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Abstract 
There is a paucity of studies in California that have assessed the impacts of exposure to oil and 
gas development (OGD) on perinatal health outcomes as well as potential threats to drinking 
water sources, particularly among communities reliant upon domestic wells.  Similarly, high 
methane emitters, which include oil and gas production and distribution sites as well as landfills, 
dairies, and refineries, can emit non-methane co-pollutants that are harmful to human health; yet 
this category of climate change hazard has been understudied in terms of its implications for 
environmental justice and potential acute health effects.   
 
For this project, we examined the relationship between perinatal health outcomes and: 1) 
exposure to active and inactive wells, accounting for production volume during trimester of 
pregnancy, and 2) hydraulic fracturing (HF) during pregnancy.  We also conducted a spatial 
analysis of OGD infrastructure sites and domestic wells areas (DWA-- populated areas served by 
at least one domestic well) and community water systems (CWS-- public drinking water systems 
with at least 15 connections) to identify potential groundwater threats to then determine whether 
at-risk drinking water sources in the San Joaquin Valley (SJV) serve vulnerable populations.  
Finally, we examined the relationship between proximity to high methane emitters and migraine 
prevalence and exacerbation and conducted an equity assessment of community proximity to and 
exposure intensity of California’s high methane emitters. Although not directly toxic to humans, 
methane is co-emitted with other harmful pollutants that do threaten the health of nearby 
communities. 
 
Results from our epidemiological studies on the perinatal effects of proximity to OGD and HF 
showed positive associations between these exposures and adverse birth outcomes, including 
increased odds of small for gestational age and low birth weight births as well as decreased term 
birth weight.  Overall, effect estimates were stronger among births in rural compared to urban 
areas.  Our spatial analysis of potential threats of OGD infrastructure sites showed that CWS 
intersecting OGD infrastructure had fewer residents within the system per km2, a lower 
proportion of residents living twice below poverty and higher proportion of Latinos compared to 
CWS that did not intersect OGD.  Models showed that small CWS (less than 15 connections) 
significantly predicted higher counts of OGD infrastructure compared to larger systems.   
 
Analyses of locations of high methane emitters, emissions, and levels of other pollutants showed 
increased odds of migraine case status with increasing methane emissions.  Results also showed 
increased odds of migraine case status with higher NO2 levels.  We found no association between 
PM2.5 levels or proximity to oil and gas wells and migraine case status.  PM2.5 and NO2 were 
positively associated with migraine exacerbation outcomes and we observed limited or null 
associations between continuous measures of methane emissions and proximity to oil and gas 
wells and migraine severity. In our equity assessment of high methane emitters in California, we 
observed environmental injustice in the locations of high methane emitters and emissions 
intensity for those block groups with higher proportions of residents of color and lower voter 
turnout.  We did not observe associations with measures of socioeconomic status.  Some of these 
significant associations were non-linear.  
 
Results from these analyses indicate the importance of holistically characterizing the potential 
human health and equity implications of OGD as well as other climate change hazards, including 
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high methane emitters to ensure that regulatory decision-making for these sites integrates public 
health, sustainability and environmental justice goals.  Future studies on the health effects of 
OGD in California should better characterize the diverse exposures associated with these 
activities (e.g., air and water contamination, noise, excessive light, and other stressors).  
Moreover, additional health outcomes should be studied, including respiratory, cardiovascular, 
and developmental outcomes.  Future research on high methane emitters would benefit from 
more consistent temporal monitoring to assess changes in emission trends and to better 
characterize methane and co-pollutant emission relationships.  Modeling approaches can also 
estimate acute and chronic exposures to potentially harmful co-pollutants from high methane 
emitters and support additional studies on their health effects on communities living nearby. 
 
List of Abbreviations 
BMI- body mass index  
BOE – barrels of oil equivalent 
Cal-GEM - California Geologic Energy Management Division—Cal-GEM 
CWS – community water systems 
DWA – domestic well area 
DOGGR - Division of Oil, Gas and Geothermal Resources 
ED- emergency department 
EHR- electronic health records 
HF – hydraulic fracturing 
ICE – index of concentration at the extremes 
IDW- inverse distance weighted 
LBW – low birth weight 
MPA- migraine probability algorithm 
NO2- nitrogen dioxide 
OGD – oil and gas development 
PM2.5 - fine particulate matter 
PTB- preterm birth 
SGA – small for gestational age 
SJV- San Joaquin Valley 
SO2 -sulfur dioxide  
tBW – term birth weight 
VOCs - volatile organic compounds 
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Project Background and Scientific Executive Summary 
 
As California seeks to address the health and climate change impacts of oil and gas development 
and other major sources of greenhouse gas emissions, including large methane emitters [also 
known as methane super-emitters (Duren et al. 2019)], there is a paucity of studies to inform 
regulatory decision-making on these categories of environmental hazards.  Domestic oil and gas 
development activities in California and nationally, including unconventional extraction methods 
(also referred to as well stimulation) that include horizontal drilling and the intensive use of 
chemicals to release oil and gas from the ground, have raised concerns about potential adverse 
health impacts on local communities due to increases in air pollution, noise, and water 
contamination, among other factors.  This environmental health issue has also gained traction in 
the regulatory arena due to the ubiquity of oil and gas development sites in California, many of 
which are near sensitive receptors. California has large oil reserves with active and inactive wells 
that are located near densely populated and rural areas primarily in the San Joaquin Valley and 
Los Angeles Air Basins. Los Angeles is unique in that oil and gas production developed 
simultaneously with the growth of the city.  Residential proximity to oil and gas activities may 
increase exposures to air pollutant emissions and other results of oil and gas development 
activities (e.g., water use, dust, chemicals, excessive noise and light).  Households that use 
groundwater from private drinking water wells or small community drinking water systems that 
rely on groundwater sources located near oil and gas development may be at increased risk of 
drinking water contamination. Previous studies in Pennsylvania, Texas and Colorado have found 
adverse birth outcomes associated with proximity to unconventional natural gas development 
(UNDG) activities.  However, the process of oil and gas development and extraction in 
California is different; the state’s oil and gas infrastructure is located in both rural and densely 
populated urban areas. There is a paucity of health studies in California, and, to our knowledge, 
no analyses have examined the birth outcome effects of oil and gas activities and development in 
the state, although several studies have linked poor fetal growth outcomes and pre-term birth 
with various air pollutants (such as PM, ozone, sulfur dioxide, air toxics) and traffic-related air 
pollution. 
 
While studies have found human health risks attributable to emissions of petroleum related 
compounds associated with oil and gas development in general, to our knowledge, the public 
health impacts associated with proximity to upstream oil and gas activities have not been 
extensively studied in California.  Moreover, CARB has identified high methane emitters 
including oil and gas production sites, landfills, dairies, refineries and other sites.  As such, more 
detailed analyses of the relationship between high methane emitters and acute health effects as 
well as equity implications of these sites are warranted.   
 
This project proposed to conduct integrated analyses that would characterize the health and 
environmental equity impacts among vulnerable populations of oil and gas development and 
activities and high methane emitters in California. The goal was to leverage and integrate a 
database developed by CARB based on Next Generation Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS-NG) flights conducted between 2016–2018 on the location of high 
methane emitters and their emissions from multiple sources; the Division of Oil, Gas and 
Geothermal Resources (DOGGR) [now California Geologic Energy Management Division—
Cal-GEM] database on active and inactive oil and gas wells and other infrastructure sites; birth 
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records from the California Department of Public Health (2006-2015); and a database developed 
by this study team on the location and extent of community water systems and domestic well 
communities in California.  Accordingly, this project undertook the following aims:  
 
Aim 1: Assess the association between proximity to all oil and gas development sites (active and 

inactive wells) during pregnancy and adverse birth outcomes in California.  
Aim 2: Evaluate the association of prenatal exposure to hydraulic fracturing (HF) and adverse 

birth outcomes in urban and rural communities in 8 California counties where HF is 
prevalent.  

Aim 3: Evaluate potential drinking water threats posed by oil and gas sites in the San Joaquin 
Valley.  

Aim 4: Characterize the association between long-term exposure to high methane emitters and 
other sources of harmful emissions and common air pollutants with both migraine headache 
and, among patients with migraine, headache severity among patients with migraine; and  

Aim 5: Conduct an equity assessment of community proximity and exposure intensity of 
California’s high methane emitters.  

 
The five chapters below are organized by study aim.  Four of these analyses have been published 
or are forthcoming, and one is under review.  Citations for those forthcoming and published 
analyses are included in their corresponding chapter.  
 
Results from our epidemiological studies on the perinatal effects of proximity to OGD and HF 
showed positive associations between these exposures and adverse birth outcomes, including 
odds of small for gestational age and low birth weight births as well as decreased term birth 
weight.  Overall, effect estimates were stronger among births in rural compared to urban areas.  
Our spatial analysis of potential threats of OGD infrastructure sites showed that CWS 
intersecting OGD infrastructure had fewer residents within the system per km2, a lower 
proportion of residents living twice below poverty and higher proportion of Latinos compared to 
CWS that did not intersect OGD.  Models showed that small CWS (less than 15 connections) 
significantly predicted higher counts of OGD infrastructure compared to larger systems.   
 
Analyses of high methane emitters and emissions, as well as concentrations of other air 
pollutants showed increased odds of migraine case status with increasing methane emissions.  
Although not directly toxic to humans, methane is co-emitted with other harmful pollutants that 
do threaten the health of nearby communities. Results also showed increased odds of migraine 
case status with increasing NO2 levels.  We found no association between PM2.5 levels or 
proximity to oil and gas wells and migraine case status.  Levels of PM2.5 and NO2 were 
positively associated with migraine exacerbation outcomes and we observed limited or null 
associations between continuous measures of methane emissions and proximity to oil and gas 
wells and migraine severity. In our equity assessment of high methane emitters in California, we 
observed environmental injustice in the locations of high methane emitters and emissions 
intensity for those block groups with higher proportions of residents of color and lower voter 
turnout.  We did not observe associations with measures of socioeconomic status.  Some of these 
significant associations were non-linear.  
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Results from these analyses indicate the importance of holistically characterizing the potential 
human health and equity implications of oil and gas development as well as other climate change 
hazards, including high methane emitters to ensure that regulatory decision-making integrates 
public health, sustainability and environmental justice goals. Future studies on the health effects 
of OGD in California should better characterize the diverse exposures associated with these 
activities (e.g., air and water contamination, noise, excessive light, and other stressors).  
Moreover, additional health outcomes should be studied, including respiratory, cardiovascular, 
and developmental outcomes.  Future research on high methane emitters would benefit from 
more consistent temporal monitoring to assess changes in emission trends and to better 
characterize methane and co-pollutant emission relationships.  Modeling approaches can also 
estimate acute and chronic exposures to potentially harmful co-pollutants from high methane 
emitters and support additional studies on their health effects on communities living nearby. 
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Background and Lay Executive Summary 
 
As California works to reduce the health and climate change impacts of oil and gas development 
and other major sources of greenhouse gas emissions, including large sources of methane 
emissions [also known as methane super-emitters (Duren et al. 2019)], there are few California 
studies to make decisions about how best to regulate these types of environmental hazards. Oil 
and gas development activities in California and across the United States have raised concerns 
about potential adverse health impacts on local communities due to increases in air pollution, 
noise, and water contamination, among other factors.  These activities include unconventional 
extraction methods, such as hydraulic fracturing or “fracking” (also referred to as well 
stimulation) that include horizontal drilling and the large-scale use of chemicals to release oil and 
gas from the ground. 
 
This environmental health issue has also gained attention in the regulatory arena due to the large 
number of oil and gas development sites in California, many of which are near communities and 
sensitive land uses (such as schools, parks and elderly housing) that are disproportionately 
impacted. California has large oil reserves with active and inactive wells that are located near 
densely populated and rural areas primarily in the San Joaquin Valley and Los Angeles Air 
Basins. Los Angeles is unique in that oil and gas production developed at the same time as the 
growth of the city.  Living near oil and gas activities may increase exposures to air pollutant 
emissions and other hazards associated with oil and gas development activities (e.g., water use, 
dust, chemicals, excessive noise, and excessive light).  Households that rely on private drinking 
water wells or small community drinking water systems that rely on groundwater sources located 
near oil and gas development may be at increased risk of drinking water contamination. Previous 
studies in Pennsylvania, Texas and Colorado have found adverse birth outcomes associated with 
living near unconventional natural gas development (UNDG) activities.  However, the process of 
oil and gas development and extraction in California is different; the state’s oil and gas 
infrastructure is located in both rural and densely populated urban areas. There is a lack of health 
studies in California, and, to our knowledge, no analyses have examined the impacts of oil and 
gas development on birth outcomes, although several studies have linked poor fetal growth 
outcomes and pre-term birth with various air pollutants (such as particulate matter (PM), ozone, 
sulfur dioxide, air toxics) and traffic-related air pollution. 
 
While studies have found human health risks associated with emissions of petroleum related 
compounds associated with oil and gas development in general, to our knowledge, the public 
health impacts associated with living near upstream oil and gas activities have not been widely 
studied in California.  Moreover, CARB has identified high methane emitters including oil and 
gas production sites, landfills, dairies, refineries, and other sites.  Therefore, more detailed 
analyses of the relationship between high methane emitters and acute health effects as well as 
equity implications of these sites are needed.   
 
This project proposed studies that would characterize the health and environmental equity 
impacts among vulnerable populations of oil and gas development and high methane emitters in 
California. The goal was to utilize a database developed by CARB on the location of high 
methane emitters and their emissions from multiple sources; the Division of Oil, Gas and 
Geothermal Resources (DOGGR) [now California Geologic Energy Management Division—
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Cal-GEM] database on active and inactive oil and gas wells and other infrastructure sites; birth 
records from the California Department of Public Health (2006-2015); and a database developed 
by this study team on the location and extent of community water systems and domestic well 
communities in California.  Accordingly, this project undertook the following aims:  
 
Aim 1: Examine the association between living near all oil and gas development sites (active and 

inactive wells) during pregnancy and adverse birth outcomes in California.  
Aim 2: Evaluate the association between prenatal exposure to hydraulic fracturing (HF) and 

adverse birth outcomes in urban and rural communities in eight California counties where HF 
is widespread.  

Aim 3: Evaluate potential drinking water threats posed by oil and gas sites in the San Joaquin 
Valley.  

Aim 4: Analyze the relationship between long-term exposure to high methane emitters and other 
sources of harmful emissions and common air pollutants with migraine headache and, among 
those patients with migraine, headache severity; and  

Aim 5: Conduct an equity assessment of community proximity and exposure intensity of 
California’s high methane emitters.  

 
The five chapters below are organized by study aim.  Four of these analyses have been published 
or are forthcoming, and one is under review.  Citations for those forthcoming and published 
analyses are included in their corresponding chapter.  
 
Results from our epidemiological studies on the perinatal effects of living near OGD and HF 
showed that mothers living closer to ODG and HF were more likely to experience adverse birth 
outcomes, including odds of small for gestational age and low birth weight births as well as 
decreased term birth weight.  Overall, the relationship between living near OGD and HF was 
stronger for births in rural areas than births in urban areas.  Our spatial analysis of potential 
threats of OGD infrastructure sites showed that CWS intersecting OGD infrastructure had fewer 
residents within the system per km2, a lower proportion of residents living twice below poverty 
and higher proportion of Latinos, compared to CWS that did not intersect OGD.  Models showed 
that small CWS (less than 15 connections) significantly predicted higher counts of OGD 
infrastructure compared to larger systems.   
 
Analyses of high methane emitters and emissions as well as concentrations of other air pollutants 
showed that increased methane emissions increased the chance of migraine case status Although 
not directly toxic to humans, methane is co-emitted with other harmful pollutants that do threaten 
the health of nearby communities. Results also showed increased chance of migraine case status 
with increasing NO2 levels.  We found no association between PM2.5 levels or proximity to oil 
and gas wells and migraine case status.  Levels of PM2.5 and NO2 were positively associated with 
migraine exacerbation outcomes, and we observed limited or no associations between continuous 
measures of methane emissions and proximity to oil and gas wells and migraine severity. In our 
equity assessment of high methane emitters in California, we observed environmental injustice in 
the locations of high methane emitters and emissions intensity for those block groups with higher 
proportions of residents of color and lower voter turnout.  We did not observe associations with 
measures of socioeconomic status.  Some of these significant associations were non-linear.  
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Results from these analyses show the importance of holistically characterizing the potential 
human health and equity implications of oil and gas development as well as other climate change 
hazards, including high methane emitters to ensure that regulatory decision-making integrates 
public health, sustainability, and environmental justice goals. Future studies on the health effects 
of oil and gas development in California should better characterize the diverse exposures 
associated with these activities (e.g., air and water contamination, noise, excessive light, and 
other stressors).  Moreover, additional health outcomes should be studied, including respiratory, 
cardiovascular, and developmental outcomes.  Future research on high methane emitters would 
benefit from more consistent temporal monitoring to assess changes in emission trends and to 
better understand methane and co-pollutant emission relationships.  Modeling techniques can 
also estimate acute and chronic exposures to potentially harmful co-pollutants from high 
methane emitters and support additional studies on their health effects on communities living 
nearby.   
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Chapter 1: Residential proximity to oil and gas development and birth outcomes in 
California: a retrospective cohort study of 2006-2015 births 
 
Publication: Tran KV, Casey JA, Cushing LJ, Morello-Frosch R (2020) Residential proximity to 
oil and gas development and birth outcomes in California: a retrospective cohort study of 2006-
2015 births.  Environmental Health Perspectives. 128(6) June 2020 
https://doi.org/10.1289/EHP5842 
 
1.1 Abstract 
Background: Studies suggest associations between oil and gas development (OGD) and adverse 
birth outcomes, but few epidemiologic studies of oil wells or inactive wells exist, and none in 
California.  
Objective: To investigate the relationship between residential proximity to OGD and birth 
outcomes in California. 
Methods: We conducted a retrospective cohort study of 2,918,089 births to mothers living 
within 10 km of at least one production well between January 1, 2006 and December 31, 2015. 
We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2-5 
wells, 6+wells) and production volume from active wells in barrels of oil equivalent (BOE) (no 
BOE, 1-100 BOE/day, > 100 BOE/day). We used generalized estimating equations to examine 
associations between overall and trimester-specific OGD exposures and term birth weight (tBW), 
low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We 
assessed effect modification by urban/rural community type.  
Results: Adjusted models showed exposure to active OGD was associated with adverse birth 
outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, 
increasing production volume was associated with stronger adverse effect estimates. High (> 100 
BOE/day) versus no production throughout pregnancy was associated with increased odds of 
LBW (odds ratio [OR] = 1.40, 95% CI: 1.14, 1.71) and SGA (OR = 1.22, 95% CI: 1.02, 1.45), 
and decreased tBW (mean difference = -36 grams, 95 % CI: -54, -17), but not with PTB (OR = 
1.03, 95% CI: 0.91, 1.18). 
Conclusion: Proximity to higher production OGD in California was associated with adverse 
birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our 
findings in other populations and improve exposure assessment measures.   
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1.2 Background 
Oil and gas development (OGD) by the US petroleum industry spans decades in many states but 
concern about its potential health and equity impacts did not gain traction among researchers 
until the recent rapid uptake of hydraulic fracturing (HF) (Finkel and Law 2011; Kovats et al. 
2014; Mitka 2012). As of 2017, California (CA) was one of the top five producers of crude oil in 
the country (US EIA 2018a, 2018b). Four of the ten largest US oil fields are in CA’s San Joaquin 
and Los Angeles Basins (Long et al. 2015a) and unlike newer shale gas plays, most of CA’s 
natural gas is extracted from reservoirs also producing oil (Long et al. 2015c). Given the long 
history of OGD in CA, stimulation techniques, such as water and steam injection and HF, are 
primarily used at established sites rather than newly drilled wells. Oil recovered via water 
flooding and steam injection (conventional enhanced oil recovery methods) accounted for 76% 
of the state’s oil production in 2009 (Long et al. 2015c) while HF, an unconventional stimulation 
technique, accounted for 20% of CA’s oil production in the last decade. Due to types of 
geological formations, HF practices in CA differ from other states, potentially resulting in 
differing environmental hazards (Long et al. 2015c). OGD production in CA also occurs in both 
rural and urban settings compared to other states, such as rural Pennsylvania and Colorado, 
where many epidemiological studies have been conducted (Casey et al. 2015c; Currie et al. 2017; 
Hill 2018; McKenzie et al. 2014; Rasmussen SG et al. 2016; Tustin et al. 2017a).  
 
Therefore, an epidemiologic study of the relationship between adverse birth outcomes and OGD 
in CA, a state with a diverse population and the most annual births of any US state, can provide 
insights about the potential health impacts of OGD exposure within both rural and urban areas.  
Characterizing exposures related to OGD poses significant measurement challenges because 
multiple environmental hazards are associated with different stages of extraction and production. 
OGD involves the development of oil/gas sites and wells (production and injection for enhanced 
recovery), transport of materials to and from well sites, drilling, operation of equipment to 
recover oil/gas, and collection and disposal of chemicals and waste separated from the raw oil 
and gas (Long et al. 2015a). These activities are associated with diverse environmental hazards 
including air and water pollutants, noise, odors, excessive lighting, and undesired land use 
changes (Adgate et al. 2014a; Long et al. 2015a).  The application of unconventional techniques 
presumably enhances the environmental burdens as additional toxic chemicals that are used can 
potentially be released into air, water, and soil (Adgate et al. 2014a; Long et al. 2015a; Macey et 
al. 2014; Roy et al. 2014a; Vengosh et al. 2014a). 
 
Air pollutants associated with OGD include particulate matter with an aerodynamic diameter of 
< 2.5μm (PM2.5), diesel PM, nitrogen oxides (NOx), secondary ozone formation, mercury, and 
volatile organic compounds (VOCs) like benzene, toluene, ethylbenzene and xylene (BTEX) 
from truck traffic, drilling, hydraulic fracturing, production and flaring (Allshouse et al. 2019; 
Brantley et al. 2015a; Colborn et al. 2014; Eapi et al. 2014; Esswein et al. 2014; Franklin et al. 
2019; Goetz et al. 2015; Koss et al.; Lan et al. 2015; Macey et al. 2014; Marrero et al. 2016; 
Maskrey et al. 2016; Mellqvist et al. 2017; Roy et al. 2014b; Warneke et al. 2014). Additionally, 
fugitive toxic air contaminants can escape at the wellhead (Garcia-Gonzales et al. 2019b; 
Warneke et al. 2014) that might impact health near points of release. Water contaminants 
associated with OGD include gas-phase hydrocarbons, chemicals mixed in drilling fluids, and 
naturally occurring salts, metals and radioactive elements within shale that surface with 
wastewater along with recovered oil and gas and can contaminate potable water via leaks and 
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spills or evaporate (Adgate et al. 2014b; Hildenbrand et al. 2015; Long et al. 2015a; Vengosh et 
al. 2014b). Noise pollution is associated with well pad construction, truck traffic, drilling, 
pumps, flaring of gases, and other processes (Allshouse et al. 2019; Blair et al. 2018; Ebisu and 
Bell 2012; US BLM 2006). Drilling and production activities occur both during the daytime and 
nighttime, and light pollution has been previously reported as a nuisance in communities 
undergoing unconventional OGD (Long et al. 2015a), suggesting OGD may impact the health of 
nearby communities via increased psychosocial stress. 
 
Several OGD-related environmental exposures have been linked to reduced birth weight and 
gestational age: air pollution e.g., PM2.5, NOx, SOx (Basu et al. 2014; Dadvand et al. 2013, 2014; 
Ebisu and Bell 2012; Long et al. 2015a; Morello-Frosch et al. 2010; Ponce et al. 2005; Ritz et al. 
2007), noise pollution (Arroyo et al. 2016; Gehring et al. 2014), some of the chemical 
compounds found in OGD wastewater (Long et al. 2015a; Valero de Bernabé et al. 2004), and 
psychosocial distress (Dominguez et al. 2008; Goldenberg et al. 2008; Rondó et al. 2003; Valero 
de Bernabé et al. 2004). Previous studies examining the relationship between unconventional 
OGD and birth outcomes provide suggestive evidence of adverse effects. While study designs 
vary, most have characterized OGD exposure based on the density and distance of HF shale gas 
wells near the maternal residence in urban and rural Colorado (McKenzie et al. 2014, 2019), 
Pennsylvania (Casey et al. 2015c; Currie et al. 2017; Hill 2018; Ma 2016; Stacy et al. 2015), 
Oklahoma (Janitz et al. 2019), and urban Texas (Walker Whitworth et al. 2018; Whitworth et al. 
2017). Among the 10 studies, 8 evaluated our outcomes of interest. Some studies found greater 
exposure to OGD was associated with reductions in term birth weight (Hill 2018; Stacy et al. 
2015) and increased odds or incidence of low birth weight (Currie et al. 2017; Hill 2018), 
preterm birth (Casey et al. 2015c; Walker Whitworth et al. 2018; Whitworth et al. 2017) and 
small for gestational age births (Hill 2018; Stacy et al. 2015). However, these studies also 
reported statistically insignificant (Casey et al. 2015c; Whitworth et al. 2017) or inverse 
associations (McKenzie et al. 2014; Stacy et al. 2015) for some birth outcomes.  
 
Building on this research, our study focused on OGD in CA. We conducted our analysis in 
regions where OGD is concentrated: the Sacramento Valley, San Joaquin Valley, South Central 
Coast and South Coast air basins. To our knowledge, our retrospective cohort study with births 
from 2006-2015 is the first to evaluate prenatal OGD exposure from oil as well as gas wells, 
inactive as well as active wells, and non-HF and HF wells in rural and urban settings of CA.  
 
1.3 Methods 
Study population  
Birth records for January 1, 2006 to December 31, 2015 were obtained from the CA Department 
of Public Health (CDPH). CDPH collects statewide birth records that include mother’s 
residential address at the time of birth, which we geocoded to assign exposure to OGD exposure 
and area-level covariates using ArcGIS (ESRI, Redlands, CA). Births with missing street-level 
addresses or that could not be successfully geocoded after a manual cleaning of the address fields 
for spelling and punctuation errors were excluded (5%). We selected the Sacramento, San 
Joaquin Valley, South Central Coast and South Coast air basins because they had the highest 
well densities in CA between 2005 and 2015 (Supplemental Figure 1.1). We illustrate the 
construction of the study population in Figure 1.1. Exclusion criteria included: missing last 
menstrual period (LMP) date, which was approximated as the date of conception and used to 
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estimate gestational age (3%); congenital anomalies or abnormal birth conditions such as cleft lip 
and Down’s syndrome (4%); plural births e.g. twins, triplets (4%); implausible birth weights of 
less than 500 grams or greater than 5500 grams (4%) (Alexander et al. 1996; Padula et al. 2014; 
Ponce et al. 2005; Talge et al. 2014a); and implausible gestational ages of less than 22 or greater 
than 44 weeks (4%) (Alexander et al. 1996; Talge et al. 2014a). To limit unmeasured 
confounding and enhance comparability of exposed and unexposed populations, we also 
excluded births to mothers who did not live within 10 km of at least one oil/gas production well 
(3%). Finally, we excluded observations with any missing covariates or outcomes (2%) to arrive 
at a final study population of 2,918,089 births (N=2,718,629 term births). All study protocols 
were approved by the Institutional Review Board of the CA Department of Public Health (#13-
05-1231) and the University of California, Berkeley (# 2013-10-5693).  
 
Birth outcomes 
We assessed the relationship between OGD and four outcomes: 1) continuous birth weight 
(grams) among term (≥37 completed weeks) births (tBW), 2) low birth weight (LBW) (<2500 
grams), 3) preterm birth (PTB) (<37 weeks) and 4) small for gestational age birth (SGA) (birth 
weight less than the US sex-specific 10th percentile of weight for each week of gestation (Talge 
et al. 2014a). Gestational age was estimated by subtracting the LMP date from the date of birth. 
 
Exposure assessment 
Active and inactive oil and gas well records including monthly production data were downloaded 
from the California Division of Oil, Gas and Geothermal Resources website (CA DOGGR) in 
December 2015 (the division has been renamed to the CA Geologic Energy Management 
Division, CalGEM, as of January 2020). We assessed exposure to inactive wells because 
previous studies have found fugitive methane emissions from abandoned production wells that 
have not been plugged or improperly plugged (Boothroyd et al. 2016; Kang et al. 2016; US EPA 
2018). VOCs, such as BTEX and toxic air contaminants, are likely co-emitted with methane 
(LACDPH 2018; SCAQMD 2019), and exposure to VOCs, including BTEX and formaldehyde, 
are associated with adverse birth outcomes (Bolden et al. 2015; Chang et al. 2017; Maroziene 
and Grazuleviciene 2002). Some of the 224,695 wells in the dataset began producing as far back 
as 1900. The DOGGR data included well latitude/longitude and monthly production volume 
(barrels of oil and/or cubic meters of natural gas). We defined a production well as active if it 
produced at least one unit of oil or gas in a given month; production wells could transition 
between active and inactive status across the study period. We combined these well data with 
mothers’ residential addresses at the time of delivery, date of conception (defined as LMP), and 
date of delivery to assign prenatal exposure to oil and gas wells. 
 
Study participants lived within 10 km of at least one active or inactive well at the time of 
delivery. Exposure metrics were developed based on active and inactive wells within 1 km 
(Figure 1.2A-B); prior literature suggests highest exposure to OGD-related hazards within this 
radius (Boyle et al. 2017; McKenzie et al. 2012a; Meng 2015a; Walker Whitworth et al. 2018; 
Whitworth et al. 2017). We selected the 1 km buffer presuming that localized air pollution is 
likely the greatest contributor to OGD-related exposure in CA. We used the short distance to 
minimize the impact of dispersion and the contribution of exposure from other sources of air 
pollution. We calculated exposure across the entire pregnancy and by trimester to examine 
potential critical windows of prenatal exposure.  
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Exposure to active wells was characterized by oil and gas production volume during pregnancy 
and exposure to inactive wells by well count. Total production volume exposure from active 
wells within 1 km was derived by summing monthly barrels of oil and barrels of oil equivalent 
(BOE) of natural gas. Production volume from oil and gas wells were summed because 95% of 
gas wells also produced oil (i.e., wet gas) and gas-only wells did not produce significant amounts 
of gas. Production volume was summed as shown in Equation 1: 
 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝 𝑣𝑣𝑇𝑇𝑇𝑇𝑝𝑝𝑣𝑣𝑣𝑣𝑗𝑗 =  ∑ ∑ 𝑃𝑃𝑝𝑝𝑇𝑇𝑝𝑝(𝑇𝑇𝑝𝑝𝑇𝑇)𝑖𝑖𝑖𝑖 +𝑙𝑙

𝑖𝑖=𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ∑ ∑ 𝑃𝑃𝑝𝑝𝑇𝑇𝑝𝑝(𝑔𝑔𝑇𝑇𝑔𝑔)𝑖𝑖𝑖𝑖/6𝑙𝑙

𝑖𝑖=𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , 

 
where Prod(oil)ik was the production volume of oil (in barrels) and Prod(gas)ik the production 
volume of gas (in thousand cubic feet, mcf) at well i during month and year k of mother j’s entire 
pregnancy or trimester. K is the month and year of conception or beginning of a trimester, and l 
is the month and year of delivery or end of a trimester. K has a minimum value of 1 equal to 
January 2005, and l has a maximum of 124 or December 2015. Gas production volume was 
converted from the original units to BOE by dividing by 6 since 6 thousand cubic feet (mcf) = 1 
BOE (Bonavista Energy Corporation 2018; Schmoker and Klett 2005). The total production 
volume for the first and last month of the entire pregnancy or trimester was also weighted by the 
proportion of the month the mother was pregnant.  
 
We calculated the number of inactive wells within 1 km of a mother’s residence during her 
pregnancy by subtracting the number of active wells from the total number of wells within 1 km.  
For analysis, we first normalized production volume by the number of days of the entire 
pregnancy or within each trimester by dividing production volume by the total number of days 
and then categorized exposure to production volume of active wells based on the exposure 
distribution as: 1) no BOE from active wells, 2) 1-100 BOE/day (moderate), 3) more than 100 
BOE/day (high). We similarly categorized exposure to inactive wells as: 1) no inactive wells, 2) 
1 inactive well, 3) 2-5 inactive wells, 4) 6 or more inactive wells. The production volume was 
normalized to prevent bias from neonates born later as their exposure period was longer. Given a 
lack of a priori knowledge about the production volume or inactive well count that might 
constitute a harmful exposure, we selected these categories based on the distribution of each 
exposure metric across cases and non-cases to ensure sufficient overall sample size and number 
of cases in each exposure group. The exposure variables were not modeled as continuous 
because the distribution was right skewed (Supplemental Figure 1.2). Both active and inactive 
well exposure variables were included in all regression models. The exposure variables were 
generated in R version 3.3.1.  
 
Covariates 
Individual-level covariates that were identified a priori as significant predictors of our outcomes 
and potential confounders based on prior studies were derived from the CDPH birth records. 
Infant covariates included sex, month (categorical) and year of birth (categorical) to control for 
seasonal and secular trends. Maternal covariates included age in years (<20, 20-24, 25-29, 30-34, 
35+), race/ethnicity (non-Hispanic White, Black, American Indian, Asian-Pacific Islander, 
unknown or other, and Hispanic), educational attainment (<high school, high school 
graduate/GED, some college, college+), Kotelchuk index of prenatal care (inadequate, 
intermediate, adequate, adequate+) (Alexander and Kotelchuck 1996; Kotelchuck 1994), and 
parity (nulliparous vs. multiparous). For maternal race/ethnicity, American Indian, unknown and 
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other were combined into one category due to the small number of women in each group. We 
included mean-centered and mean-centered squared variables for gestational age in the tBW 
model to allow for nonlinearity.  
 
We also integrated area-level variables, including indicators for air basin and census tract-based 
urban/rural status, modeled nitrogen dioxide (NO2) concentrations, and a measure of income 
concentration. These covariates accounted for neighborhood and regional differences in air 
quality, economic activity, and emission sources (Arruti et al. 2011; Finkelstein et al. 2003; 
O’Neill et al. 2003; Wunderli and Gehrig 1990; Zhao et al. 2009). We used 2014 air basin 
boundaries designated by the California Air Resources Board (CARB 2014), which coincide 
with county boundaries and roughly delineate areas with similar air quality, meteorology, and 
geography. We used US Census urban areas (defined as a densely developed territory consisting 
of urbanized areas of 50,000 or more and urbanized clusters with between 2,500 to 50,000 
people (US Census Bureau)) to designate census tracts as urban or rural. Using 2010 boundaries, 
we categorized census tracts as urban if 60% or more of the tract overlapped with an urban area. 
We assigned, based on LMP year, tract-level annual ambient NO2 concentration as a proxy for 
traffic-related air pollution (Kim et al. 2020a). Lastly, we used the Index of Concentration at the 
Extremes (ICE) for income as a measure of neighborhood relative deprivation or affluence based 
on household income by census tract (Massey 1996). ICE provides information about 
concentration of privilege and deprivation of communities and has previously been associated 
with infant mortality (Krieger et al. 2016). ICE ranges from -1 to 1, where negative values 
indicate a concentration of household incomes in the lower 20th percentile of area median 
household income, while positive values indicate a concentration of household incomes in the 
higher 80th percentile. We calculated ICE using 2006-2010 ACS and 2011-2015 ACS 
metropolitan area median household income to establish percentile cutoff values that account for 
regional differences in the cost of living. These values were then used in combination with 
census tract median household income from the ACS data of the vintage of the birth year to 
assign a tract-level ICE value to each birth. For tracts that were not within metropolitan areas, 
county-level household income cutoffs were used. ICE was categorized by quartile and this 
categorical variable was included in adjusted models.  
 
Statistical analyses  
Statistical analyses were conducted in SAS 9.4 (SAS Institute Inc., Cary, NC). All models were 
adjusted for individual-level and community-level covariates selected a priori: neonate sex, 
gestational age (tBW model only), month and year of birth, maternal age, race/ethnicity, 
educational attainment, Kotelchuck index, urban indicator, air basin, NO2 and ICE for income. 
Generalized estimating equations were used to account for clustering of mothers within census 
tracts (Hubbard et al. 2010). Observations with any missing covariate were removed from 
analyses.  
 
Initial analyses assessed exposure across the entire pregnancy and then during each trimester for 
the entire study population across the four air basins. Statistical significance was assessed at 
α=0.05. Effect modification (EM) of exposure to active wells by urban/rural status (primary), 
maternal race/ethnicity and air basin (both secondary) was evaluated via stratification. We report 
the strata-specific effect estimates and confidence intervals derived from this methodology. To 
test the heterogeneity between strata-specific estimates, we modeled interaction terms to derive 
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Bonferroni adjusted p-values for two-sample z-tests using model-estimated beta coefficients and 
variances (Buckley et al. 2017; UCLA: Statistical Consulting Group). These EM p-values 
indicate whether the strata-specific associations are statistically significantly different from each 
other or the referent group. Non-Hispanic Whites were used as the referent in heterogeneity tests 
for the other racial/ethnic groups because higher rates of adverse birth outcomes have been 
observed among people of color compared to Whites (Bryant et al. 2010; Teitler et al. 2007). 
Sacramento Valley was the referent in heterogeneity tests for the other air basins because 
exposure to active wells were limited to rural areas of that basin, where there were also fewer 
births. For the effect modification analyses with race/ethnicity and air basin, only exposure 
across the entire pregnancy was evaluated since trimester-specific estimates were similar to those 
for the entire pregnancy.  
 
