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Abstract 
Legislation in the State of California mandates reductions of 40% in greenhouse gas (GHG) 
emissions by 2030 and of 80% by 2050. To establish compliance with California legislation, 
comprehensive, long-term observing strategies are required. In this report, we present the long-
term trends of methane (CH4), Nitrous Oxide (N2O), and Carbon Monoxide (CO) emissions 
beginning in 2011 using the California Laboratory for Atmospheric Remote Sensing (CLARS) 
facility on Mt. Wilson, which is the home of the CLARS-FTS instrument, a scanning Fourier 
transform spectrometer (FTS) which maps the spatial distributions of GHGs in the Los Angeles 
(LA) basin. The CLARS-FTS instrument points to a series of locations in the South Coast Air 
Basin (SoCAB), providing maps every 90 minutes of dry air mole fractions of CH4 (XCH4), N2O 
(XN2O), CO (XCO) and a number of other chemical species with a spatial resolution of a few km. 
In the first part of this report, we determine the emissions of CH4 in LA from 2011 to 2019, 
extending the work of He et al. (2019), using CLARS-FTS observations based on a tracer-tracer 
ratio method with CO2 emissions. We show that the pattern of CH4 emissions contains both 
seasonal and non-seasonal contributions. We find that the seasonal component peaks in the winter 
and is correlated (R2=0.50) with utility natural gas consumption from the residential and 
commercial sectors and not from the industrial and gas-fired power plant sectors. The non-seasonal 
component is (14.0 ± 1.3) Gg CH4/month. If the seasonal correlation is causal, about (1.8 ± 0.18) 
% of the commercial and residential natural gas consumption in LA is released into the atmosphere. 
This report updates these numbers, which are different from He et al. (2019), with two more years 
of CLARS observations and updated background calculations. Identification of the sector(s) 
responsible for the CH4 emissions and their temporal and spatial variability is a key step in 
achieving the goals of emission reduction. 
In the second part, we derive urban N2O emissions for LA using CLARS-FTS observations from 
2013 to 2019. N2O is an important greenhouse gas contributing both to global radiative forcing 
and ozone depletion. Though N2O emissions are largely derived from agricultural activities, urban 
sources of N2O also contribute significantly to anthropogenic emissions, but are not well 
understood and difficult to quantify. CLARS-FTS observations yield a weighted mean of 15.0 ± 
0.1 ppb excess XN2O (XN2Oxs) above background in the LA basin from 2013-2019.  The time 
series of XN2Oxs show a seasonal cycle with a peak-to-peak amplitude of 5.6 ± 2.5 ppb, where 
greater XN2Oxs values are observed during the winter/spring and minima occur in late 
summer/early fall. A tracer-tracer ratio method is applied using XN2Oxs and XCO2,xs observations 
to estimate top-down N2O emissions for the LA basin during 2013-2018. Estimated monthly 
emissions range from 6-19 Gg N2O per month and exhibit a similar seasonal cycle to that observed 
in XN2Oxs. Estimated annual emissions fall within the range 124-144 Gg per year for the years 
2014-2018. These top-down annual estimates are 2-3 times larger than the CARB statewide 
bottom-up inventory for the same time period, but consistent considering uncertainties with other 
top-down estimates for the LA basin. CARB does not release bottom-up emissions data for 
individual airsheds in the state; only the State totals. Therefore, comparing the CLARS (or other 
regional measurements) with the CARB statewide emissions values is subject to very large 
uncertainties. 
In the third part, we used CLARS-FTS data to map the excess of XCO in LA. Atmospheric CO is 
an effective tracer for monitoring atmospheric transport processes and for detecting pollution 
sources of anthropogenic origin. However, very few observation systems exist that are capable of 
providing measurements with high spatial and temporal resolution to identify hotspots for emission 
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control purposes. Here we use CLARS-FTS observations to derive the XCO enhancement, which 
is the XCO excess in the PBL compared to the background value. In the LA megacity, the XCO 
enhancement shows a distinctive diurnal cycle primarily driven by changes in anthropogenic 
emissions and sea-breeze circulation. Such diurnal patterns can be reproduced by the Weather 
Research and Forecasting model coupled with Chemistry (WRF-Chem). The enhancement also 
shows a significant weekly cycle resulting from the weekly pattern in anthropogenic CO emissions. 
On average, the XCO enhancements on Saturday and Sunday are 4.4% and 16.1%, respectively, 
lower than weekday values. The weekly XCO enhancement patterns also show high correlation 
with traffic counts. A seasonal pattern of XCO enhancement with high (low) spatial contrast in 
summer (winter), resulting from changing sea-breeze circulation, can be observed. These diurnal, 
weekly, and seasonal patterns of XCO enhancement serve as tracers of the atmospheric pulse of 
the LA megacity. 
