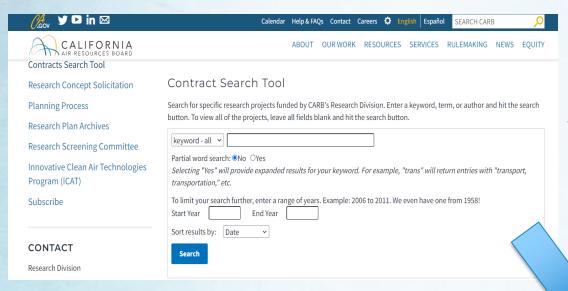


Hybridization and Full Electrification Potential in Off-Road Applications


April 29, 2022 10:00 AM – 12:00 PM PST

Thank you for joining us! Before we start

- This meeting will be recorded, final report and presentation slides will be available online
- We encourage questions AFTER the presentation
- Attendees will be muted during the presentation
- Use Chat to type in questions or Raise hand
- Email comments/questions to qi.yao@arb.ca.gov

Online Resource

https://ww2.arb.ca.gov/ourwork/programs/research-planning/researchdivision-contracts

https://ww3.arb.ca.gov/research/single-project_ajax.php?row_id=67678

Research Motivation

- Off-road equipment contributes to PM and NOx emissions
- 100% percent zero-emission from the off-road sector requires to be achieved by 2035 (N-79-20) in California
- Off-road representative operations, energy demands, and the feasibility of electrification and hybridization need to be characterized

Exemplary Off-road EV/hybrid equipment*

Today's Speaker

Dr. Kanok Boriboonsomsin
Research Engineer,
University of California, Riverside.

Research Interest:

- sustainable transportation
- transportation electrification
- vehicle energy and emissions modeling
- connected and automated vehicles
- intelligent transportation systems, and traffic operations

Hybridization and Full Electrification Potential in Off-Road Applications

Kanok Boriboonsomsin, Fuad Un-Noor, George Scora, Guoyuan Wu

College of Engineering - Center for Environmental Research and Technology
University of California at Riverside

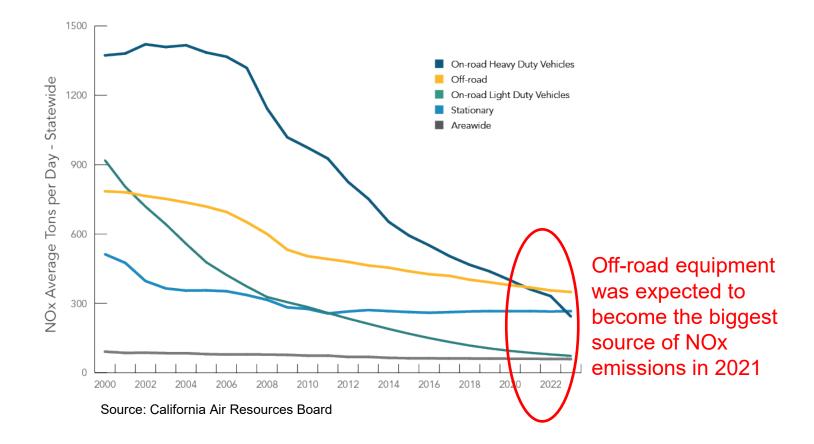
Steven Sokolsky, Jordan Steen CALSTART

CARB Research Seminar April 29, 2022

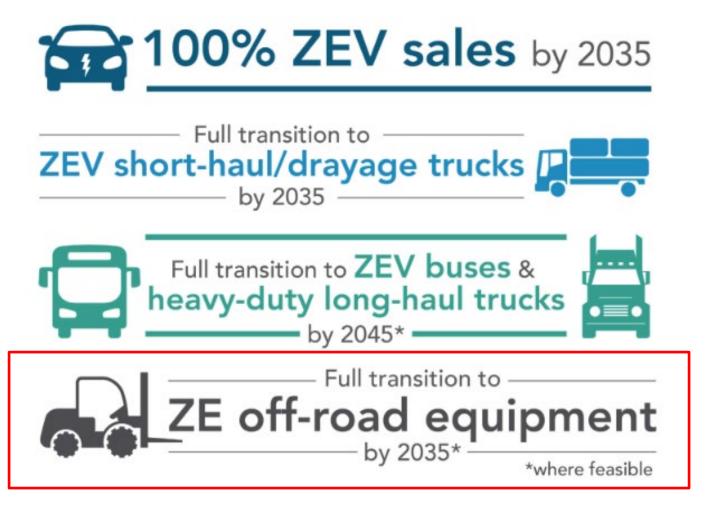
Presentation Outline

- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations

Presentation Outline


- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations

Off-Road Emission Contributions


 Off-road equipment is an important source of GHG and criteria pollutant emissions in California.

California's Executive Order N-79-20

Project Goal and Objectives

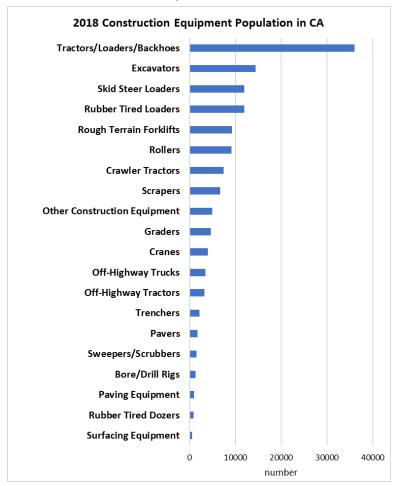
- To research pathways for hybridizing or electrifying off-road equipment
 - Maximize climate and air quality benefits
 - Technically and economically viable

Specific objectives

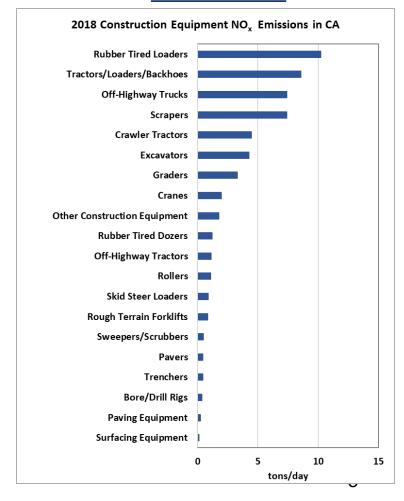
- Characterize activities, duty cycles, and energy demands of off-road equipment in different applications
- Assess the current trends toward hybridization and electrification
- Determine off-road equipment types that could be partially or fully electrified now and in the near future

Off-Road Equipment

- This study is focused on two off-road equipment categories.
 - Construction and agricultural
- Within category, there are a variety of applications, sizes, and configurations.

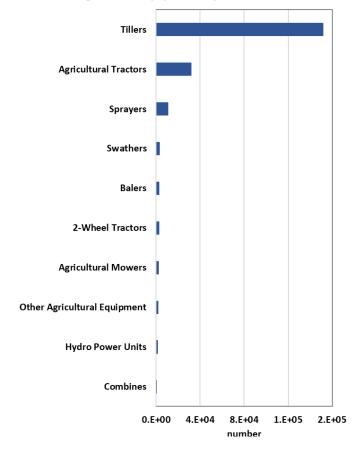

... and many more!

