding field observations (Figure 11 to Figure 14). We used zero-

intercept linear regression between simulations and observations to evaluate CADEM 

performance. The slope of the regression indicates the consistency between simulations and 

observations (Moriasi et al., 2007). In addition, two statistical indices, the relative root mean 

squared error (RRMSE) and the coefficient of correlation (R), were used to quantity the 
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accordance and correlation between model predictions and field observations (Moriasi et al., 

2007).

(77)

(78)

where, oi and pi are the observed and simulated values, respectively; and are their averages; 

and n is the number of values.

The means and ranges of CADEM simulations were 348 (160 to 628) g head-1 day-1 for CH4 flux, 

9659 (1310 to 22770) g head-1 day-1 for CO2 flux, 231 (40 to 370) g head-1 day-1 for urine C, 149 

(30 to 280) g head-1 day-1 for urine N, 17526 (9431 to 25844) g head-1 day-1 for total urine, 2498 

(250 to 4680) g head-1 day-1 for fecal C, 147 (20 to 270) g head-1 day-1 for fecal N, and 29293 

(534 to 58376) g head-1 day-1 for total fecal. The means and ranges of field observations were 

315 (30 to 688) g head-1 day-1 for CH4 flux, 10853 (3532 to 18946) g head-1 day-1 for CO2 flux, 

241 (12 to 707) g head-1 day-1 for urine C, 165 (28 to 397) g head-1 day-1 for urine N, 18550 

(4382 to 58895) g head-1 day-1 for total urine, 2485 (238 to 5208) g head-1 day-1 for fecal C, 151 

(17 to 441) g head-1 day-1 for fecal N, and 31814 (2054 to 74832) g head-1 day-1 for total fecal. 

The means and ranges of the simulations were comparable with the corresponding observations 

for each evaluated variable.

Table 13. The model performance in simulating CO2 and CH4 emissions, productions of total 
urine and urine C and N, and productions of total fecal and fecal C and N from dairy cattle

Variables Slope RRMSE, % R

CH4 1.04 20% 0.79
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CO2 0.90 13% 0.87

Urine C 0.92 19% 0.80

Urine N 0.85 21% 0.89

Total Urine 0.87 36% 0.59

Fecal C 0.98 9% 0.94

Fecal N 0.93 16% 0.90

Total Fecal 0.91 16% 0.94

The slopes of the zero-intercept linear regression lines and the RRMSE values between the 

simulations and observations were 1.04 and 20% for CH4 emission, 0.90 and 13% for CO2 

emission, 0.92 and 19% for urine C, 0.85 and 21% for urine N, 0.87 and 36% for total urine, 0.98 

and 9% for fecal C, 0.93 and 16% for fecal N, and 0.91 and 16% for total fecal, respectively 

(Table 13, Figures 11 to 14). The R values between the simulations and observations ranged 

from 0.59 to 0.94 among these variables, and the simulations were significantly correlated with 

the corresponding observations for all the evaluated variables (Table 13, Figures 11 to 14). These 

results indicate a general agreement between the simulated and observed CO2 flux, CH4 flux, 

productions of total urine and urine C and N, and productions of total fecal and fecal C and N, 

although the goodness of fit varied across the variables.
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Figure 11. Comparison of simulated and observed (a) CH4 flux (unit: g head-1 day-1) from dairy 
cattle. The function shown describes the zero-intercept fitted regression line. The correlation 

between simulations and observations is significant (R = 0.79, P < 0.01, n = 1436). (b) CO2 flux 
(unit: g head-1 day-1) from dairy cattle. The function shown describes the zero-intercept fitted 

regression line. The correlation between simulations and observations is significant (R = 0.87, P 
< 0.01, n = 1310).

Figure 12. Comparison of simulated and observed (a) urine C (unit: g head-1 day-1) from dairy 
cattle. The function shown describes the zero-intercept fitted regression line. The correlation 

between simulations and observations is significant (R = 0.80, P < 0.01, n = 1204). (b) urine N 
(unit: g head-1 day-1) from dairy cattle. The function shown describes the zero-intercept fitted 

regression line. The correlation between simulations and observations is significant (R = 0.89, P 
< 0.01, n = 1289).
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Figure 13. Comparison of simulated and observed (a) total urine (unit: g head-1 day-1) from dairy 
cattle. The function shown describes the zero-intercept fitted regression line. The correlation 

between simulations and observations is significant (R = 0.59, P < 0.01, n = 1138). (b) total fecal 
(unit: g head-1 day-1) from dairy cattle. The function shown describes the zero-intercept fitted 

regression line. The correlation between simulations and observations is significant (R = 0.94, P 
< 0.01, n = 1121).

