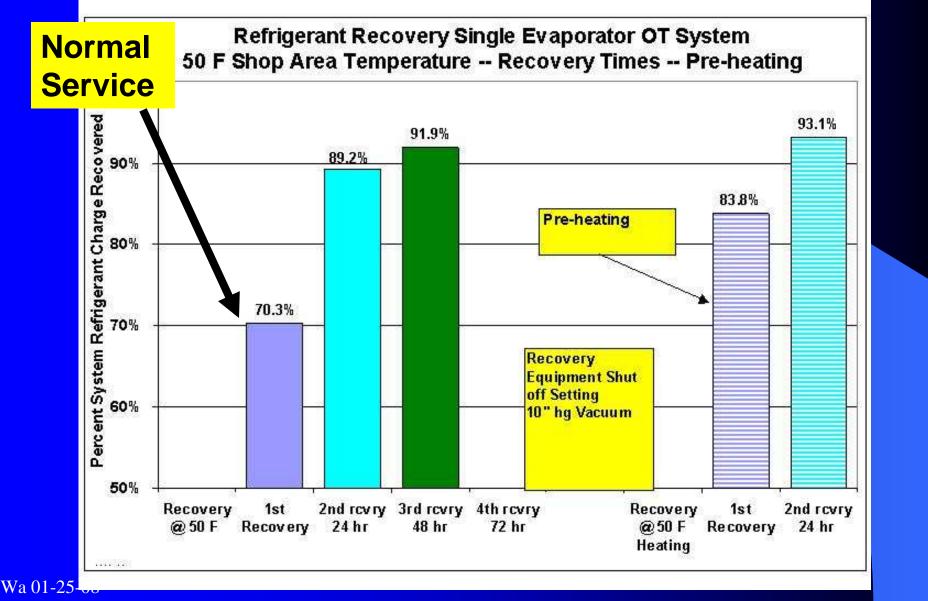
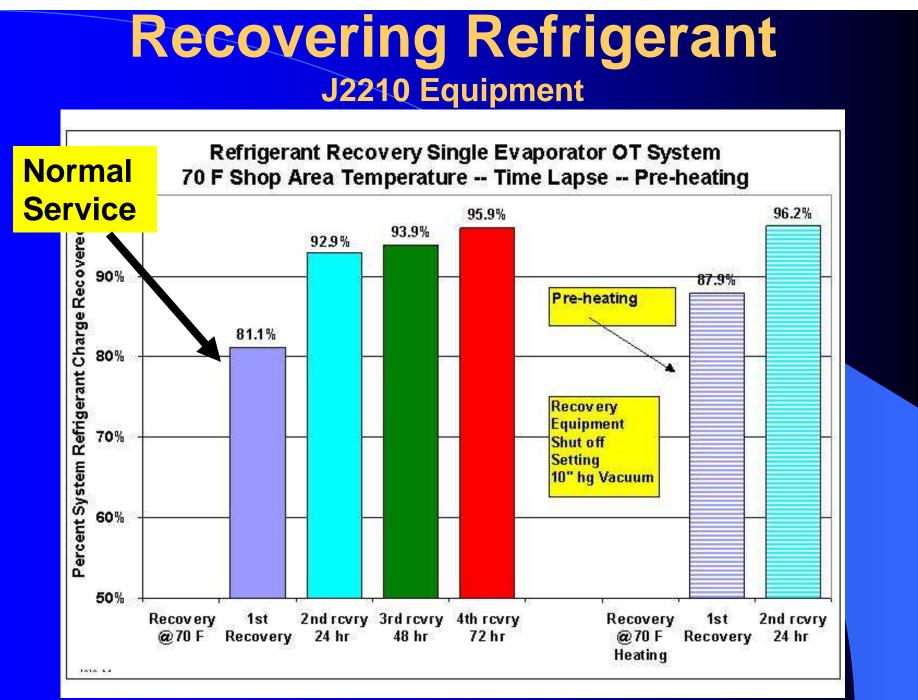
Refrigerant Use in the Mobile A/C Service Industry

California Air Resources Board DIY — MVAC Servicing Workgroup Meeting February 5, 2008 Sacramento, CA