Construction Equipment Inventories

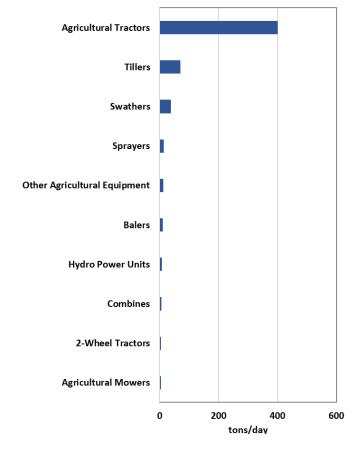

Population

CO₂ Emission

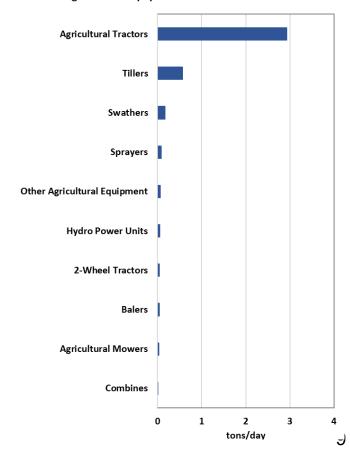
NOx Emission



Agricultural Equipment Inventories


Population

2018 Agricultural Equipment Population in CA


CO₂ Emission

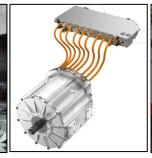
2018 Agricultural Equipment CO₂ Emissions in CA

NOx Emission

2018 Agricultural Equipment NOx Emissions in CA

Presentation Outline

- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations



Hybrid and Electric Off-Road Equipment (2019)

Commercially Available

Hybrid dozer

Electric compact tractor

Electric compact excavator

High performance electric motor

Mobile charging equipment

Prototype

Electric compact dozer

Cabled Electric tractor

Electric excavator

Potential

Electric dozer?

Electric tractor?

Electric else?

Mobile charging trailer?

Full Electrification of Large Off-Road Equipment

Battery electric dump truck

- 700 kWh battery pack
- 100 kW charging station
- 588 kW single synchronous electric motor

Battery electric top handler

- 931 kWh battery pack
- 200 kW charging station
- Demonstrated at Port of Long Beach

Battery electric tractor

- 1,000 kWh battery pack
- 500 to 1,000 kW electric powertrain
- Fully autonomous

Advantages of Electric Off-Road Equipment

Implication Advantage	Environmental	Operational	Economic
 Less moving parts Instant bidirectional torque Higher efficiency Electric deceleration No power loss at high altitudes 	Less emission	 Ease of operation Simpler drivetrain Less wear Less maintenance 	 Less operating cost Less downtime Increased work efficiency and productivity
Less fuel consumption	Less emissionImproved workplace environment	Less dependency on fuel supply	Less operating cost
Reduced noise	Reduced noise pollution	More flexibility in choosing operating hours and areas	Increased productivityReduced downtime
Flexible design	N/A	More utility	Potential reduction of manufacturing cost

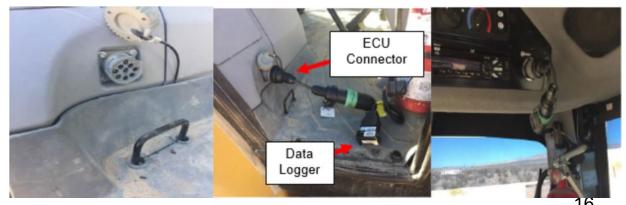
Barriers and Potential Solutions

	Barriers	Solutions
Technical issues	Short range	Better ESSBetter energy recuperation techniques
chnic	 Long charging time 	High voltage charging
Tec	Dynamic high-power requirement	Use of transmissionImproved ESS
ssues	Lack of research	Increased fundingRegulationsIncentives
Logistics issues	Inadequate charging infrastructure	 Development of necessary charging infrastructure while developing any commercial off-road equipment.
Log	Charging station placement	Proper planningMobile charging facilities
issues	• Cost	Increased productionLeaseIncentive
Market issues	 Competition 	RegulationsIncentivesProving superior performance

Presentation Outline

- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations

Real-World Activity and Energy Use Data Collection



No. of

Engine Starts and Idle Statistics

No. of

No. of

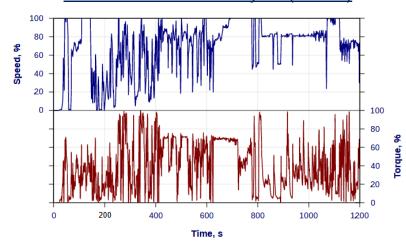
No. of

								Starts per Weekday in Range	Starts per Weekday Operating	Starts per	Starts per Weekday
Equipment	Equip-	Engine	Total	Idle (hrs)	Non-Idle	Idle (%)	Non-Idle			Weekday	Operating
Type	ment ID	Size (L)	(hrs)		(hrs)		(%)			in Range	
Agricultural	JD_413	4.5	81.5	24.6	56.9	30.2	69.8	4.66	6.37	0.73	1.00
Tractor	JD_414	4.5	34.2	8.9	25.3	26.0	74.0	3.36	7.12	0.47	1.00
Crawler	N18024	18.1	256.4	33.3	223.0	13.0	87.0	2.64	2.64	0.45	0.45
Tractor	N18025	18.1	104.7	14.3	90.4	13.6	86.4	4.29	4.29	0.29	0.29
Excavator	N18029	4.4	256.1	56.8	199.3	22.2	77.8	1.06	2.76	0.37	0.98
	N18014	9	13.3	6.2	7.1	46.4	53.6	1.33	3.27	0.41	1.00
	N18019	9.3	263.0	67.6	195.4	25.7	74.3	1.10	1.69	0.65	1.00
Grader	N18020	9	62.4	13.1	49.3	21.0	79.0	2.30	4.60	0.50	1.00
	N18022	9.3	72.9	16.7	56.2	22.9	77.1	5.75	6.05	0.95	1.00
	N18023	9.3	67.4	12.0	55.4	17.8	82.2	4.00	4.00	0.94	0.94
Off-Highway	N18021	18.1	223.7	38.7	184.9	17.3	82.7	2.59	2.71	0.86	0.90
Tractor	N18027	18.1	253.7	68.6	185.0	27.1	72.9	2.05	2.05	1.00	1.00
	N18015	9	38.6	5.5	33.1	14.3	85.7	1.41	2.60	0.52	0.96
Dubbar Tirad	N18016	6.6	149.5	18.6	130.9	12.4	87.6	2.85	3.56	0.70	0.88
Rubber Tired Loader	N18018	7.01	111.3	29.1	82.2	26.2	73.8	3.14	4.91	0.61	0.96
Loadei	N18026	7.755	112.6	22.6	90.0	20.0	80.0	4.84	5.50	0.88	1.00
	N18030	9.3	222.0	27.5	194.5	12.4	87.6	1.76	3.65	0.48	1.00
Coronor	N18028	9.3	54.6	7.3	47.3	13.3	86.7	11.73	15.18	0.77	1.00
Scraper	N18043	N/A	449.5	62.9	386.6	14.0	86.0	1.04	1.37	0.69	0.90
Tractor/	N18011	6.8	66.3	39.5	26.7	59.7	40.3	8.62	10.06	0.62	0.72
Loaders/	N18012	4.5	79.9	44.8	35.1	56.0	44.0	8.57	9.38	0.70	0.76
Backhoe	N18013	6.8	59.9	28.4	31.5	47.4	52.6	3.72	7.00	0.50	0.94 17