We conducted two sensitivity analyses with exposure variables across the entire pregnancy only. 
Mothers’ smoking status during pregnancy and pre-pregnancy body mass index (BMI) were not 
collected by CDPH in 2006, so we conducted sensitivity analyses with both of these variables in 
one model for 2007-2015. Only 2% of mothers smoked during pregnancy among our study 
population within our study period (prevalence of smoking during pregnancy in CA was 2.5% in 
2015) (CDPH 2015). Additionally, we considered potential confounding from other industrial 
sources of air pollution and included a binary variable for exposure to air pollution from other 
facilities (e.g. refineries, power plants, metal mining facilities) monitored for emissions including 
air toxics by the CARB (CARB 2017) within 1 km (referred to as TRI facilities). Only about 2% 
of mothers resided within proximity to TRI facilities during our study period.  
 
We tested for multi-collinearity between all model variables by calculating the variance inflation 
factors (Schreiber-Gregory 2012), none of which were high (i.e., > 10). To assess residual spatial 
dependence, we generated semi-variograms of regression residuals plotted against distance 
between mothers’ residential addresses (Le Rest et al. 2013; SAS) (Supplemental Figure 1.3). 
The residuals appeared randomly distributed, suggesting spatial autocorrelation was likely 
controlled for by the study design and inclusion of spatial covariates (e.g., NO2) in regression 
models. 
 
1.4 Results 
Our study included 2,918,089 births in CA between January 2006 and December 2015 located in 
four air basins: Sacramento, San Joaquin Valley, South Central Coast, and South Coast. The 
overall mean birth weight was 3,327 grams (SD = 528) (Table 1.1). Five percent (N=148,100) of 
births were LBW, 7% (N=199,460) preterm, and 12% SGA (N=337,943). A maximum of 1,189 
inactive wells and 441 active wells were located within 1km of mothers’ residences during 
pregnancy. On average, mothers exposed to moderate production volume (1-100 BOE/day) had 
89 inactive and 4 active wells within 1 km of their home during pregnancy, while mothers 
exposed to high production volume (>100 BOE/day) had an average of 160 inactive wells and 32 
active wells within a 1 km buffer. The average moderate total production volume from active 
wells producing oil and gas during pregnancy was 26 BOE/day, and the average high total 
production volume was 599 BOE/day. Temporal trends of mean annual production volume and 
annual rates of the binary birth outcomes showed no distinct patterns in either rural or urban 
areas (Supplemental Figure 1.4A – 1.4B). Plots of temporal trends in mean annual production 
volume and mean annual term birth weight also did not reveal consistent patterns in either rural 
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or urban areas (Supplemental Figures 1.4C – 1.4D). The reference (no BOE) and exposed 
populations were relatively similar in terms of demographic and socioeconomic factors (Table 
1.1). Compared to the reference and moderate production volume groups, mothers within the 
high production volume category were slightly more educated [35% vs. 23.5%, on average, 
college or more educated], older [22% vs. 17%, on average, aged 35 or more], more often non‐
Hispanic [53% vs. 42.5%, on average, non-Hispanic races], more likely to have no previous 
pregnancies [44% vs. 39.5%, on average, nulliparous], and to reside in urban areas [97% vs. 
88%, on average], in the South Coast air basin [94% vs. 68.5%, on average] and in areas with 
greater wealth [31% vs. 26%, on average, in ICE quartile 4]. Finally, babies born to mothers 
exposed to high production volume weighed on average 2 and 11 grams less than those born to 
mothers exposed to moderate production volume and reference group, respectively.  
 
Adjusted models generally found no associations between inactive well count and adverse birth 
outcomes in both rural and urban areas (Figure 1.3, Supplemental Tables 1.1-1.2). All 
statistically significant associations indicated modestly decreased odds of LBW and PTB (0.96-
0.97) (Figures 1.3A-B; Supplemental Table 1.1) or minimally increased birth weight (4-5 
grams) (Figure 1.3D; Supplemental Table 1.2) related to increased inactive OGD well 
exposure. Models based on trimester-specific exposures yielded similar estimates across 
trimesters for all four birth outcomes (Supplemental Tables 1.1-1.2).  
 
For exposures to production volume from active wells in unstratified models, we observed 
significant associations between production volume and LBW and SGA (Supplemental Table 
1.3). When we stratified models by the urban indicator, we observed significant effect 
modification with stronger associations between high production volume and LBW (p-value = 
0.01, Supplemental Table 1.4) and tBW (p-value = 0.001, Supplemental Table 1.7) in rural 
areas (Figure 1.4). Compared to the reference group, the odds ratio (OR) for LBW was 1.11 
(95% confidence interval [CI]: 0.97, 1.27) (Supplemental Table 1.4) and odds ratio for SGA 
was 1.07 (95% CI: 0.97, 1.19) (Supplemental Table 1.6) with exposure to moderate production 
volume across the entire pregnancy in rural areas versus odds ratios of 1.04 (95% CI: 1.00, 1.09) 
and 1.03 (95% CI: 1.00, 1.07), respectively, in urban areas (Figures 1.4A & C). Exposure to 
high production volume was associated with an odds ratio of 1.40 (95% CI: 1.14, 1.71) for LBW 
and an odds ratio of 1.22 (95% CI: 1.02, 1.45) for SGA in rural areas versus odds ratios of 0.99 
(95% CI: 0.95, 1.04) and 1.04 (95% CI: 1.01, 1.07), respectively, in urban areas (Figure 1.4A & 
C; Tables 1.A4 & 1.A6). Exposure to high production volume was also associated with 
decreased term birth weight (Mean difference = -36 grams, 95% CI: -54, -17) for the rural 
stratum compared to the urban stratum (Mean difference = 1 gram, 95% CI: -5, 8) (Figure 1.4D; 
Supplemental Table 1.7). For LBW, SGA and tBW, the strength of the associations increased 
with higher production volume among the rural, but not the urban population. In general, 
exposure to production volume throughout pregnancy was not associated with PTB within rural 
or urban populations (Figure 1.4B; Table 1.A5). Models based on trimester-specific exposures 
yielded similar estimates and EM p-values for all birth outcomes (Tables 1.A4-1.A7), except the 
third trimester for PTB, where exposure to moderate production volume was associated with 
increased odds of PTB (OR = 1.06, 95% CI: 1.02, 1.11) and high production volume was 
associated with decreased odds of PTB in urban areas (OR = 0.82, 95% CI: 0.77, 0.88) (Table 
1.A5).  
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Maternal race/ethnicity (Tables 1.A8-1.A9) and air basin (Tables 1.A10-1.A11) did not 
significantly modify associations between exposure to active well production volume and birth 
outcomes. Heterogeneity tests were only conducted on the rural population because the effect 
sizes across outcomes were greater than those of the urban population. Nearly all strata-specific 
effect estimates included the null and all EM p-values from heterogeneity tests were insignificant 
across all outcomes.  
 
Sensitivity analyses that included 1) pre-pregnancy BMI and smoking during pregnancy for 
2007-2015 births (Table 1.A12) and 2) exposure to TRI facilities (Table 1.A13) did not change 
effect estimates by more than 10%.   
 
1.5 Discussion  
CA’s oil and gas development primarily uses conventional drilling and enhancement methods 
and, to a much lesser degree, hydraulic fracturing. To our knowledge, our study is the first to 
quantify prenatal exposures to both inactive wells and cumulative oil and gas production volume 
from active wells in proximity to pregnant women and to evaluate differences in associations by 
rural versus urban areas in CA. In rural areas, we found that exposure to high production volume 
was significantly associated with increased odds of LBW and SGA and decreased tBW 
compared to the non-exposed group. In urban areas, exposure within 1 km of high production 
volume relative to no exposure was only significantly associated with increased odds of SGA; 
effect estimates for exposure to moderate production volume in rural and urban areas were all 
insignificant.  
 
One prior study, by McKenzie et al. (2019), evaluated urban/rural residential status as an effect 
modifier. Although that study examined birth defects, the authors found significantly increased 
odds for four congenital heart defects in the medium and highest exposure groups (based on an 
intensity-adjusted inverse-distance weighted well-count metric) relative to the lowest group in 
rural areas (McKenzie et al. 2019); no significant associations were observed for birth defects in 
urban areas. These rural versus urban differences in effect estimates align with the stronger effect 
estimates we observed in rural areas in CA for LBW and tBW. McKenzie et al. (2019) also 
discovered a potential additive effect from other sources of air pollution besides OGD in their 
analysis. Here, we considered residual confounding from TRI facilities within 1 km, but 
inclusion of this covariate did not change the rural/urban strata-specific effect estimates. 
Nevertheless, there may be residual confounding from other sources of air or drinking water 
pollution that we could not account for in our analysis. For example, the ratio of produced water 
from OGD (which can contain naturally occurring or injected organic/inorganic chemicals, 
chemicals that are reaction byproducts, and radioactive materials) to oil and gas extracted 
increases with well age (Veil et al. 2004). Certain chemicals from produced water could 
evaporate into the air or percolate into groundwater sources depending on disposal methods 
(Long et al. 2015a). Air and water pollution concentrations could differ regionally based on 
dispersion and hydrological transport patterns. Additionally, individual factors that we could not 
measure in our study such as maternal occupation, housing quality, indoor air quality, 
dependence upon groundwater sources for drinking water, and underlying population sensitivity 
to OGD-related pollutants may have contributed to observed differences in effect estimates 
between rural and urban settings. In the air pollution literature, the exposure-response 
relationship between cardiovascular disease mortality and PM2.5 is relatively steep at low levels 
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of exposure but flattens out at higher levels (Pope et al. 2009; Smith and Peel 2010). Such 
exposure-response relationships could apply to the OGD setting where urban dwellers may be 
less affected by OGD-specific pollutants because OGD as an emission source contributes a 
relatively small percentage to ambient air pollution levels in urban areas, which tend have higher 
pollutant concentrations overall from diverse mobile and stationary sources. Indeed, average 
NO2 levels among urban areas within our study were double that of rural areas.  
 
Results from our analysis align with prior studies that observed decreased birth weight associated 
with maternal exposure to OGD activities (Currie et al. 2017; Hill 2018; Stacy et al. 2015). 
However, associations between exposure to OGD and LBW and SGA from other studies have 
been mixed, with increased odds (Stacy et al. 2015) or incidence probability (Currie et al. 2017; 
Hill 2018) as well as decreased odds (McKenzie et al. 2014) or no associations (Casey et al. 
2015c; Whitworth et al. 2017). Although the mechanisms by which OGD may adversely affect 
birth weight outcomes remain uncertain, air pollution and noise may be possible pathways that 
affect maternal health during pregnancy. During production, operation of various ancillary 
equipment (e.g. wellhead compressors, pneumatic devices, separators, and dehydrators) to 
collect and process oil and gas generate air pollutants (Garcia-Gonzales et al. 2019b). Multiple 
VOCs have been measured at oil and gas wellheads and off-site including BTEX and 
formaldehyde. At ambient levels, BTEX and formaldehyde have been linked to significant 
decreases in birth weight (Bolden et al. 2015; Chang et al. 2017; Maroziene and Grazuleviciene 
2002). Flaring also occurs with oil-producing and horizontally drilled wells (Franklin et al. 2019) 
and can contribute to spikes in PM2.5, black carbon and VOCs during production (Allshouse et 
al. 2019; Franklin et al. 2019). Relative to other phases of OGD, excessive noise is minimized 
during production (Allshouse et al. 2019; Hays et al. 2017a). However, noise from compressor 
stations often exceed the World Health Organization’s recommended 55 dBA at night (Hays et 
al. 2017a) and noise above 65 dBA were measured 20% of the time between 7:00 PM and 7:00 
AM in one study (Allshouse et al. 2019). Excessive noise can lead to annoyance and impaired 
sleep quality (Hays et al. 2017a), which have been linked to low birth weight (Abeysena et al. 
2010; Owusu et al. 2013) and preterm birth (Li et al. 2017).  
 
Unlike previous studies, we found no significant association between exposure to active wells 
and PTB except in the third trimester in urban areas where moderate exposure appeared harmful 
and high exposure protective. Exposure to OGD was associated with modestly decreased odds 
for PTB (Stacy et al. 2015) and increased odds (Casey et al. 2015c) in Pennsylvania and 
increased odds in Texas (Walker Whitworth et al. 2018; Whitworth et al. 2017). The two 
Pennsylvania studies were conducted in different regions of Pennsylvania and among different 
populations (general for Stacy et al. (2015) and patients served by one healthcare provider for 
Casey et al. (2015)). The inverse association in the Stacy et al. (2015) analysis was only 
observed for the second quartile of exposure compared to the lowest quartile while the 
association increased with greater exposure (quartiled) in the Casey et al. (2015) study. In Texas, 
the association was only significant with the highest level of exposure within 10 miles (Walker 
Whitworth et al. 2018) and the first and second trimesters with exposure within half a mile 
(Whitworth et al. 2017). Associations for PTB appear to vary by level of exposure as well as 
trimester. We only observed significant associations–increased odds with moderate exposure and 
decreased odds with high exposure–in urban areas in the third trimester. Previous studies on air 
pollution and birth outcomes have suggested that the first and third trimesters are critical 
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windows of exposure for LBW and PTB (Ritz and Wilhelm 2008; Woodruff et al. 2009). 
Additionally, the significant inverse association between high OGD exposure and PTB in urban 
areas may reflect residual confounding or live birth bias. Other SES characteristics that were not 
controlled for in our models could have led to underlying differences among urban dwellers or 
their exposure patterns. Moreover, if more highly exposed or more vulnerable mothers were less 
likely to become pregnant or more likely to experience fetal loss, a so-called “depletion of 
susceptibles” could have occurred (Raz et al. 2018), and a seemingly protective effect would 
then be observed. While we could not evaluate fertility patterns or spontaneous abortion in our 
analysis, a study in Ecuador observed greater odds of spontaneous abortion among women who 
lived within 5 km downstream of an oil field compared to those who lived at least 30 km 
upstream of an oil field (San Sebastian et al. 2002). 
 
The inconsistent results across studies may reflect differences in statistical and exposure 
assessment methods, study population demographics, and OGD infrastructure. First, to limit 
unmeasured confounding, our analyses restricted the study population to those individuals living 
within 10 km of at least one active or inactive well at the time of delivery. Similar to Whitworth 
et al. (2017), we specified the unexposed group as those pregnancies with some well activity, but 
no well activity within 1 km. Besides their exposure, the control and exposed groups are likely 
more similar to each other on other characteristics (e.g., unmeasured socioeconomic factors) than 
a control group selected from greater distances or other regions. Second, we applied a 1 km 
buffer for our exposure metric without weighting, i.e., without up-weighting wells at a shorter 
distance from maternal residences. Previous studies used inverse distance weighting (McKenzie 
et al. 2014; Stacy et al. 2015) or inverse distance squared weighting (Casey et al. 2015c; Walker 
Whitworth et al. 2018; Whitworth et al. 2017), but often included wells beyond our 1 km buffer. 
Inverse distance weighting has been applied in many air pollution studies (de Mesnard 2013). 
While air pollution may be a large contributor to OGD-related exposure, we did not assume that 
it is the only OGD-related hazard and within such a short distance (1 km) dispersion patterns of 
OGD pollutants may be relatively uniform. Therefore, we weighted all wells equally within the 1 
km buffer. Third, we examined separate effects of inactive wells and active well production 
volume, while prior studies have not considered inactive wells separately and often only 
examined the density of (McKenzie et al. 2014; Stacy et al. 2015; Whitworth et al. 2017) or total 
production volume from unconventional wells (Casey et al. 2015c; Walker Whitworth et al. 
2018). Including both inactive and active wells allowed us to distinguish possible differential 
effects by well type. Fourth, our CA study population was more racially and ethnically diverse 
than those in other studies conducted in CO and PA, which may contribute to differences in 
analytical results. Finally, California’s OGD infrastructure is older than in other states and 
utilizes less hydraulic fracturing compared to OGD in PA, CO and other states where production 
infrastructure is newly established (Long et al. 2015c). These regional differences in OGD 
infrastructure may affect the type of hazards associated with them and their implications for 
maternal health and birth outcomes. 
 
Our study is the first to highlight differences in potential health impacts of exposure to active 
OGD based on total production volume from both oil and gas wells and inactive wells. We did 
not, however, directly measure OGD environmental impacts via, for example, air or drinking 
water monitoring near active or inactive wells. Several OGD-related hazards–air toxics, water 
pollutants, noise, excessive lighting–may elicit a variety of biological responses, but our 
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exposure measure precluded identification of specific pathways through which OGD may affect 
birth outcomes. Further, the cumulative exposure-response curve of all the potential hazards and 
health outcomes may differ than that for each individual hazard separately. For example, living 
within proximity to oil/gas fields and seeing the active rigs daily might induce stress, worry, and 
lack of sleep (Ferrar et al. 2013; Hirsch et al. 2018; Long et al. 2015a; Palagini et al. 2014). 
However, individuals may habituate, leading to biological responses that may peak and level off 
(Basner et al. 2011), while we might expect a linear exposure-response related to air pollution 
exposures.  Finally, our measure of total active well production volume from both oil and gas did 
not distinguish whether the same production volume emanated from several or a few wells, as we 
were not able to account for differences in emissions impacts across different actively producing 
wells.   
 
 We observed some modest inverse associations between inactive wells and birth outcomes, 
primarily in urban areas. Inactive wells can pose risks in several ways. To date, excessive 
fugitive methane emissions have been measured at abandoned (unplugged) well sites, with 
higher concentrations detected at sites with compromised wells (Boothroyd et al. 2016; Kang et 
al. 2016). Residual off-gassing of air contaminants such as BTEX could also occur, which has 
prompted the South Coast air district and DOGGR to begin to collect air toxics and VOCs 
emissions data (LACDPH 2018; SCAQMD 2019; California AB1328 | TrackBill p. 13). Of 
greater concern is contamination of potable water sources from subsurface leakage and migration 
of contaminants through abandoned or idle wells (Long et al. 2015a). In an assessment of 
groundwater contamination from OGD in Ohio and Texas over more than a decade, abandoned 
wells accounted for 22% (Ohio) and 14% (Texas) of contamination incidents (Ground Water 
Protection Council 2011). In CA, idle wells may be repurposed for wastewater disposal or later 
revitalized with new technologies (Walker 2011). Wells operating with old infrastructure pose 
greater risks of leakages through the well casing and cement barriers (Ingraffea et al. 2014). 
Hydraulic fracturing could also increase the risk of surface or groundwater contamination via 
abandoned wells due to hydrological pressure changes; in one rare incident an abandoned well in 
Pennsylvania produced a 30-foot geyser of brine and gas for more than a week after a nearby gas 
well underwent hydraulic fracturing (US EPA 2016). We may not have observed any consistent 
or significant associations between exposure to inactive wells and adverse birth outcomes 
because we were not able to capture these nuanced exposure pathways with well count alone, 
leading to potential exposure misclassification. 
 
 Other limitations include our inability to adjust for several individual-level factors. Due to lack 
of data linkage, we could not control for the correlation between siblings (though we do include 
parity in all models) or maternal mobility during pregnancy. Birth records did not include a 
linking variable for siblings and only documented the residential address at time of birth. 
Previous studies on impacts of residential mobility during pregnancy suggest that ignoring 
residential mobility may lead to modest bias in associations towards the null or result in non-
differential exposure misclassification (Chen et al. 2010; Hodgson et al. 2015; Lupo et al. 2010; 
Pennington et al. 2017). However, exposure estimates based on addresses captured at birth 
versus conception have been highly correlated (Chen et al. 2010; Lupo et al. 2010; Pennington et 
al. 2017). Across studies, ≤30% of mothers moved during pregnancy and moving distances were 
relatively short and within the same county (Bell and Belanger 2012; Chen et al. 2010; Hodgson 
et al. 2015; Lupo et al. 2010; Miller et al. 2010; Pennington et al. 2017). The extent of 
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misclassification error depends on the spatial variability in the exposure (Hodgson et al. 2015). 
Additionally, exposure misclassification may be less prominent in the third trimester. Across 
environmental epidemiological studies that evaluated the impact of residential mobility on effect 
estimates by trimester, the highest rates of mobility occurred in the second trimester (Bell et al. 
2018; Bell and Belanger 2012). Lowest residential mobility was observed in the first trimester 
among three studies and in the third trimester among two studies (Bell et al. 2018; Bell and 
Belanger 2012). Exposure misclassification due to mobility in the third trimester is less likely to 
be an issue, due to its proximity to the time of delivery, when the maternal residential address is 
collected and listed on the birth certificate. In addition to residential mobility, maternal 
occupational mobility should also be considered. One study that evaluated the impact of 
occupational mobility on air pollution exposure misclassification among Parisian women in the 
two first trimesters, found that mode of transport increased NO2 exposure in the first trimester 
(Blanchard et al. 2018). Our study results yielded similar effect estimates across trimesters, 
suggesting that any bias resulting from maternal residential and occupational mobility is likely 
non-differential across trimesters.   
 
In summary, this study expands the current literature on the health implications of OGD. We 
observed that prenatal exposure to active oil/gas production from both conventional and 
unconventional wells in CA was associated with adverse birth outcomes, and these associations 
varied by rural and urban areas. We observed the strongest associations with exposure to high 
production volume in rural areas. Future studies should consider inactive wells and conduct 
exposure assessments that collect environmental samples of OGD-related hazards. Such data 
would greatly improve exposure assignment and advance our understanding of underlying 
exposure sources and pathways. Additional evaluations of the relationship between oil/gas 
operator size, pollutant emissions, frequency and type of violations, and health outcomes would 
also elucidate which types of wells may be of greatest concern. Such data can inform regulatory 
decisions in terms of prioritizing inspection and pollution monitoring as well as emissions 
reduction requirements and community exposure reduction strategies.   
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1.6 Tables 
Table 1.1. Neonate, maternal and area-level characteristics of births by oil and gas well 
production volume category, California 2006-2015. Pre-pregnancy BMI and smoking during 
pregnancy were available for 2007-2015 births (2006 births excluded from the missing 
category).  
 

    Production volume   
    No BOE 1-100 BOE/day  GT 100 BOE/day   

Variable N (%) (n=2,866,735) (n=70,615)  (n=50,079) p-value† 

Neonate characteristics           
Mean birth weight (g) (SD) 2,987,429 (100) 3,327 ±528 3,318 ±527 3,316 ±527 <0.0001 
Mean gestational age (weeks) 
(SD) 2,987,429 (100) 39 ±2 39 ±2 39 ±2 <0.0001 

Sex           

   Female 1,456,548 (49) 49 48 49 0.2879 

   Male 1,530,866 (51) 51 52 51   

   Missinga 15 (<1) 100   0 0    

Birth month           

   January 244,433 (8) 8 8 8 0.3261 

   February 224,691 (8) 8 8 8   

   March 245,683 (8) 8 8 8   

   April 233,297 (8) 8 8 8   

   May 242,652 (8) 8 8 8   
   June 241,962 (8) 8 8 8   

   July 260,028 (9) 9 9 9   

   August 269,714 (9) 9 9 9   

   September 266,586 (9) 9 9 9   

   October 261,399 (9) 9 9 9   

   November 245,566 (8) 8 8 8   

   December 251,418 (8) 8 8 8   

Birth year           

   2006 320,330 (11) 11 10 12 <0.0001 

   2007 320,698 (11) 11 11 12   

   2008 312,732 (10) 10 10 11   

   2009 300,201 (10) 10 10 10   
   2010 290,469 (10) 10 10 10   

   2011 288,006 (10) 9 10 9   

   2012 288,855 (9) 10 10 9   

   2013 287,425 (10) 10 10 9   

   2014 293,637 (10) 10 10 9   

   2015 285,076 (10) 9 9 9   

Maternal Characteristics (%)           

Education           

   < High school 764,090 (26) 26 31 21 <0.0001 

   High school diploma/GED 764,206 (26) 26 23 21   
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   Some college 724,574 (25) 25 22 23   

   College+  665,993 (23) 23 24 35   

   Missinga 68,566 (2)  95  3 2   

Age at delivery           

   < 20 252,857 (8) 9 9 6 <0.0001 

   20-24  651,062 (22) 22 21 18   

   25-29 809,072 (27) 27 27 25   

   30-34  754,714 (25) 25 26 29   

   35+ 519,700 (17) 17 17 22   
   Missinga 24 (<1)  92 8  0   

Race/ethnicity           

   Asian/Pacific Islander 356,603 (12) 12 11 13 <0.0001 

   Black 154,047 (5) 5 6 9   

   Hispanic 1,673,517 (56) 56 59 47   

   Other 84,384 (3) 3 2 4   

   White  718,878 (24) 24 22 27   

Kotelchuck index           

   Inadequate 351,729 (12) 12 13 12 <0.0001 

   Intermediate 349,946 (12) 12 12 9   

   Adequate+ 905,545 (30) 30 29 34   

   Adequate  1,380,209 (46) 46 46 45   
Parity        <0.0001 

   Nulliparous 1,154,875 (39) 39 40 44   

   Multiparous 1,831,556 (61) 61 60 56   

   Missinga 998 (<1)  93 4 3   

Mean pre-pregnancy BMIb (SD) 2,472,066 (93) 26 ±6 26 ±6 25 ±6 <0.0001 

   Missinga 195,033 (7) 94 4 2  
Smoking during pregnancyb     <0.0001 

   Smoked 49,461 (2) 2 1 1  
   Did not smoke 257,7903 (97) 98 99 99  
   Missinga 39,735 (1) 92 5 3  

TRI facility: 1+ within 1 km 48,189 (2) 2 4 3 <0.0001 

Area-level characteristics (%)           

Mean NO2 (ppb) (SD) 2,987,408 (99) 16 ±7 18 ±7 19 ±5 <0.0001 

   Missinga  21 (<1)  95  0 5   

Urban 2,651,066 (89) 89 87 97   

Air Basin           

   Sacramento Valley 296,668 (10) 10 1 0.5 <0.0001 

   San Joaquin Valley 563,276 (19) 19 21 4   

   South Central Coast 178,647 (6) 6 6 1   
   South Coast  1,948,838 (65) 65 72 94   

ICE            

   Quartile 1 - poverty 731,431 (25) 25 31 27 <0.0001 

   Quartile 2 731,403 (25) 25 23 19   

   Quartile 3 730,283 (25) 25 19 23   
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   Quartile 4 - wealth 724,972 (25) 25 27 31   

   Missinga 217 (<1)  76 9 15   
Oil/gas wells           
Mean inactive well count (SD) 2,987,429 (100) 0 89 ±111 160 ±191 <0.0001 

Mean active well count 2,987,429 (100) 0 4 ±4 32 ±27 <0.0001 
Mean production volume 
(BOE)/day (SD) 2,987,429 (100) 0 26 ±26 599 ±711 <0.0001 

Note: BOE, barrels of oil equivalent; ICE: Index of Concentration at the Extremes.  
†ANOVA or chi-square test 
aDistribution of missingness across categories of production volume rather than percent missing in each production volume 
category. 
bNo covariate data available for 2006 (not included as missing), N=2,667,099 births between 2007 and 2015  
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1.7 Figures 
Figure 1.1. Flow diagram of study population development and exclusion criteria applied.  
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Figure 1.2. Schematic of definition of exposure and reference groups for inactive well count (A) and active well production volume 
(B). For each exposure metric, exposure was based on the presence of inactive or active wells within the 1 km buffer. Observations 
without the specific well type for each metric were assigned into the reference category. 
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Figure 1.3. Plots of rural vs. urban odds ratios or mean difference in birth weight (grams) and 95% confidence interval for associations between exposure to 
low, moderate and high counts of inactive wells across the entire pregnancy and low birth weight (A), preterm birth (B), small for gestational age (C), and 
continuous term birth weight (D). Logistic regression models adjust for inactive well count, child's sex, birth month and birth year, and maternal education, age, 
race/ethnicity, Kotelchuck prenatal care index, parity, air basin, NO2 and ICE for income. In addition to the covariates adjusted for in the logistic regression 
models, the linear regression models also adjusted for gestational age. Numerical values plotted here can be found along with estimates for the three trimesters 
and p-values for statistical tests for effect modification in Supplemental Tables 1.1-1.2. 
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Figure 1.4. Plots of rural vs. urban odds ratios or mean difference in birth weight (grams) and 95% confidence interval for 
associations between exposure to moderate and high production volume across the entire pregnancy and low birth weight (A), preterm 
birth (B), small for gestational age (C), and continuous term birth weight (D). Logistic regression models adjust for inactive well 
count, child's sex, birth month and birth year, and maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity, air 
basin, NO2 and ICE for income. In addition to the covariates adjusted for in the logistic regression models, the linear regression 
models also adjusted for gestational age. Numerical values plotted here can be found along with estimates for the three trimesters and 
p-values for statistical tests for effect modification in Supplemental Tables 1.4-1.7.  
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1.8 Supplemental Information Chapter 1  
Supplemental Figure 1.1. Active well density by air basin across California (2005–2015). Map 
created in ArcGIS 10.6 (ESRI, Redlands, CA). The well density was calculated via the point 
density tool, which calculates density based on the number of neighboring wells within a 1 km x 
1 km cell around each well by air basin. 
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Supplemental Figure 1.2. Distribution of total production volume (BOE) per day by non-cases 
of LBW (A) and cases of LBW (B). The distribution was generated for birth outcome cases and 
non-cases in order to select a cut-off around the median for each category of exposure to active 
wells. The distribution of normalized BOE/day was similar across cases of LBW, PTB and SGA. 
One cut-off was selected for comparability and the value of the cut-off was selected to ensure 
sufficient overall sample size and number of cases in each exposure group. Figures generated in 
SAS 9.4 (SAS Institute Inc., Cary, NC).  
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Supplemental Figure 1.3. Semi-variogram generated to assess residual spatial dependence. 
Distances between observations were grouped into 30 distance classes to generate corresponding 
averages of the semi-variances. The nearly straight line indicates that there is no spatial 
autocorrelation between the observations. Figure generated in SAS 9.4 (SAS Institute Inc., Cary, 
NC). 
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Supplemental Figure 1.4. Distribution of the average total production volume (BOE) and birth 
outcomes by year of birth. Total production volume reflects exposure that occurred during 
pregnancy, most of which occurred the prior year of birth. The annual rates of LBW, PTB and 
SGA are plotted for rural (A) and urban (B) areas. The birth weight plots include only term births 
and the mean term birth weight is plotted for rural (C) and urban (D) areas.  
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Supplemental Table 1.1. Adjusted odds ratio for binary birth outcomes associated with exposure to inactive wells by rural/urban 
status. Data for Figure 1.3A-C. 

 

Inactive count categories No BOE (ref) 1 well 2-5 wells 6+ wells 

  n Cases (%) n Cases (%) aOR (95% CI) n Cases (%) aOR (95% CI) n Cases (%) aOR (95% CI) 
Low birth weight: Rurala                       
     Entire pregnancy 244,817 11,225 (5) 36,357 1,684 (5) 1.03 (0.97, 1.08) 26,387 1,116 (4) 0.92 (0.86, 0.99) 21,573 920 (4) 0.91 (0.81, 1.01) 
     Trimester 1 244,817 11,225 (5) 36,347 1,684 (5) 1.03 (0.97, 1.08) 26,371 1,116 (4) 0.92 (0.86, 0.99) 21,599 920 (4) 0.90 (0.81, 1.01) 
     Trimester 2 244,816 11,225 (5) 36,349 1,684 (5) 1.03 (0.97, 1.08) 26,380 1,115 (4) 0.92 (0.86, 0.99) 21,589 921 (4) 0.91 (0.82, 1.01) 
     Trimester 3 244,045 10,609 (4) 36,231 1,589 (4) 1.02 (0.97, 1.08) 26,307 1,058 (4) 0.92 (0.85, 0.99) 21,540 864 (4) 0.91 (0.82, 1.02) 
Low birth weight: Urbana                       
     Entire pregnancy 1,630,956 84,068 (5) 380,234 19,391 (5) 0.98 (0.97, 1.00) 319,349 16,515 (5) 1.00 (0.98, 1.02) 258,416 13,181 (5) 0.96 (0.94, 0.99) 
     Trimester 1 1,630,889 84,063 (5) 380,265 19,391 (5) 0.98 (0.97, 1.00) 319,300 16,516 (5) 1.00 (0.98, 1.02) 258,501 13,185 (5) 0.96 (0.94, 0.99) 
     Trimester 2 1,630,924 84,067 (5) 380,233 19,391 (5) 0.98 (0.97, 1.00) 319,317 16,512 (5) 1.00 (0.98, 1.02) 258,481 13,185 (5) 0.96 (0.94, 0.99) 
     Trimester 3 1,625,253 79,173 (5) 378,963 18,278 (5) 0.98 (0.97, 1.00) 318,249 15,582 (5) 1.00 (0.98, 1.02) 257,713 12,483 (5) 0.97 (0.94, 1.00) 
Preterm birth: Rurala                       

     Entire pregnancy 244,817 16,322 (7) 36,357 2,301 (6) 0.98 (0.93, 1.03) 26,387 1,569 (6) 0.95 (0.88, 1.02) 21,573 1,370 (6) 1.01 (0.89, 1.14) 
     Trimester 1 244,817 16,322 (7) 36,347 2,301 (6) 0.98 (0.93, 1.03) 26,371 1,567 (6) 0.94 (0.88, 1.02) 21,599 1,372 (6) 1.01 (0.89, 1.14) 
     Trimester 2 244,816 16,322 (7) 36,349 2,301 (6) 0.98 (0.93, 1.03) 26,380 1,567 (6) 0.94 (0.88, 1.02) 21,589 1,372 (6) 1.00 (0.88, 1.13) 
     Trimester 3 244,045 15,551 (6) 36,231 2,191 (6) 0.98 (0.93, 1.03) 26307 1,500 (6) 0.94 (0.88, 1.02) 21,540 1,309 (6) 1.02 (0.90, 1.15) 
Preterm birth: Urbana                       
     Entire pregnancy 1,630,956 113,646 (7) 380,234 25,375 (7) 0.97 (0.95, 0.99) 319,349 21,838 (7) 1.01 (0.99, 1.03) 258,416 17,039 (7) 0.97 (0.94, 0.99) 
     Trimester 1 1,630,889 113,635 (7) 380,265 25,383 (7) 0.97 (0.96, 0.99) 319,300 21,835 (7) 1.01 (0.99, 1.03) 258,501 17,045 (7) 0.97 (0.94, 0.99) 
     Trimester 2 1,630,924 113,644 (7) 380,233 25,376 (7) 0.97 (0.95, 0.99) 319,317 21,835 (7) 1.01 (0.99, 1.03) 258,481 17,043 (7) 0.97 (0.94, 0.99) 
     Trimester 3 1,625,253 107,975 (7) 378,963 24,117 (6) 0.97 (0.95, 0.99) 318,249 20,787 (7) 1.01 (0.99, 1.03) 257,713 16,242 (6) 0.97 (0.95,1.00) 
Small for gestational 
age: Rurala                     
     Entire pregnancy 244,817 25,536 (10) 36,357 3,702 (10) 0.96 (0.93, 1.00) 26,387 2,726 (10) 0.98 (0.94, 1.03) 21,573 2,247 (10) 0.95 (0.89, 1.02) 
     Trimester 1 244,817 25,536 (10) 36,347 3,701 (10) 0.96 (0.93, 1.00) 26,371 2,724 (10) 0.98 (0.94, 1.03) 21,599 2,250 (10) 0.96 (0.89, 1.03) 
     Trimester 2 244,816 25,536 (10) 36,349 3,702 (10) 0.96 (0.93, 1.00) 26,380 2,724 (10) 0.98 (0.93, 1.03) 21,589 2,249 (10) 0.95 (0.89, 1.02) 
     Trimester 3 244,045 25,501 (10) 36,231 3,699 (10) 0.96 (0.93, 1.00) 26307 2,722 (10) 0.98 (0.94, 1.03) 21,540 2,247 (10) 0.95 (0.89, 1.02) 
Small for gestational 
age: Urbana                     
     Entire pregnancy 1,630,956 189,858 (12) 380,234 45,158 (12) 0.99 (0.98, 1.00) 319,349 37,830 (12) 0.99 (0.98, 1.00) 258,416 30,886 (12) 0.98 (0.96, 1.00) 
     Trimester 1 1,630,889 189,846 (12) 380,265 45,165 (12) 0.99 (0.98, 1.00) 319,300 37,825 (12) 0.99 (0.98, 1.00) 258,501 30,896 (12) 0.98 (0.96, 1.00) 
     Trimester 2 1,630,924 189,856 (12) 380,233 45,157 (12) 0.99 (0.98, 1.00) 319,317 37,822 (12) 0.99 (0.98, 1.00) 258,481 30,897 (12) 0.98 (0.96, 1.00) 
     Trimester 3 1,625,253 189,539 (12) 378,963 45,094 (12) 0.99 (0.98, 1.00) 318,249 37,773 (12) 0.99 (0.98, 1.00) 257,713 30,849 (12) 0.98 (0.96, 1.00) 

Note: aOR, adjusted odds ratio, CI, confidence interval. 
aLogistic regression models adjusted for production volume; child's sex, birth month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index,   
 parity; air basin, NO2 concentration, and ICE for income. 
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Supplemental Table 1.2. Adjusted odds ratio for term birth weight (grams) associated with exposure to inactive wells by 
rural/urban status. Data for Figure 1.3D. 
 