Environmental and Consumer Cost Impact Consequences of improper A/C system servicing – Refrigerant used in current mobile A/C systems is a Greenhouse Gas Not repairing a leaking system Releases refrigerant to atmosphere - Can result in system damage Incorrect system refrigerant charge – System performance problems - Potential component failure

Servicing Mobile A/C Systems


- There are two major refrigerant servicing conditions:
 - System has no refrigerant no cooling
 Generally the loss of refrigerant is due to a large leak due to a system component failure
 - System has some refrigerant poor cooling
 - Generally the loss of refrigerant is due to a small leak due to a system component failure


- The amount of refrigerant in any mobile A/C system cannot be determined using DIY servicing procedures
 - System pressure or panel outlet temperature:
 - Will not identify the amount of refrigerant in system
 - Can identify an extreme undercharged or overcharged system
- Recommended factory refrigerant charge amount should be within plus or minus 2 ounces or less

- Problems from an incorrect refrigerant charge
 - Undercharge
 - Reduced performance
 - Temperature spread across outlets
 - Ice accumulation on cooling coil reduced airflow
 - Odor problems [due to cooling coil hot spots]
 - Damage to compressor [poor oil return]
 - Overcharge
 - Reduced performance higher pressure
 - Possible system shut off on hot day no cooling and/or release of refrigerant due to pressure relief valve opening

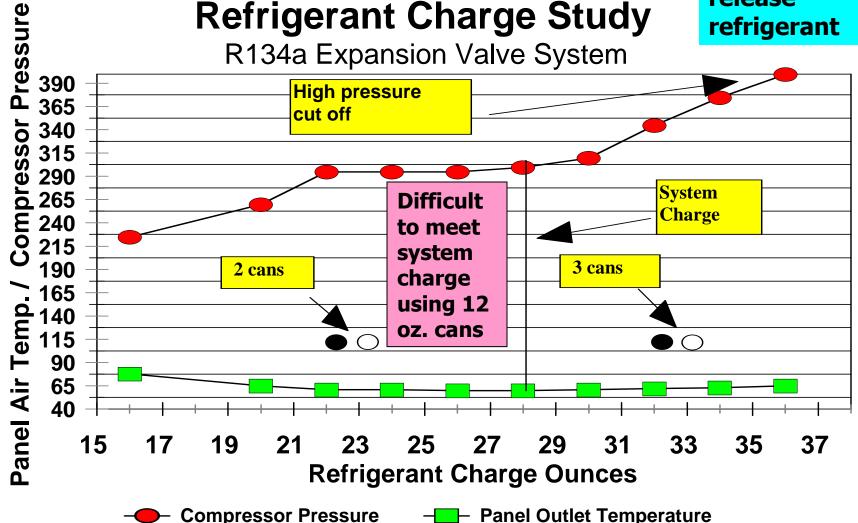
			-							
			Ref	rigerant	Ref.	Panel		Avg.	High	Low
			Charge		Amount	Temperature		Panel	Side	Side
				ount Oz.	Ounces	Spread	ł	Degrees	Pressure	Pressure
Temp Spread				vstem 1	21	Degrees F.		F.	PSIG	PSIG
				Overcharge		5.6		54	287	34
				6 oz						
				ercharge	18	5.5		52	279	34
			3 oz							
Spread			Factory		15	3.2		52	279	33
				Charge						
			Undercharge		12	3.4		57	243	39
			3 oz							
			Und	ercharge	9	13.1		59	222	35
				6 oz						
			_				1		6 oz	
Refrigerant	Ref.	Pane		Avg.	High	Low				
Charge	Amount	Temperature		Panel	Side	Side			Sprea	
Amount Oz.	Ounces	Spread		Degrees	Pressure	Pressure			•	
System 2	20	Degrees F.		F .	PSIG	PSIG			Syste	\mathbf{n}
Overcharge	28	8.4		54	267	32			Jysie	
<u>6 oz</u>	25			F 4	220				Press	ire
Overcharge	25	5.9		54	238	32				
3 oz	22	6.6		Ε4	220	21			Does Not	
Factory	22	0.0		54	238 31					
Charge	19	7.2		54	233	32			Indica	ite 📃
Undercharge 3 oz	19			54	233	52			Charg	
	16	33.6		59	201	29			<u>Charg</u>	e
Undercharge 6 oz	10	55.0		29	201	29			Amou	nt
0.02									Amou	nu