Figure 14. Comparison of simulated and observed (a) fecal C (unit: g head-1 day-1) from dairy 
cattle. The function shown describes the zero-intercept fitted regression line. The correlation 

between simulations and observations is significant (R = 0.94, P < 0.01, n = 1143). (b) fecal N 
(unit: g head-1 day-1) from dairy cattle. The function shown describes the zero-intercept fitted 

regression line. The correlation between simulations and observations is significant (R = 0.90, P 
< 0.01, n = 1289).

Overall, these model evaluations confirmed that the new equations from the UCD fermentation 

model have been successfully incorporated. By including these new equations, the CADEM can 

reliably predict CO2 and CH4 emissions from enteric fermentation, productions of total urine and 

urine C and N, and productions of total fecal and fecal C and N from dairy cattle.
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Farm-Scale Simulations

Using the new developed CADEM, farm-scale simulations were performed to demonstrate the 

capability of CADEM to simulate C and N dynamics as well as GHG and NH3 emissions from 

major components of a real dairy farm in Kern County. The target farm consisted of animal 

housings, solid manure piles, two lagoons used for manure storage, and crop fields where 

manure was applied. The animal housings totally held 6076 dairy cows on average, including 

2959 milk cows (average weight: 1400 lb), 636 dry cows (average weight: 1450 lb), 932 bred 

heifers (15 to 24 month) (average weight: 1000 lb), 1191 heifers (7 to 14 month to breeding) 

(average weight: 300 lb), and 358 calves. The feeding information was not available. We 

therefore set the feeding input parameters by referring to the studies used for model tests. 

Specifically, average feeding rate was set as 24.0 kg DM head-1 day-1 for milk cows, 24.0 kg DM 

head-1 day-1 for dry cows, 17.0 kg DM head-1 day-1 for bred heifers (15 to 24 month), 5.0 kg DM 

head-1 day-1 for heifers (7 to 14 month to breeding), and 5.0 kg DM head-1 day-1 for calves. The 

CP content was set as 14% for all types of cows.

All model input parameters, including climate, dairy cattle, housing, manure storage areas, crop 

fields, soil, cropping system, and management practices, were set to represent the environmental 

conditions, farm components, and management practices in this farm. Most of these input 

parameters were estimated by referring to dairy annual report in 2018 and dairy waste 

management plan in California (personal communication with CARB staff). The lagoons were 

uncovered, and had a surface area of around 10000 m2 and a maximum storage capacity of 

around 52000 m3. Because there is no information about the manure amount transferred from 

housing to each lagoon (i.e., partitions of the manure between two lagoons) and the surface area 

and maximum storage capacity of the two lagoons are similar, we assumed that these lagoons 
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received identical manure from the animal housings each day. Based on the dairy annual report, 

the slurry manure stored in the lagoon was removed ten times annually and applied to the surface 

of the crop fields (around 246 ha) as wastewater before planting or during crop growing seasons. 

The crop fields were planted with triticale during winter and with corn silage during summer. 

The crop fields received manure application eleven times annually (dry manure: one time; 

wastewater: ten times). The local soil properties were determined based on the SSURGO 

database from the Natural Resources Conservation Service, U. S. Department of Agriculture 

(NRCS, 2022). We used the soil properties of the soil with the largest coverage in the target farm. 

The soil was a sandy loamy with clay content 0.13, pH (H2O) 8.2, bulk density 1.55 g cm-3, and 

content of soil organic carbon 0.004 kg C kg-1 soil dry weight based on the SSURGO database. 

In addition to manure management, input parameters of other farming management practices are 

required to run CADEM at a farm scale. These input parameters included planting and harvest 

dates, tillage, fertilization, and irrigation, and were primarily estimated from field records in 

dairy annual report in 2018.

Five scenarios with different manure management practice assumptions were simulated to 

investigate the impacts of each management practice on GHG and NH3 emissions. In the 

baseline scenario (SB), it was assumed that the manure on the housing floors was removed by a 

scraper on a daily basis. It was also assumed that 25% of solid manure and 80% of liquid manure 

was transferred into the lagoons and the rest of the solid and liquid manure was transferred into 

the solid manure piles. The manure stored in the solid piles was removed four times annually, 

with most (around 95%) of the removed manure sold to market and therefore removed out of the 

target farm, and a small fraction (around 5%) of the removed manure applied to the crop fields. 