Inactive count 
categories 

0 wells 
(ref) 1 well 2-5 wells 6+ wells 

  n n 
aDiff (95% 
CI) n aDiff (95% CI) n 

aDiff (95% 
CI) 

Rurala               
     Entire pregnancy 228,495 34,056 4 (-2, 11) 24,818 -2 (-10, 6) 20,203 -5 (-16, 5) 
     Trimester 1 228,495 34,046 4 (-2, 11) 24,804 -2 (-10, 6) 20,227 -5 (-16, 5) 
     Trimester 2 228,494 34,048 4 (-2, 11) 24,813 -2 (-10, 6) 20,217 -5 (-16, 5) 
     Trimester 3 228,494 34,040 4 (-2, 11) 24,807 -2 (-10, 5) 20,231 -6 (-17, 5) 
Urbana               
     Entire pregnancy 1,517,310 354,859 2 (0, 5) 297,511 4 (1, 6) 241,377 5 (1, 8) 
     Trimester 1 1,517,254 354,882 2 (0, 5) 297,465 4 (1, 6) 241,456 5 (1, 8) 
     Trimester 2 1,517,280 354,857 2 (0, 5) 297,482 4 (1, 6) 241,438 5 (1, 8) 
     Trimester 3 1,517,278 354,846 2 (0, 5) 297,462 4 (1, 6) 241,471 5 (1, 8) 

Note: aDiff, adjusted mean difference (grams); CI, confidence interval. 
aLinear regression models adjusted for production volume; child's gestational age, sex, birth month and birth year;  
 maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE 
for income. 
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Supplemental Table 1.3. Unstratified adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated 
with exposure to oil and gas production.  
 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) n Cases (%) EE (95% CI) 

Low birth weighta                 
     Entire pregnancy 2,800,901 141,984 (5) 68,642 3,561 (5) 1.05 (1.01, 1.09) 48,546 2,555 (5) 1.00 (0.96, 1.06) 
     Trimester 1 2,801,853 142,033 (5) 67,776 3,513 (5) 1.05 (1.00, 1.09) 48,460 2,554 (5) 1.01 (0.96, 1.06) 
     Trimester 2 2,801,831 142,027 (5) 63,706 3,317 (5) 1.05 (1.01, 1.10) 52,552 2,756 (5) 1.01 (0.96, 1.05) 

     Trimester 3 2,793,270 133,973 (5) 72,835 3,657 (6) 1.06 (1.02, 1.11) 42,196 2,006 (4) 0.94 (0.89, 1.00) 
Preterm birtha                 
     Entire pregnancy 2,800,901 191,536 (7) 68,642 4,738 (7) 1.01 (0.97, 1.06) 48,546 3,186 (7) 0.95 (0.91, 1.00) 
     Trimester 1 2,801,853 191,592 (7) 67,776 4,692 (7) 1.02 (0.98, 1.06) 48,460 3,176 (7) 0.95 (0.91, 1.00) 

     Trimester 2 2,801,831 191,578 (7) 63,706 4,450 (7) 1.03 (0.99, 1.07) 52,552 3,432 (7) 0.95 (0.90, 1.00) 
     Trimester 3 2,793,270 182,284 (7) 72,835 5,011 (7) 1.06 (1.02, 1.10) 42,196 2,377 (6) 0.83 (0.78, 0.88) 
Small for gestational agea                 

     Entire pregnancy 2,800,901 323,688 (12) 68,642 8,305 (12) 1.04 (1.00, 1.07) 48,546 5,950 (12) 1.05 (1.01, 1.08) 

     Trimester 1 2,801,853 323,824 (12) 67,776 8,183 (12) 1.03 (1.00, 1.07) 48,460 5,936 (12) 1.05 (1.01, 1.08) 

     Trimester 2 2,801,831 323,806 (12) 63,706 7,723 (12) 1.04 (1.00, 1.07) 52,552 6,414 (12) 1.04 (1.01, 1.07) 

     Trimester 3 2,793,270 323,405 (12) 72,835 8,806 (12) 1.04 (1.00, 1.07) 42,196 5,213 (12) 1.05 (1.02, 1.09) 

Term birth weightb                 
     Entire pregnancy 2,609,365 -- 63,904 -- -3 (-8, 2) 45,360 -- -5 (-10, 1) 
     Trimester 1 2,610,261 -- 63,084 -- -3 (-8, 2) 45,284 -- -4 (-10, 2) 
     Trimester 2 2,610,253 -- 59,256 -- -3 (-8, 3) 49,120 -- -4 (-10, 1) 
     Trimester 3 2,610,986 -- 67,824 -- -3 (-8, 2) 39,819 -- -4 (-10, 3) 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than. 
    

aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity,  
 Kotelchuck prenatal care index, parity; urban indicator, air basin, NO2 concentration, and ICE for 
income.       
bLinear regression model (mean difference, grams) also adjusted for gestational age.         
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Supplemental Table 1.4. Adjusted odds ratios for low birth weight associated with oil and gas production volume by urban/rural 
status. Data for Figure 1.4A. Effect modification p-values were derived from two-sample z-tests using strata-specific estimates and 
variances; significance at α=0.05. 
 

Prod volume 
categories 

No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n 
Cases 
(%) aOR (95% CI) 

EM  
p-value n Cases (%) aOR (95% CI) 

EM 
 p-value 

Rurala                     
     Entire pregnancy 318,488 14,451 (5) 8,957 400 (4) 1.11 (0.97, 1.27) 0.81 1,689 94 (6) 1.40 (1.14, 1.71) 0.01 
     Trimester 1 318,629 14,457 (5) 8,809 394 (4) 1.12 (0.98, 1.28) 0.67 1,696 94 (6) 1.39 (1.11, 1.75) 0.002 
     Trimester 2 318,675 14,461 (5) 8,258 367 (4) 1.10 (0.96, 1.26) 1.00 2,201 117 (5) 1.35 (1.13, 1.61) 0.002 
     Trimester 3 317,913 13,684 (4) 8,790 359 (4) 1.07 (0.93, 1.23) 1.00 1,420 77 (5) 1.38 (1.11, 1.72) 0.01 

Urbana                   
     Entire pregnancy 2,482,413 127,533 

(5) 
59,685 3,161 (5) 1.04 (1.00, 1.09) 

-- 
46,857 2,461 (5) 0.99 (0.95, 1.04) 

-- 

     Trimester 1 2,483,224 
127,576 
(5) 58,967 3,119 (5) 1.04 (0.99, 1.09) -- 46,764 2,460 (5) 1.00 (0.95, 1.04) -- 

     Trimester 2 2,483,156 
127,566 
(5) 55,448 2,950 (5) 1.05 (1.00, 1.10) -- 50,351 2,639 (5) 0.99 (0.95, 1.04) -- 

     Trimester 3 2,475,357 120,289 
(5) 

64,045 3,298 (5) 1.06 (1.02, 1.11) -- 40,776 1,929 (5) 0.93 (0.88, 0.98) -- 

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. 
aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity,  

 Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 

 
 
 
  



 

48 
 

Supplemental Table 1.5. Adjusted odds ratios for preterm birth associated with oil and gas production volume by urban/rural 
status. Data for Figure 1.4B. Effect modification p-values were derived from two-sample z-tests using strata-specific estimates and 
variances; significance at α=0.05. 
 

Prod volume 
categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n 
Cases 
(%) aOR (95% CI) 

EM 
 p-value n 

Cases 
(%) aOR (95% CI) 

EM 
 p-value 

Rurala                     
     Entire pregnancy 318,488 20,845 (7) 8,957 618 (7) 1.03 (0.91, 1.18) 1.00 1,689 99 (6) 0.97 (0.78, 1.21) 1.00 
     Trimester 1 318,629 20,857 (7) 8,809 604 (7) 1.02 (0.90, 1.16) 1.00 1,696 101 (6) 1.00 (0.80, 1.24) 1.00 
     Trimester 2 318,675 20,850 (7) 8,258 582 (7) 1.06 (0.94, 1.21) 1.00 2,201 130 (6) 0.98 (0.82, 1.18) 1.00 
     Trimester 3 317,913 19,899 (6) 8,790 575 (7) 1.03 (0.90, 1.17) 1.00 1,420 77 (5) 0.92 (0.71, 1.19) 0.84 

Urbana                   
     Entire pregnancy 2,482,413 170,691 (7) 59,685 4,120 (7) 1.01 (0.97, 1.06) -- 46,857 3,087 (7) 0.95 (0.90, 1.00) -- 

     Trimester 1 2,483,224 170,735 (7) 58,967 4,088 (7) 1.01 (0.97, 1.06) -- 46,764 3,075 (7) 0.95 (0.91, 1.00) -- 

     Trimester 2 2,483,156 170,728 (7) 55,448 3,868 (7) 1.02 (0.98, 1.07) -- 50,351 3,302 (7) 0.95 (0.90, 1.00) -- 
     Trimester 3 2,475,357 162,385 (7) 64,045 4,436 (7) 1.06 (1.02, 1.11) -- 40,776 2,300 (6) 0.82 (0.77, 0.88) -- 

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification.  

aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity,  

 Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
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Supplemental Table 1.6. Adjusted odds ratios for small for gestational age associated with oil and gas production volume by 
urban/rural status. Data for Figure 1.4C. Effect modification p-values were derived from two-sample z-tests using strata-specific 
estimates and variances; significance at α=0.05. 
 

Prod volume 
categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) aOR (95% CI) 
EM 
 p-value n Cases (%) aOR (95% CI) 

EM 
 p-value 

Rurala                     
     Entire pregnancy 318,488 33,034 (10) 8,957 966 (11) 1.07 (0.97, 1.19) 0.99 1,689 211 (13)  1.22 (1.02, 1.45) 0.14 
     Trimester 1 318,629 33,056 (10) 8,809 937 (11) 1.05 (0.95, 1.16) 1.00 1,696 218 (13) 1.25 (1.04, 1.50) 0.07 
     Trimester 2 318,675 33,058 (10) 8,258 889 (11) 1.07 (0.96, 1.19) 1.00 2,201 264 (12) 1.17 (1.02, 1.35) 0.20 
     Trimester 3 317,913 33,038 (10) 8,790 948 (11) 1.08 (0.97, 1.19) 0.90 1,420 183 (13) 1.24 (1.02, 1.50) 0.14 

Urbana                   
     Entire pregnancy 2,482,413 290,654 

(12) 
59,685 7,339 (12) 1.03 (1.00, 1.07) 

-- 
46,857 5,739 (12) 1.04 (1.01, 1.07) 

-- 

     Trimester 1 2,483,224 
290,768 
(12) 58,967 7,246 (12) 1.03 (1.00, 1.07) -- 46,764 5,718 (12) 1.04 (1.00, 1.07) -- 

     Trimester 2 2,483,156 
290,748 
(12) 55,448 6,834 (12) 1.03 (1.00, 1.07) -- 50,351 6,150 (12) 1.04 (1.00, 1.07) -- 

     Trimester 3 2,475,357 290,367 
(12) 

64,045 7,858 (12) 1.03 (1.00, 1.07) -- 40,776 5,030 (12) 1.04 (1.01, 1.08) -- 

Note: aOR, adjusted odds ratio; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. 
aLogistic regression models adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity,  

 Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
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Supplemental Table 1.7. Adjusted mean difference of term birth weight (grams) associated with oil and gas production volume 
by urban/rural status. Data for Figure 1.4D. Effect modification p-values were derived from two-sample z-tests using strata-
specific estimates and variances; significance at α=0.05. 
 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n n aDiff (95% CI) 
EM 
 p-value n aDiff (95% CI) 

EM 
 p-value 

Rurala               
     Entire pregnancy 297,643 8,339 3 (-11, 18) 0.62 1,590 -36 (-54, -17) 0.001 
     Trimester 1 297,772 8,205 4 (-10, 18) 0.47 1,595 -39 (-59, -19) 0.0003 
     Trimester 2 297,825 7,676 3 (-12, 18) 0.71 2,071 -27 (-45, -8) 0.01 
     Trimester 3 298,014 8,215 4 (-11, 20) 0.41 1,343 -30 (-48, -12) 0.001 
Urbana               
     Entire pregnancy 2,311,722 55,565 -5 (-10, 1) -- 43,770 1 (-5, 8) -- 
     Trimester 1 2,312,489 54,879 -5 (-11, 1) -- 43,689 2 (-4, 9) -- 
     Trimester 2 2,312,428 51,580 -5 (-11, 1) -- 47,049 2 (-4, 8) -- 
     Trimester 3 2,312,972 59,609 -6 (-12, 0) -- 38,476 5 (-2, 12) -- 
Note: aDiff, adjusted mean difference (grams); CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater 
than; 
EM, effect modification. 
aLinear regression models adjusted for inactive well count; child's gestational age, sex, birth month and birth year; maternal 
education,  
 age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
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Supplemental Table 1.8. Rural adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with 
exposure to oil and gas production during the entire pregnancy by maternal race/ethnicity. Effect modification p-values were 
derived from two-sample z-tests using strata-specific estimates and variances; significance at α=0.05. Non-Hispanic Whites were 
used as the reference in z-tests. EM p-values were not reported for categories with no observations. 
 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) 
EM 
 p-value n Cases (%) EE (95% CI) 

EM 
 p-value 

Low birth weighta                     
     Asian/Pacific Islander 28,530 1,689 (6) 403 17 (4) 1.07 (0.59, 1.95) 1.00 326 23 (7) 2.04 (1.21, 3.43) 0.29 
     Black 6,313 494 (8) 81 4 (5) 0.65 (0.22, 1.96) 1.00 13 1 (8) 1.40 (0.47, 4.16) 1.00 
     Hispanic 164,739 7,735 (5) 5,828 283 (5) 1.16 (0.99, 1.37) 1.00 655 36 (6) 1.31 (1.02, 1.69) 1.00 
     Other 8,262 407 (5) 119 7 (6) 0.96 (0.47, 1.96) 1.00 27 0 (0) -- -- 
     White (ref) 110,644 4,126 (4) 2,526 89 (4) 1.04 (0.79, 1.37) -- 668 34 (5) 1.37 (0.89, 2.12) -- 
Preterm birtha                
     Asian/Pacific Islander 28,530 1,831 (6) 403 23 (6) 1.01 (0.56, 1.81) 1.00 326 17 (5) 1.06 (0.74, 1.52) 1.00 
     Black 6,313 590 (9) 81 2 (2) -- 0.56 13 0 (0) -- -- 
     Hispanic 164,739 11,882 (7) 5,828 458 (8) 1.14 (0.97, 1.33) 0.54 655 42 (6) 0.95 (0.69, 1.31) 1.00 
     Other 8,262 587 (7) 119 7 (6) 0.73 (0.21, 1.73) 1.00 27 1 (4) 0.53 (0.09, 3.16) 1.00 
     White (ref) 110,644 5,955 (5) 2,526 128 (5) 0.89 (0.70, 1.14) -- 668 39 (6) 0.94 (0.68, 1.31) -- 
Small for gestational agea                
     Asian/Pacific Islander 28,530 4,458 (16) 403 71 (18) 1.30 (0.90, 1.87) 1.00 326 51 (16) 1.09 (0.84, 1.42) 0.51 
     Black 6,313 978 (15) 81 12 (15) 0.81 (0.42, 1.57) 1.00 13 1 (8) 0.38 (0.12, 1.24) 1.00 
     Hispanic 164,739 17,307 (11) 5,828 646 (11) 1.08 (0.97, 1.22) 1.00 655 79 (12) 1.21 (0.91, 1.61) 1.00 
     Other 8,262 899 (11) 119 14 (12) 0.96 (0.50, 1.83) 1.00 27 6 (22) 2.03 (0.86, 4.58) 1.00 
     White (ref) 110,644 9,392 (9) 2,526 223 (9) 1.03 (0.84, 1.27) -- 668 74 (11) 1.24 (1.00, 1.56) -- 
Term birth weightb                
     Asian/Pacific Islander 26,699 -- 380 -- -13 (-67, 42) 1.00 309 -- -23 (-62, 15) 1.00 
     Black 5,723 -- 79 -- 6 (-136, 148) 1.00 13 -- -115 (-257, 27) 1.00 
     Hispanic 152,857 -- 5,370 -- -6 (-22, 10) 0.11 613 -- -23 (-53, 7) 1.00 
     Other 7,675 -- 112 -- 82 (-28, 192) 1.00 26 -- -147 (-320, 26) 1.00 
     White (ref) 104,689 -- 2,398 -- 23 (-4, 50) -- 629 -- -32 (-65, 0) -- 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. 
aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age,  
 Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
bLinear regression model (mean difference, grams) also adjusted for gestational age. 
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Supplemental Table 1.9. Urban adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with 
exposure to oil and gas production during the entire pregnancy by maternal race/ethnicity.  

 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) n Cases (%) EE (95% CI) 
Low birth weighta                 
     Asian/Pacific Islander 305,228 17,621 (6) 7,253 389 (5) 1.06 (0.94, 1.19) 6,182 376 (6) 1.10 (0.98, 1.23) 
     Black 136,701 13,034 (10) 3,655 370 (10) 1.13 (1.00, 1.29) 4,299 391 (9) 1.04 (0.93, 1.17) 
     Hispanic 1,417,139 71,208 (5) 34,986 1,791 (5) 1.01 (0.95, 1.07) 22,459 1,172 (5) 0.98 (0.92, 1.05) 
     Other 54,716 3,119 (6) 1,093 65 (6) 1.20 (0.87, 1.65) 1,209 70 (6) 1.18 (0.87, 1.61) 
     White 568,629 22,551 (4) 12,698 546 (4) 1.06 (0.96, 1.18) 12,708 452 (4) 0.87 (0.78, 0.98) 
Preterm birtha                 
     Asian/Pacific Islander 305,228 18,550 (6) 7,253 388 (5) 1.05 (0.92, 1.20) 6,182 354 (6) 1.00 (0.87, 1.15) 
     Black 136,701 13,956 (10) 3,655 408 (11) 1.11 (0.97, 1.28) 4,299 398 (9) 0.91 (0.80, 1.04) 
     Hispanic 1,417,139 103,664 (7) 34,986 2,540 (7) 0.99 (0.94, 1.05) 22,459 1,630 (7) 0.93 (0.88, 0.99) 
     Other 54,716 3,854 (7) 1,093 88 (8) 1.15 (0.88, 1.50) 1,209 80 (7) 0.94 (0.70, 1.25) 
     White 568,629 30,667 (5) 12,698 696 (5) 0.99 (0.90, 1.10) 12,708 625 (5) 0.93 (0.84, 1.03) 
Small for gestational agea                 
     Asian/Pacific Islander 305,228 48,463 (16) 7,253 1,185 (16) 1.04 (0.95, 1.13) 6,182 1,045 (17) 1.11 (1.03, 1.21) 
     Black 136,701 24,563 (18) 3,655 702 (19) 1.14 (1.05, 1.25) 4,299 770 (18) 1.11 (1.00, 1.22) 
     Hispanic 1,417,139 160,491 (11) 34,986 4,149 (12) 1.01 (0.97, 1.06) 22,459 2,558 (11) 0.99 (0.94, 1.04) 
     Other 54,716 6,581 (12) 1,093 148 (14) 1.31 (1.07, 1.59) 1,209 147 (12) 1.17 (0.95, 1.15) 
     White 568,629 50,556 (9) 12,698 1,155 (9) 0.98 (0.91, 1.05) 12,708 1,219 (10) 1.01 (0.94, 1.09) 
Term birth weightb                 
     Asian/Pacific Islander 286,678 -- 6,865 -- -3 (-20, 14) 5,828 -- -16 (-30, -1) 
     Black 122,745 -- 3,247 -- -35 (-53, -18) 3,901 -- -4 (-22, 14) 
     Hispanic 1,313,475 -- 32,446 -- 0 (-8, 7) 20,829 -- 10 (1, 18) 
     Other 50,862 -- 1,005 -- -23 (-55, 9) 1,129 -- -5 (-39, 29) 
     White 537,962 -- 12,002 -- -2 (-12, 9) 12,083 -- 3 (-8, 15) 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than. 
aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age,  
 Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
bLinear regression model (mean difference) also adjusted for gestational age. 
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Supplemental Table 1.10. Rural adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with 
exposure to oil and gas production during the entire pregnancy by air basin. Effect modification p-values were derived from two-
sample z-tests using strata-specific estimates and variances; significance at α=0.05. Sacramento Valley was used the reference for 
all z-tests. 
 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) 
EM 
 p-value n Cases (%) EE (95% CI) 

EM 
 p-value 

Low birth weighta                     
     Sacramento Valley (ref) 51,150 2,132 (4) 1,036 38 (4) 0.84 (0.52, 1.35) -- 237 14 (6) 1.37 (0.82, 2.26) -- 
     San Joaquin Valley 157,748 7,509 (5) 4,501 214 (5) 1.14 (0.95, 1.37) 1.00 571 37 (6) 1.48 (1.05, 2.07) 1.00 
     South Central Coast 36,860 1,552 (4) 2,820 120 (4) 1.05 (0.84, 1.30) 1.00 300 14 (5) 1.32 (0.90, 1.93) 1.00 
     South Coast 72,730 3,258 (4) 600 28 (5) 1.38 (0.86, 2.23) 0.97 581 29 (5) 1.41 (1.14, 1.74) 1.00 
Preterm birtha                   
     Sacramento Valley (ref) 51,150 2,999 (6) 1,036 56 (5) 0.68 (0.47, 0.99) -- 237 16 (7) 0.86 (0.56, 1.32) -- 
     San Joaquin Valley 157,748 11,575 (7) 4,501 344 (8) 1.02 (0.86, 1.21) 0.45 571 48 (8) 1.05 (0.82, 1.33) 1.00 
     South Central Coast 36,860 2,052 (6) 2,820 183 (7) 1.09 (0.88, 1.35) 0.17 300 8 (3) 0.54 (0.33, 0.87) 0.67 
     South Coast 72,730 4,219 (6) 600 35 (6) 1.21 (0.91, 1.61) 0.14 581 27 (5) 0.98 (0.75, 1.30) 1.00 
Small for gestational agea                   
     Sacramento Valley (ref) 51,150 4,769 (9) 1,036 89 (9) 1.03 (0.76, 1.40) -- 237 16 (7) 0.80 (0.54, 1.18) -- 

     San Joaquin Valley 157,748 
16,910 
(11) 4,501 498 (11) 1.09 (0.94, 1.27) 1.00 571 87 (15) 1.53 (1.19, 1.97) 0.05 

     South Central Coast 36,860 3,539 (10) 2,820 296 (11) 1.03 (0.90, 1.20) 1.00 300 38 (13) 1.38 (1.22, 1.57) 0.11 
     South Coast 72,730 7,816 (11) 600 83 (14) 1.26 (1.03, 1.53) 1.00 581 70 (12) 1.00 (0.81, 1.25) 1.00 
Term birth weightb                   
     Sacramento Valley (ref) 48,151 -- 980 -- 18 (-27, 64) -- 221 -- -48 (-100, 4) -- 
     San Joaquin Valley 146,173 -- 4,157 -- -1 (-23, 21) 1.00 523 -- -38 (-77, 1) 1.00 
     South Central Coast 34,808 -- 2,637 -- 2 (-22, 25) 1.00 292 -- -42 (-74, -10) 1.00 
     South Coast 68,511 -- 565 -- -7 (-30, 17) 1.00 554 -- -31 (-48, -14) 1.00 
Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than; EM, effect modification. 
aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age, race/ethnicity,  
 Kotelchuck prenatal care index, parity; NO2 concentration and ICE for income. 
bLinear regression model (mean difference, grams) also adjusted for gestational age. 
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Supplemental Table 1.11. Urban adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with 
exposure to oil and gas production during the entire pregnancy by air basin.  

 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) n Cases (%) EE (95% CI) 

Low birth weighta                 
     Sacramento Valley 238,174 11,524 (5) 0 0 (0) -- 0 0 (0) -- 
     San Joaquin Valley 377,626 20,833 (6) 9,717 511 (5) 1.02 (0.91, 1.13) 1,517 76 (5) 0.95 (0.78, 1.16) 
     South Central Coast 131,912 5,886 (4) 1,076 37 (3) 0.70 (0.54, 0.93) 288 15 (5) 1.26 (0.96, 1.65) 
     South Coast 1,734,701 89,290 (5) 48,892 2,613 (5) 1.05 (1.00, 1.11) 45,052 2,370 (5) 1.00 (0.95, 1.05) 

Preterm birtha                 

     Sacramento Valley 238,174 14,318 (6) 0 0 (0) -- 0 0 (0) -- 

     San Joaquin Valley 377,626 30,907 (8) 9,717 803 (8) 0.99 (0.90, 1.10) 1,517 129 (9) 0.98 (0.84, 1.14) 
     South Central Coast 131,912 7,730 (6) 1,076 64 (6) 0.86 (0.64, 1.17) 288 23 (8) 1.46 (1.17, 1.82) 
     South Coast 1,734,701 117,736 (7) 48,892 3,253 (7) 1.01 (0.96, 1.06) 45,052 2,935 (7) 0.97 (0.92, 1.02) 

Small for gestational agea                 

     Sacramento Valley 238,174 24,960 (10) 0 0 (0) -- 0 0 (0) -- 

     San Joaquin Valley 377,626 44,604 (12) 9,717 1,131 (12) 1.00 (0.90, 1.10) 1,517 158 (10) 0.92 (0.80, 1.05) 

     South Central Coast 131,912 13,798 (10) 1,076 120 (11) 1.06 (0.90, 1.25) 288 34 (12) 1.20 (0.85, 1.71) 

     South Coast 1,734,701 207,292 (12) 48,892 6,088 (12) 1.04 (1.00, 1.08) 45,052 5,547 (12) 1.04 (1.01, 1.080 

Term birth weightb                 
     Sacramento Valley 223,856 -- 0 -- -- 0 -- -- 
     San Joaquin Valley 346,719 -- 8,914 -- 2 (-10, 14) 1,388 -- 2 (-16, 20) 
     South Central Coast 124,182 -- 1,012 -- 4 (-30, 37) 265 -- -52 (-95, -8) 
     South Coast 1,616,965 -- 45,639 -- -6 (-13, 1) 42,117 -- 1 (-5, 8) 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than. 
aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age,  
 race/ethnicity, Kotelchuck prenatal care index, parity; NO2 concentration and ICE for income. 
bLinear regression model (mean difference, grams) also adjusted for gestational age. 
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Supplemental Table 1.12. Adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with exposure to 
oil and gas production during the entire pregnancy by urban/rural status for sensitivity analysis models including maternal pre-
pregnancy BMI and smoking during pregnancy (2007-2015). BMI and smoking were not available for 2006 births. Effect estimates 
did not change by >10% compared to main models.  Main models excluded these two covariates in order to maximize sample size.  

 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) n Cases (%) EE (95% CI) 

Low birth weighta                 
     Rural 283,881 12,911 (5) 7,879 357 (5) 1.16 (1.00, 1.36) 1,477 81 (5) 1.32 (1.10, 1.59) 
     Urban 2,179,247 111,604 (5) 51,676 2,747 (5) 1.04 (0.99, 1.10) 40,147 2,062 (5) 0.96 (0.91, 1.01) 

Preterm birtha                 
     Rural 283,881 18,236 (6) 7,879 521 (7) 1.05 (0.91, 1.20) 1,477 85 (6) 0.96 (0.77, 1.21) 
     Urban 2,179,247 146,242 (7) 51,676 3,439 (7) 1.01 (0.97, 1.06) 40,147 2,535 (6) 0.95 (0.90, 1.00) 

Small for gestational agea 
                

     Rural 283,881 29,451 (10) 7,879 862 (11) 1.11 (0.99, 1.24) 1,477 190 (13) 1.17 (0.97, 1.42) 

     Urban 2,179,247 254,729 (12) 51,676 6,361 (12) 1.05 (1.01, 1.09) 40,147 4,828 (12) 1.03 (0.99, 1.06) 

Term birth weightb                 

     Rural 265,645 -- 7,358 -- -2 (-17, 12) 1,392 -- -31 (-51, -11) 
     Urban 2,033,005 -- 48,237 -- -5 (-11, 2) 37,612 -- 3 (-3, 9) 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than. 
aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal BMI, smoking, 

 education, age, race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO2 concentration, and ICE for income. 
bLinear regression model (mean difference) also adjusted for gestational age. 
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Supplemental Table 1.13. Adjusted odds ratios and mean difference (grams) for adverse birth outcomes associated with exposure 
to oil and gas production during the entire pregnancy by urban/rural status for sensitivity analysis models including an indicator 
for exposure to TRI facilities within 1 km. The variable was missing for 79,371 observations (3%). Effect estimates did not change 
by >10%, compared to main models.  
 

Prod volume categories No BOE (ref) 1-100 BOE/day GT 100 BOE/day 

  n Cases (%) n Cases (%) EE (95% CI) n Cases (%) EE (95% CI) 

Low birth weighta                 
     Rural 318,488 14,451 (5) 8,957 400 (4) 1.11 (0.97, 1.28) 1,689 94 (6) 1.40 (1.14, 1.71) 
     Urban 2,482,413 127,533 (5) 59,685 3,161 (5) 1.04 (1.00, 1.09) 46,857 2,461 (5) 0.99 (0.95, 1.04) 

Preterm birtha                 
     Rural 318,488 20,845 (7) 8,957 618 (7) 1.03 (0.91, 1.17) 1,689 99 (6) 0.97 (0.78, 1.21) 
     Urban 2,482,413 170,691 (7) 59,685 4,120 (7) 1.01 (0.97, 1.06) 46,857 3,087 (7) 0.95 (0.90, 1.00) 

Small for gestational agea                 

     Rural 318,488 33,034 (10) 8,957 966 (11) 1.08 (0.97, 1.19) 1,689 211 (12) 1.22 (1.02, 1.45) 

     Urban 2,482,413 290,654 (12) 59,685 7,339 (12) 1.03 (1.00, 1.07) 46,857 5,739 (12) 1.04 (1.01, 1.07) 

Term birth weightb                 
     Rural 297,643 -- 8,339 -- 3 (-11, 18) 1,590 -- -36 (-54, -17) 
     Urban 2,311,722 -- 55,565 -- -5 (-10, 1) 43,770 -- 1 (-5, 8) 

Note: EE, effect estimate; CI, confidence interval; BOE, barrel of oil equivalents of oil and gas; GT, greater than. 
    

aLogistic regression models (odds ratio) adjusted for inactive well count; child's sex, birth month and birth year; maternal education, age,  

 race/ethnicity, Kotelchuck prenatal care index, parity; air basin, NO2 concentration, ICE for income and TRI facilities indicator.  
bLinear regression model (mean difference) also adjusted for gestational age.         
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Chapter 2: Residential proximity to hydraulically fractured oil and gas wells and adverse 
birth outcomes in urban and rural communities in California (2006-2015) 
 
Publication: Tran K, Casey JA, Cushing LJ, Morello-Frosch R (2021) Residential proximity to 
hydraulically fractured oil and gas wells and adverse birth outcomes in urban and rural 
communities in California (2006-2015).  Environmental Epidemiology, Forthcoming.  
 
2.1 Abstract 
Background: Prenatal exposure to hydraulic fracturing (HF), a chemically intensive oil and gas 
extraction method, may be associated with adverse birth outcomes, but no health studies have 
been conducted in California. 
Objective: To assess the relationship between prenatal exposure to HF wells and perinatal 
outcomes in Kern and Los Angeles (LA) counties, where HF predominantly occurs.  
Methods: We conducted a retrospective cohort study of 979,961 births to mothers in eight 
California counties with HF between 2006 and 2015. Exposed individuals had at least 1 well 
hydraulically fractured within 1 km of their residence during pregnancy; the reference population 
had no wells within 1 km, but at least one oil/gas well within 10 km. We examined associations 
between HF and low birth weight (LBW), preterm birth (PTB), small for gestational age birth 
(SGA), and term birth weight (tBW) using generalized estimating equations and assessing urban-
rural effect modification in stratified models. 
Results: Fewer than 1% of mothers (N=1,192) were exposed to HF during pregnancy. Among 
rural mothers, HF exposure was associated with increased odds of LBW (odds ratio [OR] = 1.74 
and 95% confidence interval [CI]: 1.10, 2.75), SGA (OR = 1.68, 95% CI: 1.42, 2.27) and PTB 
(OR = 1.17, 95% CI: 0.64, 2.12), and lower tBW (mean difference: -73 g, 95% CI: -131, -15). 
Among urban mothers, HF exposure was positively associated with SGA (OR = 1.23, 95% CI: 
0.98, 1.55), inversely associated with LBW (OR: 0.83, 95% CI: 0.63, 1.07) and PTB (OR: 0.65, 
95% CI: 0.48, 0.87), and not associated with tBW (mean difference: -2 g, 95% CI: -35, 31). 
Conclusions: HF proximity was associated with adverse birth outcomes, particularly among 
rural Californians.  
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2.2 Background 
California is among the top-10 oil and top-15 natural gas producing U.S. states (US EIA 2020). 
Hydraulic fracturing (HF) is a common well stimulation technique for enhanced oil and gas 
recovery (Long et al. 2015c) and accounts for about 20% of California’s oil and gas production 
(Long et al. 2015a). Uniquely, HF involves injecting water, proppants and chemicals into wells 
at high pressure to create cracks in rock formations, which maximizes extraction flow (Long et 
al. 2015c, 2015a). HF primarily occurs in California’s Central Valley region, and compared to 
other states, most HF wells are shallower, more vertical, require less water per well, and use 
more concentrated chemical mixtures to recover primarily oil (Jackson et al. 2015; Long et al. 
2015c, 2015a; US EPA 2015a). Although chemicals make up about 1% or less of the mixture, 
and HF usually takes less than a day, these chemicals may pose potential health hazards (Long et 
al. 2015a).  
 
One exposure pathway is via contamination of surface or groundwater with wastewater 
associated with HF (flowback) and oil and gas production (produced water) (Long et al. 2015a). 
Compared to conventional non-HF extraction, HF produces greater volumes of wastewater, 
which can include fugitive oil and gas, salts, organic and inorganic chemicals, radioactive 
material, and additives that can react with one another to generate byproducts–via flowback 
(Long et al. 2015a). In California, between January 2011 and June 2014, nearly 60% (or 720,000 
m3) of wastewater generated from stimulated wells was disposed in unlined pits for evaporation 
and percolation while about a quarter of the wastewater was injected (Long et al. 2015a). In the 
process of injecting wastewater into wells, accidental spills during transfer and transport, and 
leaks in storage wells can release contaminants into the environment. The highest number of 
wastewater-related spills across California were recorded in Kern County (Central Valley) 
between 2009 and 2014 (Long et al. 2015a). In Pennsylvania, trace metals related to HF (e.g., 
barium, strontium) have been found in private well-water (Caron-Beaudoin et al. 2021). In 
California, concerns about health and environmental impacts of water contamination associated 
with HF resulted in passage of Senate Bill 4 (SB4) in 2014 (Pavley 2013) requiring oil and gas 
companies to expand monitoring and disclose chemicals used during fracking. 
 
HF chemicals could also affect public health via air pollution emitted during well drilling, 
handling and mixing of chemicals for injection, hydraulic fracturing, and management of 
recovered fluids and waste products (McKenzie et al. 2012b; Shonkoff et al. 2019). Volatile 
organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylene (BTEX) and 
formaldehyde, have been the most commonly measured pollutants in and near HF wells and may 
be associated with adverse birth outcomes (Bolden et al. 2015; Caron-Beaudoin et al. 2018; 
Chang et al. 2017; Maroziene and Grazuleviciene 2002). Measured emissions during drilling, 
hydraulic fracturing, flowback and production at 5-10 well pads showed that emission rates of 
benzene and most VOCs were highest during flowback (Collett and Colorado State University 
2016; Hecobian et al. 2019). In several regions with intense HF activity, higher concentrations of 
VOCs have also been measured in ambient air compared to regions without HF (Caron-Beaudoin 
et al. 2021). 
 
Pregnancy is a vulnerable period of human development, and adverse birth outcomes are primary 
predictors of infant mortality and morbidity (Bhutta et al. 2002; Hack et al. 1995; Moster et al. 
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2008; Saigal and Doyle 2008). Studies indicate associations between prenatal exposure to oil and 
gas development (OGD) activities (HF [most studies] and conventional extraction methods) and 
reductions in birth weight (tBW) (Caron-Beaudoin et al. 2021; Hill 2018; Stacy et al. 2015), 
increased odds or incidence of low birth weight (LBW) (Currie et al. 2017; Hill 2018), preterm 
birth (PTB) (Caron-Beaudoin et al. 2021; Casey et al. 2015c; Cushing et al. 2020; Gonzalez et al. 
2020a; Walker Whitworth et al. 2018; Whitworth et al. 2017), and small for gestational age birth 
(SGA) (Hill 2018; Stacy et al. 2015). Statistically insignificant (Caron-Beaudoin et al. 2021; 
Casey et al. 2015c; Whitworth et al. 2017) or inverse associations (McKenzie et al. 2014; Stacy 
et al. 2015) for some birth outcomes have also been observed. Our previous California study 
found exposure to all OGD (mostly not involving HF) was associated with decreased tBW and 
increased odds of LBW and SGA in rural areas, and increased odds of SGA in urban areas (Tran 
et al. 2020a). Because unique elements of HF, including the use of additional chemicals and 
large volumes of wastewater generated, may pose additional health risks beyond risks from 
conventional extraction, which we previously analyzed (Tran et al. 2020a), we extend our work 
to examine associations between prenatal exposure to HF and four birth outcomes (tBW, LBW, 
PTB, and SGA) by focusing on those California regions where HF is prevalent. 
 
