

ZEV Technology Incremental Cost

February 10, 2022

Approach to ZEV Cost Analysis

Modeling 2026 to 2035 Model Years

Subtract: Internal Combustion Engine (ICE) Vehicle Component Costs

Incremental Direct Manufacturing Cost

Add: ZEV

Component

Costs

ZEV Technology Incremental Cost Categories

CARB

Modeling the California Fleet

Technology	Range (mi)*		
BEV	300		
Longer Range BEV	400		
PHEV	50		
FCEV	320		
*Modeled ranges are EPA label all-electric-range equivalent			

Battery Pack Costs

Non-Battery Component Cost Projections

- Method:
 - Near-term costs estimated from numerous teardowns and vehicle comparison reports
 - Additional 1% per year cost reduction projected for future years
- Example Cost:
 - 300-mile BEV Medium/Large SUV nonbattery component costs start at ~\$3,700 in 2026 and decrease to ~\$3,300 in 2035

Non-Battery Components:

- Motor and gearbox
- Inverter
- DC-DC converter
- HV cabling
- HV control unit
- On-board charger
- Convenience cord

Fuel Cell and Hydrogen Storage Costs Projected to Fall with Technology Improvement and Manufacturing Scale

US DOE funds evaluation of FCEV system costs

- Strategic Analysis: Cost models of state-of-the-art technology at several production volumes
- ANL: Cost estimates for future vehicles at high production volume with assumptions of future technology advancement
- CARB staff combined the data sources for ACC II evaluations

FCEV Cost Examples

CARB

How to Get From Cost to Consumer Price

Incremental Direct Manufacturing Cost

**Total cost of operation (TCO) analysis not considered – no fuel, maintenance, other operational costs included

2026 Model Year Incremental Cost and Price for a Medium SUV

Cost Category	BEV 300	BEV 400	PHEV	FCEV
Battery Cost	\$8,896	\$12,460	\$3,015	\$1,614
Non-Battery Cost	\$4,767	\$5,310	\$2,656	\$2,728
Fuel Cell Stack & Tank Cost	\$0	\$0	\$0	\$13,916
Delete Costs	-\$7,610	-\$8,110	-\$965	-\$8,110
ZEV Assembly Cost Reductions	-\$1,600	-\$1,600	\$0	-\$800
Total Incremental Vehicle Cost	\$4,453	\$8,060	\$4,706	\$9,348
Retail Price Equivalent / Incremental Price (x1.5)	\$6,680	\$12,090	\$7,059	\$14,022

Fuel Cell Electric Vehicles Become Cost Competitive With Longer Range BEVs in 2033 – Both Are Cheaper Than PHEVs

Small Car 300-mile BEVs See Price Parity With Conventional Cars in 2035

Thank You!

Advanced Clean Cars II Advanced Clean Cars II SRIA Advanced Clean Cars II ZEV Cost Workbook

Additional Material

Fuel Cell Electric Vehicle Overview

- FCEV systems have been in development for several decades
- Cost, durability, and performance continue to improve
- Durability and cost remain the largest challenges
- Costs still have substantial room for improvement with economies of scale