In the first scenario (S1), the manure was assumed to be flushed with water (10 gallons hd-1 day-
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1), while other input parameters were identical to SB. In the second and third scenarios (S2 and 

S3), the fraction of housing manure transferred to the lagoons was different from SB. 

Specifically, the solid manure transferred to the lagoons increased from 25% to 50% for the S2, 

and all the housing manure was transferred to the lagoons and there was no solid manure pile for 

the S3. The forth scenario (S4) was similar to SB except that the manure stored in the solid piles 

were removed two times annually with 50% of the manure applied into fields and 50% of the 

manure remained in the piles each time (S4).

CADEM was run for 2017 and 2018 under the four scenarios, with the simulations in 2017 used 

for model initialization. Daily meteorological data (i.e., maximum and minimum air 

temperatures, precipitation) in 2017 and 2018 were derived from weather data produced by the 

DAYMET model (Thornton et al., 2022) to support the simulations. The modeled NH3 and GHG 

emissions from each farm component and the whole farm in 2018 were used for analysis.

Results of the baseline scenario

Table 14 lists the simulated GHG and NH3 emissions from the housings (including both animal 

and housing floor), solid manure piles, lagoons, and crop fields under different scenarios. The 

rates of annual total C and N excretions were 6443.6 metric ton (MT) C yr-1 and 592.9 MT N yr-1, 

respectively, under SB. 

The rates of annual total CO2 emissions from the housings, solid manure piles, lagoons, and crop 

soils were 6073.7, 336.9, 186.6, and 589.0 MT C yr-1, respectively. At the farm scale, the rate of 

CO2 emissions from animals, manure, and soils (i.e., soil heterotrophic respiration) was 7186.1 

MT C yr-1 in 2018 (Table 14). The housings, including dairy cattle and manure in housings, were 

simulated as the largest source of CO2 emissions, contributing to about 85% of the annual total 

CO2 emissions under SB. However, we note that the simulated total CO2 emissions were not net 
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CO2 exchanges between the atmosphere and the simulated farm because not all CO2 exchanges 

(e.g., crop photosynthesis and respiration, SOC sequestration due to external manure or residue 

inputs) were included into these results.

The rates of annual total CH4 emissions from the housings, solid manure piles, lagoons, and crop 

soils were 657.7, 0, 177.1, and 0 MT C yr-1, respectively, under SB. At the farm scale, the rate of 

CH4 emissions was 834.9 MT C yr-1 in 2018 (Table 14). The housings, including cattle enteric 

emissions and manure in housings, were simulated as the largest source of CH4 emissions, 

contributing to about 79% of the annual total CH4 emissions. The simulated CH4 emission was 

zero for the solid manure pile and crop fields because of their aerobic conditions that is assumed 

not suitable for CH4 production in the DNDC model (Deng et al., 2017).

The rates of annual total N2O emissions from the housings, solid manure piles, lagoons, and crop 

soils were 8.6, 1.4, 0.7, and 3.3 MT N yr-1, respectively, under SB. At the farm scale, the rate of 

N2O emissions was 14.0 MT N yr-1 in 2018 (Table 14), an amount that comprises 2.4% of the 

excreted N. The housings were simulated as the largest source of N2O emissions, contributing to 

about 61% of the annual total N2O emissions of the simulated dairy farm. The housings were 

simulated as the largest source of N2O because we assumed that the manure in the housings was 

removed by scraper and there was manure accumulation on the housing floors. In addition, the 

area of the fields receiving manure was not large and most of solid manure was removed out of 

the simulated system, which contributed to the relatively low N2O emissions from the fields.