2.3 Methods 
Study population 
The study population, previously described (Tran et al. 2020a), consisted of births between 
January 1, 2006 and December 31, 2015 derived from the California Department of Public 
Health (CDPH) birth records. The dataset included maternal and infant characteristics such as 
self-reported race/ethnicity and infant sex, and maternal residential addresses were geocoded 
with ArcGIS 10.6 (Esri, Redlands, CA). From all 2006-2015 births (5.2 million), we limited our 
analysis to births in four air basins (Sacramento Valley, San Joaquin Valley, South Central Coast 
and South Coast with 26 counties) where most of California’s oil and gas extraction activities 
occur after excluding births with missing data and birth defects (Supplemental Figure 2.1). 
Mothers also had to reside within 10 km of at least one well, a criterion applied to limit 
unmeasured confounding and enhance comparability of the exposed and unexposed populations 
(Tran et al. 2020a). For this analysis, we further limited our cohort to births from 8 counties 
(Colusa, Fresno, Glenn, Kern, Los Angeles, Orange, Santa Barbara and Ventura) with at least 
one maternal residence within 1 km of at least one HF well during the study period. After 
removing births with missing data, the study population consisted of 979,961 live births. Ninety 
percent of HF wells were in Kern County (Figure 2.1) and 4% in Los Angeles County. Study 
protocols were approved by the Institutional Review Boards of the CDPH (#13-05-1231) and the 
University of California, Berkeley (# 2013-10-5693).    
 
Birth outcomes 
We assessed the relationship between HF and four birth outcomes: 1) continuous tBW (grams 
(g), among births at ≥37 completed weeks), 2) LBW (<2500 grams), 3) PTB (<37 completed 
weeks), and SGA birth (birth weight less than the US sex-specific 10th percentile of weight for 
each week of gestation) (Talge et al. 2014b). Gestational age was estimated by subtracting the 
last menstrual period (LMP) date from the date of birth. 
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Exposure assessment 
We derived data on confirmed HF wells from two sources: 1) the California Council on Science 
and Technology’s (CCST) well stimulation report (Vol 1, Appendix M, hereafter CCST report) 
(CCST 2015) and 2) California Division of Oil, Gas and Geothermal Resources’ (DOGGR, now 
CalGEM) well stimulation treatment (i.e., HF, acid fracturing and matrix acidization) disclosure 
database (CA DOGGR 2019). Both datasets contain unique American Petroleum Institute (API) 
numbers for each well, latitude, longitude, and approximate HF dates. We compiled HF records 
from the CCST report for January 2005 to December 2013 and the remaining HF well records 
for January 2014 to December 2015 from DOGGR.  
 
CCST’s methodology for compiling Appendix M is described in detail elsewhere (Volume 1, 
Appendix I (Long et al. 2015c)). Briefly, HF wells were identified by reviewing OGD permit 
records and scanning for “frac ” for evidence of HF as there was no systematic reporting 
requirement prior to SB4 in 2014. Due to the large number of well records in Kern County, 
CCST randomly sampled and reviewed 20% of records while for Los Angeles County, they 
reviewed 80% of records that were made available by county officials; 100% of records were 
reviewed in all other counties. CCST extracted approximate HF dates from permits or other 
sources such as regional air or water districts (CCST 2015). The DOGGR stimulation disclosure 
database was initiated in January 2014 with the adoption of California SB4. We filtered on HF, 
the bulk of the permit records, among the three types of stimulation techniques. There was a 
sharp decrease in the number of HF wells in 2014 (reason unknown) while operators adjusted to 
SB4 implementation (Long et al. 2015b).  
 
After compiling confirmed HF wells from the two data sources, we used the stimulation date to 
identify whether HF occurred during each pregnancy and the well location to identify proximity 
to residences. We then summed the number of HF events within 1 km of each mother’s residence 
for each month of pregnancy using R version 3.3.1 (R Development Core Team, Auckland, New 
Zealand). HF wells that were not stimulated during a woman’s pregnancy period did not 
contribute to exposure. We classified women who had at least one well stimulated within 1 km 
of their residential address at any point during pregnancy as exposed; prior literature found 
strongest associations with health indicators and exposure to OGD within this radius (Boyle et al. 
2017; McKenzie et al. 2012a; Meng 2015a; Walker Whitworth et al. 2018; Whitworth et al. 
2017). Women without any oil or gas wells within 1 km, but at least one well (whether HF or not 
during pregnancy) within 10 km, were classified as unexposed (Figure 2.2). 
 
Covariates 
To address potential confounding, our models controlled for several individual-level maternal 
characteristics and area-level variables. Individual-level covariates from birth records were 
identified a priori as potential confounders based on prior studies. Infant covariates included sex 
(male/female), month and year of conception based on the date of LMP (both categorical) to 
control for seasonal and secular trends. Maternal covariates included age (< 20, 20-24, 25-29, 30-
34, 35+), self-reported race and ethnicity (non-Hispanic White, Black, Asian-Pacific Islander 
(API), Other and Hispanic), educational attainment (<high school, high school graduate/GED, 
some college, college+), Kotelchuck index of prenatal care (Alexander and Kotelchuck 1996; 
Kotelchuck 1994), and parity (nulliparous vs. multiparous). We aggregated Asian subgroups into 
the API category, and other racial/ethnic groups with small sample sizes into the Other category 
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to ensure adequate subgroup sample size. In the tBW model, we also added mean-centered and 
mean-centered squared gestational age (continuous) to allow for nonlinearity. Though mothers’ 
smoking status during pregnancy and pre-pregnancy body mass index (BMI) are known 
predictors for adverse birth outcomes, they were not included because these variables were not 
available for 2006 births and our previous sensitivity analyses (Tran et al. 2020a) indicated that 
including them when available did not substantially change effect estimates.  
 
Area-level variables consisted of California Air Resources Board designated air basins, census-
tract based urban-rural classification (urban tract if at least 60% of its area overlapped with an 
urbanized or urban area as defined by the US Census Bureau (US Census Bureau), rural 
otherwise), modeled annual average nitrogen dioxide (NO2) concentrations (Kim et al. 2020a) as 
a proxy for traffic-related air pollution (Brook et al. 2007; Kendrick et al. 2015), and Index of 
Concentration at the Extremes (ICE) (quartiles), a measure of neighborhood-level relative 
deprivation or affluence based on household income by census tract (Massey 1996). ICE for 
income was categorized into quartiles and ranged between 1 (concentration of affluence) and -1 
(concentration of deprivation). The variable reflects the difference between the number of people 
with median household income in the top 80th percentile and the number of people with median 
household income in the lower 20th percentile within census tracts (urban tracts) or county (rural 
tracts), adjusted by the total tract/county population. These covariates were included to account 
for neighborhood and regional differences in air quality, economic activity, and sources of 
emissions (Arruti et al. 2011; Finkelstein et al. 2003; O’Neill et al. 2003; Wunderli and Gehrig 
1990; Zhao et al. 2009).  
 
Statistical analyses 
Statistical analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC). We constructed 
separate models for each of our four birth outcomes to assess the association between prenatal 
exposure to HF and odds of PTB, LBW or SGA, or mean tBW. We used generalized estimating 
equations to account for clustering within census tracts. For the primary analysis, we compared 
births to mothers who were exposed to HF to those who were not exposed to any OGD during 
pregnancy within 1 km. As our previous study revealed significant effect modification (EM) by 
urbanicity (Tran et al. 2020a), we stratified models by urban and rural tracts (Model 1). We then 
tested for significant heterogeneity between strata-specific estimates by modeling urbanicity as 
an interaction term to derive p-values for two-sample z-tests using model-estimated beta 
coefficients and variances (Buckley et al. 2017; UCLA: Statistical Consulting Group). Due to the 
small exposed sample size, we evaluated model overadjustment by adjusting for one maternal 
covariate at a time and comparing the effect estimates between the fully adjusted models and 
single-covariate adjusted models. 
 
Sensitivity analysis 
We conducted a sensitivity analysis including broader exposure reference groups: mothers with 
no wells of any type and mothers with active or inactive wells that were not identified as HF 
wells within 1 km (Figure 2.2). Because HF and conventional wells are often clustered, which 
may confound associations between HF exposure and adverse birth outcomes, the sensitivity 
analysis adjusted for exposure to non-HF active and inactive wells (Model 2). The number of 
inactive wells was categorized as 0, 1, 2-5, ≥ 6 following Tran et al. 2020. Production volume 
was calculated as the sum of total monthly barrels of oil equivalent (BOE) from oil and gas wells 
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during pregnancy (normalized by length of pregnancy and categorized as 0, 1-100 or >100 
BOE/day) (Tran et al. 2020a). 
 
2.4 Results 
The study population consisted of 979,961 births to mothers residing within 10 km of an oil or 
gas well between January 2006 and December 2015 in the eight California counties 
(Supplemental Figure 2.1). Of these, 0.1% (n = 1,162) were exposed to HF in utero (Figure 
2.2). Mean birth weight was 3,310 grams (standard deviation = 523) (Table 2.1). Five percent (n 
= 52,378) of all births were LBW, 7% (n = 70,772) preterm, and 12% (n = 120,590) SGA. PTB 
was 2% higher among the reference group compared to the HF exposed while SGA was 4% 
higher among the exposed group. HF exposed mothers, on average, were exposed to 2 HF wells 
within 1 km and a maximum of 20 HF wells (Table 2.1). Exposed mothers were also more 
educated [31% vs. 24% college or more educated], older [29% vs. 26% ages 30-34], more often 
non-Hispanic Black [16% vs. 4%], more likely to have inadequate prenatal care [13% vs. 10%], 
and more likely to not have previously given birth [42% vs. 39% nulliparous]. Relative to 
unexposed mothers, exposed mothers were more likely to reside in Kern [17% vs. 3%], Los 
Angeles [65% vs. 57%] and Ventura counties [10% vs. 3%], rural areas [20% vs. 7%] and 
economically segregated areas [e.g., 35% vs. 25% in neighborhoods with concentrated poverty 
and 37% vs. 25% with concentrated affluence].  
 
In overall unstratified models, effect estimates showed positive associations between prenatal 
exposure to HF wells and SGA and reduced tBW as well as inverse associations between 
exposure and LBW and PTB (Supplemental Table 2.1). Table 2.2 shows our models stratified 
by urbanicity. When fully adjusted, the associations differed by urban and rural tracts (Table 
2.2); EM p-values were 0.007, 0.09, 0.10 and 0.05 for LBW, PTB, SGA and tBW, respectively. 
Among rural mothers, exposure to HF wells was associated with increased odds for LBW (OR = 
1.74, 95% CI: 1.10, 2.75), PTB (OR = 1.17, 95% CI: 0.64, 2.12) and SGA (OR = 1.68, 95% CI: 
1.42, 2.27) and decreased tBW (mean difference = -73 grams, 95% CI: -131, -15) (Table 2). 
Among urban mothers, HF exposure was associated with increased odds of SGA (OR =1.23, 
95% CI: 0.98, 1.55), but not with tBW (mean difference = -2, 95% CI: -35, 31), as well as 
reduced odds of PTB (OR = 0.65, 95% CI: 0.48, 0.87) and LBW (OR = 0.83, 95% CI: 0.63, 
1.07). Compared to the single maternal covariate adjusted models (Supplemental Table 2.2), 
results were qualitatively similar, albeit attenuated.  
 
In our sensitivity analysis with an expanded reference population (no wells of any type within 1 
km as well as non-HF OGD wells within 1km), results were qualitatively similar to those from 
the primary analysis for all four birth outcomes (Supplemental Tables 2.1-2.3). However, 
evidence of urban-rural effect modification was weaker in the sensitivity analysis. Except for 
LBW and tBW among the rural population, most effect estimates did not change by >10%.     
 
2.5 Discussion  
To our knowledge, this study is the first to examine the association between prenatal exposures 
to HF and adverse birth outcomes in California. We found that prenatal exposure to HF was 
associated with all four adverse birth outcomes among rural residents, with the strongest 
associations observed for LBW, SGA and tBW. While the direction of the urban effect estimate 
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was consistent with the rural communities for SGA, we observed inverse associations for PTB 
and LBW and no association with tBW. In our evaluation of overadjustment, the effect estimates 
remained stable.  
Results remained consistent, with slightly weaker associations, in both rural and urban tracts in 
our sensitivity analysis including a larger reference population. With a broader definition for the 
unexposed group, there is a higher likelihood of exposure misclassification as 80% of Kern–
where the majority of HF occurs–well records were not reviewed to confirm HF status; this may 
have led to the observed weaker associations. Nevertheless, the consistency of results between 
the primary and sensitivity analyses suggests that HF exposure may influence birth outcomes 
independent of the presence of conventional wells.  
 
Similar to our previous analysis of exposure to all OGD (Tran et al. 2020a), we observed 
differences in effect estimates between rural and urban areas. The significant EM p-values for 
LBW and tBW suggest that urbanicity modifies the association between HF exposure and birth 
weight. This may occur because urban regions tend to have more diverse mobile and stationary 
sources of ambient air pollution, and OGD likely contributes relatively less to urban ambient air 
pollution, making detection of the unique effects from OGD, and HF in particular, more 
challenging. Rural residents are also more likely to rely on groundwater sources for their 
drinking water, which may more likely be untreated if contaminated by OGD-related chemicals 
(Balazs and Ray 2014). Most HF wells in Kern County are located in relatively shallow 
reservoirs, where groundwater protected for drinking water might be found within a few hundred 
feet (Long et al. 2015b). 
 
Our findings were consistent with those of previous studies that examined exposure to HF in 
rural and urban Pennsylvania and urban Texas. Evidence of a relationship between HF and LBW 
has been sparse; two studies observed increased risk of LBW associated with HF exposure in 
Pennsylvania (Currie et al. 2017; Hill 2018). Evidence of associations between HF exposure and 
tBW has been mixed; among five studies, two found no relationship (Pennsylvania, Texas) 
(Casey et al. 2015c; Whitworth et al. 2017), and three found decreased tBW in Pennsylvania 
(Currie et al. 2017; Hill 2018; Stacy et al. 2015). Cohort studies in Pennsylvania and Texas 
suggested that prenatal exposure to HF significantly increased odds of PTB by 14% to 100% 
(Casey et al. 2015c; Walker Whitworth et al. 2018; Whitworth et al. 2017). We observed a PTB 
estimate similar in magnitude and direction to those findings among the rural population, while 
the association was inverse in urban areas. Among the three studies that evaluated SGA, two 
studies (Pennsylvania, Texas) found no association (Casey et al. 2015c; Whitworth et al. 2017) 
while the other Pennsylvania study observed a similar magnitude of increased odds of SGA as in 
our study (Stacy et al. 2015). The observed differences across studies may be partially explained 
by differences in exposure sources, setting, and OGD infrastructure. Ambient air pollution levels 
and pollution sources in rural California may be more similar to those of rural Pennsylvania than 
those observed in urban Californian communities. New well pad development, drilling of new 
wells and horizontal or directional drilling also occur less frequently in California compared to 
Pennsylvania and Texas where infrastructure is less mature and wells are deeper, meaning higher 
volumes of water are pumped into wells and collected as flowback (Long et al. 2015a).  
 
Additionally, California primarily produces oil (Long et al. 2015c) while Pennsylvania mainly 
produces gas and Texas produces mainly gas in the northern region. The constituents of fracking 
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fluid vary by region based on hydrocarbon properties (e.g., oil is more viscous than gas) and 
local geology (Long et al. 2015c), meaning the type and concentration of chemicals that may 
contaminate air and waterways likely also vary by region.     
 
Associations between exposure to HF and SGA were stronger than those we previously observed 
in California for exposure to high production volume from mostly conventional wells in both 
rural [OR = 1.22 (95% CI: 1.02, 1.45)] and urban [OR = 1.04 (95% CI: 1.01, 1.07)] areas (Tran 
et al. 2020a), This suggests that HF treatment may present additional hazards or enhanced health 
risks compared to conventional OGD operations. However, because only a small proportion of 
births were exposed to HF (<0.01% of births to mothers residing within 10 km of any well in the 
8 counties), the risk difference between the exposed and unexposed is smaller compared to that 
for exposure to all types of actively producing wells (which affected a larger population, 4% of 
California births to mothers residing within 10 km of any well in 23 counties). Within 1 km, HF 
wells likely contribute a sizeable proportion of OGD-related air pollution. Truck traffic required 
to transport materials and equipment to and from the well pad for HF (Long et al. 2015c) is 
likely a primary source. HF in California typically requires about 100-200 diesel truck trips per 
vertical well, and 200-400 trips per horizontal well (Long et al. 2015a). Ambient PM2.5, a 
component of diesel particulates, has been associated with higher odds of SGA (Gray et al. 2014; 
Hyder et al. 2014; Zhu et al. 2015). Air samples collected in five states (Arizona, Ohio, 
Wyoming, Colorado, and Pennsylvania) near stimulated well sites and wastewater 
impoundments from distances as close as 27-320 meters of unconventional OGD sites revealed 
elevated levels of VOCs, including BTEX (Macey et al. 2014). Benzene from unconventional 
wells has been measured at elevated levels within 1 km from oil and gas fields in several states 
(Halliday et al. 2016; Macey et al. 2014; Maskrey et al. 2016; McKenzie et al. 2012b; Rich and 
Orimoloye 2016; Swarthout et al. 2013; Thompson et al. 2014). This indicates that OGD 
equipment and volatized chemicals from percolation pits can contribute to OGD emissions. 
VOCs and BTEX may be associated with decreased birth weight (Bolden et al. 2015; Chang et 
al. 2017) and substantial decreases in birth weight can result in SGA. BTEX is not only found in 
emissions but also in groundwater samples after spills at HF sites (Gross et al. 2013a). As water 
contamination risks are not well understood, current water treatment practices may not prevent 
exposure to HF-related chemicals.  
 
Besides significant associations with SGA, exposure to HF was also unexpectedly inversely 
associated with PTB and LBW within urban areas. Among studies that evaluated birth outcomes 
and unconventional OGD, one revealed an inverse association with exposure to HF and PTB in 
Pennsylvania (Stacy et al. 2015). Decreased odds of PTB have also been observed with 
increasing levels of ambient air pollution (Jalaludin et al. 2007; Stieb et al. 2012). The inverse 
association between HF and PTB observed in our study may be due to residual confounding 
from area-level SES characteristics or environmental factors that we could not account for in our 
analyses. Additionally, live birth bias can result from the depletion of susceptibles, which may 
occur if exposed compared to unexposed mothers were more likely to experience fetal loss 
(Bruckner and Catalano 2018; Goin et al. 2021; Raz et al. 2018). Spontaneous abortion has been 
associated with exposure to OGD; women residing in Ecuadorian communities within 5 km 
downstream of an oil field had greater odds of spontaneous abortions relative to those living at 
least 30 km upstream of an oil field (San Sebastian et al. 2002). Because we were not able to 
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examine fetal loss in our analysis, we cannot rule out the possible role of live birth bias in our 
analysis.   
 
This study had limitations. To assign exposure to each pregnancy period, we used data on 
verified HF well status. Most HF occurs in Kern County, but only 20% of Kern County well 
records were randomly sampled to verify HF status prior to 2014; we underestimated the number 
of HF wells and women exposed, likely biasing effect estimates towards the null. We could not 
fully evaluate the impact of missingness on our results without an accurate probability of HF for 
births with missing data. While missingness could have biased our effect estimates in any 
direction, the impact is likely to be minimal as only 5% of study county births in our 8 county 
study area would have occurred in Kern where stimulation is most likely to occur compared to 
the 7 other counties. With a limited number of exposed births, we were also unable to assess 
trimester-specific effects. Additionally, the HF well data did not include specific dates for phases 
of pre-production (i.e., pad development, drilling, and stimulation) which precluded assessment 
of hazards at each phase of well creation or stimulation. Another limitation was our reliance on 
distance to HF wells as a proxy for exposure to diverse HF hazards that have yet to be fully 
characterized. However, distance allows evaluation of associations for large populations and 
serves as an aggregate measure for potential physical, chemical and social stressors associated 
with HF, and can inform regulations such as minimum allowable distances to well sites (Deziel 
2021). Finally, we did not have access to data on maternal occupation, BMI, smoking status, or 
maternal mobility during pregnancy, which likely modestly biased results towards the null 
(Blanchard et al. 2018; Chen et al. 2010; Hodgson et al. 2015; Lupo et al. 2010; Pennington et al. 
2017). 
 
Our retrospective birth cohort study, the first study of HF in California, adds to the evidence that 
prenatal exposure to HF is associated with adverse birth outcomes. Relative risk is high although 
absolute risk may be low across the state. While findings from this study may not be 
generalizable and additional studies are needed to verify these findings, results from this and our 
previous work can inform regulatory strategies in California and motivate research to better 
characterize potential HF-specific hazards and the adequacy of current setback distances to 
OGD, and HF in particular, especially in rural areas. 
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2.6 Tables 
Table 2.1. Neonate, maternal and area-level characteristics of 2006-2015 births by binary hydraulic fracturing (HF) exposure category 
in eight California counties with HF wells. The percentage is provided unless otherwise indicated in the variable column. Note that 
active wells include all wells that produced oil or gas during our study period while inactive wells did not produce anything. Only 
wells within 1 km of residences were counted. 
 

  N (%) No HF wells (%) HF wells (%) p-value† 

Variable 1,005,755 n=1,004,563 n=1,192   
Neonate characteristics         
Mean birth weight (g) (SD) 3310 (523) 3,310 (523) 3,304 (545) 0.54 
Mean gestational age (weeks) (SD) 39.1 (2.0) 39.2 (2.0) 39.3 (1.9) 0.008 
Low birth weight 52,378 (5) 5 5 0.90 
Preterm birth 70,772 (7) 7 5 0.01 
Small for gestational age 120,590 (12) 12 16 <0.0001 
     Missing 4 (<0.01) <0.01 0   
Conception year         
     2005 81,081(8) 8 8 <0.0001 
     2006 109,838 (11) 11 21  

     2007 108,906 (10) 11 24   
     2008 103,191 (10) 10 3   
     2009 97,253 (10) 10 1   
     2010 96,915 (10) 10 8   
     2011 95,498 (9) 9 9   
     2012 96,446 (10) 10 12   
     2013 97,472 (10) 10 9   
     2014 95,526 (10) 9 4   
     2015 23,629 (2) 2 1   
Maternal Characteristics (%)         
Education         
     < High school 278,658 (28) 28 23 <0.0001 
     High school diploma/GED 241,528 (24) 24 20   
     Some college 221,485(22) 22 24   
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     College+  238,535 (24) 24 31   

     Missing 25,549 (2) 2 2   
Age at delivery         
      < 20 84,400 (8) 8 8 0.04 
     20-24  208,964 (21) 21 18   
     25-29 261,529 (26) 26 25   
     30-34  259,815 (26) 26 29   
     35+ 191,042 (19) 19 20   
     Missing 5 (<0.01) <0.01 0   
Race/ethnicity         
     Asian/Pacific Islander 128,273 (13) 13 12 <0.0001 
     Black 43,829 (4) 4 16   
     Hispanic 602,738 (60) 60 50   
     Other 23,048 (2) 2 4   
     White  207,867 (21) 21 18   
Kotelchuck index         
     Inadequate 101,192 (10) 10 13 0.0004 
     Intermediate 97,007 (10) 10 11   
     Adequate+ 337,530 (33) 33 31   
     Adequate  470,026 (47) 47 45   
Parity         
     Nulliparous 392,327 (39) 39 42 0.03 
     Multiparous 612,989 (61) 61 58   
     Missing 439 (<0.01) <0.01 <0.01   
Area-level characteristics (%)         
County         
     Colusa 1,755 (0.2) 0.2 0.3 <0.0001 
     Fresno 131,406 (13) 13 0.3   
     Glenn 1,730 (0.2) 0.2 0.2   
     Kern 34,305 (3) 3 17   
     Los Angeles 573,911 (57) 57 65   
     Orange 198,259 (20) 20 7   
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     Santa Barbara 33,157 (3) 3 0.1   
     Ventura 31,232 (3) 3 10   
Mean annual NO2 (ppb) (SD) 18 (7) 18 (7) 18 (8) 0.37 
     Missing 2 (<0.01) <0.01  0   

Urban 936,724 (93) 93 80 <0.0001 
ICE for income         
     Quartile 1 - poverty 251,667 (25) 25 35 <0.0001 
     Quartile 2 250,933 (25) 25 12   
     Quartile 3 252,021 (25) 25 16   
     Quartile 4 - wealth 251,092 (25) 25 37   
     Missing 42 (<0.01) <0.01 0   

Wells  
Mean active+inactive well count 
(SD)a,b 0.2 (7) 0 (0) 143 (148)   

Mean inactive well count (SD)a 0.1 (5) 0 (0) 98 (104)   

Mean active well count (SD)b 0.1 (2) 0 (0) 45 (51)   

Mean BOE/day of gestation (SD) 1 (66) 0 (0) 1,089 (1,583)   
g grams; SD standard deviation; ppb parts per billion; HF hydraulic fracturing; ICE Index of Concentration at 
the Extremes 
BOE barrels of oil equivalent (gas cubic feet converted to BOE to sum to barrels of oil) 
†ANOVA or chi-square test 
aWell count within 1 km of residences across pregnancy and derived by taking the difference between total well 
count and active well count within 1 km. 
bWell count within 1 km of residences across pregnancy and based on whether a well had monthly production 
volume. 

 



69 
 

Table 2.2. Adjusted odds ratios and mean difference for adverse birth outcomes associated with exposure to hydraulic fracturing (HF) 
during pregnancy by urban and rural census tract for the primary analysis using a reference group of 2006-2015 births to mothers who 
were not exposed to any oil or gas wells within 1 km across the eight California counties (N= 979,961) (Model 1). 
 
  No wells (ref)   1+ HF wells     
  n Cases (%)   n Cases (%) EE (95% CI) EM p-valuec 
Low birth weighta               
     Rural 66,822 3,183 (5)   225 15 (7) 1.74 (1.10, 2.75) 0.007 
     Urban 911,977 47,761 (5)   937 45 (5) 0.83 (0.63, 1.07)   
Preterm birtha               
     Rural 66,822 4,903 (7)   225 13 (6) 1.17 (0.64, 2.12) 0.09 
     Urban 911,977 64,048 (7)   937 48 (5) 0.65 (0.48, 0.87)   

Small for gestational agea               
     Rural 66,822 7,237 (11)   225 40 (18) 1.68 (1.42, 2.27) 0.10 
     Urban 911,977 110,146 (12)   937 144 (15) 1.23 (0.98, 1.55)   

Term birth weight (g)b               
     Rural 61,919 --   212 -- -73 (-131, -15) 0.05 
     Urban 847,929 --   889 -- -2 (-35, 31)   
EE effect estimate; CI confidence interval; EM effect modification; g grams 
Note: Eight counties included: Colusa, Fresno, Glenn, Kern, Los Angeles, Orange, Santa Barbara and Ventura 
aLogistic regression models (odds ratio) with generalized estimating equations adjusted for child's sex, conception month and 
birth year;   
 maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; urban indicator, NO2 concentration, air basin,  
 and ICE for income. 
bLinear regression model (mean difference) with generalized estimating equations also adjusted for gestational age in addition 
to those in footnote a. 
cTest for difference in strata-specific effect estimates between rural and urban populations. Effect modification p-values were 
derived from 
two-sample z-tests using strata-specific estimates and variances. 
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2.7 Figures 
Figure 2.1. Hydraulic fracturing (HF) well density within Kern County (2005–2015), where 
90% of HF in California occurred between 2005 and 2015. Seven other counties were included 
in this analysis but we zoomed into the county with the highest occurrence of hydraulic 
fracturing. The map was created in ArcGIS 10.6 (Esri, Redlands, CA). Well density was 
calculated via the point density tool, based on the number of neighboring wells within a 1 km x 1 
km cell around each well. 
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Figure 2.2. Schematic of exposed and reference groups for the primary and sensitivity analyses. For both primary and secondary 
analyses, exposed mothers had at least one well that was hydraulically fractured during pregnancy within 1 km of maternal residence. 
For the primary analysis, reference mothers had no oil or gas wells of any kind within 1 km of maternal residence during pregnancy. 
For the sensitivity analysis, the reference group consisted of mothers without HF within 1 km of maternal residence during pregnancy, 
including women who lived within 1 km of no wells and women who lived within 1 km of at least one oil or gas well that was not 
recorded as being hydraulically fractured during their pregnancy. 
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2.8 Supplemental Information Chapter 2 
Supplemental Figure 2.1. Flow diagram of study population development and exclusion criteria 
applied. 
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Supplemental Table 2.1. Unstratified adjusted odds ratios and mean difference (grams) for birth outcomes associated with exposure 
to hydraulically fractured wells during pregnancy for Model 1 with a reference group of 2006-2015 births to mothers without any oil 
or gas well exposure and Model 2 with a reference group consisting of 2006-2015 births to mothers that were exposed to no wells or 
wells that were not HF within 1 km across the eight California counties. 
 

  No HF wells (ref)   1+ HF wells   
  n Cases (%)   n Cases (%) EE (95% CI) 
Model 1              
Low birth weighta 978,799 50,944 (5)   1,162 60 (5) 0.95 (0.74, 1.21) 
Preterm birtha 978,799 68,951 (7)   1,162 61 (5) 0.71 (0.54, 0.93) 
Small for gestational agea 978,799 117,383 (12)   1,162 184 (16) 1.31 (1.08, 1.59) 
Term birth weight (g)b 909,848 --   1,101 -- -15 (-46, 16) 
Model 2 (sensitivity)             
Low birth weightc 1,900,033 97,822 (5)   1,162 60 (5) 0.95 (0.74, 1.21) 
Preterm birthc 1,900,033 130,564 (7)   1,162 61 (5) 0.72 (0.54, 0.95) 
Small for gestational agec 1,900,033 226,892 (12)   1,162 184 (16) 1.32 (1.08, 1.61) 
Term birth weight (g)d 1,769,469 --   1,101 -- -17 (-48, 13) 
EE effect estimate; CI confidence interval; g grams. 

Note: Model 1, no wells reference group; Model 2, all 2006-2015 births from 8 counties with HF; Eight counties analyzed: Colusa, Fresno, 

Glenn, Kern, Los Angeles, Orange, Santa Barbara and Ventura. 

aLogistic regression models (odds ratio) with generalized estimating equations adjusted for child's sex, conception month and year;  
maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; urban indicator, NO2 concentration, air basin, and ICE for income. 
bLinear regression model (mean difference) with generalized estimating equations adjusted for gestational age in addition to those in footnote a. 
cLogistic regression models (odds ratio) with generalized estimating equations adjusted for active production volume, inactive well count;  
child's sex, conception month and year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; 
urban indicator, NO2 concentration, air basin, and ICE for income.         
dLinear regression model (mean difference) with generalized estimating equations adjusted for gestational age in addition to those in footnote c. 

 



 

74 
 

Supplemental Table 2.2. Odds ratios and mean difference (grams) for birth outcomes associated with exposure to hydraulically 
fractured wells during pregnancy stratified by urban/rural status and adjusted for one covariate at a time. The four covariates modeled 
individually are maternal age, education, race/ethnicity and LMP year. 
 

  No wells (ref)   1+ HF wells   Effect Estimates (95% Confidence Interval) 

  n Cases (%)   n Cases (%)   Mat Age  Mat Education 
Mat 
Race/ethnicity LMP Year 

Low birth 
weighta                     

     Rural 66,822 3,183 (5)   225 15 (7)   
1.49 (0.99, 
2.24) 

1.46 (0.98, 
2.18) 

1.37 (0.87, 
2.17) 

1.41 (0.92, 
2.16) 

     Urban 911,977 47,761 (5)   937 45 (5)   
0.92 (0.69, 
1.23) 

0.93 (0.70, 
1.24) 

0.80 (0.61, 
1.04) 

0.93 (0.70, 
1.24) 

Preterm birtha                     

     Rural 66,822 4,903 (7)   225 13 (6)   
0.86 (0.45, 
1.63) 

0.81 (0.46, 
1.43) 

0.82 (0.44, 
1.52) 

0.89 (0.46, 
1.73) 

     Urban 911,977 64,048 (7)   937 48 (5)   
0.72 (0.52, 
0.99) 

0.74 (0.54, 
1.00) 

0.66 (0.49, 
0.90) 

0.68 (0.51, 
0.92) 

Small for 
gestational agea                     

     Rural 66,822 7,237 (11)   225 40 (18)   
1.87 (1.43, 
2.45) 

1.83 (1.41, 
2.37) 

1.66 (1.23, 
2.24) 

1.80 (1.41, 
2.31) 

     Urban 911,977 
110,146 
(12)   937 144 (15)   1.33 (1.05, 

1.68) 
1.33 (1.06, 
1.68) 

1.21 (0.97, 
1.52) 

1.33 (1.06, 
1.68) 

Term birth 
weighta                     
     Rural 61,919 --   212 --   -88 (-169, -8) -83 (-162, -4) -63 (-126, 0.40) -82 (-158, -6) 
     Urban 847,929 --   889 --   -13 (-51, 25) -15 (-53, 23) 4 (-33, 40) -16 (-56, 22) 
Mat maternal; LMP last menstrual period 
aRegression models (odds ratio/mean difference) with generalized estimating equations adjusted for one covariate. 
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Supplemental Table 2.3. Adjusted odds ratios and mean difference (grams) for birth outcomes associated with exposure to 
hydraulically fractured wells during pregnancy by urban/rural status for the sensitivity analysis using a reference group consisting of 
2006-2015 births to mothers that were exposed to no wells or wells that were not HF within 1 km across the eight California counties. 
Total production volume (sum of monthly volume) and inactive well count (difference between monthly count of all wells within 1 
km and active wells within 1 km) across pregnancy were also adjusted for in these models. 
 

  No HF wells (ref)   1+ HF wells     

  n Cases (%)   n Cases (%) EE (95% CI) EM p-valuec 
Low birth weighta               
     Rural 118,806 5,438 (5)   225 15 (7) 1.47 (0.86, 2.53) 0.07 
     Urban 1,781,227 92,384 (5)   937 45 (5) 0.83 (0.64, 1.09)   

Preterm birtha               
     Rural 118,806 8,177 (7)   225 13 (6) 1.14 (0.65, 1.98) 0.10 
     Urban 1,781,227 122,387 (7)   937 48 (5) 0.65 (0.47, 0.90)   

Small for gestational agea               
     Rural 118,806 12,683 (11)   225 40 (18) 1.60 (1.17, 2.18) 0.18 
     Urban 1,781,227 214,209 (12)   937 144 (15) 1.24 (0.98, 1.57)   

Term birth weight (g)b               
     Rural 110,629 --   212 -- -49 (-103, 4) 0.22 
     Urban 1,658,840 --   889 -- -7 (-41, 27)   
EE effect estimate; CI confidence interval; EM effect modification; g grams. 
Note: Eight counties included: Colusa, Fresno, Glenn, Kern, Los Angeles, Orange, Santa Barbara and Ventura. 
aLogistic regression models (odds ratio) with generalized estimating equations adjusted for active production volume, inactive well 
count; child's sex, conception month and birth year; maternal education, age, race/ethnicity, Kotelchuck prenatal care index, parity; 
urban indicator, NO2, air basin, and ICE for income.           
bLinear regression model (mean difference) with generalized estimating equations also adjusted for gestational age in addition to 
those in footnote a. 
cTest for difference in strata-specific effect estimates between rural and urban populations. Effect modification p-values were 
derived from two-sample z-tests using strata-specific estimates and variances. 
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Chapter 3: Assessment of potential drinking water threats posed by oil and gas 
development sites in the San Joaquin Valley, California 
 
3.1 Abstract 
Background: California’s San Joaquin Valley (SJV) is vulnerable to many environmental 
disparities and an epicenter of oil and gas development (OGD) in the state. Contamination of 
limited groundwater resources can occur in the production and disposal phases, which involve 
the use of production wells, Class II injection wells to facilitate production enhancement and 
wastewater disposal, and percolation pits for disposal. Additives and naturally occurring 
chemicals and compounds could leach into waterways via spills, leaks, equipment failures, direct 
percolation or intended and unintended fractures.  
Objective: To first characterize the spatial relationships between OGD infrastructure and 
domestic wells areas (populated areas served by at least one domestic well–DWA) and 
community water systems (public drinking water systems with at least 15 connections–CWS) in 
order to identify potential groundwater threats to DWA and CWS and then determine whether at-
risk drinking water sources in the SJV serve vulnerable populations. 
Methods: We evaluated DWA and CWS separately. We first identified the number and type of 
OGD wells and pits within 3 km of DWA and 1 km of CWS. Active OGD well types included 
those for oil and gas production, hydraulic fracturing, enhanced oil recovery (EOR) and 
wastewater disposal. Unlined pits include those that were active, inactive, or closing. We then 
applied regression models to determine whether at-risk drinking water sources served vulnerable 
populations. DWA were analyzed at the block group level. We modeled the total count of all 
OGD wells and pits (dependent variable) with several DWA block group or CWS demographic 
and other area-level factors. We adjusted for block group or CWS area via an offset term. The 
negative binomial generalized additive model (GAM) and negative binomial hierarchal 
generalized linear mixed model (GLMM) were used to adjust for spatial autocorrelation among 
block groups (DWA) and CWS, respectively.  
Results: Among 492 block groups with DWA, 61 (12%) had OGD within 3km, while 51 (12%) 
of 417 CWS’s had OGD within 1 km. Block groups that intersected with OGD had fewer 
residents using domestic wells per km2 (24 vs. 63), a higher proportion of residents living at 
twice below poverty (50 vs. 45%) and a higher proportion of Hispanics (59 vs. 49%), on average, 
relative to block groups that did not intersect OGD. Ten DWA block groups with OGD 
infrastructure also intersected with the Monterey Shale. Block groups with OGD had a mean of 
41 total wells and pits, with high counts of actively producing and EOR wells. On average, CWS 
that intersected OGD infrastructure had fewer residents within the system per km2 (645 vs. 817), 
a lower proportion of residents living twice below poverty (37 vs. 42%) and higher proportion of 
Hispanics (47 vs. 39%) compared to CWS that did not intersect OGD. Four CWS with OGD 
infrastructure also intersected with the Monterey Shale. CWS with OGD had a mean of 21 total 
wells and pits, with high counts of actively producing and EOR wells as well. No socioeconomic 
(SES) or area-level factors significantly predicted the count of OGD wells and pits per km2. 
However, effect estimates indicate differences in the distribution of OGD infrastructure and SES 
factors across water systems. For CWS, small systems significantly predicted higher counts of 
OGD infrastructure compared to larger systems [223 (95% CI: 22.1, 2247) times the mean 
number of OGD wells and pits per km2].  
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Conclusion: Small CWS and the populations they serve are at greater risk for potential drinking 
water quality threats due to proximity to OGD infrastructure. Our work highlights the need for 
increased groundwater source monitoring, especially within small CWS, and standardization of 
regulatory strategies for protecting drinking water sources from potential contamination (e.g. 
aquifer exemptions and water sampling requirements) across all OGD infrastructure. 
 