In the last part of this report, we take advantage of the multi-angle observational geometries of 
CLARS-FTS to constrain the aerosol angular scattering effect, which is associated with aerosol 
compositions, using O2 absorption spectroscopy. CLARS-FTS provides a wide range of scattering 
angles, from about 20° (forward) to about 140° (backward). We found that the correlation between 
measurements at different targets can be used to quantify the strength of the angular dependence 
of the aerosol phase function. Applying the correlation technique to CLARS-FTS measurements, 
we find that, from 2011 to 2018, there is no significant trend in the aerosol phase function in the 
LA megacity. Overall, this experiment provides a practical observing strategy for quantifying the 
angular dependence of aerosol scattering in urban atmospheres. 
These results demonstrate the uniqueness of CLARS-FTS in mapping the urban emissions of LA 
with high spatial and temporal capability. Its measurements are highly sensitive to anthropogenic 
emissions due to the long light path along the planetary boundary layer. The CLARS observatory 
can serve as a testbed for future geostationary missions to track anthropogenic emissions in 
cities. 
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Chapter 1. Introduction 
The Los Angeles metropolitan area, the second most populous area in the US, is also the largest 
urban carbon emitter among all US cities (Moran et al., 2018). In response, California has 
ambitious mandates to reduce greenhouse gas (GHG) emissions. Legislation in the State of 
California mandates reductions of 40% in GHG emissions by 2030 and of 80% by 2050. 
Specifically, California will require that by 2035 all new passenger cars and trucks sold in the state 
be zero-emissions and by 2045 all medium- and heavy-duty vehicles in California be zero-
emission (California EXECUTIVE ORDER N-79-20; https://www.gov.ca.gov/wp-
content/uploads/2020/09/9.23.20-EO-N-79-20-text.pdf). These efforts will be important 
milestones to reach the commitment in the Paris Agreement, which aims to substantially cut 
anthropogenic GHG emissions. Compliances of the agreement by primarily relying on self-
reported emission inventories associated with large uncertainties (Gurney et al., 2021) are not 
sufficient. Measurement, reporting, and verification (MRV), as suggested by the 
Intergovernmental Panel on Climate Change (Eggleston et al., 2006), should be implemented to 
ensure that the emissions controls are working on a long-term scale. Direct observations of 
atmospheric GHGs to estimate emissions have been proven to be an effective way of verifying and 
validating the outcomes of the mitigation strategies (e.g., McKain et al., 2012; Wong et al., 2016; 
Nassar et al., 2017). 
To establish compliance with California legislation that mandates the rollback of GHG emissions, 
comprehensive, long-term observing strategies are required. In this report, advanced atmospheric 
remote sensing methods are utilized to quantify the long term trends of CH4, N2O, and CO 
emissions in the LA basin. We use observations from the California Laboratory for Atmospheric 
Remote Sensing (CLARS) facility on Mt. Wilson (~1700 meters a.s.l.), which is the home of the 
CLARS-FTS instrument, a scanning Fourier transform spectrometer. Using instruments and 
algorithms developed by NASA (National Aeronautics and Space Administration) for space 
missions, CLARS-FTS maps the spatial distributions of methane (CH4), carbon dioxide (CO2), 
nitrous oxide (N2O), carbon monoxide (CO), and other species in the Los Angeles (LA) basin with 
high precision and accuracy traceable to laboratory spectroscopic databases. CLARS-FTS 
completes a survey of GHG distributions across the LA basin every 90 minutes, retrieving their 
slant column abundances and dry-air mole fractions. The CLARS-FTS has been measuring trace 
gases and inferring emissions continuously since September, 2011, thus providing the longest 
available data record that covers the entire LA basin. 
In the following report, we first give a general introduction to the CH4, N2O, and CO emissions in 
LA. In Chapter 2, we provide an overview of the observation, data retrieval, and data processing 
of CLARS-FTS. In Chapter 3 to 5, the estimations of CH4, N2O, and CO emissions and their 
long-term trends derived from CLARS-FTS observations are introduced, respectively. In Chapter 
6, we introduce the use of angular scattering effect of aerosols to infer the long term trend in aerosol 
compositions in LA. Future plans on using CLARS-FTS observations to constrain the point 
sources and long term trend toward 2030 are introduced in Chapter 7, following by conclusions 
in Chapter 8. 
This report is primarily based on the following four publications, including He et al., (2019), Zeng 
et al. (2020a), Zeng et al. (2020b), and Addington et al. (2021). 