The rates of annual total NH3 emissions from the housings, solid manure piles, lagoons, and crop 

fields were 50.3, 53.6, 62.6, and 38.4 MT N yr-1, respectively. At the farm scale, the rate of NH3 

loss was 204.9 MT N yr-1 in 2018, an amount that comprises 35% of the excreted N. 
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Comparison of the emissions under different scenarios

Compared to SB, removing the manure by flushing the housings with water (S1, Table 14) 

decreased the N2O emissions from the housings and solid manure piles by 51% (4.2 vs. 8.6 kg N 

head-1 yr-1) and 41% (0.8 vs. 1.4 kg N head-1 yr-1), respectively, primarily because of the wetter 

conditions under the water flushing. The wetter conditions restricted nitrification and thereby 

N2O productions from nitrification in the housings and solid manure piles. This scenario 

increased the CO2 and NH3 emissions from the solid manure piles (Table 14) primarily because 

the wetter conditions were favorable for decomposition and productions of CO2 and NH4
+ that is 

a substrate for NH3 production.

In comparisons with the baseline scenario, transferring more housing solid manure (50% vs. 25%) 

into the lagoons (S2) increased the CO2, CH4, and NH3 emissions from the lagoons by 57%, 59%, 

and 14%, respectively, because of the more organic manure transferred into the lagoons, which 

provided more substrates for CO2 and CH4 productions (Table 14). Increasing the fraction of 

manure transferred to the lagoons to 100% (S3) further increased the CO2, CH4, and NH3 

emissions from the lagoons by 183%, 187%, and 64%, respectively, in comparison with the 

baseline scenario. Lagoons contributions to total CH4 emissions increased from 21% under SB to 

30% under S2 and to 44% under S3. These practices did not substantially increase the N2O 

emissions from the lagoons because the anaerobic conditions, instead of the substrates, were the 

limiting factor for N2O production in the lagoons.

Applying more manure stored in the solid piles into the fields (S4, Table 14) substantially 

increased the CO2, N2O, and NH3 emissions from the fields by 2.6 folds, 2.1 folds, and 47%, 

respectively, because of the more organic manure transferred into the fields. Again, we note that 
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the simulated total CO2 emissions were not net CO2 exchanges between the atmosphere and the 

simulated farm.

The simulated CH4 emissions (around 144 kg CH4 hd-1 yr-1) from housings (including both 

animal and housing floor) were comparable with the CH4 emissions (enteric CH4 emission: 

around 120 kg CH4 hd-1 year-1, barn CH4 emission: 33±19 kg CH4 hd-1 year-1) estimated based on 

reviewing field studies (Owen and Silver, 2014). The simulated CH4 emissions from the lagoons 

ranged between 11.6 and 33.9 kg CH4 m-2 yr-1 under the different scenarios, which were 

comparable with the reported CH4 emissions (20±5 kg CH4 m-2 yr-1) per lagoon area (Owen and 

Silver, 2014). However, the simulated lagoon CH4 emissions per head animal (38.3 to 111.7 kg 

CH4 hd-1 yr-1) were lower than the corresponding field data (368±193 kg CH4 hd-1 yr-1) (Owen 

and Silver, 2014). The different lagoon CH4 emissions between per lagoon area and per head 

animal and under different scenarios suggested that both lagoon characteristics (such as lagoon 

area) and manure management practices may affect lagoon CH4 emissions. The housings were 

simulated as the largest source of N2O emissions all scenarios excepting S4. This result is 

different with the studies reporting that fields receiving manure are the largest sources of N2O 

emissions from manure (e.g., Chadwick et al., 1999). However, the fields were simulated as the 

largest source of the N2O emissions under S4 with 50% of the solid manure applied into the 

fields. This result suggests the importance of manure fate on the N2O emissions from different 

components in a dairy farm. It should be noted that these results are only for one dairy with 

specific conditions and assumptions that may be different from conditions in other studies. 

Therefore, the differences between the simulations and other reports do not mean one method is 

outperforming another.
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Table 14. Simulated annual total CO2, CH4, N2O, and NH3 emissions from different components 
within the target farm

CO2 emission 

(MT C yr-1)

CH4 emission 

(MT C yr-1)

N2O emission 

(MT N yr-1)

NH3 emission 

(MT N yr-1)

Baseline

Housing 6073.7 657.7 8.6 50.3

Solid pile 336.9 0.0 1.4 53.6

Lagoon 186.6 177.1 0.7 62.6

Field 589.0 0.0 3.3 38.4

Housing manure removal by water flushing

Housing 6074.5 665.1 4.2 50.2

Solid pile 652.7 0.6 0.8 73.6

Lagoon 184.0 174.4 0.3 65.4

Field 590.6 0.0 3.4 38.5

50% of housing solid manure was transferred into lagoons

Housing 6073.7 657.7 8.6 50.3

Solid pile 398.8 0.1 1.4 57.2

Lagoon 293.7 281.7 0.7 71.5

Field 707.6 0.0 4.0 44.2

All housing manure was transferred into lagoons

Housing 6073.7 657.7 8.6 50.3
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Solid pile None None None None