3.2 Background 
California’s Central Valley is one of the most environmentally impacted regions of the state, 
with a significant proportion of poor residents and communities of color. The San Joaquin Valley 
(SJV) makes up the southern portion of the Central Valley and consists of eight counties: San 
Joaquin, Stanislaus, Madera, Merced, Fresno, Tulare, Kings, and Kern. According to Cal-EPA’s 
CalEnviroScreen, a regulatory tool that identifies vulnerable communities disproportionately 
burdened by multiple sources of pollution and guides decision-making to address environmental 
justice, most SJV census tracts have scores within the 60-100th percentile, indicating that these 
tracts have high pollution burdens and high proportions of socially vulnerable populations 
(OEHHA 2016).  
 
Poor drinking water quality, antiquated infrastructure, and limited water resources are major 
environmental and public health issues within the region. Aquifers are particularly stressed by 
high usage by the agricultural sector. Groundwater is also the primary source of drinking water 
for about one million SJV residents (Smith et al. 2018). Water contaminants of concern in the 
region include arsenic, nitrate and salts that cause water sources to become brackish and 
undrinkable (Balazs Carolina et al. 2011; Balazs et al. 2012a; Hanak et al. 2019). Contaminant 
sources are geogenic (i.e. naturally occurring) and anthropogenic (e.g. pesticides and fertilizers 
used in agriculture, oil and gas contaminants) (Hanak et al. 2019). High demands and drought are 
exacerbating contamination issues, as aquifers are over-pumped, resulting in subsidence and an 
increase in aquifer arsenic concentrations (Smith et al. 2018). Additionally, socially and 
economically marginalized communities (e.g. renters, Hispanics) face disproportionate 
contaminant exposures, such as to arsenic and nitrate, and challenges of unequal compliance 
with drinking water regulations (Balazs Carolina et al. 2011; Balazs et al. 2012a). Because the 
SJV is an epicenter for oil and gas development, the industry presents additional threats to 
drinking water resources; accordingly, we sought to characterize the relationship between 
groundwater-based drinking water systems and the presence of oil and gas development (OGD) 
infrastructure in the SJV.  
Broadly, OGD consists of production, disposal and storage phases. Here, we focus on 
infrastructure elements related to production and disposal but not hydrocarbon storage processes. 
The production phase involves the use of wells that extract oil and gas from sub-surface levels 
and injection wells to enhance production. Injection of steam, water, air, brine (or wastewater), 
polymers and carbon dioxide are traditional enhanced oil recovery (EOR) methods that change 
the sub-surface pressure and hydrocarbon properties, e.g. viscosity, to improve permeability and 
direct the hydrocarbons toward production wells (Millemann et al. 1982; US EPA 2015b). Well 
stimulation with chemicals (i.e. hydraulic fracturing (HF), acid fracturing and matrix acidization) 
is an unconventional enhancement technique that requires the injection of fluids mixed with 
chemicals at high pressure to induce fractures within geological formations to release the oil and 
gas (US EPA 2015b). HF is the most common unconventional practice. In California, most oil 
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and gas production is facilitated by some form of EOR (Long et al. 2015a). The disposal phase 
involves transferring wastewater composed of produced water and flowback via pipes or trucks 
to disposal injection wells and percolation pits (or ponds, sumps, impoundments) (Long et al. 
2015b; US EPA 2016, 2015). US EPA classifies all oil and gas injection wells for production and 
disposal purposes as Class II injection wells. Produced water, or formation water, consists of 
naturally occurring compounds from the geologic formation and arises along with oil and gas in 
traditional and unconventional production operations. Flowback is the proportion of water 
injected during well stimulation operations that returns to the surface prior to oil and gas 
production. Wastewater can be composed of: 1) dissolved substances from formation water, 2) 
substances mobilized from the target geological formation, 3) some residual oil and gas, 4) 
additives pumped into the well during well stimulation and 5) compounds that formed due to 
chemical reactions between additives or due to transformation or degradation of the additives 
(Long et al. 2015a; US EPA 2016). Contamination of drinking water sources with these 
formation and wastewater constituents may harm human health. Although biological 
mechanisms and specific pollutants have not yet been determined, epidemiology studies have 
linked exposure to OGD with various adverse health outcomes, particularly birth outcomes 
(Deziel et al. 2020; Gonzalez et al. 2020a; Tran et al. 2020a).  
 
Contaminants can enter drinking water sources through several pathways: 1) surface spills of 
wastewater, HF fluid or raw additives from equipment failure or human error; 2) leaks from all 
types of production and injection wells due to poor construction or natural degradation of well 
casings over time; 3) broken pipelines that transfer produced water for disposal; 4) percolation of 
fluid in pits with compromised lining or that are unlined; 5) fractures created during stimulation 
operations that were directly start in or grow into overlying aquifers (increased likelihood with 
shallow wells); and 6) pathways that stray out of the oil/gas reservoir (out-of-zone) due to 
stimulation or EOR operations that connect with a preexisting fracture network, a fault, or some 
other permeable feature (Long et al. 2015b; McIntosh and Ferguson 2019; Millemann et al. 
1982; US EPA 2016). While EOR does not involve a large number of chemicals, impacts can 
occur over a long period. Well stimulation operations occur within several hours to days 
(McIntosh and Ferguson 2019). In contrast, traditional EOR wells operate under low pressure for 
much longer time periods. For example, the median operation period for EOR wells in Western 
Canada was 35 years (McIntosh and Ferguson 2019). Older wells can pose greater threats to 
drinking water sources as chances of well failures increase with age. There is also a risk that the 
sub-surface pressure created by EOR operations can reach a point where unintended fractures 
develop and expand into water sources over time (McIntosh and Ferguson 2019; Millemann et 
al. 1982).  
 
Spills and well failures are regularly reported to local and state level regulatory agencies, but 
evidence of impact to water sources has focused on unconventional OGD. Impacts to drinking 
water resources are determined by the characteristics of spills/leaks/fractures, local geology, and 
the fate, transport, and toxicity of chemicals spilled (US EPA 2016). Wastewater typically 
consists of HF additives, salts, trace elements (e.g. strontium, barium, heavy metals), organics 
(e.g. benzene, toluene, ethylbenzene and xylene (BTEX)), and NORMs or naturally occurring 
radioactive materials (e.g. radium-226) (Long et al. 2015b). Organic compounds such as BTEX, 
alcohols and chloride compounds as well as heavy metals have been found in groundwater 
samples collected near primarily unconventional OGD sites in Texas, Pennsylvania, Colorado, 
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Louisiana and Arkansas (Burton et al. 2016; Drollette et al. 2015; Gross et al. 2013b; 
Hildenbrand et al. 2015, 2016; Llewellyn et al. 2015; McMahon et al. 2017; US EPA 2016). 
Across studies, most concentrations were low but some exceeded maximum contaminant levels 
(MCL). Researchers attributed these contaminants to projected or recorded surface spills 
(Drollette et al. 2015; Gross et al. 2013b; Hildenbrand et al. 2016; McMahon et al. 2017), 
compromised cement casing (Burton et al. 2016), or out-of-zone vertical fractures (Llewellyn et 
al. 2015). In the Colorado study where spill events and groundwater samples were analyzed, 
authors also found that remediation efforts were able to reduce impacts (Gross et al. 2013b). 
Sub-surface impacts are more challenging to track and assess due to lower flow rates, decreased 
mixing and potential delays in detecting leaks from the wells and out-of-zone fractures. 
In addition to well failures, injection wells may be near groundwater aquifers that should be 
protected as an “underground source of drinking water” (USDW) as stipulated by the Safe 
Drinking Water Act (SDWA). The US Environmental Protection Agency (EPA) defines USDWs 
as containing less than 10,000 mg/L total dissolved solids (TDS), i.e. salts. Aquifers with high 
TDS (more than or equal to 10,000 mg/L) and that are not likely to serve as a source of drinking 
water can receive an exemption from being protected by the US EPA (US EPA 2015c). CalGEM 
exempts those injection wells overlying exempt aquifers based on the US EPA’s USDW criteria 
(DiGiulio and Shonkoff 2019; Long et al. 2015a). In 2011, a US EPA audit identified many 
injection wells in California that were located over aquifers that had yet to be evaluated for 
exemption by the Agency. Reasons for these violations are two-fold: first, aquifer TDS had not 
been assessed for the wells already permitted and second, the aquifer exemption TDS criteria 
were different in California. Prior to the audit, CalGEM protected aquifers containing less than 
3,000 mg/L TDS so water sources with TDS between 3,000 and 10,000 mg/L were not being 
protected as potential sources of drinking water according to the EPA’s criteria (Long et al. 
2015b). CalGEM has since adopted EPA’s exemption criteria for all Class II injection wells 
(including stimulation operations), updated permitting procedures, and reviewed injection wells 
identified by the EPA’s audit. During this review process, water samples collected from wells 
within a mile of several non-exempt injection wells did not indicate local water contamination by 
oil and gas (Long et al. 2015b). However, there could be historic contaminants that transported 
beyond one mile or at other well sites that were not tested. The US Geological Survey (USGS) 
has begun to conduct water quality studies at sites near oil and gas fields to determine where and 
to what degree groundwater quality is potentially at risk for OGD after the adoption of Senate 
Bill 4 (SB 4) (Pavley 2013; SWRCB 2015b). 
 
Percolation pits provide a direct pathway for OGD chemicals and compounds to transport into 
drinking water sources. In California, most pits are located within the SJV and unlined (93% of 
SJV pits in 2019). While pits are slowly being phased out, those overlying groundwater aquifers 
with existing and future beneficial uses have been allowed if the wastewater met certain salinity, 
chloride, and boron thresholds (Long et al. 2015b). In terms of salinity, aquifers with 3,000 mg/L 
of TDS were protected since 2006 (DiGiulio and Shonkoff 2019). Prior to the passage of SB 4, 
the Central Valley Regional Water Quality Control Board (CVRWQCB) did not require 
chemical analysis of wastewater disposed in active pits within the Central Valley. The testing 
requirement, enacted in April 2015, focuses on TDS, chloride and boron but does not include any 
other wastewater constituents (Long et al. 2015b). Groundwater contamination from percolation 
pits has been documented in California and other states (Long et al. 2015a; US EPA 2016). Most 
recently, CVRWQCB shut down a wastewater disposal center that disposed 2.8 million gallons 
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of produced water per day via 163 acres of unlined disposal pits. The Board found that a highly 
saline wastewater plume from decades of disposing produced water migrated to higher-quality 
groundwater for municipal and agricultural uses (CVRWQCB 2019b). The extent of 
groundwater impacts from unlined pits is currently unknown but CVRWQCB have increased 
efforts to monitor active pits.  
 
Several studies have sought to characterize and identify potentially vulnerable communities 
within proximity to OGD via spatial methods. Methods range from mapping and identifying 
clusters based on co-location of OGD infrastructure and indicators for vulnerable populations 
(e.g. people of color, poverty) via local indicators of spatial association (LISA) analysis 
(Ogneva-Himmelberger and Huang 2015a) or clusters of intense OGD and population at risk via 
developing an intensity function (Meng 2015b); comparing differences in socioeconomic factors 
of populations within proximity to OGD wells and beyond via t-tests (Clough and Bell 2016a); 
and determining socioeconomic predictors of areas with OGD sites via fixed effect modeling 
(Zwickl 2019), Poisson regression (Johnston et al. 2016a), and spatial regression techniques 
including conditional autogressive (Silva et al. 2018) and generalized additive modeling 
(Johnston et al. 2020a). The units of analysis in these studies vary from wells, census blocks, 
block groups and tracts, with buffers of up to 5 km. Studies focused on OGD in Texas (Johnston 
et al. 2016a, 2020a; Zwickl 2019), Pennsylvania (Clough and Bell 2016a; Meng 2015b; Ogneva-
Himmelberger and Huang 2015a; Zwickl 2019), Ohio (Ogneva-Himmelberger and Huang 
2015a; Silva et al. 2018), West Virginia (Ogneva-Himmelberger and Huang 2015a), Oklahoma 
and Colorado (Zwickl 2019). No studies have assessed socioeconomic disparities in California or 
spatial relationships of OGD relative to drinking water systems.  Meng et al (2015) buffered 
wells rather than water systems in order to assign risk to wells, but did not examine the 
characteristics of population using those systems.  
 
Groundwater feeds into all types drinking water systems but is the only source for private 
domestic wells and the primary source for some community water systems (CWS). Private 
domestic wells might serve one person or household up to less than 15 service connections 
(SWRCB 2015a). CWS are defined as drinking water systems with at least 15 service 
connections used by yearlong residents or that regularly serve at least 25 yearlong residents of 
the area served by the system (SWRCB 2012). Domestic wells are not regulated and not 
regularly monitored, as agencies only provide guidance on contaminants to test for and water 
quality treatment options (SWRCB 2015a). As such, domestic well users are highly vulnerable to 
potential contamination since water quality can vary greatly from public systems that are 
required to meet regulatory standards. Additionally, per SB 4 requirements, domestic well 
owners near oil and gas fields with stimulation operations can request water sampling but annual 
CalGEM reports have documented few such requests (CalGEM 2015). CWS are required to have 
adequate technical, managerial and financial (TMF) capacity to meet drinking water standards 
established by the SDWA (Soelter and Miller 1999). However, TMF capacity varies greatly by 
the size of CWS. Small systems (15-199 service connections) often suffer from low TMF 
capacity as they are operated with limited resources and managed by residents who are 
unfamiliar with drinking water requirements and planning to ensure standards are met. While 
state funding is available to improve CWS, small systems often do not meet the requirements 
that require them to already having sufficient TMF capacity and be “shovel ready” because they 
already lack resources (Balazs and Ray 2014). Smaller CWS are thus more vulnerable to 
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groundwater threats compared to larger systems with greater TMF capacity to handle 
contamination problems.  
 
The goal of our SJV study was twofold: first to characterize spatial relationships between 
presence of OGD infrastructure and each type of drinking water source (domestic well and 
CWS) and identify potentially vulnerable sources; and second, determine whether at-risk 
drinking water sources serve socially vulnerable populations. While previous spatial analyses 
described spatial relationships of or identified SES factors that distinguished or predicted areas 
with various types of OGD wells, few have examined OGD threats directly on water systems. 
We evaluated each type of drinking water source independently.  
 
3.3 Methods 
We first identified potential threats to drinking water sources (CWS and DWA) from OGD 
infrastructure in the SJV and then applied regression models to identify potential demographic 
and other area-level predictors. Our analysis focused on systems that draw from groundwater 
only i.e. domestic wells and CWS with groundwater as primary sources. For CWS we excluded 
purchased water because the source of the water is less likely local. All shapefiles were projected 
at NAD 1983 California Teale Albers (meters) and spatial variables processed with ArcGIS 
version 10.8 (ESRI).  
 
Water Geographic Layers 
Geographic boundaries with demographic data were obtained from the Water Equity Science 
Shop (WESS) (Goddard 2019; Pace et al. 2020a, 2020b). WESS is a community-academic 
partnership between UC Berkeley, San Francisco State University (SFSU), Cal EPA’s Office of 
Environmental Health Hazard Assessment (OEHHA) and the Community Water Center (CWC). 
The methods are briefly summarized.  
 
Likely domestic well areas (DWA): The goal of deriving this layer was to identify communities 
in California who are likely to be dependent upon domestic wells for their source of drinking 
water. The location of most domestic wells within CA correspond to the center of Public Land 
Surveying System (PLSS) sections, which are approximately 1x1 mile grid squares. The PLSS 
sections were processed in February 2019 along with parcel data, 2010 census population data, 
well completion reports, and CWS boundaries to ensure that the domestic well areas were 
populated, had at least one domestic well and did not overlap with CWS boundaries. Data 
sources included the Bureau of Land Management, US Census, Department of Water Resources 
(OSWCR), and Tracking California Water System Service Areas tool. The resulting likely 
domestic well areas were then aggregated into 2010 census block group boundaries. Population 
size was aerially apportioned to DWA sections that intersected with more than one census block 
group. The demographic characteristics of domestic well areas were maintained at the census 
block group level to minimize inaccuracy and uncertainty (Pace et al. 2020b). The DWA 
shapefile had block group boundaries and features including the number of domestic wells, 
population served by DWA’s, and SES factors in percentages. 
 
Community water systems (CWS): CWS boundaries were obtained from the Tracking California 
Water System Service Areas tool and connected to information about the systems including the 
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primary water source (e.g. groundwater, surface water or purchased water) and number of 
service connections from the State Drinking Water Information System (SDWIS) in January 
2019. System size was assigned based on the number of service connections as follows: small 
(15-199 connections or serving at least 25 people year-round), intermediate (200-3,299 
connections), medium (3,300-9,999 connections) and large (10,000+ connections) (Pace et al. 
2020a). As CWS intersect multiple block group boundaries, population size was aerially 
apportioned from 2010 census block data for greater accuracy. Since the highest resolution for 
SES data from the American Community Survey (ACS) 2012-2016 5-year estimates were 
available at the block group level, the block-based population size was summed up to the block 
group and used to weight the SES factors (Goddard 2019). The CWS shapefile had boundaries 
and features including the number of service connections, population served by CWS’s (summed 
from all blocks intersecting the CWS), and SES factors in percentages. 
 
Oil and Gas Development Infrastructure Layers 
OGD infrastructure consisted of four categories of wells and two categories of percolation pits. 
The well shapefile, “All Wells,” was downloaded from the CA Department of Conservation’s 
Geologic Energy Management Division (CalGEM) in November 2019 (CalGEM 2019a). Only 
wells with “active” status as of November 2019 were included in the analysis. Wells were 
categorized as oil and gas production wells (OGP), enhanced oil recovery wells (EOR) and waste 
disposal wells (WD). OGP wells included those coded as dry gas and oil and gas. EOR wells 
included those coded as air injector, injection, pressure maintenance, cyclic steam, steam flood 
and water flood. WD wells included those coded as gas disposal and water disposal.  
A fourth well category was shallow HF wells with vertical depths less than 600 meters. HF wells 
become production and injection wells after hydraulic fracturing operations occur. To identify 
wells that were ever fracked between 2008-2019, HF status, approximate date of fracking and 
well depth were collected from 1) California Council on Science and Technology’s (CCST) well 
stimulation report (Vol 1, Appendix M) (CCST 2015) and 2) CalGEM’s well stimulation 
treatment (i.e. HF, acid fracturing and matrix acidization) disclosure database (CalGEM 2019b). 
The CCST dataset provided HF status for 2008-2013 while CalGEM’s provided HF status for 
2014-2019. The vertical well depth was used to select shallow wells with depth less than 600 m. 
As of 2015, three quarters of all hydraulic fracturing operations in CA occurred in shallow wells 
less than 600 m and most of these wells were in SJV (Long et al. 2015b). As protected aquifers 
exist above HF wells, there is an inherent risk of hydraulic fractures connecting to drinking water 
aquifers and contaminating them or providing a pathway for water to enter the oil reservoir. 
Thus, only shallow HF wells were included in our analysis.  
 
Data on percolation pits were obtained from the CVRWQCB. CVRWQCB’s Wastewater 
Disposal Pond List (CVRWQCB 2019a) included latitude, longitude, activity status and lining 
status. We selected only unlined (93% of all pits) active and inactive or closing pits as of 
November 2019 for this analysis. Lined pits present less risk for groundwater contamination as 
the lining is intended to prevent wastewater from percolating into the ground. Contamination 
could occur if lining becomes faulty. Contrastingly, unlined pits allow wastewater to seep into 
the ground, carrying chemicals and compounds that may have reacted with one another along 
with the water. Chemical testing of wastewater disposed in the pits is only required for active 
wells even though water may still remain in inactive and closing pits (Long et al. 2015b). Thus, 
inactive and closing pits were considered as potential threats to groundwater here as well.  
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Information on aquifer exemption was collected from the US Environmental Protection Agency 
(EPA) (US EPA 2017) and exemption status of EOR and WD wells were retrieved from 
CalGEM (CalGEM 2019c). While some wells were physically located over exempt aquifers on 
the map, they were not specified as being exempt within the respective CalGEM datasets. To 
address this discrepancy, their status was modified based on whether a well point intersected 
with the exempt aquifer boundary. The same approach was applied to HF wells since their 
exemption status was not available. Production wells were not included as the current exemption 
criteria do not apply to conventional OGD wells. We mapped the wells with the exemption status 
to identify potential regions that need more monitoring or permits reviewed.  
 
Response variable  
Potential threats from OGD infrastructure were characterized by quantifying the number of each 
type of well and pit within a 3 km buffer for DWA and 1 km buffer for CWS. One prior study 
found that most HF wells (60% of HF wells across 14 states) were within 3 km of at least one 
domestic well and other studies suggested that OGD chemicals might travel horizontally between 
1 and 3 km (Jasechko and Perrone 2017). A smaller buffer was selected for CWS because some 
are very large, so their likelihood of intersecting with OGD wells and pits is greater. Counts of 
wells and pits that fell within the buffers were then generated. Because the number of DWA and 
CWS that intersected with each well or pit type was relatively low, the count of each well and pit 
type were summed to create a total OGD infrastructure count. This measure was used as the 
response variable in regression models.  
 
Model predictors 
Regression model predictors included percent of the population twice under poverty, percent 
Hispanic, population density and presence/absence of shale play. Among SES variables available 
from the DWA and CWS shapefiles, poverty and Hispanics were selected because many SES 
variables were correlated. Impoverished people and Hispanics have been shown to be vulnerable 
populations for many environmental threats including water contamination (Balazs et al. 2011, 
2012b). Population density, number of people per square kilometer, was calculated based on the 
population served by DWA or CWS and the area of block groups (for DWA) or CWS. California 
shale plays include the Monterey and Monterey-Tremblor Shales and the shapefile was retrieved 
from the US Energy Information Agency (US EIA 2019). Shale play is an area of sedimentary 
rock containing oil and natural gas, and was included in models as a categorical variable for 
presence or absence.  
 
Statistical analysis 
To identify potential predictors of water systems threated by OGD infrastructure, separate 
regression models were developed for DWA and CWS. Block groups were the unit of analysis 
for DWA, the unit for CWS was the water system. For both analyses, the population of block 
groups and CWS were first limited to SJV counties with any OGD activity. Block groups were 
further filtered to only include those with at least one DWA section within the block group so 
that the block groups were more comparable; block groups without any DWA would not have 
domestic wells at risk of contamination from OGD. For the CWS analysis, we included only 
those water systems that had groundwater that was not purchased as their primary source. 
Additionally, block groups and CWS with extreme counts of OGD wells and pits greater than 
500 were removed in order to achieve model convergence.  
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We developed generalized linear models (GLM) and models that adjusted for spatial 
autocorrelation to assess DWA block groups. First, Poisson and negative binomial models were 
evaluated for over-dispersion via the Pearson dispersion estimate and model fit based on the 
Akaike information criterion (AIC) and Moran’s I (Supplemental Table 3.1). While negative 
binomial models adjusted for over-dispersion, Moran’s I indicated the observations were 
spatially correlated for DWA block groups. Block groups share boundaries and SES factors of 
neighboring blocks are more similar to each other than block groups further away, leading to 
spatial autocorrelation. Thus, spatial regression was performed through the generalized additive 
model (GAM) for DWA block groups. All models were specified with the total count of all OGD 
infrastructure as the response variable and percent twice below poverty, percent Hispanic and 
binary shale play as predictors. Population density was also adjusted for in models and area 
(km2) of the block group or CWS was specified as the offset. For all CWS models, system size 
was added as a binary predictor, with intermediate, medium and large systems merged into one 
group since the number of systems with OGD were minimal, and population density was log 
transformed to achieve model convergence.  
 
DWA generalized additive model: To adjust for the spatial autocorrelation between block 
groups, we used the negative binomial GAM to fit a 2-dimensional thin plate splines smoother 
on the block group centroid coordinates (latitude and longitude). This smoothing technique to 
adjust for spatial confounding has been applied in a similar OGD analysis (Johnston et al. 2020a) 
and air pollution studies (Briggs et al. 2008; Brochu et al. 2011; Padilla et al. 2014; Su et al. 
2010). The predictors were all modeled as parametric terms. DWA GLM and GAM modeling 
were conducted in R version 4.0.0 using the MASS package for GLM modeling and mgcv 
package for GAM modeling. The Pearson dispersion estimate, AIC and Moran’s I were 
compared across all models (Supplemental Table 3.1).  
 
CWS generalized linear model: As with the DWA models, the Pearson dispersion estimate, AIC 
and Moran’s I were compared across all models (Supplemental Table 3.1). While the Moran’s I 
test did not indicate spatial autocorrelation for the Poisson model, the AIC and dispersion 
parameter greatly improved for the negative binomial model compared to the Poisson model so 
results from the negative binomial model are reported. The GLM modeling was conducted in 
SAS version 9.4 with Proc GLIMMIX. The Laplace estimation method and Newton-Raphson 
with ridging optimization technique were specified to achieve model convergence.  
 
3.4 Results 
The SJV consisted of 760 block groups and 648 CWS’s. Four hundred ninety-two block groups 
had DWA’s within their bounds and 417 CWS’s used groundwater as their primary source. OGD 
infrastructure was distributed along the western region of the study area with a heavy 
concentration of wells and pits in the southwestern area (Figure 3.1-3.2). The northern region 
had mostly OGP wells. There were between 1 and 547 production and HF wells per km2 

(Supplemental Figures 3.1-3.4), 1 and 1,650 injection wells per km2 (Supplemental Figures 
3.2-3.5), and 1 and 33 percolation pits per km2 (Supplemental Figures 3.3, 3.6) within SJV. 
Among active EOR wells and WD wells, 11% and 38%, respectively, were specified as exempt 
or drilled into exempt aquifers (Supplemental Figure 3.7). Most OGD wells were not 
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designated as exempt or coincided with aquifers boundaries that were specified to be exempt 
areas (Supplemental Figure 3.7). One percent of shallow HF wells, 38% of active WD wells 
and 11% of active EOR wells were specified as exempt. A number of wells and pits that were 
not specified as exempt were co-located with exempt wells.  
 
DWA assessment 
Among the 492 block groups with DWA’s, 61 had OGD wells and pits within 3 km of their 
DWA’s (12% of block groups) but three of those block groups were removed from the analysis 
due to their outlying OGD infrastructure counts (Table 3.1). On average, domestic wells spread 
across more area (109 km2 vs. 42 km2) and these wells served more people (685 vs. 541 people) 
within block groups that intersected OGD infrastructure compared to block groups that did not. 
The mean percent of DWA within a block group that intersected with OGD was 26%, which 
served an average of 137 residents using domestic wells. Block groups with OGD had fewer 
residents using domestic wells per km2 (24 vs. 63), a higher proportion of residents living twice 
below poverty (50 vs. 45%) and higher proportion of Hispanics (59 vs. 49%), on average, 
relative to block groups without OGD. The proportion of block groups that intersected with the 
Monterey shale was greater among block groups with OGD (17 vs. 2%) and the actual number of 
block groups was slightly higher relative to block groups without OGD (10 vs. 9). Block groups 
that intersected with OGD had a mean of 41 total oil and gas wells and pits, 28 OGP wells, 2.5 
shallow HF wells, 40 EOR wells, 4 WD wells, 10 active pits and 7 inactive pits (Supplemental 
Table 3.2). Among block groups with OGD, production wells were located within the 3 km of 
DWA’s for all block groups and disposal wells were found within 3 km of DWA’s for 52% of 
block groups. The proportion of block groups that intersected other well and pit types was low.  
The negative binomial GAM model effectively adjusted for both over-dispersion (dispersion 
estimate: 0.089) and spatial autocorrelation (Moran’s I p-value: 1) and the AIC value indicated a 
better fit than the GLM Poisson and negative binomial models (Supplemental Table 3.1). Table 
3.2 shows the results from GLM and GAM negative binomial models.  None of the demographic 
or area-level factors showed significant associations with the number of OGD wells and pits per 
km2 among block groups with DWA. However, the directionality of effect estimates changed for 
percent Hispanic and shale play between the GLM and GAM models. In the GAM model, every 
10% increase in Hispanics decreased the average number of OGD wells and pits per km2 by 0.91 
times. The presence of shale play compared to absence of shale play increased the average 
number of OGD wells and pits per km2 by 6.41 times. Percent living at twice below poverty did 
not affect the mean number of OGD wells and pits per km2. 
 
CWS assessment 
Among the 417 CWS, 51 had OGD wells and pits within 1 km (12% of CWS) but five of those 
were removed from the analysis due to their outlying OGD well and pit counts (Table 3.3). On 
average, CWS that intersected OGD infrastructure had a greater number of service connections 
(1,256 vs. 649) and served more people (4,556 vs. 2,006) compared to CWS without OGD. CWS 
with OGD had fewer residents per km2 (645 vs. 817), a lower proportion of residents living twice 
below poverty (37 vs. 42%) and higher proportion of Hispanics (47 vs. 39%) compared to CWS 
that did not intersect OGD. While the proportion of CWS that intersected with the Monterey 
shale was greater among CWS with OGD (11 vs. 3%), the actual number of CWS was much 
lower compared to CWS without OGD (4 vs. 10). Most CWS were small whether they 
intersected OGD wells and pits or not. CWS that intersected with OGD had a mean of 34 total 
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wells and pits, 21 OGP wells, 87 EOR wells, 3 WD wells, 3.25 inactive pits as of 2019 
(Supplemental Table 3.2). Among CWS with OGD, production wells were located within 1 km 
of all CWS and disposal wells were found within 1 km of 61% of CWS. The proportion of CWS 
that intersected other well and pit types was low. 
 
The negative binomial GLM model effectively adjusted for over-dispersion (dispersion estimate: 
0.95) and the AIC value demonstrated a better fit than the GLM Poisson model (Supplemental 
Table 3.1). None of the demographic and area-level factors significantly predicted the number of 
OGD wells and pits per km2 among CWS, except system size (Table 3.4). Every 10% increase 
in the proportion of residents living at twice below poverty decreased the mean number of OGD 
wells and pits per km2 by 0.64 times. Every 10% increase in Hispanics increased the average 
number of OGD wells and pits per km2 by 1.37 times, and presence of shale play also increased 
the outcome by 1.21 times. Compared to larger CWS, small systems had 223 times (95% 
confidence interval: 22.1, 2247) the mean number of OGD wells and pits per km2. 
 
3.5 Discussion  
The San Joaquin Valley is a vulnerable region with many threats to water resources, including 
OGD as the Monterey Shale runs through the entire western zone. While our study had a similar 
objective of identifying potentially disproportionate impacts of OGD, ours is the first to 
characterize OGD risks on and SES factors of water systems rather than a census boundary or 
wells. Our analysis revealed that the relationship between SES factors and number of OGD wells 
and pits per km2 varies by the type of water system, likely reflecting the differences in the 
populations served by each system. We also demonstrated the need to apply different regression 
techniques depending on the water system.  
 
The direction of associations between predictors and the number of OGD infrastructure 
contrasted between DWA and CWS except for the shale play variable. Poverty did not predict 
the number of OGD wells and pits for block groups with DWA, but was associated with a 
decreased number of OGD infrastructure for CWS. From our maps, CWS with high counts of 
wells and pits are close to Bakersfield, one of the main urban centers of SJV and near a major oil 
field. Cities have a mix of high and low poverty census tracts, and the CWS with high OGD well 
and pit counts are located in areas with lower poverty. Previous oil and gas-related spatial 
analyses have shown mixed effects: one analysis that buffered unconventional oil and gas wells 
in Pennsylvania showed poverty was lower within 1 and 2.5 km buffer zones around wells 
compared to beyond (Clough and Bell 2016a) while another study determined that wastewater 
disposal wells within 5 km of the census block centroid were sited in high poverty areas of 
southern Texas (Johnston et al. 2016a). The mean proportion of Hispanics is greater among both 
DWA block groups with OGD and CWS with OGD compared to those with without, so the 
positive association aligned with our expectations for CWS. However, increases in Hispanics 
was associated with lower counts of OGD wells and pits. Based on the maps, most DWA that 
intersected with high counts of OGD were further away from the city center, suggesting that 
fewer Hispanics reside in rural areas. Disparities among Hispanics have been observed for the 
placement of WD wells in Texas (Johnston et al. 2016a), the occurrence of flaring in Texas 
within 5 km of the census block centroid (Johnston et al. 2020a), and proximity to nearest HF 
wells in Texas and Colorado (Zwickl 2019). However, the Pennsylvania study also determined 
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that the proportion of Hispanics was lower within the 1 and 2.5 km buffer zones of  
unconventional wells compared to beyond (Clough and Bell 2016a), which may reflect the 
overall low proportion of Hispanics in the state. Being located on the Monterey Shale predicted 
increases in OGD wells and pits among both DWA block groups and CWS with OGD sites. 
These results were expected since more OGD is likely to occur in areas with shale and a similar 
effect was observed for shale in the Ohio-based study on WD wells (Silva et al. 2018).  
 
One additional predictor added to CWS models was system size. Our results indicated that small 
systems were significantly more impacted by OGD than larger systems. Given that medium or 
large systems have greater area coverage, we would have expected the larger systems to intersect 
with a higher number of OGD well and pits. These associations suggest that small water systems 
are more likely to be located near oil and gas fields and at greater risk for potential 
contamination from OGD infrastructure in addition to having low TMF. The populations small 
systems serve are, thus, more vulnerable to potential drinking water quality threats. Systems with 
low TMF often do not meet drinking water quality standards as they lack the resources to 
consistently test and treat their water. As result of their low TMF, they are usually ineligible to 
apply for state funding even though these funds are meant to assist high priority projects (Balazs 
and Ray 2014). This disadvantageous cycle would likely prevent smaller system operators from 
identifying chemicals from OGD within their system if contamination occurs and remediating 
the impacts. Smaller systems also serve fewer customers so customers would have to bear a 
greater burden to pay for water quality tests, treatment and remediation unless operators receive 
assistance from the state.  
 
The aquifer exemption criteria vary by type of OGD infrastructure and it is notable that 
boundaries for DWA and CWS intersect aquifers that have been designated by the US EPA as 
exempt, especially CWS. Furthermore, non-exempt wells and pits are also being operated in 
areas with domestic wells and CWS. Unconventional and Class II injection wells are subject to 
the 10,000 mg/L TDS criteria for protected aquifers while percolation pits are subject to the 
3,000 mg/L (fresh groundwater) criteria; there are currently no criteria for conventional OGD 
wells (DiGiulio and Shonkoff 2019). Among water systems that have boundaries over exempt 
aquifers, wells and pits could potentially become highly salinized at minimum or contaminated 
with additives and wastewater compounds at worse. Currently exempt and non-exempt wells and 
pits are co-located, suggesting that not all permitted wells and pits have undergone thorough 
review since there should be designated exemption zones. Freshwater is defined as water with 
less than 3,000 mg/L TDS. Water resources with TDS between 3,000 and 10,000 mg/L (brackish 
water) could have beneficial uses such as drinking water if desalinated, but pits have been 
permitted to operate over aquifers with TDS within this range (Shonkoff and DiGiulio 2019). 
Some USGS studies indicate that groundwater has been contaminated to varying degrees, 
especially in regions of SJV with unlined pits (McMahon et al. 2019; Wright et al. 2019). 
Increased water sampling and monitoring of domestic wells, especially within small CWS, 
would help determine whether water is usable from domestic wells in areas with a mix of exempt 
and non-exempt wells and pits. Water resources with more than 10,000 mg/L TDS could also be 
useable because of desalination technology (Shonkoff and DiGiulio 2019).  However, these 
aquifers are currently not being protected or tested for OGD contaminants even though drought, 
climate change and population growth will exhaust current systems. 
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Domestic and OGD well depth and local TDS levels are important factors we were unable to 
evaluate in this analysis of drinking water systems that intersect with OGD. The shallower an 
aquifer, the more likely groundwater sources could be contaminated by overlying pits and 
shallow OGD wells.  Risk of this type of contamination scenario also depends on geological 
characteristics.  Among all OGD well types, we were only able to obtain the depth for HF wells 
from their permit records; the “All Wells” dataset did not provide data on depth. The domestic 
well areas provide a general area where domestic wells are operating without any information 
about the wells’ specific location and depth. Similarly, while we can identify the CWS with 
groundwater as the primary source, we do not know the location of wells that supply water to 
drinking water systems. California’s Groundwater Information System (GAMA) provides data 
on well depth from domestic wells for various purposes (observation, industrial, irrigation, 
residential, stockwatering, other and unknown) as well as TDS levels (SWRCB 2019). GAMA 
wells did not overlap with all DWA and CWS in our analysis and averaging depth and TDS from 
available wells would not be an accurate representation of individual domestic wells or CWS 
wells. For example, industrial and residential wells are not equivalent as an industrial well may 
be tapping into an area with higher TDS and greater depths than a residential well within the 
same block group or CWS boundary. Only 12% of GAMA wells are residential wells. Due to 
these limitations, we were unable to further characterize whether contamination from OGD 
infrastructure could significantly impact local drinking water users within the area. USGS’s 
preliminary groundwater salinity analysis with historical data indicates that TDS is the highest 
and found at the shallowest depths within the south-western region of the SJV (Metzger and 
Landon 2018), where several CWS intersect with OGD and an exempt aquifer.  
Another limitation of our analysis was that we were unable to tap into violations data to identify, 
for example, those pits that received cease and desist orders or oil and gas wells that had a 
history of spills and leaks. Information on the violations status and type would have to combined 
with water sample data (if it exists) to track the source and transport of OGD contaminants 
within water systems to better characterize the extent and specificity of potential threats on 
drinking water resources from OGD. Water transport models would also have to be developed to 
trace contamination from spills and leaks. This is beyond the scope of our analysis. 
 