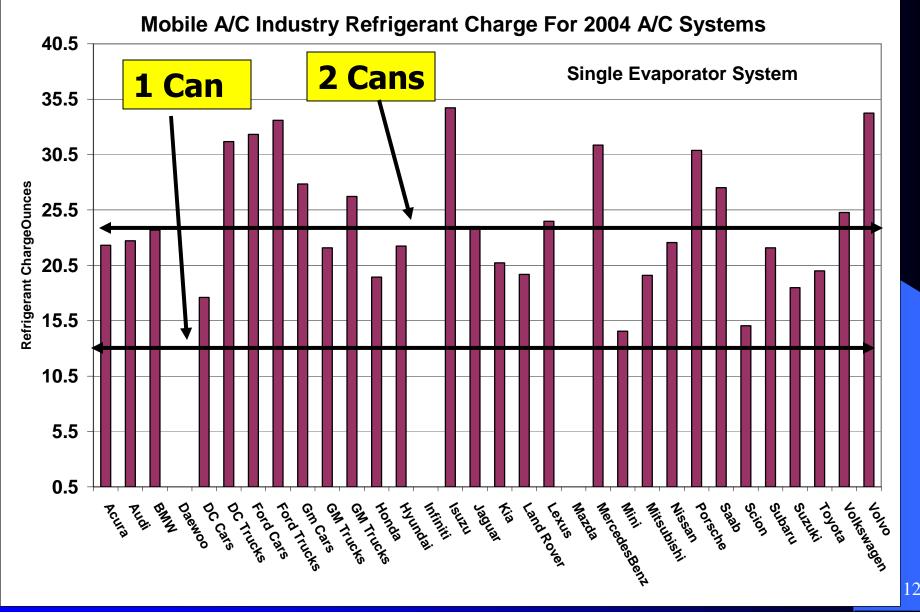
Recovering Refrigerant

Wa 01-25-08

- The only way to know if system has correct refrigerant charge is to use service equipment:
 - Remove all refrigerant recovery equipment [meeting SAE J2788 standard]
 - Evacuate system to remove air and any remaining refrigerant
 - Charge the exact amount of refrigerant [using SAE J2788 certified equipment]