Lagoon 527.9 508.9 0.9 102.8

Field 999.8 0.0 6.6 67.6

50% of solid manure piles were applied into fields

Housing 6073.7 657.7 8.6 50.3

Solid pile 325.7 0.0 1.4 52.5

Lagoon 186.6 177.1 0.7 62.6

Field 2091.0 0.0 10.3 56.5
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Technology Transfer of CADEM To CARB

To request the CADEM system, please contact Dr. Seyedmorteza Amini at:

Seyedmorteza Amini, Ph.D. 

Atmospheric Processes Research Section               

Research Division, California Air Resources Board 

1001 I Street, Sacramento, CA 95814

Email: Morteza.Amini@arb.ca.gov

To facilitate the model application in California dairies, the following activities and materials 

have been conducted or delivered through this project:

· New model interfaces (Figures A1 to A7) have been developed to support the new 

incorporated processes and equations and the new developed functions 

· Model user's guide has been updated to describe the new incorporated processes and 

equations and the new developed functions, and has been delivered to CARB along with 

this final report 

· An example of CADEM input file for conducting whole farm simulation has been 

delivered to CARB

· Discussions and meetings have been held to introduce model input parameters and output 

variables
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· Discussions and meetings have been held to ask feedbacks from CARB staff and add 

additional features for the model interface based on the feedbacks to ensure the tool 

meets the needs of CARB staff and stakeholders.

· Discussions and meetings have been held on converting annual dairy report and waste 

management plan to CADEM requested parameters

· A model training has been held to further introduce the CADEM system and clarify 

questions/concerns from CARB staff 
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Limitations

There are several limitations in this study. First, CADEM has not been evaluated against GHG 

and N gas fluxes from manure storage areas in California dairies due to limited field data that are 

proper for evaluating the model. In order to evaluate simulations of GHG and N gas fluxes from 

manure storage areas, it is ideal to have high frequent observations of GHG and N gas fluxes 

during different seasons, annual total emissions, as well as relevant model input parameters (e.g., 

climate, structure and characteristics of manure storage areas, manure transfers among farm 

components, and manure management), which are not available at this stage. Second, not all the 

model input parameters (e.g., feeding information, manure distributions among different storage 

areas) are available to conduct farm-scale simulations, and some assumptions have been made 

for conducting the simulations. Therefore, the farm-scale simulations are subject to uncertainties 

and limitations in model input parameters. Third, CADEM has incorporated processes to 

simulate effects of two types of feed additives on mitigating enteric CH4 flux from dairy cattle. 

However, potential effects of the feed additives on manure (amount and properties) and GHG 

and N-gas from manure management have not been characterized and simulated. Further studies 

need to be performed to further evaluate the model against field data, develop database of model 

input parameters, and improve model representation of dairy activities that affect C, N, and P 

dynamics in dairy farms in California.
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Appendix A

Appendix: Newly developed interfaces in CADEM

Figure A1. Model interfaces for receiving new input parameters to calculate GHG flux and 

manure excretion from dairy cattle.
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Figure A2. Model interface for selecting method to calculate GHG flux and manure excretion 

from dairy cattle and receiving parameters to calculate mitigation of CH4 flux by feed additive.
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Figure A3. Old (a) and new (b) interfaces for simulating water, C, N, and P dynamics in slurry 

manure storage areas.
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Figure A4. New model interface for setting input parameters (e.g., properties and manure 

management practices) of different slurry storage areas. The updated interface has been marked 

using red rectangles.
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Figure A5. New model interface for simulating manure removal from housing to different slurry 

manure storage areas. The new model interface allows users to set manure transfers from 

housing to multiple lagoons. The updated interface has been marked using a red rectangle.
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Figure A6. New model interface for simulating manure transfers from digester to slurry manure 

storage areas. The new model interface allows users to set manure transfers from digester to 

multiple lagoons. The updated interface has been marked using a red rectangle.
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Figure A7. New model interface for simulating manure amendments from housing and/or storage 

areas to fields. The new model interface allows users to distinguish solid and liquid fractions of 

manure. The updated interface has been marked using a red rectangle.
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