In summary, we identified that 12% of block groups with domestic well areas and community 
water systems are at risk of water contamination from OGD in SJV. All four well types (OGP, 
HF, EOR, WD) and two unlined pit types (active and inactive) were found within 3 km of DWA 
while OGP, EOR, WD and inactive unlined pits were found within 1 km of CWS. No SES or 
area-level factors significantly predicted the overall number of OGD wells and pits per km2 

except CWS system size. However, the effect estimates suggest potentially informative 
relationships. For example, block groups with a lower proportion of Hispanics predicted higher 
counts of OGD while CWS with a higher proportion of Hispanics predicted higher counts of 
OGD. Our results demonstrate that different types of water systems in an area can be vulnerable 
in different ways as SES factors and the type and volume of OGD infrastructure vary throughout 
the region. Additionally, small CWS are much more vulnerable to contamination threats than 
larger systems. Future studies could expand upon our work by considering other SES predictors 
or integrating violations data, and conducting similar analyses on water systems in other states 
with OGD. Our work highlights the need for increased water sampling and monitoring efforts, 
particularly within small water systems. Without these critical water quality sampling data, it is 
challenging to establish a baseline to determine whether OGD is impacting drinking water 
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sources, even without major spills or leaks. Regulatory agencies might also consider applying the 
same exemption criteria across all OGD wells (production and injection) and pits to expand the 
protection of water sources that could be used for drinking across the state.  
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3.6 Tables 
Table 3.1. Population and area level characteristics of block groups with domestic well areas that 
were included and excluded in the analysis.  
 

  
BG without 
OGD 

BG with 
OGD Excluded BG 

Measures n=431 n=58 n=3 
Total num of domestic wells 38,832 5,421 118 
Mean num of domestic wells 90 93 39 
Total population served  233,034 39,717 2,541 
Mean population served 541 685 847 
Mean domestic well area (km2) 42 109 127 
Mean % DWA at risk 0 26 34 
Mean DWA population at risk 0 137 314 
Mean population density 
(people/km2) 63 24 770 
Mean % 2x below poverty 45 50 42 
Mean % Hispanics 49 59 21 
Num of BG's with shale play (%) 9 (2) 10 (17) 1 (33) 
Mean OGD count 0 41 2,948 
Note: BG, block group; OGD, oil and gas development infrastructure; DWA, domestic well 
area. 
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Table 3.2. Adjusted estimates and exponentiated estimates by GLM and GAM negative binomial models for block groups with 
domestic well areas.  
 
  GLM negative binomial GAM negative binomial 

Predictors 
Estimate (95% 
CI) 

Exp(Est) (95% 
CI) Estimate (95% CI) 

Exp(Est) (95% 
CI) 

% Povertya 0.26 (-0.29, 0.79) 1.3 (0.75, 2.21) 0.014 (-0.33, 0.36) 1.01 (0.72,1.43) 
% Hispanica 0.017 (-0.44, 0.50) 1.02 (0.64, 1.65) -0.098 (-0.42, 0.23) 0.91 (0.66, 1.25) 
Shale play 
(presence) -0.59 (-2.88, 4.07) 0.55 (0.056, 58.6) 1.86 (-0.51, 4.22) 6.41 (0.60, 68.2)  
Note: GLM, generalized linear model; GAM, generalized additive model; Exp, exponentiated; Est, estimate. 
Model adjusted for population density. 
aPer 10% increase. 
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Table 3.3. Population and area level characteristics of community water systems that were included and excluded in the analysis. 
 

  
CWS without 
OGD 

CWS with 
OGD Excluded CWS 

Measures n=376 n=36 n=5 
Total num of service connections 243,974 45212 18,278 
Mean num of service connections 649 1,256 3,656 
Total population served  754,101 163,999 47,334 
Mean population served 2,006 4,556 9,467 
Mean population density 
(people/km2) 817 645 146 
Mean % 2x below poverty 42 37 50 
Mean % Hispanics 39 47 34 
Num of CWS's with shale play (%) 10 (3) 4 (11) 2 (40) 
Small system count (%) 281 (75) 28 (77) 2 (40) 
Intermediate system count (%) 80 (21) 2 (6) 1 (20) 
Medium system count (%) 11 (3) 4 (11) 2 (40) 
Large system count (%) 4 (1) 2 (6) 0 (0) 
Mean OGD count 0 34 6,533 
Note: OGD, oil and gas development infrastructure; CWS, community water system. 
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Table 3.4. Adjusted estimates and exponentiated estimates from the generalized linear negative binomial model for community water 
systems. 
 
  GLM negative binomial 
Predictors Estimate (95% CI) Exp(Est) (95% CI) 
% Povertya -0.44 (-1.00, 0.11) 0.64 (0.37, 1.12) 
% Hispanica 0.32 (-0.16, 0.79) 1.37 (0.86, 2.20) 
Shale play (presence) 0.19 (-3.70, 4.07) 1.21 (0.025, 58.6) 
CWS size - small 5.41 (3.10, 7.72) 223 (22.1, 2247) 
Note: Model adjusted for log(population density). 
aPer 10% increase. 
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3.7 Figures 
Figure 3.1. Map of active oil and gas wells and unlined active and inactive percolation pits 
relative to domestic well areas within the study region of San Joaquin Valley, California. 
 

 
 
  



 

95 
 

Figure 3.2. Map of active oil and gas wells and unlined active and inactive percolation pits 
relative to community water systems within the study region of San Joaquin Valley, California. 
 

 
 
  



 

96 
 

3.8 Supplemental Information Chapter 3 
Supplemental Table 3.1. Diagnostic parameters for regression models. 
 

Model system AIC parameter  p-value 
GLM Poisson DWA  14,314 280.42 <2.2 x10-16 
GLM negative binomial DWA  860 0.89 <2.2 x10-16 
GAM negative binomial DWA  579 0.089 1 
GLM Poisson CWS 7763 119.84 0.4618 
GLM negative binomial CWS 573 0.95 0.3117 

Note: DWA, domestic well area; CWS, community water system; GLM, generalized 
linear model; GAM, generalized additive model. 

Water Dispersion Moran's I 
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Supplemental Figure 3.1. Map of domestic well areas (DWA) and density (wells per km2) of 
oil and gas production wells and shallow (<600 m) hydraulically fractured wells within the study 
region of San Joaquin Valley, California.  
 

 
 
 
  



 

98 
 

Supplemental Figure 3.2. Map of domestic well areas (DWA) and density (wells per km2) of 
injection wells (enhanced oil recovery and waste disposal wells) within the study region of San 
Joaquin Valley, California. 
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Supplemental Figure 3.3. Map of domestic well areas (DWA) and density (pits per km2) of 
active, inactive and closing percolation pits within the study region of San Joaquin Valley, 
California. 
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Supplemental Figure 3.4. Map of community water systems (CWS) and density (wells per km2) 
of oil and gas production wells and shallow (<600 m) hydraulically fractured wells within the 
study region of San Joaquin Valley, California. 
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Supplemental Figure 3.5. Map of community water systems (CWS) and density (wells per km2) 
of injection wells (enhanced oil recovery and waste disposal) within the study region of San 
Joaquin Valley, California. 
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Supplemental Figure 3.6. Map of community water systems (CWS) and density (pits per km2) 
of active, inactive and closing percolation pits within the study region of San Joaquin Valley, 
California. 
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Supplemental Figure 3.7. Map of aquifers (AQ) with exemption status from the US EPA and 
exemption status of Class II injection wells (based on designation by CalGEM) and overlap with 
exempt aquifers, shallow hydraulically fractured wells (based on overlap with exempt aquifers), 
and unlined pits (based on overlap with exempt aquifers). 
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Supplemental Table 3.2. Mean, median and range of counts for each oil and gas well and percolation pit type by water system and 
grouped by whether block group or CWS were included or excluded from analyses.  
 
  Block Group (DWA)   CWS 
Measures n Mean Median Range   n Mean Median Range 
Analyzed observations          
Count of all OGD types 58 41 12.5 1 - 326   36 34 21.5 1 - 275 
Count of OG production wells 58 28 6.5 1 - 316   36 21 15.5 1 - 105 
Count of HF well (<600 m) 2 2.5 2.5 1 - 4   0 0 0 0 
Count of EOR wells 11 40 7 1 - 170   4 87 41.5 2 - 263 
Count of WD wells 30 4 3 1 - 21   22 3 2 1 - 8 
Count of active percolation pits 6 10 10 1 - 17   0 0 0 0 
Count of inactive percolation 
pits 19 7 4 1 - 29   16 3.25 4 1 - 6 
Excluded observations 
(outliers)          
Count of all OGD types 3 2,948 3,789 620-4,435  5 6,533 3,598 1,897 - 19,185 
Count of OG production wells 3 632 559 453-884  5 3,169 1,128 261 - 11,850 
Count of HF well (<600 m) 2 2.5 2.5 1-4  3 53 69 1 - 90 
Count of EOR wells 3 2,277 3,208 120-3,504  5 3,129 1,773 1,123 - 6,416 
Count of WD wells 3 27 28 13-40  5 90 30 11 - 353 
Count of active percolation pits 3 2.7 2 1-5  2 61 0 14 - 290 
Count of inactive percolation 
pits 3 7 6 3-13  5 53 13 6-207 
Count of all OGD types 3 2,948 3,789 620-4,435  5 6,533 3,598 1,897 - 19,185 

Note: DWA, domestic well area; CWS, community water system; OGD, oil and gas development, OG, oil and gas; HF, 
hydraulic fracturing; EOR, enhanced oil recover; WD, waste disposal. 
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Chapter 4: Air pollution, high methane emitters, and oil and gas wells in Northern 
California: the relationship with migraine headache prevalence and exacerbation 
 
Publication:  Elser H, Morello-Frosch R, Jacobson A, Pressman A, Kioumourtzoglou MA, 
Reimer R, Casey JA (2021) Air pollution, methane super-emitters, and oil and gas wells in 
Northern California: the relationship with migraine headache prevalence and exacerbation. 
Environmental Health 20:45. https://doi.org/10.1186/s12940-021-00727-w  
 
4.1 Abstract  
Background: Migraine–an episodic disorder characterized by severe headache that can lead to 
disability–affects over 1 billion people worldwide. Prior studies have found that short-term 
exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone increases risk of 
migraine-related emergency department (ED) visits.  Our objective was to characterize the 
association between long-term exposure to sources of harmful emissions and common air 
pollutants with both migraine headache and, among patients with migraine, headache severity. 
Methods: From the Sutter Health electronic health record database, we identified 89,575 
prevalent migraine cases between 2014–2018 using a migraine probability algorithm (MPA) 
score and 270,564 frequency-matched controls. Sutter Health delivers care to 3.5 million patients 
annually in Northern California. Exposures included 2015 annual average block group-level 
PM2.5 and NO2 concentrations, inverse-distance weighted (IDW) methane emissions from 60 
high-emitters located within 10km of participant residence between 2016–2018, and IDW active 
oil and gas wells in 2015 within 10km of each participant. We used logistic and negative 
binomial mixed models to evaluate the association between environmental exposures and (1) 
migraine case status; and (2) migraine severity (i.e., MPA score >100, triptan prescriptions, 
neurology visits, urgent care migraine visits, and ED migraine visits per person-year). Models 
controlled for age, sex, race/ethnicity, Medicaid use, primary care visits, and block group-level 
population density and poverty.  
Results: In adjusted analyses, for each 5ppb increase in NO2, we observed 2% increased odds of 
migraine case status (95% CI: 1.00, 1.05) and for each 100,000 kg/hour increase in IDW 
methane emissions, the odds of case status also increased (OR = 1.04, 95% CI: 1.00, 1.08). We 
found no association between PM2.5 or oil and gas wells and migraine case status. PM2.5 was 
linearly associated with neurology visits, migraine-specific urgent care visits, and MPA score 
>100, but not triptans or ED visits. NO2 was associated with migraine-specific urgent care and 
ED visits, but not other severity measures. We observed limited or null associations between 
continuous measures of methane emissions and proximity to oil and gas wells and migraine 
severity.  
Conclusions: Our findings illustrate the potential role of long-term exposure to multiple ambient 
air pollutants for prevalent migraine and migraine severity. 
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4.2 Introduction 
Migraine is an episodic disorder characterized by severe headache often associated with nausea 
or sensitivity to light and sound. In 2016, the estimated global prevalence of migraine was 14.4% 
with over 1.04 billion individuals affected worldwide (Stovner et al. 2018). In the United States 
(U.S.), migraine is most common among individuals aged 30 to 39 and follows a social gradient 
wherein migraine is less common among wealthier individuals (Lipton et al. 2001a, 2007). 
Migraine can lead to disability; in the U.S., estimated annual costs associated with migraine 
range from $13 to 16.6 billion annually due to lost productivity, work and school absences, and 
short-term disability (Berg and Ramadan 2006; Gilligan et al. 2018; Lofland 2007; Porter et al. 
2019). 
 
Given the episodic nature of migraine headache, considerable attention has been paid to the 
study and identification of common triggers. Among the most frequently self-reported triggers of 
migraine are sleep disturbances and fatigue; stress or relief of stress; menstruation and 
pregnancy; smoking; and food and alcohol (Chabriat et al. 1999; Henry et al. 2002; Peatfield et 
al. 1984; Prince et al. 2004; Spierings et al. 2001). Factors such as noise, season, and weather 
variations have also been implicated as migraine triggers (Charles 2013; Eross et al. 2007; Prince 
et al. 2004; Wöber et al. 2006). Examples of common sources of environmental noise that may 
precipitate a migraine attack include traffic-related noise from roads, railways, aircrafts, and 
parking cars (Friedman and De Ver Dye 2009). Individuals with migraine frequently attribute 
their headaches to weather variations, including changes in temperature and barometric pressure 
(Spierings et al. 2001; Turner et al. 1995; von Mackensen et al. 2005; Wöber et al. 2006; Yang et 
al. 2011). 
 
Research to date also implicates short-term exposure to a variety of air pollutants as triggers for 
migraine headache. Fine particulate matter (PM2.5) is among the most frequently studied 
pollutants; increased levels of PM2.5 have been associated with more frequent migraine-specific 
emergency department (ED) visits in Canada, Taipei, and South Korea (Chen et al. 2015; Chiu et 
al. 2015; Lee et al. 2018; Szyszkowicz et al. 2009a, 2009c), although, a case-crossover study of 
7,054 patients in Boston reported no significant association with ED visits (Mukamal et al. 
2009). In a time-series study of 1,059 ED visits recorded at a Vancouver hospital, levels of sulfur 
dioxide (SO2) were associated with ED visits for migraine (Szyszkowicz et al. 2009b). Levels of 
ozone, carbon monoxide, nitrogen dioxide (NO2), and coarse particles (PM10) have also been 
linked with migraine-specific ED visits in case-crossover studies based on daily clinic data from 
1,000,000 patients from the National Health Insurance Program in Taiwan (Chen et al. 2015; 
Chiu et al. 2015). A cross-sectional survey of 7,785 primary care patients of the Geisinger Clinic 
in 2014 found that individuals exposed to the highest levels of unconventional natural gas 
development were more likely to have migraine headache (Tustin et al. 2017b). Unconventional 
natural gas development can produce PM2.5, volatile organic compounds (VOCs), noise and light 
pollution, and stressful community changes that could trigger migraine (Adgate et al. 2014c). 
 
To date, few studies have considered the implications of long-term exposure to common 
environmental pollutants – which may capture potential residential disparities in the burden of 
headache based on local average air quality – and no analyses have been conducted in the 
Western U.S. or on specific air pollution sources. Recently, the California Air Resources Board 
(CARB) conducted an air survey of high methane emitters, point sources of methane emissions, 
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including dairies, landfills, refineries, and oil and gas infrastructure (Duren et al. 2019a). These 
facilities emit a variety of co-pollutants such as SO2, hydrogen sulfide, PM2.5, and VOCs 
(California Air Resources Board 2019, 2020; Zavala-Araiza et al. 2017), and the new CARB 
data provide an opportunity to assess their implications for migraine. California is also a top-10 
U.S. producer of crude oil, with over 200,000 oil and gas wells drilled in the state (Energy 
Information Agency 2020). 
 
The present study leverages data from the Sutter Health electronic health record (EHR) database 
in Northern California and builds on prior research linking air pollutants and migraine headache. 
Our analyses include an expanded set of exposure measures, including long-term ambient PM2.5 
and NO2 concentrations, methane emissions, and active oil and gas wells as measured at the 
beginning of the study period. We selected these exposures, particularly high methane emitters 
and active oil and gas wells, because if found to be linked to migraine, policies could reduce 
emissions at the source. Whereas past research has largely relied on migraine-specific ED visits 
as a crude proxy for severe headache, we incorporate additional measures of headache severity. 
We conducted a case-control study to ascertain whether migraine case status was associated with 
long-term exposure to any of the four environmental exposure measures as compared with 
controls. Next, we conducted a case-case analysis to ascertain whether environmental exposures 
were associated with more severe headache among individuals with established diagnosis of 
migraine. We hypothesized a priori that environmental exposures would be associated with both 
migraine case status and with disease severity.     
 
4.3 Methods 
We conducted a case-control study and case-case analysis to examine the relationship between 
migraine severity and exposures of interest. This approach was selected based on computational 
feasibility, and because disease-based sampling is efficient when multiple exposures are 
considered and when the outcome of interest is relatively rare (Jewell 2003). Cases and controls 
were identified through the Sutter Health EHR database. Sutter Health is a large, mixed-payer, 
integrated healthcare system in Northern California that delivers comprehensive medical services 
through its network of 24 acute-care hospitals and more than 100 ambulatory clinics. 
Approximately 3.5 million patients receive care through Sutter each year at hospitals and clinics 
located in 22 counties; our study subjects resided in 27 urban and rural counties. Sutter’s Epic 
EHR (Epic Systems Corporation, Verona, Wisconsin) is fully integrated across all hospital and 
ambulatory sites. Data for cases and controls were retrospectively extracted from the Sutter EHR 
for the study period between January 1, 2014 and December 31, 2018. 
 
Patient demographic data from the EHR included sex (male, female), race/ethnicity (non-
Hispanic Asian, Black, white, other, or Hispanic); and marital status (divorced, separated, 
widowed; married or partnered; single; other or unknown). We used date of birth to compute age 
in years at the start of follow-up. Health characteristics extracted from the EHR included whether 
the individual was a Medicaid beneficiary (yes, no); body mass index (BMI) category in kg/m2 
[less than 18.5 (underweight); 18.5 – 24.9 (normal); 25 – 29.9 (overweight); 30 – 34.9 (obese 
class 1); 35 – 39.9 (obese class 2); 40 or more (obese class 3)]; number of and reason for primary 
care, specialty care, urgent care, and emergency department visits. We assigned residential 
address for the study period (2014–2018) based on address of record in October 2019. Using 
assigned residential address, we linked block group-level percent living below the federal 
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poverty threshold and population density (individuals per km2) using data from the 2014–2018 
American Community Survey. 
 
Migraine Case Ascertainment and Control Selection 
Both cases and controls were selected from the study base of eligible patients over the age of 18 
with at least one primary care encounter during the five-year study period (2014–2018) that 
resided in one of 27 counties in Northern California. We ascertained case status using the 
Migraine Probability Algorithm (MPA), a validated approach for identification of individuals 
diagnosed with migraine from EHR data (Pressman et al. 2016). Briefly, a numeric score that 
ranges from zero to 101 is calculated based on the following criteria: encounters (hospital 
inpatient, emergency room and outpatient) with a primary or secondary diagnostic code for 
migraine from the International Classification of Diseases, Ninth Revision (ICD-9 346.xx) or 
Tenth Revision (ICD-10 G43.xxx); an ICD-9 or ICD-10 code for migraine in the patient’s 
Significant Health Problem List (SHP); and filled prescriptions for migraine-specific abortive 
medications (i.e., triptans, ergotamines). An MPA score greater than 10 is consistent with 
diagnosis of migraine. We selected three controls for every case from the Sutter EHR database. 
Controls were frequency matched to cases based on age category (18–29; 30–44; 45–54; 55–64; 
65 or older), sex, year of entry into Sutter primary care, and primary-care follow-up time (0–6 
months, 7–24 months, > 24 months). 
 
Migraine Severity 
Among cases (i.e., individuals with MPA > 10), we defined the following count variables to 
capture migraine severity (1) all-cause neurology visits per year; (2) migraine-specific urgent 
care visits per year; (3) triptans prescribed per year. We additionally defined two dichotomous 
measures to capture migraine severity: (4) 0 versus ≥ 1 migraine-specific emergency department 
(ED) visit during the study period; and (5) MPA score > 100 (more severe) versus MPA score 
11-100 (less severe). 
 
Air pollution, methane emission, and oil and gas wells 
We considered four separate exposure measures in our analyses. These included PM2.5, NO2, 
high methane emitters, and active oil and gas wells. Exposure to air pollutants and to oil and gas 
wells was estimated based on average values at the beginning of the study period (in 2015). 
Methane emissions measures were based on data collected between 2016–2018.  
 
PM2.5 and NO2 
We used patient addresses to link annual average concentration of PM2.5 and NO2 estimates at 
the block group-level derived from annual-average integrated empirical geographic regression 
models (Kim et al. 2020b). The approach relied on universal kriging and took regulatory 
monitoring data, satellite imagery, and measures of land use and traffic as inputs. PM2.5 and NO2 
achieved standardized RMSEs of 0.86µg/m3 and 0.87ppb, respectively. These variables were re-
scaled such that coefficients in linear models correspond to each 5µg/m3 increase in PM2.5 and 
each 5ppb increase in NO2, respectively.  
 
Methane Emissions 
Data on methane emissions were provided by CARB as described in Duren et al. 2019 (Duren et 
al. 2019a). In brief, CARB led the first California Methane Survey to provide systematic 
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information on methane point sources across the state via Next Generation Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS-NG) flights conducted between 2016–2018. 
The AVIRIS-NG flights identified 564 distinct sources of methane plumes and captured average 
hourly emission rates in kilograms per hour (kg/hour). Examples of sources of methane plumes 
identified by AVIRIS-NG flights included oil and gas wells, dairies, and landfills. To estimate 
exposure to methane emissions for the present study, we calculated the sum kg/hour of emitted 
methane from all sources within 10km of each participant j’s residence and weighted the 
emissions by the inverse-distance squared between each high methane emitter, i, and patient j’s 
residence:  
 

∑ 𝐸𝐸𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 , 

 
where E is the emission rate at high methane emitter i in kg/hour and d is the distance in 
kilometers between high methane emitter i and participant j. We created two exposure metrics 
based on methane emission rates. The first was the sum of methane emissions (in kg/hour) within 
10km, re-scaled so that model coefficients corresponded to a 100,000 kg/hour increase in 
methane emissions. The second was an indicator variable for presence of any high methane 
emitter within 10km.  
 
Oil and Gas Wells 
Finally, we obtained records for active oil and gas wells as of December 2015 from the 
California Division of Oil, Gas and Geothermal Resources website (CA DOGGR). To estimate 
exposure to active wells, we used inverse-distance weighting (IDW) of active wells within 10km 
of each participant, j:  
 

∑ 1
𝑑𝑑𝑖𝑖𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 , 

 
where i is an active well located within 10km of the participant and d is the distance in 
kilometers between well i and participant j. We created two exposure metrics based on exposure 
to active wells. The first was a continuous IDW sum of all active wells within 10km, re-scaled so 
that coefficients in linear models correspond to a 1,000-unit increase in the IDW sum. The 
second was an indicator variable for presence of any active oil or gas well within 10km.  
 
Statistical Analyses 
We first conducted a case-control analysis in which we examined the association between 
migraine status and each of the four exposures. Next, we conducted a case-case analysis to 
examine whether migraine severity was associated with each of the exposures.  
 
Case-Control Analysis 
For the case-control analyses, we used generalized linear mixed models with a logit link with 
county-specific random intercepts to account for potential within-county clustering. All models 
controlled for our matching variables: categorical age and sex, as recommended (Mansournia et 
al. 2018), and race/ethnicity, Medicaid use, number of primary care visits per year, and block 
group-level population density and poverty. We specified four separate statistical models to 
examine the association between migraine status and each of the environmental exposures of 
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interest (i.e., PM2.5, NO2, high methane emitters, and active oil and gas wells). We used 
generalized additive mixed models with penalized smoothing splines to capture potential non-
linearities in the exposure-response relationships. As a secondary analysis, we used the binary 
exposure specification for both high methane emitters and active wells (i.e., any high methane 
emitter within 10km vs. none and any well within 10km vs. none). 
 
Case-Case Analysis 
In the case-case analyses, we utilized negative binomial mixed models (for count of neurology 
visits, migraine-related urgent care visits, and prescriptions for triptans) and logistic mixed 
models (for ≥1 migraine-related ED visit per person-year vs. less and MPA score >100 vs. 10-
100) with random intercepts for county to examine the association between migraine severity 
and the exposure of interest. We controlled for the same set of potential confounding variables as 
described for the case-control analysis, assessed deviations from linearity using penalized 
smoothing splines, and as a secondary analysis considered binary specifications of high-emitters 
and active wells. 
 
Sensitivity Analyses 
We conducted the following sensitivity analyses. First, we separated exposure to high-emitters 
into two categories: (1) dairy/cattle manure and landfills and (2) all other industrial types, which 
included power plants, refineries, wastewater treatment facilities, oil and gas distribution (e.g., 
oil/gas compressors, gas distribution lines), and oil and gas production (e.g., oil/gas waste 
lagoons, oil/gas plugged wells). We did so under the assumption that methane co-pollutant 
emissions would differ by these two categories. Second, we repeated our main case-control and 
case-case analyses with additional adjustment for BMI category and marital status. Finally, in 
our case-case analysis of migraine-specific ED visits, we additionally adjusted for distance from 
the patient’s address of record to the nearest ED.  
 
For all models, we evaluated residual spatial autocorrelation using Moran’s I (Bivand 2008), 
which indicated no residual spatial autocorrelation in any of the analyses. Analyses were 
conducted using R 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). The 
Columbia University (Protocol #: AAAT0085), University of California, Berkeley (Protocol #: 
2013-10-5693), and Sutter Health (IRBNet #:1452543-1) Institutional Review Boards approved 
this study. 
 
4.4 Results 
The study based included 1,433,236 individuals with at least one primary care visit within the 
Sutter Health system in Northern California between 2014–2018. Based on MPA score, we 
initially identified 92,673 migraine cases and 278,019 matched controls. We excluded 3,065 
cases and 7,327 controls who resided outside of 27 Northern California counties; 29 cases and 
100 controls who lacked block group-level poverty data; and 4 cases and 28 controls missing 
PM2.5 data (Supplemental Figure 4.1). The final study population included 89,575 cases and 
270,564 controls in 27 counties (Supplemental Figure 4.2, Supplemental Figure 4.3).  
 
Migraine cases were most common between the ages of 30–44 years (N = 33,036, 36.9%) and 
occurred predominantly among females (N = 73,908, 82.5%). Migraine cases were more likely 
to be non-Hispanic white as compared with controls (58.7% versus 48.2%) and had more 
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frequent primary care outpatient encounters and outpatient neurologist visits (Table 4.1). The 
2015 average annual concentrations of PM2.5 and NO2; methane emission rates; and the location 
of active oil and gas wells are depicted in Figure 4.1. The median PM2.5 concentration at patient 
addresses was 8.7µg/m3 (min = 3.7, max = 13.3) and the median NO2 concentration was 7.7ppb 
(min = 1.1, max = 15.2). Of 564 high-emitters surveyed in the state, 60 (10.6%) were located 
within 10km of study participants, including 35 dairies/landfills and 25 other types of high-
emitters.  
 
Case-Control Analysis 
In our case-control analysis we observed only linear associations between exposure and migraine 
case status. We found some evidence for an association between migraine case status and block-
group level NO2 concentration. We estimated that for every 5ppb increase in annual average NO2 
concentration the odds of migraine case status increased by 1.02 times (95% CI: 1.00, 1.05). We 
also estimated that for every 100,000 kg/hour increase in IDW sum of methane emissions within 
10km, the odds of migraine case status also increased (OR = 1.04, 95% CI: 1.00, 1.08). We 
found no evidence of an association between migraine case status and block-group level PM2.5 
concentrations or for active oil or gas wells within 10km (Figure 4.2, Supplemental Table 
4.1A). In our secondary analysis with dichotomized methane emission and active wells, we 
found no association between any high methane emitter or any active well within 10km and 
migraine (Supplemental Table 4.1B).  
 
Case-Case Analysis 
In our case-case analysis, meant to evaluate the association between environmental exposures 
and migraine frequency/severity, we observed mostly linear relationships, except for the 
association between PM2.5

 and odds of any migraine ED visit during the study period 
(Supplemental Figure 4.4). For the other severity outcomes, we found that each 5µg/m3 
increase in annual average block-group level PM2.5 concentration was associated with increased 
frequency of outpatient neurology visits (RR = 1.18, 95% CI: 1.09, 1.29), increased frequency of 
migraine-specific urgent care visits (RR = 3.09, 95% CI: 2.28, 4.18) and MPA score greater than 
100 (OR = 1.14, 95% CI: 1.07, 1.22). We found no evidence of an association between increased 
PM2.5 concentration and frequency of prescribed triptans (RR = 1.03, 95% CI: 0.97, 1.10).  
Increased block group-level NO2 concentration was not associated with triptans, outpatient 
neurology visits or MPA score, but we found that each 5 ppb increase in NO2 concentration was 
associated with increased frequency of migraine-specific urgent care visits (RR = 1.22, 95% CI: 
1.02, 1.46) and with increased odds of having at least one migraine-specific ED visit during 
follow-up (OR = 1.16, 95% CI: 1.05, 1.29) (Figure 4.3, Supplemental Table 4.2A). 
 
A 100,000-unit increase in the IDW sum of overall methane emissions within 10km was 
associated with increased frequency of migraine-specific urgent care visits (RR = 1.12, 95% CI: 
0.92, 1.36). Having any methane emitter within 10km was also associated with increased 
frequency of urgent care visits (RR = 1.32, 95% CI: 1.14, 1.54) (Figure 4.3, Supplemental 
Tables 4.2A and 4.2B). Proximity to high-emitters was not associated with the frequency of 
triptan prescriptions, outpatient neurologist visits, migraine-specific ED visits, or MPA score. 
Presence of any active oil and gas wells within 10km was associated with increased frequency of 
outpatient neurologist visits (RR = 1.09, 95% CI: 1.03, 1.16), frequency of migraine-specific 
urgent care visits (RR = 1.43, 95% CI: 1.21, 1.70), and odds of at least one migraine-specific ED 
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encounter per person-year of follow-up (OR = 1.11, 95% CI: 1.00, 1.24). We found no evidence 
of an association between our continuous measure of active oil and gas wells and any of the five 
measures of migraine severity (Figure 4.3, Supplemental Tables 4.2A and 4.2B). 
 
Sensitivity Analyses 
We conducted a sensitivity analysis in which we separately considered dairies and landfills 
versus all other high methane emitters. Overall, these findings were largely consistent with our 
main findings for both the case-control and case-case analyses; the association was stronger for 
dairies and landfills (RR = 1.18, 95% CI: 0.37, 3.87) than for other high-emitters (1.08, 95% CI: 
0.85, 1.36), albeit with widely overlapping confidence intervals. In re-analysis of the case-
control and case-cases studies with additional controls for BMI category and marital status, 
results did not differ from those of our primary analysis (Supplemental Figures 4.5 and 4.6). 
Results were also unchanged when we incorporated distance to the nearest Sutter hospital in the 
ED visit case-case analyses (Supplemental Figure 4.7). 
 
4.5 Discussion 
Past research links short-term exposure to a range of air pollutants with ED visits migraine 
headache. Our study builds upon previous studies and considers the implications of long-term 
environmental exposures for migraine. Using data from the Sutter Health EHR database in 
Northern California, we examined relationships between a wide range of environmental 
exposures–including PM2.5, NO2, high methane emitters, and oil and gas wells–and both 
migraine headache and headache severity among patients with migraine. Our case-control 
analysis revealed increased odds of exposure to NO2 and high methane emitters among patients 
with migraine as compared with frequency-matched population controls without clinical 
diagnosis of migraine. In our case-case analysis, migraine severity–as measured by frequency of 
triptan prescriptions, outpatient neurology visits, migraine-specific urgent care and ED visits, and 
MPA score–was most strongly and consistently associated with average PM2.5 and NO2 
exposure.  
 
Research to date has focused primarily on short-term exposure to air pollutants as a trigger for 
migraine. Although relatively few studies have focused on chronic exposure, evidence to date 
nevertheless suggests that chronic exposure to common pollutants may be important in the 
etiology, severity, or frequency of headache including migraine. Using linked records from the 
Taiwan National Health Insurance Research Database and Taiwan Air Quality Monitoring 
Database, Hong et al. (2020) found that frequency of recurrent headaches among children 
younger than 18 years of age increased with higher-level exposure to several air pollutants 
including PM2.5, CH4, NO2, and total hydrocarbons (Hong et al. 2020). Adetona et al. (2020) 
conducted a cross-sectional study among residents of a community adjacent to a large open 
landfill in Lagos, Nigeria. Results of that study indicated that chronic exposure to emissions from 
open combustion of municipal solid waste—a major source of particulate matter, polycyclic 
aromatic hydrocarbons, and toxicants such as polychlorinated biphenyls and brominated flame 
retardants—was associated with increased odds of daily occurrence of headache (Adetona et al. 
2020). Moreover, in animal models, chronic exposure to acrolein, which is prevalent in both 
indoor and outdoor air pollution, yielded physiologic changes consistent with migraine (Kunkler 
et al. 2015, 2018). 
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Results of the present study further demonstrate the potential importance of long-term residential 
exposures for migraine severity. One important implication of these findings is that in more 
heavily polluted communities, individuals may be more likely to suffer from migraines or may 
suffer from more frequent headaches. The existing literature consistently demonstrates the 
disproportionate burden of air pollution in already disadvantaged communities (Colmer et al. 
2020; O’Neill et al. 2003; Woo et al. 2019), and the substantial economic and social costs 
associated with migraine in the United States (De Lissovoy and Lazarus 1994; Ferrari 1998; Hu 
et al. 1999; Lipton et al. 2001b, 2007). Our findings therefore motivate careful examination of 
the extent to which disparate levels of exposure to harmful emissions and levels of community 
air pollution translate to greater burden of migraine headache and the associated economic and 
social costs particularly in already disadvantaged communities. 
 
To our knowledge, ours is the first study to examine the implications of exposure to high 
methane emitters for migraine; we identified an association between high methane emitter 
exposure and migraine case status but not migraine severity. High methane emitters included 
dairies and waste lagoons, landfills, power plants, refineries, wastewater treatment facilities, and 
oil and gas production and distribution infrastructure. Although methane itself is not directly 
toxic to humans, it is often co-emitted with other noxious compounds. The heterogeneous group 
of high-emitters considered in this study also produce a wide range of co-pollutants including 
volatile organic compounds, ammonia, hydrogen sulfide, and particulate matter, several of which 
are odorous (Casey et al. 2015b; Garcia-Gonzales et al. 2019b; Staines 2004). Methane also 
contributes to the formation of ground-level ozone, previously implicated as a trigger for 
migraine headache (Chen et al. 2015; Chiu et al. 2015). In addition, high-emitters, such as oil 
and gas wells, produce noise pollution (Hays et al. 2017b). Both noise and odors have been 
consistently linked with migraine headache (Charles 2013; Eross et al. 2007; Prince et al. 2004; 
Wöber et al. 2006). 
 
Importantly, we assigned high methane emitter exposure based on data collected between 2016–
2018, while we included migraine cases in the Sutter EHR database between 2014–2018. This 
complicates the temporal ordering of exposure and response. However, reverse causality seems 
an implausible alternative explanation for our results, as we know of no reason that individuals 
with migraine would cause systematic increases in local high methane emitter exposure or would 
move closer to a high methane emitter post-diagnosis. It is possible, however, that our findings 
reflect residential sorting of individuals predisposed to migraine into localities where methane 
emissions are higher on average (Spielman et al. 2013; Watson 2009). In the U.S., migraine 
follows a social gradient and is more common among lower-income individuals who are also 
more likely to live in more polluted neighborhoods (Lipton et al. 2001a, 2007). We aimed to 
address this important source of confounding by adjusting for patient Medicaid use and block-
group-level population density and poverty. Future research should specifically examine co-
pollutants that may explain the apparent link between methane emissions and migraine, and to 
disentangle the role of residential sorting and confounding by socioeconomic status from any 
etiologic role that methane plays in the onset or exacerbation of migraine headaches.  
 