Power, Work, and Fuel Use Statistics

							Max Daily	Median Daily	Mean Daily	Max	Median	Mean
Equipment Type	Equip- ment ID	Engine Size (L)	Median Power (hp)	Mean Power (hp)	Median Fuel Rate (gal/hr)	Mean Fuel Rate (gal/hr)	Work (hp- hr/day)	Work (hp- hr/day)	Work (hp- hr/day)	Daily Fuel Use (gal/day)	Daily Fuel Use (gal/day)	Daily Fuel Use (gal/day)
Agricultural	JD_413	4.5	8.7	16.7	0.95	1.28	176.7	30.5	45.4	12.30	2.75	3.47
Tractor	JD_414	4.5	20.5	23.8	1.33	1.54	190.9	43.1	50.7	12.27	2.79	3.29
Crawler	N18024	18.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	N18025	18.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Excavator	N18029	4.4	40.2	41.5	3.61	3.63	478.2	217.3	231.3	40.83	19.41	20.21
	N18014	9	19.1	26.0	1.47	2.00	66.5	8.1	12.8	5.19	0.62	0.98
	N18019	9.3	30.9*	41.3*	2.69	3.52	509.2*	323.7*	278.5*	42.67	27.81	24.33
Grader	N18020	9	38.2	52.6	2.25	3.09	465.1	361.8	327.8	27.56	21.16	19.26
	N18022	9.3	42.1*	50.0*	3.66	4.24	396.2*	124.5*	158.5*	33.26	10.58	13.44
	N18023	9.3	47.2*	53.0*	4.07	4.49	336.1*	165.8*	162.4*	28.44	13.90	13.75
Off-Highway	N18021	18.1	226.1*	192.1*	18.03	15.32	2,526.5*	1,981.8*	1,718.6*	201.34	158.28	137.04
Tractor	N18027	18.1	223.7*	182.2*	17.84	14.52	2,221.8*	1,960.4*	1,777.7*	176.77	156.06	141.64
	N18015	9	18.8	34.7	1.68	2.69	235.8	20.4	51.5	17.47	1.71	3.99
Dubbar Tired	N18016	6.6	18.9	35.5	1.82	3.12	673.1	333.2	312.4	58.63	29.02	27.41
Rubber Tired Loader	N18018	7.01	17.3*	32.7*	1.65	2.83	435.0*	189.3*	165.2*	36.82	16.41	14.33
Loauei	N18026	7.755	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N18030	9.3	27.3*	54.0*	2.40	4.50	550.7*	201.1*	226.1*	45.64	16.84	18.83
Coronor	N18028	9.3	49.1*	70.8*	4.20	5.81	509.0*	247.1*	241.5*	41.62	20.37	19.83
Scraper	N18043	N/A	62.3*	114.0*	5.23	9.17	1,540.8*	1,182.3*	1,090.1*	123.86	95.16	87.73
Tractor/	N18011	6.8	11.7*	30.5*	0.89	2.06	202.3*	101.1*	101.0*	13.59	6.90	6.83
Loaders/	N18012	4.5	8.0*	23.2*	0.67	1.65	269.0*	84.5*	88.1*	19.34	6.03	6.29
Backhoe	N18013	6.8	10.7*	31.9*	0.83	2.15	231.3*	87.8*	95.5*	15.14	5.88	6.44

*Based on estimated engine brake power

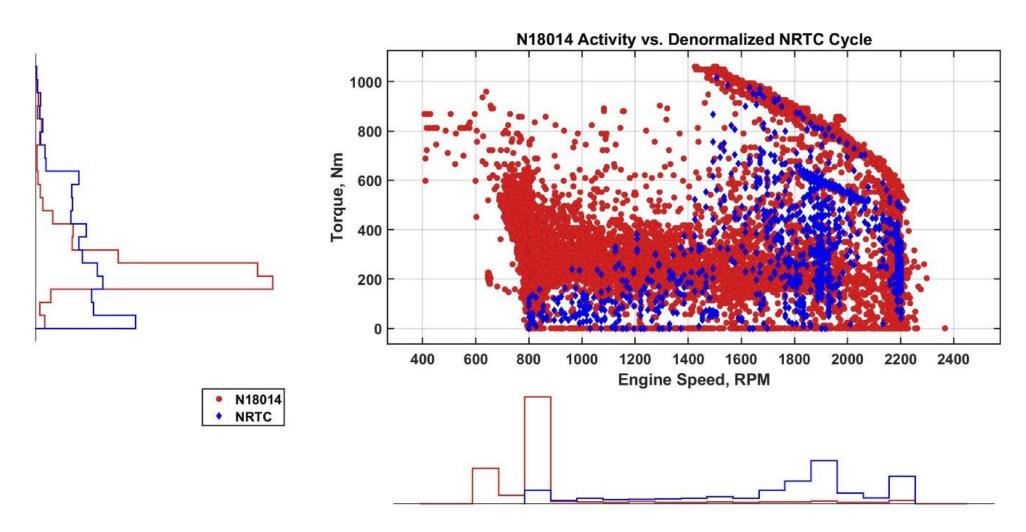


Comparison with Engine Certification Cycles

Non-Road Steady Cycle (NRSC)

Mode Number	Engine Speed	Torque (%)	Weighting Factor
1	Rated	100	0.15
2	Rated	75	0.15
3	Rated	50	0.15
4	Rated	10	0.10
5	Intermediate	100	0.10
6	Intermediate	75	0.10
7	Intermediate	50	0.10
8	Idle	N/A	0.15

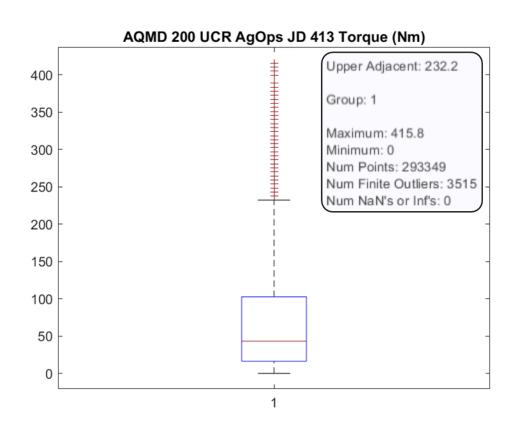
Non-Road Transient Cycle (NRTC)

