Draft Scenarios for Achieving Carbon Neutrality in the 2022 Scoping Plan Update

CALIFORNIA AIR RESOURCES BOARD

MARCH 30, 2022

AB 32 Climate Change Scoping Plan Statutory Requirements

- Scoping Plan(s) are action plans for CA to meet statewide GHG reduction targets
 - Scoping Plan(s) outline a suite of climate policies to address emissions across all sectors
 - Required to be updated at least every 5 years
 - 2017 SP (most recent) cost-effective and technologically feasible path to achieve the 2030 target
- Provide direct GHG emissions reductions and air quality benefits
- Minimize emissions "leakage" increase to non-CA GHG emissions
 - Ensure high-road jobs remain
- Facilitate sub-national and national collaboration
 - Develop exportable programs for partners to adopt
- Support cost-effective and flexible compliance

California's Climate Policy Framework

Input Received for Scenario Design

- More than 90 comments from industry, EJ organizations, and individuals on AB 32 Source scenarios
- Comments from EJ Advisory Committee
 - <u>https://ww2.arb.ca.gov/sites/default/files/2021-</u> <u>12/EJAC%20Final%20Responses%20to%20CARB%20Scenario%20Inputs</u> <u>12</u> <u>2</u> <u>21.pdf</u>
 - https://ww2.arb.ca.gov/sites/default/files/2022-01/Scenario Slides for Jan25 EJAC Mtg_01242022.pdf
- More than 90 comments from topical experts, affected stakeholders, and EJ organizations on NWL scenarios
- Two EJ Advisory Committee Working Group meetings
 - https://ww2.arb.ca.gov/sites/default/files/2022-02/Draft%20EJAC%20NWL%20Workgroup%20Notes.pdf

What Carbon Neutrality Means

CALIFORNIA AIR RESOURCES BOARD

AB 32 Sources Scenarios Overview

Key Metrics

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Annual Build Rates Historic Max Builds: Solar: 2.7GW Battery: 0.3GW	Solar: 10GW Battery: 5GW	Solar: 5GW Battery: 3GW	Solar: 7GW Battery: 2GW	Solar: 6GW Battery: 2GW
Vehicle Early Retirements US-wide Cash for Clunkers \$3B and 690k vehicles	LDV: 16M 5-16 yr. old MHDV: 1.4M 5-16 yr. old	LDV: 0 MHDV: 0.6M 10-20 yr. old		
Residential Early Retirements	7M electric homes. Appliances 5-16 yr old			
Hydrogen Demand & Electrolysis Need Total CA Capacity: 83GW	Percent 2020 US: 19% Solar: 47GW	Percent 2020 US: 18% Solar: 44GW	Percent 2020 US: 17% Solar: 41GW	Percent 2020 US: 13% Solar: 31GW
Petroleum Refining Remaining	2035: 0% 2045: 0%	2035: 25% 2045: 8%	2035: 33% 2045: 13%	2035: 39% 2045: 18%
Total CCS Needs Industrial & Refining	2035: <1MMT 2045: <1MMT	2035: 8MMT 2045: 2.4MMT	2035: 10MMT 2045: 4MMT	2035: 11MMT 2045: 5MMT
Residual Emissions Current global DAC 0.01 MT/year	2035: 48MMT 2045: 37MMT	2035: 154MMT 2045: 76MMT	2035: 0MMT 2045: 100MMT	2035: 0MMT 2045: 120MMT

Phase Down Reliance on Fossil Fuels

Transportation Sector Transition

California Vehicle Stock Transition

Electric Sector Transition

Non-Combustion Emissions

Potential Role of Carbon Dioxide Removal to Achieve Carbon Neutrality

Natural and Working Lands Carbon Alternatives

NWL Alternative 1: Prioritize maximizing short term carbon stock at 2045

NWL Alternative 2: Balanced mix of strategies from current commitments/plans

NWL Alternative 3: Prioritize restoration and climate resilience

NWL Alternative 4: Prioritize forest wildfire and other fuel reduction efforts

Results Example – Forest Carbon

Above and Below Ground Biomass and Harvested Wood Product Carbon Stock (MMT C)

- Forests are largest carbon stock pool in the State
- Modeling included wildfire impacts on carbon stocks
- Scenario 2,3,4 = significant increase in management from BAU, which decreases severity of fires, while not negatively impacting overall forest carbon stock.
- Post-2050 modeling in progress given forest timelines
- Additional results forthcoming on reduced forest fire emissions, health, and economics to show overall effect of expanded forest management

All NWL Sequestration/emissions Rate at a Given Year

Summary

INDUSTRY AND ENERGY

- All scenarios achieve drastic reductions in fossil fuel combustion
 - Deliver air quality and GHG benefits
- There is no path to zero without carbon dioxide removal
 - Short-lived climate pollutants persist beyond combustion phase out
- Rates of clean technology and energy deployment are unprecedented
- Need to keep clean energy options open

NATURAL AND WORKING LANDS SCENARIOS

- Climate action needed to improve ecosystem climate resilience
 - Protect ecosystems against future climate change
 - Ensure provision of services to nature and society
 - Protect communities
- High-levels of action on forests can decrease wildfire risk and improve forest health without substantial carbon loss
- Increasing actions on other lands can improve carbon storage and reduce emissions from this sector
- Natural variability exists the ability for NWL to contribute to CN is dependent on future climate change and varies from year to year

Additional Analyses for 2022 Scoping Plan Update

- Health and Economic Analyses
 - AB 197 social cost of carbon, cost per ton of measure, estimated air quality
 - Economic (health, macro, household, jobs)
- Public Health
- Environmental (CEQA)

Next Steps – Prior to Release of the Draft 2022 Scoping Plan Update

2022 Scoping Plan Update Schedule