Unlike several prior studies that rely on ED visits as a rough proxy for disease severity, our case-
case analysis considered a more comprehensive set of proxies obtained from EHR data including 
non-emergency migraine-specific healthcare visits, migraine-related medication use, a validated 
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migraine severity score, and overall neurology visits among patients with migraine. We also used 
splines to consider potential non-linearities in exposure-response relationships between each 
environmental exposure and our migraine severity outcome measures. Consistent with past 
research (Lipton et al. 2001a, 2007), we observed an association between NO2 exposure and 
migraine severity as measured by migraine-specific urgent care visits and migraine-specific ED 
visits even at NO2 levels well below the current national standards (our population-average 
annual exposure was around 8 ppb compared to the U.S. Environmental Protection Agency 
annual standard of 53 ppb).  
 
Past research finds an association between short-term exposure to PM2.5 and migraine-specific 
ED visits (Lipton et al. 2001a, 2007). Our analysis demonstrated an association with long-term, 
annual average PM2.5 across a more comprehensive set of clinical proxies for headache severity, 
including outpatient neurology visits and migraine-specific urgent care visits. For ED visits, we 
found a paradoxical inverse u-shaped exposure-response wherein individuals with the lowest and 
highest levels of average PM2.5 had the lowest odds of ED visit. This relationship persisted even 
after we incorporated additional statistical controls for distance to nearest Sutter ED. As our 
analysis differs from previous studies that consider short-term PM2.5 levels and risk of ED visits, 
this finding could reflect misalignment of the examined exposure window (annual average 
PM2.5) with an acute outcome (ED visits).  
 
Communities with higher annual PM2.5 concentrations may also have higher peak and long-term 
average exposure that gives rise to ED visits. We know of no research that demonstrates higher 
levels of PM2.5 as protective against migraine headaches. This relationship could reflect 
residential sorting where individuals with migraine move out of high PM2.5 communities. As 
migraine-specific emergency department visits are relatively rare in these data, we suspect that 
the observed relationship is driven by relatively less frequent use of emergency departments for 
headache among individuals living in the few counties with the highest PM2.5 levels. This finding 
also implies possible geographic disparities in either access to or use of care for severe migraine 
headaches unrelated to proximity or insurance status that should be explored in future research.  
 
The association between PM2.5 and migraine severity may be partly explained by correlation 
between PM2.5 and other exposures known to precipitate migraine headache (namely, noise and 
noxious odors) (Charles 2013; Eross et al. 2007; Prince et al. 2004; Wöber et al. 2006). PM2.5, is 
known to activate the sympathetic nervous system, result in systemic inflammation, and trigger 
cardiovascular events (Feng et al. 2016; Pope et al. 2004), and may also directly result in 
migraine. The smallest fraction of the PM2.5 particles, ultrafine particulate matter (≤ 0.1μm in 
diameter (Davidson et al. 2005)), may have a disproportionately large role. Ultrafine particles–
unlike the larger component particles of PM2.5–can transverse the blood-brain barrier and reach 
the brain directly through the olfactory bulb (Schraufnagel 2020).  
 
Despite making up just a small portion of the total PM2.5 mass concentration, these 
circumstances raise the possibility that the apparent association between PM2.5 and migraine 
severity in this and previous studies could be partially explained by neurotoxic effects secondary 
to exposure to the ultrafine component of PM2.5 (Costa et al. 2017; Win-Shwe and Fujimaki 
2011). The U.S. EPA does not regulate ultrafine particulate matter, meaning exposure estimates 
are sparse and epidemiologic studies rare. Future migraine research should aim to evaluate the 
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effects of ultrafine particles on migraine and disentangle the effects of concomitant exposure to 
noise, odor, PM2.5, and ultrafine particles.  
 
Limitations 
Our analyses include all individuals with migraine followed from 2014-2018 but do not 
distinguish between individuals with previously diagnosed migraine at the beginning of the study 
period (i.e., prevalent cases) and individuals diagnosed with migraine throughout the study 
period (i.e., incident cases). This makes ascertainment of an etiologic role of environmental 
exposures in either migraine onset or exacerbation challenging. As discussed previously, we 
cannot eliminate the possibility that our findings may reflect residential sorting, wherein 
individuals with existing migraine are more likely to reside in health-harming communities, for 
example those of lower socioeconomic status or with higher levels of pollutants. Alternatively, 
individuals with migraine and the financial means to do so may choose to leave communities 
with environmental exposures that trigger their headaches. The direction and magnitude of bias 
attributable to residential sorting is therefore difficult to anticipate. 
 
Although our analyses include individuals with migraine followed from 2014–2018, exposures 
were either measured at the beginning of the study period in 2015 (annual average PM2.5, NO2, 
and presence of oil and gas wells) or as values between 2016–2018 (high methane emitter 
emissions and presence). We assume relatively stable levels of long-term air pollution and oil 
and gas well exposure during the study period. High methane emitter measurements took place 
between 2016–2018, but emission trends likely vary over time. Exposures were also assigned 
based on a single residential address on the index date and therefore do not capture exposure 
accrued during time spent outside the home and also do not reflect potential moves between 
2014–2018. Future research should endeavor to incorporate time-varying measures of air 
pollution, oil and gas wells, and methane emissions in relation to migraine onset and 
exacerbation in order to better characterize the dynamic relationship between environment and 
migraine.  
 
Residential addresses were ascertained in October 2019 after the study period. Selection bias 
could result, for example, if individuals with migraine headache in highly polluted counties 
moved to less polluted counties outside of the Sutter catchment areas. Because a small minority 
of individuals lived outside of the Sutter catchment area in October 2019 (3.3% of cases and 
2.6% of controls), we expect any resultant bias to be minimal. Some differential exposure 
misclassification could also arise if individuals with migraine headache in highly polluted 
counties moved to less polluted counties within the Sutter catchment area, leading to systematic 
underestimation of long-term exposures among cases, and therefore, underestimation of effect 
estimates. 
 
While our study incorporates a more comprehensive set of proxy measures for migraine 
headaches as compared with previous studies (which typically relied on migraine ED visits), we 
lacked any direct measure of headache frequency among patients with migraine (e.g., headache 
diaries). Our results rest on patients seeking clinical care for migraine. If individuals with higher 
levels of environmental exposure were systematically less likely to seek migraine treatment, our 
results may be attenuated. Headache diaries would circumvent this problem and further 
examination of the relationship between migraine and the environment in datasets where direct 
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measures of headache frequency are available (Cooke et al. 2000; Giffin et al. 2003; Moloney et 
al. 2009) would further our understanding of this relationship.  
 
Fourth, our analysis includes a comprehensive set of potential confounding variables. 
Nevertheless, we note the absence of several critical variables–including individual-level 
income, educational attainment, and employment status–that may be important confounders in 
studies that use treatment seeking as a proxy for headache severity, given past research showing 
that migraine plays a key role in disability, absence from work or school, and that migraine 
follows a social gradient and is less common in wealthier individuals (Gilligan et al. 2018; 
Lipton et al. 2007; Porter et al. 2019). Further, we lacked information on environmental noise 
pollution, which may trigger migraines (Borkum 2016) and often co-occurs with sources of air 
pollution. 
 
Finally, we drew participants from a single healthcare system in Northern California. This may 
limit generalizability to other populations including individuals who are uninsured or have 
limited health insurance. Northern California also differs meaningfully from the rest of the U.S. 
in the quality and extent of environmental exposures and population demographics. The 
relationship between migraine and environment may differ by region, season, and based on 
individual characteristics. This motivates ongoing study of the relationship between migraine in 
the environment in varied contexts.   
 
4.6 Conclusions 
In this study, we demonstrate an association between long-term NO2 and high methane emitter 
exposure and odds of being a migraine patient. We also find annual average NO2 and PM2.5 
exposure associated with migraine headache severity. Our study expanded the scope of 
environmental pollutants considered as risk factors for migraine and included numerous 
measures of migraine severity derived from EHR data and contributes to the existing literature 
on migraine and the environment by explicitly considering long-term exposure to common 
pollutants. These findings illustrate the potential role of ambient air pollution for prevalent 
migraine and migraine severity. Future studies are needed that establish the temporal ordering of 
exposure and outcome and the relevant exposure period as well as that determine the most 
relevant air pollutants. In addition, researchers should consider the potential heterogeneity in the 
relationship between migraine and the environment across different geographic contexts and 
within population subgroups. Such studies could identify environmental risk factors on which we 
could intervene to reduce the population burden of migraine. 
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4.7 Tables and Figures 
 
Table 4.1. Patient demographics, healthcare utilization, and environmental exposures for 
migraine cases and controls from Sutter Health in Northern California, 2014–2018  
 
 

Migraine cases 
N = 89,575 

Controlsa 
N = 270,564 

Patient Demographics 
Age Category, N (%) 
   18 – 29 years 
   30 – 44 years 
   45 – 54 years 
   55 – 64 years 
   ≥ 65 years 

 
16952 (18.9) 
33036 (36.9) 
19226 (21.5) 
12578 (14.0) 
7783 (8.7) 

 
51112 (18.9) 
99792 (36.9) 
58169 (21.5) 
38093 (14.1) 
23399 (8.7) 

Sex, N (%) 
   Female 
   Male 

 
73908 (82.5) 
15667 (17.5) 

 
223230 (82.5) 
47334 (17.5) 

Race/Ethnicity, N (%) 
   Non-Hispanic 
      Asian 
      Black 
      White 
      Other 
   Hispanic 

 
 
9278 (10.4) 
3685 (4.1) 
52579 (58.7) 
11351 (12.7) 
12682 (14.2) 

 
 
52794 (19.9) 
10253 (3.8) 
130418 (48.2) 
41907 (15.5) 
34192 (12.6) 

Marital Status, N (%) 
   Divorced/Separated/Widowed 
   Married/Significant Other 
   Single 
   Other/Unknown 

 
7444 (8.3) 
51390 (57.4) 
22659 (25.3) 
8082 (9.0) 

 
18881 (7.0) 
155644 (57.5) 
63801 (23.6) 
32238 (11.9) 

Body Mass Index Category (kg/m3), N (%) 
   Underweight (<18.5) 
   Normal (18.5-24.9) 
   Overweight (25-29.9) 
   Obese Class 1 (30-34.9) 
   Obese Class 2 (35-39.9) 
   Obese Class 3 (40+) 
   Missing 

 
1672 (1.9) 
33801 (37.7) 
26969 (30.1) 
14595 (16.3) 
6835 (7.6) 
4614 (5.2) 
1089 (1.2) 

 
5636 (2.0) 
112014 (41.4) 
79209 (29.3) 
39405 (14.6) 
17388 (6.4) 
11658 (4.3) 
5254 (1.9) 

Block Group-Level Variables, Median (IQR) 
   Percent Poverty 
   Population Density (individuals per km2)  

 
7.2 (3.5, 14.3) 
2211 (901, 3593)  

 
6.6 (3.2, 13.1) 
2292 (954, 3592) 

Medicaid Beneficiary, N (%) 
   Yes 
   No 

 
6929 (7.7) 
82646 (92.3) 

 
15105 (5.6) 
255459 (94.4) 

Healthcare Utilization 
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Encounters per person-year 
   Primary care, Median (IQR) 
   Neurology, Mean (SD) 
   Urgent Care (Migraine-Specific), Mean (SD) 
   Emergency (Migraine-Specific), N (%) 
       ≥ 1 visit during the study period 
       < 1 visit during the study period 

 
2.4 (1.4, 4.0) 
1.2 (3.4) 
0.2 (2.7) 
0.1 (0.7) 
3987 (4.5) 
85588 (95.5) 

 
1.9 (1.2, 3.1) 
0.2 (1.0) 
-- 
-- 
-- 
-- 

Triptan prescriptions per person-year, mean (SD) 0.6 (2.6)  

MPA Score – N (%) 
   ≤ 10 
   >10 

66.6 (31.5) 
59599 (66.5) 
29976 (33.5) 

-- 
-- 
-- 

Environmental Exposures 
Air Pollutants, Median (IQR)  
   NO2, ppb  
   PM2.5, μg/m3  

 
7.7 (5.7, 10.2) 
8.7 (7.8, 9.6) 

 
8.1 (5.9, 10.4) 
8.9 (7.8, 9.7) 

CH4 Emissions 
   Any high methane emitter within 10km, N (%) 
   Total IDW emissions in kg/hour, Mean (SD)  

 
18457 (20.6) 
21,461 (192,973) 

 
57224 (21.1) 
26,070 (180,548) 

Active Oil and Gas wells  
   Any oil or gas well within 10km, N (%) 
   Total IDW wells, Mean (SD) 

 
13179 (14.7) 
604 (6468) 

 
37010 (13.7) 
603 (6459) 

IDW, inverse-distance weighted; IQR, interquartile range; MPA, migraine probability algorithm 
a Frequency-matched on age category, sex, year of entry into Sutter primary care, and primary-
care follow-up time (0-6 months, 7-24 months, ≥ 24 months).
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Figure 4.1. Distribution of environmental exposures within study region. Block group level 
2015 annual average concentration of A. PM2.5 and B. NO2. C. Methane emission rate based on 
the California Methane Survey, conducted between 2016–2018. D. Location of active oil and gas 
wells as of December 2015. 
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Figure 4.2. Association between environmental exposures and odds of being a migraine 
case versus control. Results from a mixed logistic model with a random intercept for county 
adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥65), race/ethnicity 
(Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic 
other), sex, Medicaid use, number of primary care visits per person-year during the study period, 
and block group-level population density and poverty. OR are per 5µg/m3 for PM2.5, per 5ppb for 
NO2, per 100,000 kg/hour increase in IDW sum of methane emissions within 10km for high-
emitters, and per 1,000-unit increase in IDW sum of all wells within 10km for active oil and gas 
wells. 
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Figure 4.3. Association between environmental exposures and severity of migraine case 
status. Associations estimated with mixed logistic and negative binomial models with random 
intercepts for county adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, 
≥65), race/ethnicity (Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, 
and non-Hispanic other), sex, Medicaid use, number of primary care visits per person-year 
during the study period, and block group-level population density and poverty. Neurology visits, 
urgent care migraine-specific visits, and triptan prescriptions were parameterized as continuous 
counts per person-year and analyzed using negative binomial models (Panel A). ED migraine 
visits were dichotomized as zero vs. ≥ 1 during the study period, and MPA score as >100 versus 
less (Panel B). ORs and RRs are per 5µg/m3 for PM2.5, per 5ppb for NO2, per 100,000 kg/hour 
increase in IDW sum of methane emissions within 10km for high-emitters, and per 1,000-unit 
increase in IDW sum of all wells within 10km for active oil and gas wells. 
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4.8 Declarations 
Ethics approval and consent to participate: The Columbia University (Protocol #: AAAT0085), 
University of California, Berkeley (Protocol #: 2013-10-5693), and Sutter Health (IRBNet #: 
1452543-1) Institutional Review Boards approved this study. 
 
Availability of supporting data: The Sutter Health electronic health record data are considered 
Protected Health Information under the Health Insurance Portability and Accountability Act of 
1996 (HIPAA) in the United States, and as such are not publicly available. PM2.5 and NO2 data 
are available for download at: https://www.caces.us/data. Methane data are available via 
https://www.nature.com/articles/s41586-019-1720-3#data-availability. Oil and gas well data are 
available at https://www.conservation.ca.gov/calgem/Pages/Oil-and-Gas.aspx. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.caces.us/data
https://www.nature.com/articles/s41586-019-1720-3#data-availability
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4.9 Supplemental Information Chapter 4. Air pollution, high methane emitters, and oil and 
gas wells in Northern California: the relationship with migraine headache prevalence and 
exacerbation 

 
Supplemental Figure 4.1. Ascertainment of migraine cases and controls from Sutter Health 
electronic health record data, 2015–2018.  
a The migraine probability algorithm (MPA) is based on migraine-related International 
Classification of Diseases-9 and 10 (ICD-9 and ICD-10) codes in the primary or secondary 
position in the outpatient or emergency department setting, on the patient’s Significant Health 
Problem List, migraine prescription medications, and outpatient ICD codes related to cluster 
headache.  
b Catchment counties include Alameda County, Amador County, Butte County, Colusa County, 
Contra Costa County, El Dorado County, Lake County, Mendocino County, Monterey County, 
Napa County, Marin County, Merced County, Nevada County, Placer County, Sacramento 
County, San Benito County, San Francisco County, San Joaquin County, San Mateo County, 
Santa Clara County, Santa Cruz County, Solano County, Sonoma County, Stanislaus County, 
Sutter County, Yolo County, Yuba County. 
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Supplemental Figure 4.2. Counties included in the analysis in Northern California (left) and 
distribution of Sutter hospitals (right). 
 

        
 
 
Supplemental Figure 4.3. Distribution of migraine cases and controls.  
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Supplemental Figure 4.4. Flexible dose-response between levels of PM2.5 (µg/m3) and odds of 
having ≥ 1 ED visit over the course of the study period. From mixed logistic models with 
penalized smoothing splines for PM2.5, random intercept for county, adjusted for individual-level 
age category (18-29, 30-44, 45-54, 55-64, ≥ 65), race/ethnicity (Hispanic, non-Hispanic Asian, 
non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, Medicaid use, number 
of primary care visits per person-year during the study period, and block group-level population 
density and poverty. 
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Supplemental Figure 4.5. Association between environmental exposures and odds of being 
a migraine case versus control. Results from a mixed logistic model with a random intercept 
for county adjusted for BMI category (underweight < 18.5; normal weight 18.5 – 24.9; 
overweight 25 – 29.9; obese class I 30 – 34.9; obese class 2 30 – 34.9; obese class 3 40+; 
missing), marital status (divorced, separated widowed; married or significant other; single; other 
or unknown), individual-level age category (18-29, 30-44, 45-54, 55-64, ≥65), race/ethnicity 
(Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic 
other), sex, Medicaid use, number of primary care visits per person-year during the study period, 
and block group-level population density and poverty. OR are per 5µg/m3 for PM2.5, per 5ppb for 
NO2, per 100,000 kg/hour increase in IDW sum of methane emissions within 10km for high-
emitters, and per 1,000-unit increase in IDW sum of all wells within 10km for active oil and gas 
wells. 
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Supplemental Figure 4.6. Association between environmental exposures and severity of 
migraine case status. Associations estimated with mixed logistic and negative binomial models with 
random intercepts for county adjusted for BMI category (underweight < 18.5; normal weight 18.5 – 24.9; 
overweight 25 – 29.9; obese class I 30 – 34.9; obese class 2 30 – 34.9; obese class 3 40+; missing), 
marital status (divorced, separated widowed; married or significant other; single; other or unknown), 
individual-level age category (18-29, 30-44, 45-54, 55-64, ≥65), race/ethnicity (Hispanic, non-Hispanic 
Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, Medicaid use, number of 
primary care visits per person-year during the study period, and block group-level population density and 
poverty. Neurology visits, urgent care migraine-specific visits, and triptan prescriptions were 
parameterized as continuous counts per person-year and analyzed using negative binomial models (Panel 
A). ED migraine visits were dichotomized as zero versus ≥ 1 during the study period, and MPA score as 
>100 versus less. ORs and RRs are per 5µg/m3 for PM2.5, per 5ppb for NO2, per 100,000 kg/hour increase 
in IDW sum of methane emissions within 10km for high-emitters, and per 1,000-unit increase in IDW 
sum of all wells within 10km for active oil and gas wells (Panel B). Non-linear exposure response curve 
for the association between levels of PM2.5 (µg/m3) and odds of having ≥ 1 ED visit over the course of the 
study period was modeled using mixed logistic models with penalized smoothing splines for PM2.5 (Panel 
C). 

  
 

 

C 
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Supplemental Figure 4.7. Association between PM2.5 and migraine-specific ED visits, 
adjusted for distance to nearest Sutter hospital. Association estimated with a mixed logistic 
models with penalized smoothing splines for PM2.5 and a random intercept for county adjusted 
for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥65), race/ethnicity (Hispanic, 
non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, 
Medicaid use, number of primary care visits per person-year during the study period, distance to 
nearest Sutter hospital in kilometers, and block group-level population density and poverty.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 129 

Supplemental Table 4.1A. Associations between continuous environmental exposures and 
migraine status 

 Odds Ratio (95% CI)a 
PM2.5b 1.00 (0.97, 1.04) 
NO2c 1.02 (1.00, 1.05) 
High methane emittersd 1.04 (1.00, 1.08) 
   Overall 1.04 (1.00, 1.08) 
   Dairies and Landfillse 1.07 (0.83, 1.39) 
   Other High-emittersf 1.05 (1.00, 1.10) 
Active Oil & Gas Wellsg 0.99 (0.99, 1.00) 

 

a. From a mixed logistic model with a random intercept for county, adjusted for individual-level age category (18-29, 30-44, 
45-54, 55-64, 65 or older), race/ethnicity (Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and 
non-Hispanic other), sex, Medicaid use, number of primary care visits per person-year during the study period, and block 
group-level population density and poverty. 

b. OR corresponds to a 5µg/m3 increase in levels PM2.5. 
c. OR corresponds to a 5ppb increase in levels of NO2. 
d. OR corresponds to a 100,000 kg/hr increase in IDW sum of methane emissions within 10km. 
e. Includes dairy/livestock manure, landfills, compost. 
f. Includes powerplants, refineries, wastewater treatment facilities, oil and gas distribution (e.g., oil/gas compressors). 
g. OR corresponds to a 1,000-unit increase in IDW sum of wells within 10km. 
 
 
 
Supplemental Table 4.1B. Associations between dichotomized environmental exposures 
and migraine status 

 Odds Ratio (95% CI)a 
High methane emittersb 1.01 (0.99, 1.04) 
Active Oil & Gas Wellsc 1.01 (0.98, 1.04) 

a. From a mixed logistic model with a random intercept for county, adjusted for individual-level age category (18-29, 30-44, 
45-54, 55-64, ≥ 65), race/ethnicity (Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-
Hispanic other), sex, Medicaid use, number of primary care visits per person-year during the study period, and block group-
level population density and poverty. 

b. OR compares any high methane emitter within 10km versus none. 
c. OR compares any active oil & gas wells within 10km versus none. 
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Supplemental Table 4.2A. Associations between continuous environmental exposures and 
measures of migraine severity 

 Measures of Migraine Severity 
 

Triptansa 

RR (95% CI) 

Neurology 
Visita 

RR (95% CI) 

Urgent 
Care Visita 
RR (95% 

CI) 

ED Visitsb 
OR (95% 

CI) 

MPA 
Scoreb 

OR (95% 
CI) 

PM2.5c 1.01 (0.99, 
1.02) 

1.18 (1.09, 
1.29) 

3.09 (2.28, 
4.18) Non-Linear 1.14 (1.07, 

1.22) 

NO2d 1.01 (0.98, 
1.06) 

0.99 (0.94, 
1.05) 

1.22 (1.02, 
1.46) 

1.16 (1.05, 
1.29) 

1.00 (0.96, 
1.05) 

High methane 
emittere 

1.03 (0.95, 
1.12) 

0.95 (0.85, 
1.05) 

1.12 (0.92, 
1.36) 

0.88 (0.63, 
1.21) 

1.01 (0.94, 
1.09) 

   Overall 1.03 (0.95, 
1.12) 

0.95 (0.85, 
1.05) 

1.12 (0.92, 
1.36) 

0.88 (0.63, 
1.21) 

1.01 (0.94, 
1.09) 

   Dairies and 
Landfillsf 

0.25 (0.02, 
2.67) 

0.91 (0.48, 
1.71) 

1.18 (0.36, 
3.87) 

0.96 (0.35, 
2.68) 

1.03 (0.67, 
1.60) 

   Other High-
emittersg 

1.02 (0.93, 
1.12) 

0.91 (0.79, 
1.05) 

1.08 (0.85, 
1.36) 

0.94 (0.74, 
1.24) 

1.03 (0.95, 
1.12) 

Active Oil & 
Gas Wellsh 

1.00 (1.00, 
1.01) 

1.00 (1.00, 
1.00) 

0.99 (0.98, 
1.01) 

0.99 (0.98, 
1.01) 

0.99 (0.99, 
1.00) 

a. From mixed negative binomial models for frequency of triptans, neurology visits, and migraine-specific urgent care visits. 
All models included a random intercept for county, adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥ 
65), race/ethnicity (Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, 
Medicaid use, number of primary care visits per person-year during the study period, and block group-level population 
density and poverty. 

b. From mixed logistic models for ≥ 1 ED migraine visit during the study period and MPA score > 100. All models included a 
random intercept for county, adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥ 65), race/ethnicity 
(Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, Medicaid use, 
number of primary care visits per person-year during the study period, and block group-level population density and 
poverty. 

c. Coefficients corresponds to a 5µg/m3 increase in levels PM2.5.  
d. Coefficients corresponds to a 5ppb increase in levels of NO2. 
e. Coefficients corresponds to a 100,000 kg/hr increase in IDW sum of CH4 emissions within 10km. 
f. Includes dairy/livestock manure, landfills, and compost. 
g. Includes powerplants, refineries, wastewater treatment facilities, oil and gas distribution (e.g., oil/gas compressors, gas 

distribution lines), oil and gas production (e.g., oil/gas waste lagoons, oil/gas plugged wells. 
h. Coefficients corresponds to 1,000-unit increase in IDW sum of wells within 10km. 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Table 4.2B. Associations between binary environmental exposures and 
measures of migraine severity 
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 Measures of Migraine Severity 
 

Triptansa 

RR (95% CI) 

Neurology 
Visita 

RR (95% CI) 

Urgent 
Care Visita 
RR (95% 

CI) 

ED Visitsb 
OR (95% 

CI) 

MPA Scoreb 
OR (95% CI) 

High methane 
emittingc 

0.97 (0.91, 
1.01) 

0.99 (0.94, 
1.04) 

1.32 (1.14, 
1.54) 

1.06 (0.97, 
1.16) 

0.99 (0.95, 
1.03) 

Active Oil & 
Gas Wellsd 

0.99 (0.94, 
1.04) 

1.09 (1.03, 
1.16) 

1.43 (1.21, 
1.70) 

1.11 (1.00, 
1.24) 

1.02  (0.97, 
1.07) 

a. From mixed negative binomial models for frequency of triptans, neurology visits, and migraine-specific urgent care visits. 
All models included a random intercept for county, adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥ 
65), race/ethnicity (Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, 
Medicaid use, number of primary care visits per person-year during the study period, and block group-level population 
density and poverty. 

b. From mixed logistic models for ≥ 1 ED migraine visit during the study period and MPA score > 100. All models included a 
random intercept for county, adjusted for individual-level age category (18-29, 30-44, 45-54, 55-64, ≥ 65), race/ethnicity 
(Hispanic, non-Hispanic Asian, non-Hispanic-Black, non-Hispanic White, and non-Hispanic other), sex, Medicaid use, 
number of primary care visits per person-year during the study period, and block group-level population density and 
poverty. 

c. Coefficient compares any high methane emitter within 10km versus none. 
d. Coefficient compares any active oil & gas wells within 10km versus none. 
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Chapter 5: Climate justice and California’s high methane emitters: An environmental 
equity assessment of community proximity and exposure intensity 
 
Forthcoming paper: Casey JA, Cushing LJ, Depsky N, Morello-Frosch R (2021) Climate justice 
and California’s methane super-emitters: An environmental equity assessment of community 
proximity and exposure intensity. Environmental Science and Technology. 
 
 
5.1 Abstract 
High methane emitters emit non-methane co-pollutants that are harmful to human health. Yet no 
prior studies have assessed disparities in exposure to high methane emitters with respect to 
race/ethnicity, socioeconomic status, and civic engagement. To do so, we obtained location, 
category (e.g., landfill, refinery), and emissions rate of California high methane emitters from 
Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) flights 
conducted between 2016–2018. We identified block groups within 2km of high-emitters 
(exposed) and 5-10km away (unexposed) using dasymetric mapping and assigned level of 
exposure among block groups within 2km (measured via number of high methane emitter 
categories and total methane emissions). Analyses included 483 high-emitters. The majority 
were dairy/manure (n = 213) and oil/gas production sites (n = 127). Results from fully adjusted 
logistic mixed models indicate environmental injustice in locations of high methane emitters. For 
example, for every 10% increase in non-Hispanic Black residents, the odds of exposure 
increased by 10% (95% CI: 1.04, 1.17). We observed similar disparities for Hispanics and Native 
Americans, but not with indicators of socioeconomic status. Among block groups located within 
2km, increasing proportions of non-White populations and lower voter turnout were associated 
with higher methane emitter emission intensity. Previously unrecognized racial/ethnic disparities 
in exposure to California high methane emitters should be considered in policies to tackle 
methane emissions.  
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5.2 Introduction 
Since studies first documented the disproportionate siting of solid and hazardous waste facilities 
in Black communities in the 1980s, (Bullard 1983; Chavis and Lee 1987) subsequent 
environmental justice scholarship has demonstrated a consistent correlation between race, 
poverty, and pollution burden across diverse environmental hazards and geographies. Literature 
reviews conclude that people of color reside in neighborhoods with worse air quality(Clark et al. 
2014; Grineski et al. 2017; Morello-Frosch and Jesdale 2006) and more environmental hazards 
(Brulle and Pellow 2006; Bullard et al. 2007; Mohai et al. 2009; Ringquist 2005) than White 
people in the United States. In California, environmental hazards including clean-up, hazardous 
waste, and solid waste sites are more regressively distributed with respect to race/ethnicity than 
poverty, suggesting that structural racism as opposed to class predominates in shaping 
inequalities (Cushing et al. 2015).  This pattern is consistent with the history of legal racial 
discrimination in civil rights, housing, employment, and education that has produced staggering 
gaps in present day distributions of wealth across racial groups and led to persistent racial 
residential segregation (Brown 2016; Morello-Frosch 2002; Rothstein 2017). 
 
In the current analysis, we investigate the social characteristics of communities near high 
methane emitter to assess potential environmental justice concerns. High methane emitters are 
point sources of large methane releases that span a wide range of industries. Though methane 
spends less time in the atmosphere than carbon dioxide (CO2), its higher potency as a greenhouse 
gas makes its per-ton ‘Global Warming Potential’ some 84-86 times that of CO2 over a 20-year 
period (Myhre et al. 2013). Compared to CO2, therefore, reductions in methane emissions can 
more rapidly slow climate change. As a result, emissions reductions at large point sources of 
methane – including landfills, the oil and gas supply chain, livestock operations, and power 
plants – are being prioritized for near-term climate mitigation (Jackson 2009; Thurmond 2016). 
Atmospheric methane concentrations, however, have increased rapidly since 2008, driven 
primarily by the agriculture, waste, and fossil fuel sectors (Jackson et al. 2020). Moreover, 
studies suggest methane emissions in the U.S. substantially eclipse emissions inventories 
estimates, implying that methane releases are under-reported (Alvarez et al. 2018; Howarth 
2019). In the natural gas sector, studies show that a small fraction of “high-emitters” (responsible 
for ~5% of leaks) contribute a disproportionate and under-reported amount of total methane 
emissions (~50% of emissions from leaks), usually due to abnormal and avoidable operating 
conditions, including equipment malfunctions (Brandt et al. 2016; Zavala-Araiza et al. 2015). 
 
While high methane emitters are of significant interest due to their climate impacts, and specific 
types of high-emitters have been investigated from an environmental justice perspective (e.g., 
landfills, oil and gas wells, and concentrated animal feeding operations [CAFOs]), the possibility 
that high-emitters as a whole are disproportionately located in communities of color has not been 
examined. While not directly toxic to humans, methane is co-emitted with other pollutants that 
do threaten the health of nearby communities. For example, upstream processes involved in the 
production and distribution of oil and natural gas emit numerous hazardous air pollutants in 
addition to methane, including particulate matter (PM), secondary ozone formation, and non-
methane volatile organic compounds (VOCs), (Ahmadov et al. 2015; Brantley et al. 2015b; 
Eisele et al. 2016; Gilman et al. 2013; Helmig et al. 2014; Koss et al. 2017; Roy et al. 2014c) 
several of which are associated with neurological damage, birth defects, and cancer (Garcia-
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Gonzales et al. 2019c; Johnston et al. 2019a). California studies indicate that living in proximity 
to active oil and gas production wells is associated with increased risk of adverse birth outcomes 
(Tran et al. 2020b),(Gonzalez et al. 2020b).  Air quality sampling during the largest point-source 
methane release ever recorded in the U.S.–the Aliso Canyon Natural Gas Storage field active 
blowout in 2015–revealed elevated levels of several hazardous air pollutants including benzene, 
a carcinogen and reproductive toxicant (Garcia-Gonzales et al. 2019a). Policies aimed at 
reducing methane emissions also show co-benefits in terms of non-methane VOC and criteria air 
pollutant emissions. For example, a recent analysis showed that implementing strong federal and 
state methane policies in the oil and gas sector would result in 1400 fewer deaths and health 
benefits of $14 billion in 2028 (Buonocore et al. 2021). 
 
Landfills can contaminate local drinking water supplies with hazardous chemicals via leachate, 
and also release “biogas,” an odorous chemical mixture of methane, CO2, and other VOCs. 
Residence near landfills has been associated with elevated rates of cancer, low birth weight, and 
birth defects (Goldberg et al. 1995; Vrijheid 2000). 
 
Research has also documented releases of ammonia, hydrogen sulfide, endotoxins, pathogens, 
and other airborne contaminants along with methane from CAFOs, and residence near these 
operations is associated with asthma, decreased lung function, stress, and infection with 
antibiotic resistant bacteria (Casey et al. 2015a). Several studies report correlations between 
dairy farm ammonia and greenhouse gas emissions (Miller et al. 2015; Ngwabie et al. 2009; Wu 
et al. 2012). These releases can further contribute to PM formation and exceedance of National 
Ambient Air Quality Standards for PM2.5 in intense CAFO areas like California’s San Joaquin 
Valley (Eilerman et al. 2016; Miller et al. 2015; Neuman et al. 2003). 
 
Refineries emit hazardous air pollutants, including BTEX compounds (benzene, toluene, 
ethylbenzene, and xylene), and criteria air pollutants (Mukerjee et al. 2020; Sanchez et al. 2019; 
Sun et al. 2019); gas power plants may co-emit the same pollutants along with leaked or 
incompletely combusted methane (Burger et al. 2016; van Kesteren et al. 2013). Such emissions 
can impact community health, including higher risks of cancer (Yang et al. 2000; Yu et al. 2006) 
and respiratory problems (Rusconi et al. 2011; Smargiassi Audrey et al. 2009; White et al. 2009). 
 
Methane also contributes to the formation of ground-level ozone, which is linked to premature 
mortality, impaired respiratory health, and metabolic effects (Jerrett et al. 2009; U.S. 
Environmental Protection Agency 2020). By one estimate, reducing global methane emissions 
by 20% would result in approximately 370,000 avoided deaths over twenty years via reductions 
in global background ozone concentrations (West et al. 2006). Finally, many methane-emitting 
industries are predominately located in rural communities that also face reduced access to health 
care, higher rates of poverty, and lower rates of employment compared to urban areas (Kelly-
Reif and Wing 2016; Ricketts 2000; Singh and Siahpush 2014). These social stressors may 
worsen the health effects of pollutant exposures associated with high methane emitters. 
 
In this study, we leverage data from a recent effort to identify high methane emitters in 
California using airborne remote-sensing (Duren et al. 2019b) and estimates of community 
demographics refined via novel dasymetric mapping techniques to characterize populations 
residing near high methane emitters with respect to race, ethnicity, and socioeconomic status 
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(SES). Our analyses operationalize area-level measures of race/ethnicity and SES to assess 
inequities in community burdens of high methane emitters and inform strategies to address 
potential environmental injustices in regulatory enforcement and permitting of these sources of 
potent greenhouse gases and co-pollutants.   
 
5.3 Materials and Methods 
In this cross-sectional environmental justice analysis of high methane emitters in California, we 
used the block group as our unit of analysis. Prior research indicates this is an appropriate spatial 
scale to assess racial/ethnic and socioeconomic disparities in environmental exposure (Krieger et 
al. 2003). All California block groups included in the U.S. Census Bureau’s 2016 TIGER/Line 
Files were eligible for inclusion.  
 
High methane emitter data 
We obtained data on high-emitters from the California Air Resources Board (CARB) (Duren et 
al. 2019b). In brief, CARB provided data from the California Methane Survey conducted by 
NASA’s Jet Propulsion Laboratory, which used Next Generation Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS-NG) flights conducted between 2016–2018 to provide 
systematic information on methane emission point sources. The AVIRIS-NG flights identified 
564 distinct strong methane point sources and their average hourly emission rates (kg/hour). The 
investigators assigned infrastructure elements within energy, agriculture, and waste sectors. 
From these descriptors, we created seven high-emitters categories: landfill/compost, power plant, 
refinery, wastewater treatment, oil/gas distribution (i.e., compressors, storage facilities, 
distribution lines, processing plants, liquid natural gas stations, and gathering lines), oil/gas 
production (stacks, drill rigs, tanks, lagoons, pump-jacks, plugged wells, and unknown 
infrastructure), and dairy/manure. We excluded high-emitters located >2km from the boundary 
of a populated area (n = 81 (14%), Supplemental Table 1). 
 