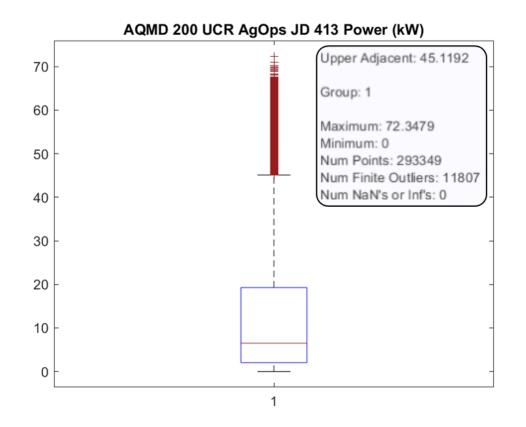

%	Torque >		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
% Т	orque <=	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Certification	NRTC	10.7	7.3	4.7	5.7	7.7	7.0	5.4	5.9	5.2	6.0	4.1	4.0	4.3	6.1	10.7	0.5	1.1	0.7	0.5	2.8
Cycles	NRSC	15.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	25.0
Ag Tractor	JD_413	25.3	21.7	13.6	8.1	7.0	5.3	3.2	4.6	3.8	3.7	2.2	0.8	0.3	0.1	0.2	0.1	0.0	0.0	0.0	0.0
Ag Hactor	JD_414	4.2	17.1	12.9	6.4	8.6	10.0	11.7	10.9	7.0	5.1	2.5	1.1	0.7	0.5	0.4	0.3	0.2	0.2	0.1	0.1
Excavator	N18029	0.7	20.0	15.4	3.0	2.9	2.7	3.9	3.4	4.3	3.7	5.1	5.3	4.5	4.4	6.1	5.5	6.5	2.2	0.4	0.0
	N18014	1.3	0.6	2.2	34.2	32.0	11.9	5.3	5.4	2.5	1.2	0.5	0.4	0.2	0.2	0.6	0.8	0.2	0.4	0.2	0.2
	N18019*	3.6	29.6	15.0	17.1	13.6	7.8	4.4	2.9	2.9	1.5	0.8	0.6	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Grader	N18020	2.5	2.2	29.1	21.0	10.4	12.3	7.3	4.5	2.7	2.0	1.2	1.3	1.2	0.9	0.5	0.3	0.2	0.2	0.1	0.0
	N18022*	16.8	26.5	20.2	17.2	10.6	6.0	1.9	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18023*	2.1	15.1	13.9	11.7	14.4	12.5	10.0	6.5	4.7	3.7	2.7	1.5	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0
Off-Highway	N18021*	4.2	24.8	4.9	5.2	5.7	8.3	9.6	9.3	14.0	10.6	2.8	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tractor	N18027*	3.7	32.1	3.9	2.7	3.2	6.1	10.0	10.8	16.2	7.9	2.7	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18015	3.1	19.7	19.8	15.5	9.8	8.2	5.3	5.1	3.6	2.6	1.7	2.1	1.8	0.5	0.5	0.3	0.2	0.3	0.0	0.0
Rubber Tired	N18016	5.5	24.1	11.6	12.3	8.2	7.7	5.5	6.0	4.4	3.1	2.3	4.1	3.1	0.7	0.5	0.3	0.3	0.4	0.0	0.0
Loaders	N18018*	4.8	45.6	9.3	9.2	7.9	6.5	5.5	3.4	2.4	3.4	1.9	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18030*	17.6	33.6	13.3	9.9	7.1	6.7	9.8	1.3	0.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Scraper	N18028*	37.9	15.9	14.4	10.9	9.4	5.1	3.3	1.2	0.9	0.4	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0
Scraper	N18043*	20.0	17.1	13.6	5.4	4.8	4.2	3.9	3.8	3.3	3.4	8.8	8.7	2.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Tractor/	N18011*	1.8	52.2	15.4	9.8	7.0	4.8	3.5	3.6	1.2	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loader/	N18012*	2.3	56.4	8.1	13.2	7.1	4.3	2.9	3.4	1.6	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Backhoe	N18013*	15.1	39.7	9.5	9.6	7.2	5.8	4.6	3.3	2.8	1.1	1.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

^{*} Based on estimated torque

Engine Operations of a Grader vs. NRTC Cycle

Presentation Outline


- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations



Real-World Torque and Power Requirements

Equipment-specific torque and power distributions

Motor Sizing Analysis

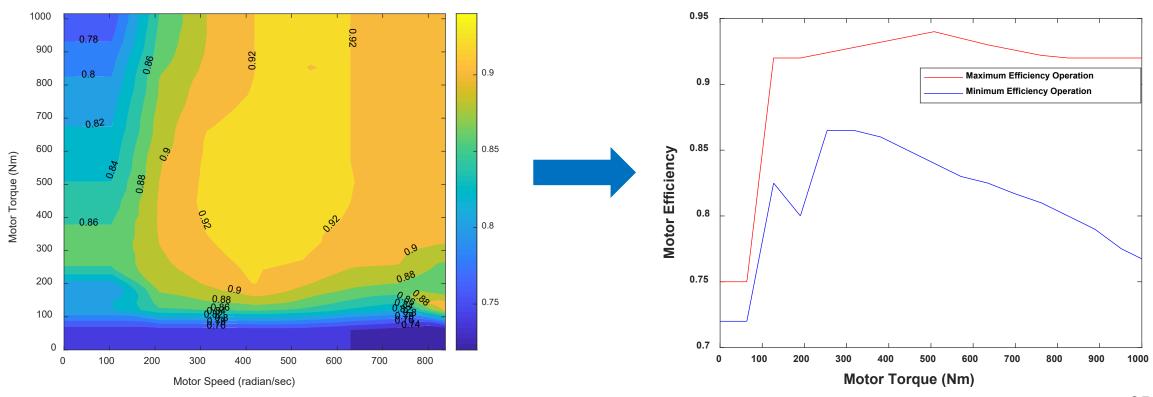
Peak and Continuous Ratings Required

Equipment	Equipment	Torque De	mand (Nm)	Power Der	mand (kW)
Туре	ID	Maximum	Upper Adjacent	Maximum	Upper Adjacent
Agricultural	JD_413	416	232	72	45
Tractor	JD_414	420	317	78	62
Excavator	N18029	439	439	74	74
	N18014	799	298	133	32
	N18019	1,151	563	125*	94*
Grader	N18020	1,270	622	203	106
	N18022	1,139	588	127*	127*
	N18023	1,151	613	124*	124*
Off-Highway	N18021	2,692	2,692	282*	282*
Tractor	N18027	2,723	2,723	281*	281*
Di de le en	N18015	820	479	142	76
Rubber	N18016	704	521	124	88
Tired Loader	N18018	1,051	1,051	87*	87*
Loadei	N18030	1,332	521	141*	141*
Coronor	N18028	1,101	375	200*	200*
Scraper	N18043	1,139	1,139	242*	242*
Tractor/	N18011	966*	317*	93*	82*
Loaders/	N18012	722*	252*	76*	67*
Backhoe	N18013	941*	401*	92*	92*

Ratings of Commercially Available Motors

Series	Model	Torque I	Ratings (Nm)	Power F	Ratings (kW)
Series	iviodei	Peak	Continuous	Peak	Continuous
UQM 200	PowerPhase HD 220	700	350	220	120
series	PowerPhase HD 250	900	360	250	150
Series	PowerPhase HD 950T	950	400	145	100
	HV2700-9P	2700	2060	250	195
TM4 SUMO	HV3400-9P	3400	2060	250	195
	HV3500-9P	3445	1970	370	260
Borg Warner HVH410-150	-	~2000	1400	160	120
EVO Avial	1	600	260	220	94
EVO Axial	2	700	290	280	128
Flux Electric - Motor -	3	1200	520	440	188
IVIOLOI	4	350	145	140	64