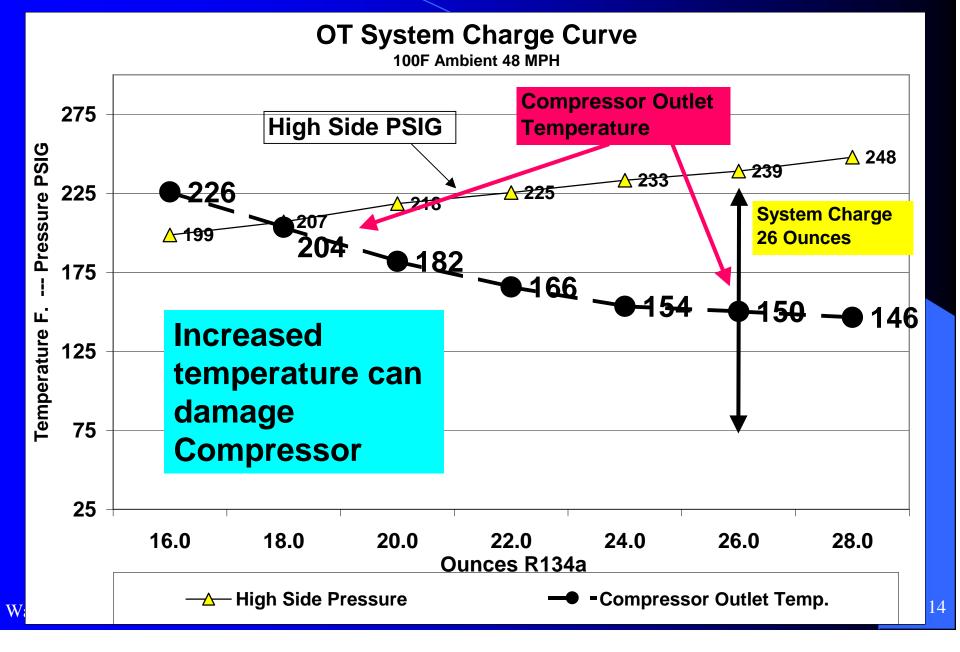
Refrigerant Recovery

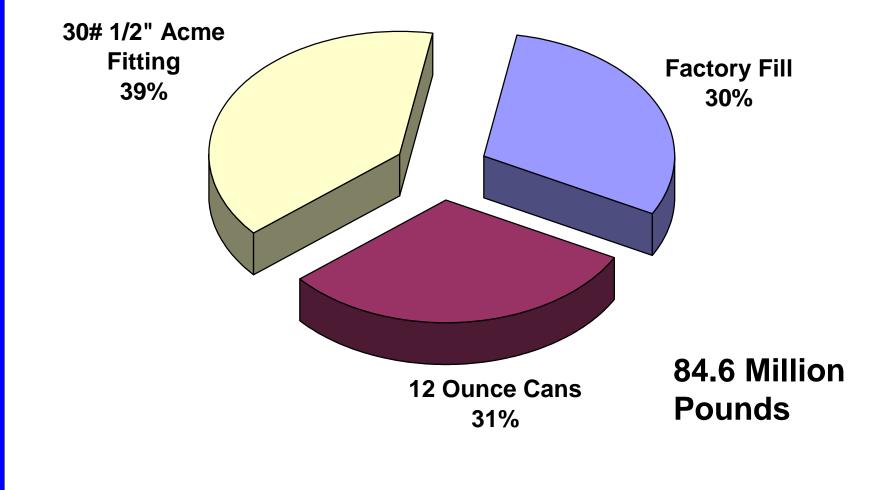

Improper Recovery Can Result in


System over charge
Venting of refrigerant to the atmosphere
Improper System Operation

New J2788 Certified Equipment is

required to assure refrigerant
removal


Overcharge can stop cooling on hot day and/or release refrigerant


A/C System Refrigerant Charge System Charging

- MAC Refrigerant Emissions Have Been Reduced
- Reduced System Charge Amounts
 Reducing Charge Tolerance
- Average Single Evaporator Factory Charge
 - 2000 26.9 ounces (.76Kg)
 - 2004 24.3 ounces (.69Kg)
 - 2006 22.3 ounces (.63Kg)
- System Charges Starting at 10-14 ounces

HFC-134a Use

Estimated Refrigerant Use 2003

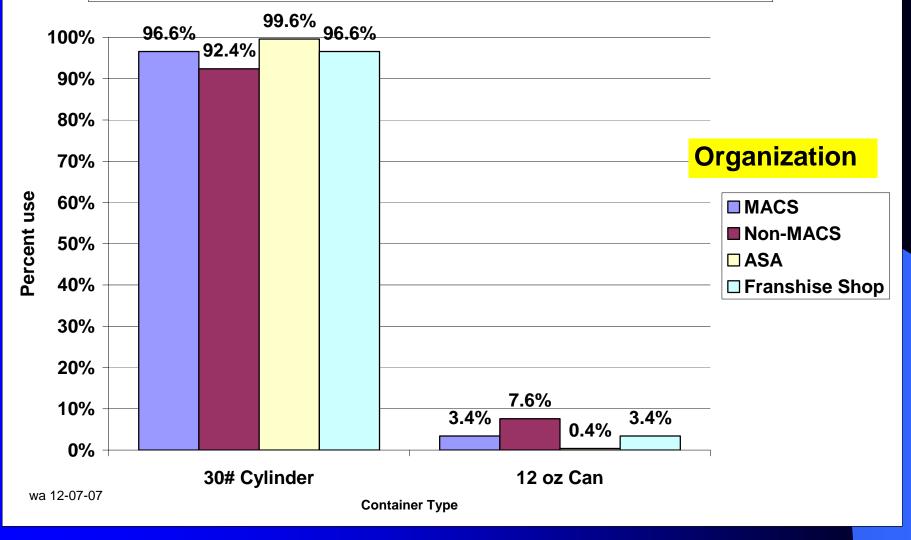
Refrigerant Container

 U.S. EPA Service Equipment Requirements

> Recovery/recycle equipment requires compliance to SAE standards:

> > Unique service hoses

 Unique 30 pound HFC-134a refrigerant container fitting


Refrigerant Container

- Typical 12 ounce can of refrigerant (currently available)
- No standards to cover usage

Wa 01-25-08

Wa 01-25-08

Disposable Container Heel Testing **Study Report Prepared for: United States Environmental Protection Agency Stratospheric Protection Division** March 21, 2007