Sociodemographic data 
For analyses, we used 2012–2016 American Community Survey data(Manson et al. 2017) to 
compute block group characteristics: population density (individuals per km2), percent Hispanic 
and percent non-Hispanic Native American, Asian, Black, and White, percent rural dwellers, 
percent linguistically isolated households (i.e., no one in the household older than 14 speaks 
English “very well”), as well as five measures of SES: percent living below the federal poverty 
threshold, percent with less than a high school education, percent unemployed, percent renters 
(vs. home owners), percent Supplemental Nutrition Assistance Program recipients, median 
household income. Urban block groups consisted of 100% urban population, semi-rural 
contained >0 to 99% urban population, and rural 0%. A block group-level measure of voter 
turnout was created using precinct-level elections data from the Statewide Database, California’s 
redistricting database (Statewide Database | Election Data), following Maizlish 2016 (Maizlish 
2016). This measure is the average percent of registered voters who voted in the 2012 and 2016 
general elections. 
 
High methane emitter exposure measures 
To characterize populations living close to high-emitters in California, we constructed a high-
resolution spatial layer representing populated areas at sub-block granularity using novel 
dasymetric mapping methods. Dasymetric mapping refers to the process of disaggregating spatial 
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data – in this case census block boundaries – to finer spatial units of analysis using ancillary data. 
It has been used in prior environmental justice analyses (Clough and Bell 2016b) and helps to 
accurately identify residences in rural settings where census blocks (the smallest census 
geographic unit) can be large (i.e., > 50 km2) and sparsely populated. Two ancillary data sources 
were used along with census block population estimates to construct this layer: 1) a statewide 
database of tax parcel boundaries (smaller than census blocks) from DMP LightBox(Nationwide 
Parcel Data & Property Level Geocodes | SmartParcels®); and 2) a layer of building footprints 
for nearly 11 million buildings in California, part of a nationwide layer developed by Microsoft 
using satellite imagery and machine learning classification techniques 
(Microsoft/USBuildingFootprints 2019).  
 
Creation of the final populated areas layer using these data followed a tiered process. First, for 
each census block, we identified all residential parcels within it based on land use descriptions 
provided in the statewide parcel dataset for each individual parcel (Supplemental Table 5.2, 
Supplemental Figure 5.1). If residential parcels were identified in a given block, its population 
was assumed to be located within these residential areas alone. This parcel-based apportionment 
accounted for 91.8% of California’s population.  
 
Second, for those blocks containing no residential parcels, but which had a non-zero population 
count according to the 2010 Census, we allocated population evenly across all building footprint 
areas identified within them. This was common for sparsely populated blocks in wilderness areas 
or zones of low-density agriculture, with parcels classified as ‘open space’ or ‘agricultural’ in the 
statewide parcel database, but which still contain residences. Apportioning population to all 
building footprint areas in these blocks has the advantage of masking out all open land from 
being considered as populated area but has the disadvantage of misallocating some population to 
non-residential buildings (e.g., barns, warehouses, processing facilities). This building footprint-
based apportionment accounted for 7.9% of California’s population.  
 
Finally, a small number of census blocks contained neither residential parcels nor building 
footprints, but still had a non-zero population count. These blocks were predominantly in very 
low-density wilderness areas with parcels generally classified as forests/open space and where 
tree canopies occluded detection of building rooftops via satellite imagery. We assumed that 
these blocks’ populations were evenly distributed across the entire block area. This ‘default’ 
method of population apportionment was applied to 0.3% of the state’s population. The final 
populated areas layer was created by merging the results of these three-tiered population 
apportionment steps into one statewide map. 
 
We used the distance between high methane emitters and the dasymetrically mapped populated 
areas to define exposed and unexposed block groups (Figure 5.1A).  First, we identified 
populated areas with boundaries within 2km of a high methane emitter (exposed). Next, we 
identified all populated areas with boundaries located within 5-10km of a high methane emitter 
that were also located farther than 5km from all high-emitters (i.e., truly unexposed). Finally, we 
identified block groups containing the exposed (within 2km of a high methane emitter ) and 
unexposed (5-10km from a high methane emitter) populated areas (Figure 5.1B). We opted to 
define unexposed block groups as those located 5-10km from a high methane emitter in an effort 
to compare communities similar to the exposed block groups in terms of geographic location, 
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rurality, and other factors, but that differed in high methane emitter exposure status. After 
removing 24 (0.2%) block groups that were missing sociodemographic data, our study 
population consisted of 951 exposed and 8,722 unexposed block groups.  
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Figure 5.1. Example of exposure assignment of block groups. Panel A displays a schematic of block groups 
(turquoise) and populated areas (light green). Block groups 2-6 are exposed to a high methane emitter (white “X”), 
but block group 1 is not because its populated areas are located >2km from the high methane emitter . Panel B 
shows the location of a landfill high methane emitter in San Diego County, California, exposed block groups and the 
percent of non-Hispanic Black residents within 2km and unexposed block groups 5-10km away. Block groups 
located 2-4.9km from high-emitters were not included in analysis because we considered them intermediately 
exposed. The western side of the map crosses over water and thus does not contain block groups. The inner dashed 
orange line represents the 2km radius around the high methane emitter and the outer dashed orange line the 10km 
radius around the high methane emitter .  
A. 

 
 
 
B.  
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We used two additional metrics to characterize intensity of exposure to high-emitters among 
block groups located within 2km. We generated a binary multi-category high methane emitter 
variable that took the value 1 if a block group population area was located within 2km of 2 or 
more high methane emitter categories (e.g., dairy and oil/gas production) and 0 if a block group 
population area was located within 2km of a single category of a high methane emitter (e.g., 
oil/gas distribution only, see Supplemental Figure 5.2). We further characterized exposed block 
groups by the sum of methane emitted from all sources within 2km: 𝐶𝐶𝐶𝐶4𝐸𝐸𝐸𝐸𝑝𝑝𝑇𝑇𝑔𝑔𝑝𝑝𝑝𝑝𝑣𝑣𝑗𝑗 = ∑ 𝐸𝐸𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 
where i is a high methane emitter located within 2km of block group j’s populated area’s 
boundary and E is the emission rate at high methane emitter i in kg/hour.  
 
Statistical analysis 
We conducted descriptive analyses by exposure category. Then we used generalized additive 
mixed models with a logit-link to assess the association between block group-level 
sociodemographic variables and odds of exposure to a high methane emitter or, among exposed 
block groups (those within 2km of a high methane emitter), odds of higher intensity exposure to 
multiple categories of high-emitters. Mixed models included a random intercept for county. We 
allowed for deviations from linearity using penalized splines but included a linear term if the 
generalized cross-validation criterion indicated a linear association was a better fit. We used 
likelihood ratio testing to select the degrees of freedom for splines. All analyses were conducted 
using R Statistical Software (Vienna, Austria). 
 
We first ran univariate models, adjusting for population density, for the 14 sociodemographic 
variables of interest and the three outcomes: 2km vs. 5-10km from a high methane emitter, 
multiple versus 1 category of high methane emitter exposure, and high versus low CH4 
emissions. We then selected a pared group of variables to include in our fully adjusted models. 
These variables were selected based on a priori hypotheses, e.g., poverty would be associated 
with high methane emitter exposure, Spearman correlations between the variables, e.g., did not 
include variables correlated at >0.75 (Supplemental Figure 5.3), and associations observed in 
the univariate models. The adjusted models included: population density, percent individuals of 
non-Hispanic Asian, Black, and Native American race/ethnicity, and percent individuals of 
Hispanic race/ethnicity, percent individuals living below the federal poverty threshold, percent 
voter turnout, percent renters, percent limited English speaking households, and percent 
uninsured individuals. We used semivariograms to assess residual spatial autocorrelation in our 
model results(Bivand et al. 2013) and did not observe any (Supplemental Figure 5.4). 
 
In secondary analyses, we separately assessed the odds of being located within 2km vs. 5-10km 
from two specific types of high-emitters: (1) oil and gas production; and (2) dairy/manure sites. 
These two sub-categories of  high methane emitter have been associated with environmental 
justice concerns and adverse health outcomes in prior studies .(Casey et al. 2015b; Donham et al. 
2007a; Johnston et al. 2019b; Kroepsch et al. 2019a; Mirabelli et al. 2006a; Wing et al. 2000a)   
 
5.4 Results 
AVIRIS-NG flights conducted between 2016–2018 identified 564 high methane emitter in 
California, 483 (86%) of which we included in analyses as they were located within 2km of a 
populated area of a block group. Figure 5.2 shows the spatial distribution of California high-
emitters and their relative emission rates. Dairy/manure facilities (N = 213) and oil/gas 



 

 140 

production sites (N = 127) made up the majority (70%) of the high-emitters. Landfill/compost 
facilities had the highest emission rates (median [ 25th, 75th percentile] = 468 kg/hr [254, 1195]) 
and refineries the lowest (median [25th, 75th percentile] = 20 kg/hr [8, 49], Supplemental Figure 
5.5). One hundred percent of dairies, 84% of oil and gas production and distribution facilities, 
and 83% of landfills were in rural or semi-rural block groups while 71% of power plants, 92% of 
refineries, and 71% of wastewater treatment plants were located in urban block groups. 
 
We identified 951 block groups with populated areas located within 2km of a high methane 
emitter. Of these, 131 (13.8%) were located within 2km of more than one category of high 
methane emitter (e.g., a dairy and an oil and gas well). The total hourly methane emissions at 
high-emitters located within 2km of block groups ranged from 2.8 to 3009 kg/hr (median [25th, 
75th percentile] = 93 [40, 185]). The 8,722 block groups located 5-10km from high-emitters 
constituted our unexposed group. 
 
Figure 5.2. Location, type, and emission rate of high methane emitters (N = 483) in California. 
 

 
 
In general, exposed and unexposed block groups had similar sociodemographic characteristics 
(Supplemental Table 5.3). High methane emitter exposed block groups had lower median 
population density than unexposed block groups (3100 individuals/km2 versus 4280 
individuals/km2). We observed minimal differences in exposed versus unexposed block groups 
by high methane emitter category (Supplemental Figure 5.6). Larger differences were apparent 
when comparing number of categories of high methane emitter exposure among exposed block 
groups, though errors bars were still large (Supplemental Figure 5.7). Exposed block groups 
exposed with 2-4 versus 1 category of high methane emitter, on average, had a higher percentage 
of Hispanic (50% versus 38%) and a lower percentage of non-Hispanic White individuals (26% 
versus 39%), a higher percentage of individuals with less than a high school education (26% 
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versus 19%), and lower voter turnout (63% versus 69%). Similar patterns emerged across 
categories of total CH4 emissions exposure within 2km (Supplemental Figure 5.8). For 
example, block groups exposed to high (> tertile 3, 185 kg/hr) versus low (< tertile 1, 40 kg/hr) 
contained a higher percentage of Hispanic individuals (46% versus 36%), individuals living in 
poverty (17% versus 13%), linguistically isolated individuals (12% versus 8%), and individuals 
with less than a high school education (23% versus 16%). We observed strong correlations 
between several of the sociodemographic variables; e.g., the Spearman 𝜌𝜌 between educational 
attainment and Hispanic race/ethnicity was 0.8, poverty and SNAP use was 0.7, and median 
household income and poverty was -0.7 (Supplemental Figure 5.3). 
  
In unadjusted analyses, we observed multiple non-linear relationships between 
sociodemographic variables and odds of being located within 2km versus 5-10km from a high 
methane emitter (Supplemental Figure 5.9). For example, as percent non-Hispanic Asian 
individuals increased, odds of exposure increased, until about 25% non-Hispanic Asians and then 
there was a steep decline in odds of exposure. The relationship between percent renters and 
exposure was an inverted U-shape, with the highest odds of being exposed at about 50% renters. 
Odds of exposure to high-emitters increased linearly with increasing percentage non-Hispanic 
Black individuals and Native American individuals. We noted somewhat reduced odds of 
exposure to a high methane emitter with measures of lower SES, except for percent with < high 
school education. The lowest versus highest population density block groups had three times the 
odds of being exposed.  
 
In unadjusted analyses considering odds of higher intensity exposure to high-emitters among 
block groups located within 2km of a high methane emitter, increased odds of exposure to 
multiple categories of high methane emitter and odds of high exposure to methane emissions was 
associated with increasing percent Hispanic individuals, uninsured individuals and individuals 
without a high school diploma (Supplemental Figures 5.10-5.11). Increasing percent 
individuals living in poverty and linguistically isolated households were additionally associated 
with increased odds of exposure to two or more categories of high methane emitter. While 
income appeared inversely associated with odds of exposure to two or more categories of high 
methane emitter, it was positively associated with odds of exposure to high methane emissions. 
Finally, an increasing percent of non-Hispanic Asian individuals was linearly associated with 
increased odds of high methane emissions.  
 
When we included 10 sociodemographic variables in a single model, race/ethnicity remained 
associated with increased odds of being within 2km of a high methane emitter, but SES did not 
(Figures 5.3-5.5). For example, a 10% increase in percent non-Hispanic Black individuals and a 
1% increase in non-Hispanic Native American individuals were each associated with a 10% 
increase in odds (95% CI: 1.04, 1.17 and 1.04, 1.15, respectively) of a block group being located 
within 2km of a high methane emitter. The associations for non-Hispanic Asian and Hispanic 
individuals were non-linear. For Hispanics, the relationship was relatively flat until about 50% of 
the population consisted of Hispanics and then the odds of exposure to a high methane emitter 
increased (Figure 5.3). Once a block group contained 25% non-Hispanic Asians, odds of 
exposure to a high methane emitter began to decline. Percentage voter turnout demonstrated a 
unique association with the odds of exposure to a high methane emitter peaking when around 
75% of the block group voted and then rapidly declining as that proportion of voters increased.  
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Figure 5.3. Association between sociodemographic variables and location within 2km versus 5-
10km from a high methane emitter. Includes n = 951 exposed and n = 8722 unexposed block 
groups. Black lines are odds ratios and grey areas represent the 95% confidence intervals. 
Results from a generalized additive mixed model with a logit link and a random intercept for 
county adjusted for block group-level percent individuals of non-Hispanic Native American, 
Asian, and Black race/ethnicity, and percent individuals of Hispanic race/ethnicity, percent 
individuals living below the federal poverty threshold, percent renters, percent limited English 
speaking households, percent voter turnout, percent uninsured individuals, and population 
density. Rug plot displayed along the x-axis shows the number of observations at each level of 
the respective sociodemographic variable. Non-linear associations in panels B, D, F, H, and J 
were all statistically significant at the 𝛼𝛼=0.05 level. 
CI, confidence interval; OR, odds ratio. 
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Figure 5.4. Association between sociodemographic variables and location within 2km of 2-4 
versus 1 class of high methane emitter, among block groups located within 2km of at least 1 high 
methane emitter (n = 951). Black lines are odds ratios and grey areas represent the 95% 
confidence interval. Results from a generalized additive mixed model with a logit link and a 
random intercept for county adjusted for block group-level for percent individuals of non-
Hispanic Native American, Asian, and Black race/ethnicity, and percent individuals of Hispanic 
race/ethnicity, percent individuals living below the federal poverty threshold, percent renters, 
percent limited English speaking households, percent voter turnout, percent uninsured 
individuals, and population density. Rug plot displayed along the x-axis shows the number of 
observations at each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. Non-linear associations in panels C and J were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Figure 5.5. Association between sociodemographic variables and exposure to high (>tertile 3 
[185 kg/hr]) versus low (tertiles 1-3 [2.8-185 kg/hr]) CH4 emissions, among block groups located 
within 2km of at least 1 high methane emitter (n = 951). Black lines are odds ratios and grey 
areas represent the 95% confidence interval. Results from a generalized additive mixed model 
with a logit link and a random intercept for county adjusted for block group-level for percent 
individuals of non-Hispanic Native American, Asian, and Black race/ethnicity, and percent 
individuals of Hispanic race/ethnicity, percent individuals living below the federal poverty 
threshold, percent renters, percent limited English speaking households, percent voter turnout, 
percent uninsured individuals, and population density. Rug plot displayed along the x-axis shows 
the number of observations at each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. Non-linear associations in panels H and J were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Similar to unadjusted analyses, increasing percent non-Hispanic Black (at 70% Black 
individuals, OR = 2.33, 95% CI: 0.98, 5.55) and Hispanic individuals (OR = 1.19, 95% CI: 1.04, 
1.36 for each 10% increase in Hispanic individuals) were associated with increased odds of 
being exposed to two or more categories of high methane emitter among block groups located 
within 2km of a high methane emitter in adjusted analyses (Figure 5.4). Increasing percent 
renters (OR = 0.90, 95% CI: 0.80, 1.01 for each 10% increase) and voter turnout (OR = 0.67, 
95% CI: 0.48, 0.95 for each 10% increase) were inversely associated with odds of exposure to 
two or more categories of high methane emitter. Non-Hispanic Black race/ethnicity was 
inversely associated with odds of high methane emissions (OR = 0.85, 95% CI: 0.69, 1.03 for 
each 10% increase in non-Hispanic Black individuals), while increasing percent non-Hispanic 
Asian (OR = 1.35, 95% CI: 1.14, 1.59) and Hispanic (OR = 1.14, 95% CI: 1.01, 1.29) individuals 
were associated with increased odds of high methane emissions among block groups within 2km 
of a high methane emitter (Figure 5.5). 
 
When we assessed the odds of being located within 2km of an oil and gas production or a 
dairy/manure high methane emitter, we observed similar racial/ethnic disparities to those 
observed for high-emitters overall, with some differences (Supplemental Figures 5.12-5.13). 
For oil and gas production sites, we observed increased odds of exposure with increasing percent 
Native American, non-Hispanic Black, and non-Hispanic Asian populations. For example, for 
each 10% increase in non-Hispanic Asian individuals there was a 26% increase in the odds of 
being located within 2km vs. 5-10km of an oil and gas production high methane emitter (OR = 
1.26, 95% CI: 1.06, 1.50). For dairy/manure sites, odds of exposure increased with higher 
percentages of Native American, Hispanic, and non-Hispanic Black individuals, for whom we 
observed the strongest relationship (OR = 1.81, 95% CI: 1.07, 3.06) for each 10% increase in 
non-Hispanic Black individuals). 
 
 
5.6 Discussion 
We examined the location of 483 high methane emitters in relation to community-level 
demographics based on race/ethnicity, SES, and civic engagement capacity.  To our knowledge, 
this is the first environmental justice analysis to assess relationships between community 
characteristics and proximity to and intensity of exposure to multiple high methane emitter types, 
including landfills/composting facilities, power plants, refineries, wastewater treatment plants, 
oil and gas distribution and production sites, and dairies/manure management sites. Landfills and 
composting facilities accounted for the highest rates of methane emissions, while dairies and 
manure management sites as well as oil and gas production facilities made up the largest 
proportion of high-emitters in our analysis (Duren et al. 2019b). Unadjusted models showed 
racial/ethnic and SES disparities in the odds of living in close proximity to high methane emitters 
and intensity of exposure based on multiple industry categories and total methane emissions. In 
adjusted models, the associations with race/ethnicity persisted, while those for community-level 
SES (poverty rate, percent uninsured, and percent limited English-speaking households), were 
attenuated. Further, sub-analyses restricted to dairies/manure management facilities and oil and 
gas production revealed similar racial disparities as the main analysis. Our sub- and overall 
analyses also showed many non-linear relationships. Interestingly, once voter turnout, an 
indicator of community civic engagement, reached 75% the odds of being exposed to a high 
methane emitter declined. This finding supports the idea that marginalized communities may be 
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vulnerable to siting of environmental hazards due to lack of political power and limited resources 
to engage in regulatory decision-making or challenge facility permits (Morello-Frosch 2002; 
Wing et al. 2000b). In addition, 84% of the high methane emitters included in our study were 
located in semi-rural or rural block groups, highlighting what some researchers argue is an 
under-studied form of rural environmental injustice in which urban areas drive the intensity of 
food and energy production in rural areas, and often return their wastes to these same rural 
communities (Kelly-Reif and Wing 2016).  Our results indicate that future methane emission 
reduction policies to slow climate change, can also  address exposure disparities to health-
harming co-pollutants. This could be done by prioritizing and incentivizing deeper methane 
emissions reductions in environmental justice communities. 
 
Prior studies have examined equity patterns of specific sources of methane emissions included in 
our analysis. For example, US studies of solid and hazardous waste landfills indicate their 
disproportionate siting in communities of color (Martuzzi et al. 2010; Saha and Mohai 2005). 
This body of work includes environmental justice assessments of CAFOs showing that weak 
regulations have led to the disproportionate location of swine CAFOs in communities of color 
and poor communities (Donham et al. 2007b; Ladd and Edward 2002; Wilson et al. 2012; Wing 
et al. 2000b) and near schools with predominantly low-income and nonwhite students (Mirabelli 
et al. 2006b). None of these studies, however, has examined CAFO sites, such as dairies, in 
California. Our results showed that odds of exposure (within 2km) to this category of high 
methane emitters tended to increase with increasing percent Native American, non-Hispanic 
Black, and Hispanic individuals. In contrast to studies of all CAFOs, we did not observe 
increased odds of exposure among lower SES communities in adjusted models.    
 
Similarly, environmental inequities associated with California’s oil and gas industry, in 
particular production sites, emerged in large part due to historical redlining beginning in the late 
1930s through the late 1960s, which restricted many African Americans and Latino immigrant 
home-buyers to the petro-industrial neighborhoods of South Los Angeles (Cumming 2018; 
Viehe 1981). This legacy shapes present day race- and class-based inequities in the “petro-
riskscapes” of Los Angeles and rural communities in San Joaquin and Kern Counties–epicenters 
of California’s oil and gas production (Srebotnjak, Tanja and Rotkin-Ellman 2014). Our data 
support this theory. We observed increased odds of being located within 2 versus 5-10km from 
an oil and gas production high methane emitter with increasing percent Native American, non-
Hispanic Asian, and non-Hispanic Black individuals. In addition, the proliferation of 
unconventional oil and gas extraction technologies, such as hydraulic fracturing, raises new 
concerns regarding methane emissions (Howarth et al. 2011) and community health effects 
(Elliott et al. 2017; Garcia-Gonzales et al. 2019c). These sites tend to be located in low income 
rural communities, such as the Marcellus Shale in Pennsylvania or the Eagle Ford Shale in 
Texas, and the few environmental justice studies conducted on unconventional drilling indicate 
that this development is often, though not always, disproportionately located in communities 
with lower home values and minority communities (Clough and Bell 2016b; Johnston et al. 
2016b, 2020b; Kroepsch et al. 2019b; Malin and DeMaster 2016; Ogneva-Himmelberger and 
Huang 2015b). Strong federal and state methane emission regulations will also reduce non-
methane VOC and criteria air pollutant emissions, and  such policies have the potential to 
prevent 1400 deaths and 50,000 asthma exacerbations in 2028 (Buonocore et al. 2021). 
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This study has several strengths. First, this is the first environmental justice analysis of high 
methane emitters using several exposure metrics, including proximity to multiple sites, as well as 
airborne, remotely sensed estimates of cumulative methane emissions from diverse sources. 
Second, we used a high-resolution dataset of populated areas developed via dasymetric mapping 
to spatially characterize the location of populations within exposed and unexposed block groups. 
Third, we examined several demographic variables to assess patterns of inequity, including voter 
turnout, an indicator of community voice and political power that may be an important driver of 
environmental justice outcomes. Finally, we used splines and adjusted analyses to allow us to 
assess nonlinear trends and better isolate which community sociodemographic variables most 
likely explained observed associations. We found race/ethnicity better predicted exposure than 
low SES, potentially indicating housing discrimination, segregation, or procedural environmental 
injustice as drivers (Fernandez-Bou et al. 2021; Mohai and Bryant 1992). We also highlight 
rurality as an important, yet understudied dimension of environmental injustice in California 
(Kelly-Reif and Wing 2016). 
 
Limitations include the cross-sectional design, which precludes assessment of temporal changes 
in block group demographic composition or distributional patterns of cumulative methane 
emissions; indeed, identification of high methane emitters took place between 2016 and 2018 
and emissions trends likely vary over time. In addition, although studies indicate that harmful 
compounds are often co-emitted with methane (Buonocore et al. 2021; Garcia-Gonzales et al. 
2019c; Johnston et al. 2019a), which itself does not directly harm human health, we did not 
directly measure these co-pollutant emissions, and thus cannot characterize the potential health 
implications of these sites, which likely vary by high methane emitter category and facility, for 
host communities. Finally, we treated each facility as a point location even though some 
facilities, such as dairies, span larger areas. This may have resulted in underestimation of 
exposed populations. 
 
Future research should reassess temporal fluctuations in methane emissions from high methane 
emitter sites and the extent to which these emissions correlate with potentially harmful co-
pollutants across all facility types. Given that 10% of high-emitters in California were estimated 
to have contributed roughly 60% of point-source methane emissions, (Duren et al. 2019b) more 
targeted air quality monitoring, in collaboration with host communities, could provide much-
needed data to better understand potential community health threats posed by these sites. While 
some analysts have cautioned against integrating air quality into climate policy, pointing out that 
co-pollutants are best regulated under existing laws such as the US Clean Air Act, (Schatzki and 
Stavins 2009) more holistic regulatory strategies could target critical methane emission 
reductions to those communities where health co-benefits and health equity impacts are greatest 
(Boyce and Pastor 2013; Shonkoff et al. 2011). California’s Assembly Bill 617 (Garcia 2017) 
provides an innovative and potentially transformational blueprint for enhanced community 
participation in air monitoring and development of emissions reduction plans to improve local air 
quality and ultimately reduce environmental health disparities in disadvantaged communities 
(Community Air Protection Blueprint | California Air Resources Board). This legislative strategy 
to localize air quality management from a regional scale to a community scale can also embed 
environmental justice objectives in efforts to identify and more effectively regulate high methane 
emitters. Indeed, harmonizing environmental justice and climate sustainability goals to 
incentivize greenhouse gas reductions in disadvantaged and highly polluted neighborhoods could 



 

 148 

enhance overall health benefits, particularly if a small number of high methane emitters present 
the greatest opportunities to improve local and regional air quality. This would require 
systematic temporal and spatial tracking of methane and co-pollutant emissions to characterize 
the health and environmental justice implications of high-emitters more fully. Such a strategy 
would also advance the overarching environmental justice goals articulated in California's 
landmark climate change laws. 
 
 
5.7 Supplemental Information Chapter 5 
 
Supplemental Table 5.1. High-emitters excluded and included in analyses. 
Category No populated area within 

2km 
(excluded) 

Populated area within 2km 
(included) 

Landfill/compost 3 (9%) 29 (91%) 
Power plant 0 7 (100%) 
Refinery 0 37 (100%) 
Wastewater treatment 0 14 (100%) 
Oil/gas distribution 20 (26%) 56 (74%) 
Oil/gas production 56 (31%) 127 (69%) 
Dairy/manure 2 (1%) 213 (99%) 
Total 81 (14%) 483 (86%) 
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Supplemental Table 5.2. Residential Parcel Classifications. Residential parcels were defined 
as any parcel classified by one of the following land-use codes in the statewide tax parcel 
database. Large parcels for any use low-density use code with areas greater than 1-acre (4,047 
m2) were assumed to contain unpopulated, open space and were excluded. High-density 
residential parcels that tend to be larger (e.g. an entire apartment complex) were allowed to have 
areas of up to 50-acres before being excluded and are indicated in the list below by (*). 
Parcel Land-Use Code  
APARTMENT HOUSE (100+ UNITS)* 
APARTMENT HOUSE (5+ UNITS)* 
APARTMENTS (GENERIC)* 
CLUSTER HOME (RESIDENTIAL) 
COMM/OFC/RES MIXED USE 
CONDOMINIUM (RESIDENTIAL)* 
COOPERATIVE (RESIDENTIAL)* 
DORMITORY, GROUP QUARTERS (RESIDENTIAL) 
DUPLEX (2 UNITS, ANY COMBINATION) 
FRATERNITY HOUSE, SORORITY HOUSE 
GARDEN APT, COURT APT (5+ UNITS)* 
HIGHRISE APARTMENTS* 
HOMES (RETIRED; HANDICAP, REST; CONVALESCENT; NURSING) 
MANUFACTURED, MODULAR, PRE-FABRICATED HOMES 
MISC RESIDENTIAL IMPROVEMENT 
MOBILE HOME 
MOBILE HOME PARK, TRAILER PARK 
MULTI-FAMILY DWELLINGS (GENERIC, ANY COMBINATION 2+) 
PLANNED UNIT DEVELOPMENT (PUD) (RESIDENTIAL) 
QUADRUPLEX (4 UNITS, ANY COMBINATION) 
RESIDENTIAL (GENERAL) (SINGLE) 
RESIDENTIAL COMMON AREA (CONDO/PUD/ETC.) 
RESIDENTIAL INCOME (GENERAL) (MULTI-FAMILY) 
RURAL RESIDENCE (AGRICULTURAL) 
SINGLE FAMILY RESIDENTIAL 
STORES & APARTMENTS 
TIMESHARE (RESIDENTIAL) 
TOWNHOUSE (RESIDENTIAL) 
TRIPLEX (3 UNITS, ANY COMBINATION) 
ZERO LOT LINE (RESIDENTIAL) 
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Supplemental Table 5.3. Distribution of sociodemographic variables by exposed versus 
unexposed groups and scaling factors used for regression analyses. 
 Exposed block 

groups (within 2km 
of a high methane 

emitter) 
N = 951 

Unexposed block 
groups (5-10km from 

a high methane 
emitter) 

N = 8,722 

Linear ß 
interpretation 

Category Median (25th, 75th percentiles)  
Race/ethnicity, %    
   Hispanic 33 (16, 61) 37 (17, 67) Per 10% increase 
   Non-Hispanic    
       Native Americana 0.4 (1.7) 0.2 (0.9) Per 1% increase 
       Asian 6 (1, 16) 7 (2, 18) Per 10% increase 
       Black 2 (0, 8) 2 (0, 8) Per 10% increase 
       White 35 (11, 61) 28 (8, 56) N/A 
Poverty, % 15 (13, 23) 17 (14, 25) Per 10% increase 
Renters, % 41 (23, 62) 47 (25, 71) Per 10% increase 
Limited English-
speaking households, 
% 

6 (2, 14) 8 (3, 17) Per 1% increase 

Voters, % 71 (62, 76) 67 (59, 75) Per 10% increase 
Uninsured, % 10 (5, 18) 12 (6, 20) Per 1% increase 
Median household 
income, $ 

$64,700 (45,000, 
92,200) 

$60,900 (41,700, 
86,300) 

Per $10,000 
increase 

Less than a high 
school diploma, % 14.2 (5.3, 31.4) 16.2 (6.0, 33.5) Per 10% increase 

Unemployed, % 8 (5, 12) 8 (5, 12) Per 1% increase 
SNAP, % 7 (1, 15) 7 (2, 17) Per 1% increase 
Population density, 
individuals per km2 3100 (2750, 4540) 4280 (3820, 5510) 

Per 500 
individuals per 
km2 increase 

a Mean (SD) 
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Supplemental Figure 5.1. Example of the creation of populated areas layer from parcel, 
building footprint and block boundary data. Image shown is in eastern Bakersfield, CA. 
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Supplemental Figure 5.2. Example of block groups exposed to multiple classes of high methane 
emitter. For example, the block group outlined in a dashed white line contains populated areas located within 2km of at least 
two classes of high methane emitter (wastewater treatment and oil and gas distribution). White hexagons represent wastewater 
treatment facilities, squares are oil and gas production sites, circles are oil and gas distribution sites, and triangles are landfills. 
Grey polygons are populated areas within block groups and the larger polygons bounded in black are block groups. Analyses 
were conducted at the block group-level but only those block groups with a populated area located within 2km of a high methane 
emitter were included.  
O&G, oil and gas. 
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Supplemental Figure 5.3. Spearman correlation matrix for block group-level sociodemographic 
variables. 
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Supplemental Figure 5.4. Semivariograms for the three analyses: A. Main 2km vs. 5-10km; B. 
2-4 vs. 1 class of high methane emitter within 2km; C. High (>3rd quartile) vs. low (quartiles 1-3) 
CH4 emissions within 2km. The shapes of the semivariograms are consistent with limited residual spatial 
autocorrelation. Based on residuals from logistic mixed models with a random intercept for county adjusted for block group-level 
for population density, percent individuals of non-Hispanic Asian, Black, and Native American race/ethnicity, and percent 
individuals of Hispanic race/ethnicity, percent individuals living below the federal poverty threshold, percent voters, percent 
renters, percent limited English speaking households, and percent uninsured individuals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 155 

Supplemental Figure 5.5. Distribution of methane emissions (kg/hr) by high methane emitter 
category. Numbers indicate the count of high-emitters in each category. The x-axis is log-scale. 
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Supplemental Figure 5.6. Average block group-level sociodemographic characteristics by high 
methane emitter class. Exposed block groups were those with a populated area located within 2km of a high methane 
emitter and unexposed those located 5-10km from a high methane emitter .  
Bars represent 1-SD. 
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Supplemental Figure 5.7. Block group-level sociodemographic characteristics among block 
groups located within 2km of a high methane emitter , stratified by the number of categories of 
high methane emitter located within 2km. For example, block groups located within 2km of a refinery and a dairy 
would fall in the 2-4 category.  
Bars represent 1-SD.  
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Supplemental Figure 5.8. Block group-level sociodemographic characteristics by the sum of 
high methane emitter CH4 emissions (kg/hr) within 2km of the block group. CH4 emissions were 
categorized based on their distribution into low (<40 kg/hr, first quartile), moderate (40 to <185/hr, third quartile), and high 
(>185 kg/hr). 
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Supplemental Figure 5.9. Unadjusted association between sociodemographic variables and 
odds of being located within 2km versus 5-10km from a high methane emitter . Includes n = 951 
exposed and n = 8722 unexposed block groups. Black lines are odds ratios and grey areas 
represent the 95% confidence intervals. Results from a generalized additive mixed model with a 
logit link and a random intercept for county adjusted only for block group-level population 
density.  Rug plot displayed along the x-axis shows the number of observations at each level of 
the respective sociodemographic variable.  
CI, confidence interval; OR, odds ratio. Non-linear associations in panels B, F, H, K, and N were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Supplemental Figure 5.10. Unadjusted association between sociodemographic variables and 
odds of being located within 2km of 2-4 versus 1 category of high methane emitter , among 
block groups located within 2km of at least 1 high methane emitter (n = 951). Black lines are 
odds ratios and grey areas represent the 95% confidence interval. Results from a generalized 
additive mixed model with a logit link and a random intercept for county adjusted only for 
population density. Rug plot displayed along the x-axis shows the number of observations at 
each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. Non-linear associations in panels B, K, and N were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Supplemental Figure 5.11. Unadjusted association between sociodemographic variables and 
odds of being exposed to high (>quartile 3 [185 kg/hr]) versus low (quartile 1-3 [2.8-185 kg/hr]) 
CH4 emissions, among block groups located within 2km of at least 1 high methane emitter (n = 
951). Black lines are odds ratios and grey areas represent the 95% confidence interval. Results 
from a generalized additive mixed model with a logit link and a random intercept for county 
adjusted only for population density. Rug plot displayed along the x-axis shows the number of 
observations at each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. Non-linear associations in panels G, H, M, and N were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Supplemental Figure 5.12. Association between sociodemographic variables and odds of being 
located within 2km versus 5-10km from an oil and gas production high methane emitter. 
Includes n = 177 exposed and n = 1382 unexposed block groups. Black lines are odds ratios and 
grey areas represent the 95% confidence intervals. Results from a generalized additive mixed 
model with a logit link and a random intercept for county adjusted for block group-level percent 
individuals of non-Hispanic Native American, Asian, and Black race/ethnicity, and percent 
individuals of Hispanic race/ethnicity, percent individuals living below the federal poverty 
threshold, percent renters, percent limited English speaking households, percent voter turnout, 
percent uninsured individuals, and population density. Boxplot displayed along the x-axis shows 
the number of observations at each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. Non-linear associations in panels C, D, I, and J were 
statistically significant at the 𝛼𝛼=0.05 level. 
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Supplemental Figure 5.13. Association between sociodemographic variables and odds of being 
located within 2km versus 5-10km from dairy or manure high methane emitter. Includes n = 87 
exposed and n = 697 unexposed block groups. Black lines are odds ratios and grey areas 
represent the 95% confidence intervals. Results from a generalized additive mixed model with a 
logit link and a random intercept for county adjusted for block group-level percent individuals of 
non-Hispanic Native American, Asian, and Black race/ethnicity, and percent individuals of 
Hispanic race/ethnicity, percent individuals living below the federal poverty threshold, percent 
renters, percent limited English speaking households, percent voter turnout, percent uninsured 
individuals, and population density. Boxplot displayed along the x-axis shows the number of 
observations at each level of the respective sociodemographic variable. 
CI, confidence interval; OR, odds ratio. The non-linear association in panel J was statistically 
significant at the 𝛼𝛼=0.05 level. 
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Supplemental Figure 5.14. Spearman correlation between 2018 California Air Resources Board 
Pollution Mapping Tool annual reported CH4 emissions in MT CO2e and co-pollutant emissions. 
  

Refineries 
(n=21) 

Utility power plants (n=145) 

VOCs (ton) 0.78 0.47 
NOx (ton) 0.80 0.60 
SOx (ton) 0.76 0.56 
PM2.5 (ton) 0.79 0.59 
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