Motor Sizing Results


			Available Motors									
Equipment Type	Equip- ment ID	UQM Power- Phase HD 220	UQM Power- Phase HD 250	UQM Power- Phase HD 950T	TM4 SUMO HV2700- 9P	TM4 SUMO HV3400- 9P	TM4 SUMO HV3500- 9P	Borg Warner HVH410- 150	EVO Axial Flux Electric Motor 1	EVO Axial Flux Electric Motor 2	EVO Axial Flux Electric Motor 3	EVO Axial Flux Electric Motor 4
Excavator	N18029				Х	Х	Х	Х			Х	
Grader	N18014		Х	X	X	Х	X	Х			Х	
Grader	N18019				Х	Х	Х	Х				
Grader	N18020				Х	Х	Х					
Grader	N18022				Х	Х	Х					
Grader	N18023				Х	Х	Х				Х	
Off-Highway Tractors	N18021											
Off-Highway Tractors	N18027											
Rubber-tired Loaders	N18015				X	X	X	X			X	
Rubber-tired Loaders	N18016				X	X	X	Х				
Rubber-tired Loaders	N18018				Х	х	х	х				
Rubber-tired Loaders	N18030				Х	Х	Х					
Scraper	N18028						Х					
Scraper	N18043						Х					
Tractor/Loaders/Backhoes	N18011				Х	х	x	x			х	
Tractor/Loaders/Backhoes	N18012		Х	Х	Х	Х	х	Х			Х	
Tractor/Loaders/Backhoes	N18013				х	x	x	x			х	24

Battery Sizing Analysis

- Utilize efficiency map of a commercial heavy-duty electric motor
 - Assume minimum efficiency operation

Battery Sizing Analysis (continued)

• Instataneous Energy Consumption $(kW) = \frac{Motor\ Power\ Demand\ (kW)}{Minimum\ Motor\ Efficiency}$

• Daily Energy Consumption $(kWh) = \frac{\sum_{i=1}^{n} (Instantaneous Energy Consumption (kW))_i}{3600}$

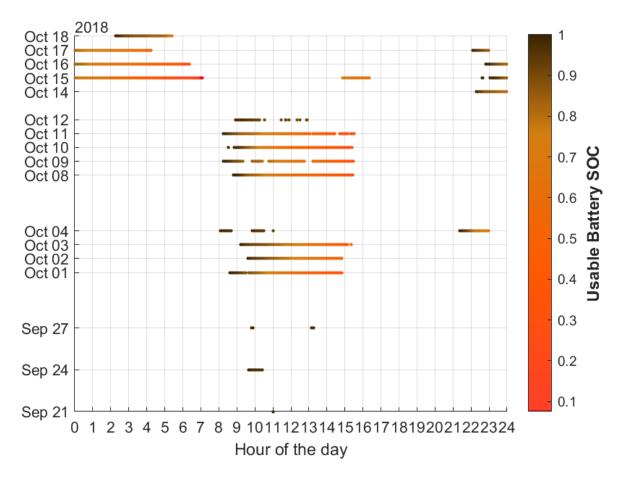
Usable Battery Size = max(Daily Energy Consumption)

Equipped Battery Size = Usable Battery Size * 1.3

Battery Sizing Results

Equipment	Equipment	Individual	Sta	andard Battery Siz	e (kWh)
Туре	ID	Battery Size (kWh)	Usable Battery Size	Equipped Battery Size	Rounded Equipped Battery Size
Agricultural	JD_413	166	177	230	240
Tractor	JD_414	176	177	230	240
Excavator	N18029	420	420	546	550
	N18014	60			
	N18019	490*			
Grader	N18020	414	491	638	640
	N18022	380*			
	N18023	323*			
Off-Highway	N18021	2,711*	2.742	2 526	2 520
Tractor	N18027	2,409*	2,712	3,526	3,530
	N18015	210			
Rubber Tired	N18016	603	604	705	700
Loader	N18018	421*	604	785	790
	N18030	534*			
Caranar	N18028	502*	4 400	4.050	4.050
Scraper	N18043	1,422*	1,423	1,850	1,850
Tractor/	N18011	184*			
Loader/	N18012	251*	252	328	330
Backhoe	N18013	206*			
Based on estimated	nower				

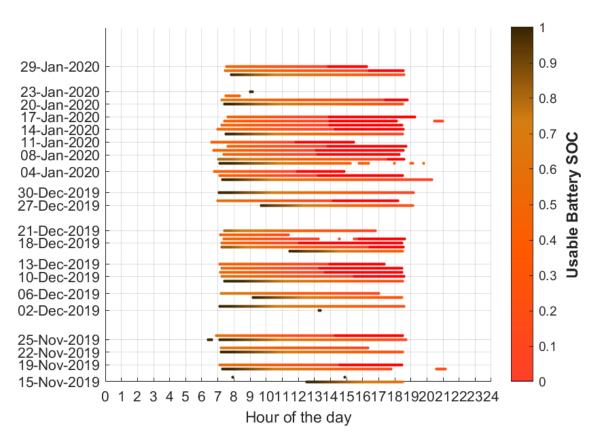
^{*}Based on estimated power

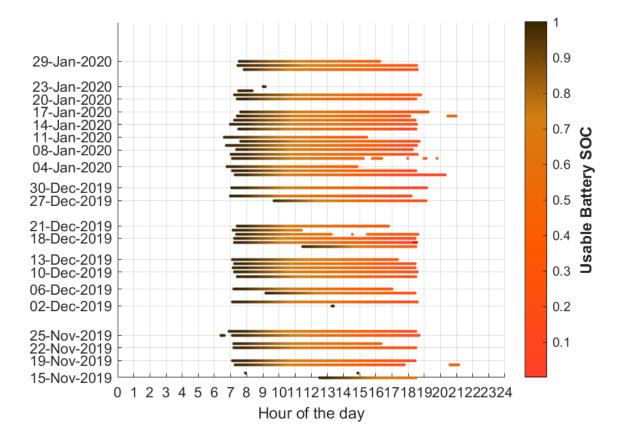


Activity and Energy Flow Simulation

- Simulate electric equipment performing the same work as diesel equipment
- Consider various charging scenarios
 - End-of-shift charging
 - Opportunity charging during long breaks (> 2 hours)
 - Different charging power levels (50, 150, 200, 350 kW)

Simulated Electric Rubber-Tired Loader; 50 kW Charger





Effect of Charging Power Level

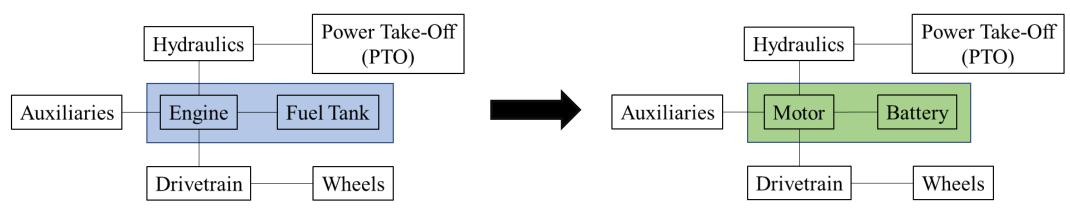
Simulated Electric Scraper; 50 kW Charger