- Refrigerant remaining in a small can is dependent on transfer method and time
 - Time can range from 5 minutes to over 30 minutes
 - Potential refrigerant heel can range from 1.4% to 74.7%

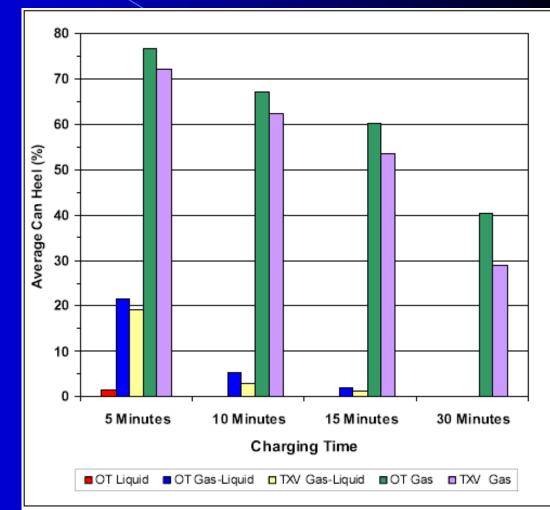


Figure 5: Comparison of Can Heels by Charging Method and MVAC Type

Table 5: Annual Emission Estimate Scenari

DIYer Charging Assumptions	Annual Emission Estimates (pounds/year)					
Scenario 1 - All liquid and all gas charging: 25% of refrigerant charged upside down for 5 minutes, 75% charged upright for an average of 5 to 10 minutes	[1.40% x 0.25] _{upside down} + [0.75 x (74.7% + 65.1%)/2] _{upright} = 52.8% average heel 52.8/100 x 11,833 tons x 2,000 pounds/ton = 12,496,000 pounds emitted					
Scenario 2 - All liquid and mixed gas-liquid charging: 25% of refrigerant charged upside down for 5 minutes, 75% rotated 0 to 90° for an average of 5 to 10 minutes	[1.40% x 0.25] _{upside down} + [0.75 x (20.4% + 3.94%)/2] _{rotated} = 9.5% average heel 9.5/100 x 11,833 tons x 2,000 pounds/ton = 2,248,000 pounds emitted					
Scenario 3 - Mixed gas-liquid charging: 100% rotated for an average of 5 to 10 minutes	[(20.4% + 3.94%)/2] _{notated} = 12.2% average heel. 12.2/100 x 11,833 tons x 2,000 pounds/ton = 2,887,000 pounds emitted					

Note: The annual 11,833 tons/year HFC-134a sales figure for the DIY market is from 2004 sales data from AAIA (Thundiyil, 2005).

- "Absent that data, the estimates in Table 5 indicate the potential for significant emission reductions if DIYers follow best practices to minimize heels."
- "Another important consideration is that the annual emission estimates in Table 5 are only for <u>small can</u> <u>heel emissions</u> and <u>do not include emissions from</u>
 - <u>refrigerant charged into a leaking system</u>,
 - refrigerant released by improper opening of the system,
 - releases due to overcharging,
 - and leaks from charge kit hoses and connections.
 Estimates for those emissions are outside the scope of this report."

User	Container	Time to Charge	Container Heel	Annual Refrigerant Emissions To Atmosphere
DIYer	12 ounce	5 to 10	52.8%	12.5 million
Scenario 1	can	minutes		pounds
DIYer	12 ounce	5 to 10	9.5%	2.3 million
Scenario 2	can	minutes		pounds
DIYer	12 ounce	5 to 10	12.2%	2.9 million
Scenario 3	can	minutes		pounds
J2210 Service	30#	Disposal	1.85%	0.4 million
Equipment	cylinder	Procedure		pounds

 "If a DIYer stopped charging based on the kit gauge readings, he/she would not have a properly charged system and might also discard a can with a large heel."

Figure 2: Small Can with Charge Kit and Adapter Installed on the Ford Focus Accumulator Service Port

Charging A Leaking System HFC-134a is a global warming gas

Charging A Leaking System

Releases Refrigerant to Atmosphere
Can Damage System
Resulting in a more expensive repair

Without Removing Refrigerant

Actual Refrigerant Amount In System Cannot Be Determined