Simulated Electric Scraper; 150 kW Charger

Summary of Simulation Results

Equipment Type	Usable Battery Size (kWh)	Equipment ID	Charging Power (kW)	Active Events (seconds)	Fulfilled Active Events (seconds)	% Active Events Fulfilled	Total Opera- ting Days	Opera-ting Days Fully Served	% Opera-ting Days Fully Served
Ag Tractor	177	JD 413	50	293,349	293,349	100	31	31	100
		JD 414	50	122,959	122,959	100	17	17	100
Excavator	420	N18029	50	921,961	921,961	100	46	46	100
Grader	491	N18014	50	47,705	47,705	100	27	27	100
		N18019	50	946,960	946,960	100	39	39	100
		N18020	50	224,505	224,505	100	10	10	100
		N18022	50	262,575	262,575	100	23	23	100
		N18023	50	242,771	242,771	100	22	22	100
Off-Highway	2712	N18021	50	805,247	441,578	55	25	8	32
Tractor			150	805,247	746,148	93	25	17	68
			200	805,247	805,247	100	25	25	100
		N18027	50	913,232	486,430	53	26	5	19
			150	913,232	902,398	99	26	23	88
			200	913,232	913,232	100	26	26	100
Rubber Tired	604	N18015	50	138,858	138,858	100	26	26	100
Loader		N18016	50	538,320	538,320	100	17	17	100
		N18018	50	400,560	400,560	100	23	23	100
		N18030	50	799,262	799,262	100	53	53	100
Scraper	1423	N18028	50	196,410	196,410	100	18	18	100
		N18043	50	1,618,271	1,289,937	80	47	23	49
			150	1,618,271	1,618,271	100	47	47	100
Tractor/	252	N18011	50	238,583	238,583	100	20	20	100
Loader/		N18012	50	287,583	287,583	100	22	22	100
Backhoe		N18013	50	215,585	215,585	100	20	20	100

Presentation Outline


- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations

Analysis Overview

- Use equipment population, activity, fuel consumption, and emission data from OFFROAD2017
- Assume a drop-in replacement of ICE components by EV components

 Assume that new electric equipment will be used at the activity level reported in OFFROAD2017 for the calendar year it is purchased

Component Sizing based on OFFROAD2017 Data

Battery

- fuel_gpd_per_equipment = max(fuel_gpd_per_equipment)
- energy of consumed fuel (kWh) = $fuel_gpd_per_equipment \times 40.7$
- battery size (kWh) = (energy of consumed fuel (kWh) × engine efficiency) ÷ motor efficiency

Motor

- motor rating (kW) = HP bin/1.341

ICE

- *ICE rating* (kW) = HP bin/1.341

Cost Calculation

EV component costs

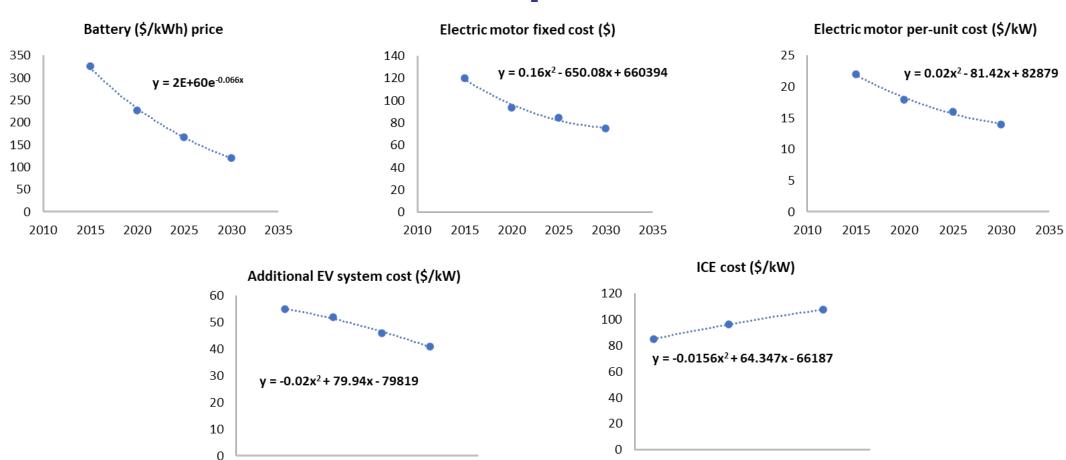
- battery cost (\$) = battery size (kWh) × per–unit battery cost (\$/kWh)
- $motor cost (\$) = motor fixed cost (\$) + (motor rating (kW) \times per-unit motor cost (\$/kW)$
- additional EV system cost (\$) = motor rating (kW) × per-unit additional system cost (\$/kW)
- advanced engineering cost = η_{eng} × (battery cost + motor cost + additional system cost)

ICE component costs

- $ICE cost (\$) = ICE rating (kW) \times per-unit ICE cost (\$/kW)$
- fuel tank cost (\$) = \$482

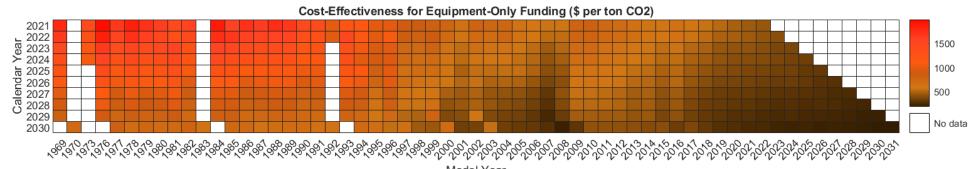
Cost-Effectiveness Calculation

- Required funding amount
 - funding per equipment (\$) = EV component costs ICEV component costs
- Emission reduction
 - emission reduction (tons per year) = emission produced (tons per day) × 186
- Cost-effectiveness of incentive funding
 - cost effectiveness of funding dollars = $\frac{\textit{Capital Recovery Factor} \times \textit{funding amount}}{\textit{emission reduction (tons per year)}}$
 - Capital Recovery Factor (CRF) = $\frac{(1+discount\ rate)^{project\ duration} \times (discount\ rate)}{(1+discount\ rate)^{project\ duration} 1}$

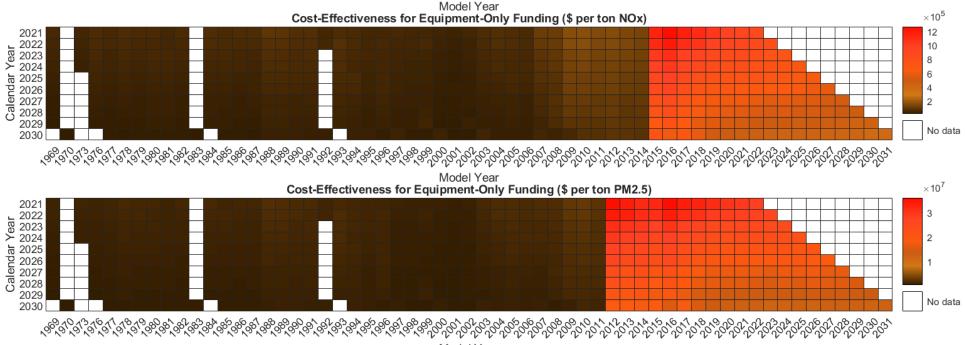

Base Case Assumptions

- Diesel engine efficiency (used to size battery) is 35%.
- Electric motor efficiency (used to size battery) is 72%.
- Required motor power is the same as the HP bin.
- EV advanced engineering cost adds an additional 10%.
- Fuel tank cost is \$482.
- Discount rate of US dollar is 1%.
- Per-unit component costs are taken from literature.

Per-Unit Component Costs

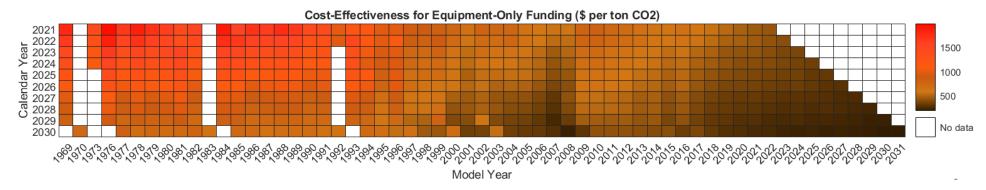

Sources:

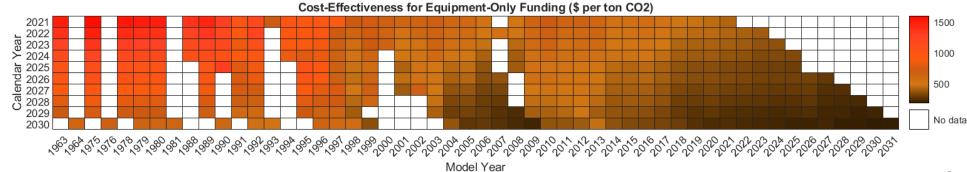
den Boer, E., Aarnink, S., Kleiner, F., & Pagenkopf, J. (2013, July). Zero emission trucks. An overview of state-of-the-art technologies and their potential. CE Delft. Moultak, Marissa, Nic Lutsey, and Dale Hall. "Transitioning to zero-emission heavy-duty freight vehicles." Int. Counc. Clean Transp (2017).



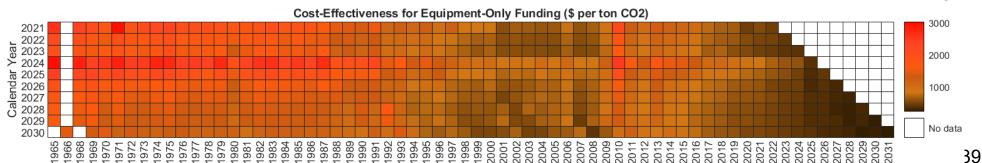
Cost Effectiveness Results

Excavator; 175 HP Bin





Cost Effectiveness Comparisons

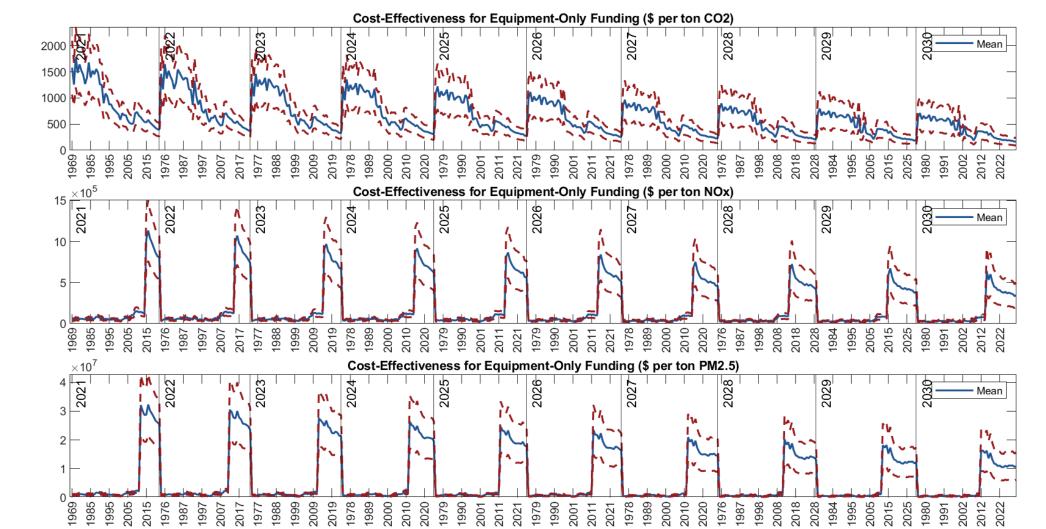

Excavator; 175 HP Bin

Excavator; 100 HP Bin

<u>Graders;</u> 175 HP Bin

Model Year

Sensitivity Analysis


- To evaluate the effects of parameter changes from the base case
 - Simulation of 59,049 scenarios

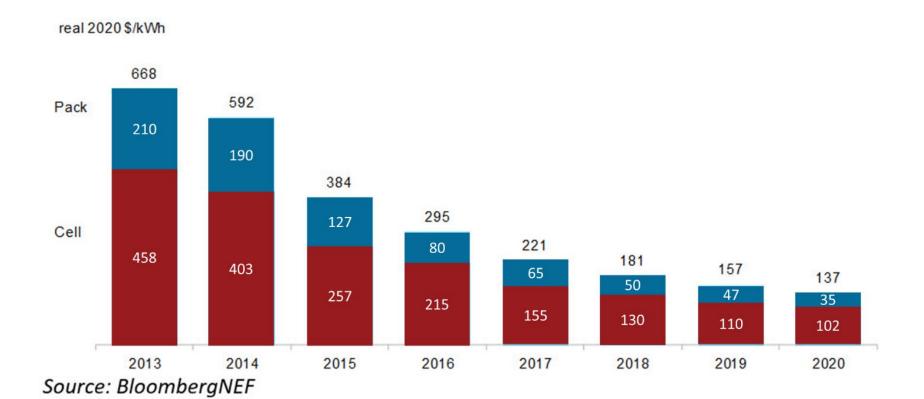
Parameter	Base Value	Values for Sensitivity Analysis				
Diesel engine efficiency	0.35	0.25, 0.35, 0.45				
Electric motor efficiency	0.72	0.72, 0.88, 0.94				
%HP	1 (equal to the HP Bin size)	0.80, 0.90, 1				
Battery per-unit cost (\$/kWh)	$y = 2 \times 10^6 \times e^{-0.066x}$	y-10%, y, y+10%				
Motor fixed cost (\$)	$y = 0.16x^2 - 650.08x + 660394$	y-10%, y, y+10%				
Motor per-unit cost (\$/kW)	$y = 0.02x^2 - 81.42x + 82879$	y-10%, y, y+10%				
Additional EV system per-unit cost (\$/kW)	$y = -0.02x^2 + 79.94x - 79819$	y-10%, y, y+10%				
Advanced engineering cost for EV	0.10	0.10, 0.15, 0.20				
ICE cost (\$/kW)	$y = -0.0156x^2 + 64.347x - 66187$	y-10%, y, y+10%				
Fuel tank cost (\$)	y = 481.701	y-10%, y, y+10%				

Sensitivity Analysis Results


Excavator; 175 HP Bin

Cost Effectiveness by Equipment Type and Size

- It is most cost-effective to fund a turnover of equipment in the 51-75 horsepower range.
- Tractors/Loaders/
 Backhoes are the most cost-effective type to be electrified.



Battery Prices Have Dropped

- Average prices of battery pack (dark blue) and battery cell (dark red)
 - 2020 real price is only 60% of the projected price

Presentation Outline

- Background and introduction
- State of off-road equipment electrification
- Real-world activity and energy use of off-road equipment
- Technical feasibility of electrifying off-road equipment
- Cost-effectiveness of electrifying off-road equipment
- Conclusions and recommendations

State of Off-Road Equipment Electrification

 Several construction & agricultural equipment can be, and have been, electrified.

Commercially Available

Hybrid dozer

Electric compact tractor

Electric compact excavator

High performance electric motor

Many barriers exist, but so do potential solutions.

Prototype

Electric compact dozer

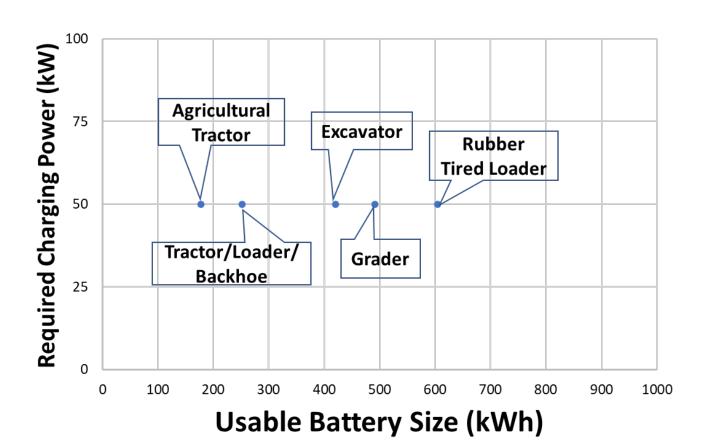
Cabled Electric tractor

Electric excavator

Real-World Activity and Energy Use

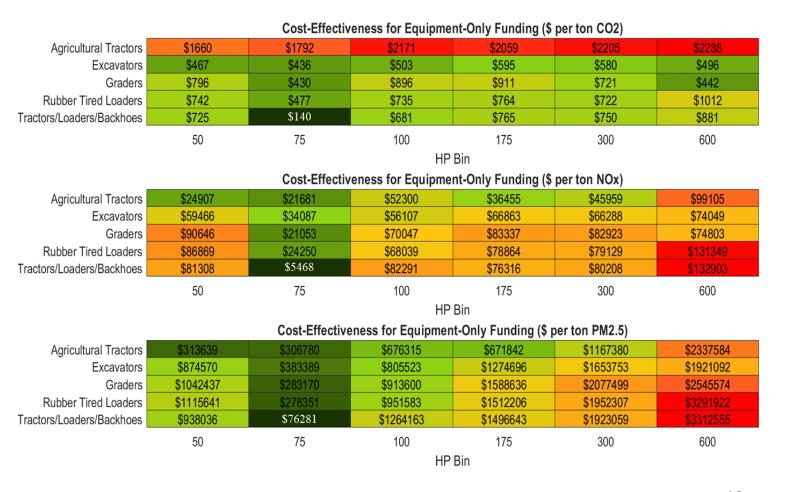
- Activity and energy use patterns of the studied equipment vary widely.
 - Vary within each equipment type, but more so across equipment types
- Real-world engine operating patterns differ significantly from those of the certification cycles.

%	Torque >		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
% T	orque <=	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Certification	NRTC	10.7	7.3	4.7	5.7	7.7	7.0	5.4	5.9	5.2	6.0	4.1	4.0	4.3	6.1	10.7	0.5	1.1	0.7	0.5	2.8
Cycles	NRSC	15.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	25.0
Ag Tractor	JD_413	25.3	21.7	13.6	8.1	7.0	5.3	3.2	4.6	3.8	3.7	2.2	0.8	0.3	0.1	0.2	0.1	0.0	0.0	0.0	0.0
	JD_414	4.2	17.1	12.9	6.4	8.6	10.0	11.7	10.9	7.0	5.1	2.5	1.1	0.7	0.5	0.4	0.3	0.2	0.2	0.1	0.1
Excavator	N18029	0.7	20.0	15.4	3.0	2.9	2.7	3.9	3.4	4.3	3.7	5.1	5.3	4.5	4.4	6.1	5.5	6.5	2.2	0.4	0.0
Grader	N18014	1.3	0.6	2.2	34.2	32.0	11.9	5.3	5.4	2.5	1.2	0.5	0.4	0.2	0.2	0.6	8.0	0.2	0.4	0.2	0.2
	N18019*	3.6	29.6	15.0	17.1	13.6	7.8	4.4	2.9	2.9	1.5	0.8	0.6	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18020	2.5	2.2	29.1	21.0	10.4	12.3	7.3	4.5	2.7	2.0	1.2	1.3	1.2	0.9	0.5	0.3	0.2	0.2	0.1	0.0
	N18022*	16.8	26.5	20.2	17.2	10.6	6.0	1.9	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18023*	2.1	15.1	13.9	11.7	14.4	12.5	10.0	6.5	4.7	3.7	2.7	1.5	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0
Off-Highway	N18021*	4.2	24.8	4.9	5.2	5.7	8.3	9.6	9.3	14.0	10.6	2.8	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tractor	N18027*	3.7	32.1	3.9	2.7	3.2	6.1	10.0	10.8	16.2	7.9	2.7	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rubber Tired Loaders	N18015	3.1	19.7	19.8	15.5	9.8	8.2	5.3	5.1	3.6	2.6	1.7	2.1	1.8	0.5	0.5	0.3	0.2	0.3	0.0	0.0
	N18016	5.5	24.1	11.6	12.3	8.2	7.7	5.5	6.0	4.4	3.1	2.3	4.1	3.1	0.7	0.5	0.3	0.3	0.4	0.0	0.0
	N18018*	4.8	45.6	9.3	9.2	7.9	6.5	5.5	3.4	2.4	3.4	1.9	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N18030*	17.6	33.6	13.3	9.9	7.1	6.7	9.8	1.3	0.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Scraper	N18028*	37.9	15.9	14.4	10.9	9.4	5.1	3.3	1.2	0.9	0.4	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0
	N18043*	20.0	17.1	13.6	5.4	4.8	4.2	3.9	3.8	3.3	3.4	8.8	8.7	2.8	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Tractor/	N18011*	1.8	52.2	15.4	9.8	7.0	4.8	3.5	3.6	1.2	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loader/	N18012*	2.3	56.4	8.1	13.2	7.1	4.3	2.9	3.4	1.6	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Backhoe	N18013*	15.1	39.7	9.5	9.6	7.2	5.8	4.6	3.3	2.8	1.1	1.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0


^{*} Based on estimated torque

Technical Feasibility of Electric Off-Road Equipment

- Six of the seven equipment types studied could operate with a single electric motor.
- Five equipment types can be fully electrified with currently available electric motor and battery technologies, coupled with 50 kW charger.



Cost Effectiveness of Electric Off-Road Equipment

- It is generally more cost-effective to electrify equipment smaller than 100 horsepower.
- Dollars per ton of emissions reduction today would be about half of the results shown as battery prices have dropped.

Recommendations

- Initially focused on the most populous and top emitting equipment types
 - Agricultural tractors
 - Excavators
 - Graders
 - Rubber tired loaders
 - Tractors/loaders/backhoes
- Initially focused on equipment with 100 horsepower or lower
 - 78% of the total population of off-road equipment in California
 - 24% of the annual total diesel fuel consumption
 - Relatively more cost-effective than electrifying larger equipment

Acknowledgements

- California Air Resources Board
 - Funding support
 - Program support from Seungju Yoon, Harikishan Perugu, Sonya Collier, and Qi Yao
 - Feedback from CARB program staff

Contributors

 Thomas Durbin and Chas Frederickson of the College of Engineering – Center for Environmental Research and Technology, University of California at Riverside

Collaborators

Fleet operators and interviewees from both public and private sectors

Thank You

kanok@cert.ucr.edu