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1.1 CH4 emissions in Los Angeles 
CH4 is a potent greenhouse gas with a number of biogenic and anthropogenic emission sources. 
CH4 accounts for about 25% of the change in radiative forcing total from increases in the well-
mixed greenhouse gases since the pre-industrial era (Etminan et al., 2016). With an atmospheric 
lifetime of only about 10 years, CH4 is a desirable target for greenhouse gas emission reductions 
because emission controls will have a relatively rapid impact on radiative forcing. In urban areas, 
the primary sources include landfills, sewage treatment plants and fugitive emissions from natural 
gas production, storage and distribution systems. In the South Coast Air Basin (SOCAB), which 
holds more than 43% of California’s population, the annual methane emissions estimates based on 
atmospheric CH4 observations exceed bottom-up emissions inventories by 30-100%. Therefore, 
considerable attention is being devoted to reducing the uncertainties in CH4 emissions estimates 
and correctly attributing emissions to their sources. In 2015, the Governor approved Assembly Bill 
1496 which requires ARB to: Undertake monitoring and measurements of methane “hot spots”; 
Understand the life-cycle emissions of natural gas produced and imported into California; Review 
and assess the atmospheric reactivity of methane as a precursor to the formation of photochemical 
oxidant; Update relevant policies and programs to incorporate new information. Legislation in the 
State of California mandates reductions in emissions of short-lived climate pollutants of 40% from 
2013 levels by 2030 for CH4 (California Legislature, 2006). In the LA basin and other urban areas, 
previous studies focused on methane source attribution have used a variety of methods including 
C2H6 as a tracer for fossil methane, and measurements of CH4 isotopologues to distinguish fossil 
and biogenic sources (Wennberg et al., 2012; Hopkins et al., 2016; Wunch et al., 2016). These 
studies indicate that fugitive natural gas emissions account for 56-70% of the difference between 
annual top-down and bottom-up (annual excess) CH4 emissions in LA (Wennberg et al., 2012; 
Peischl et al., 2013; Hopkins et al., 2016). 
Almost all previous studies were restricted in spatial and/or temporal coverage and none were able 
to determine which segments and operations of the natural gas distribution system were 
responsible for the leakage. Wennberg et al. (2012) proposed that many small leaks downstream 
of the gas meters could be responsible rather than the transport, storage and distribution segments. 
Identifying and quantifying the sources of these emissions is critical because methane budgets vary 
between urban areas, so understanding the emission pathways is essential for mitigation (McKain 
et al., 2015; Lamb et al., 2016; Jeong et al., 2017). 
Using the tracer-tracer correlation method combined with a highly resolved CO2 emissions 
inventory, Wong et al. (2016) showed that it was possible to identify seasonal peaks in spatially-
aggregated CH4 emissions in LA. CH4 emission peaks up to 37 Gg/month were consistently 
observed in the winter seasons, with a low of 27 Gg/month in the summer. These levels were 
revised upward in the present study as a result of changes to the underlying CO2 inventory. Overall, 
the measured SOFCAB CH4 emissions were 2-31% higher than the scaled statewide bottom-up 
emissions estimated by the California Air Resources Board (CARB) from 2011-2013 averaged 
over the three years (CARB, 2011). This result is consistent with other studies that obtained larger 
emissions than CARB estimates (Wunch et al., 2009; Hsu et al., 2010; Wennberg et al., 2012; 
Peischl et al., 2013; Wong et al., 2015; Conley et al., 2016; Wong et al., 2016; Wunch et al., 2016; 
Cui et al., 2017; Hedelius et al., 2018; Yadav et al., 2019). No seasonal variability has been 
observed in other intensively monitored cities including Indianapolis and Boston although these 
cities differ significantly from Los Angeles in topography, meteorology, infrastructure and other 
factors that influence methane emissions (McKain et al., 2015; Lamb et al., 2016). 
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In this study, we resolve seasonal and spatial variability of CH4 emissions from 2011 to 2019 and 
regress it against consumption data as an important step towards reconciling California’s methane 
budget. The goal is first to leverage our powerful 2011–2019 data record to quantify seasonal to 
interannual variability in LA CH4 emissions. Secondly, we investigated whether the seasonality of 
LA CH4 emissions is related to natural gas consumption. Finally, we quantified the relative 
contribution of each sector (including residential, commercial, industrial, vehicle, and power plant) 
to the seasonality of LA CH4 emissions. The results of CH4 are shown in Chapter 3. 

1.2 N2O emissions in Los Angeles 
Nitrous oxide (N2O), an important greenhouse gas, is the third largest contributor to global 
radiative forcing (Stein and Yung, 2003; Butler and Montzka, 2020). Compared to other non-CO2 
greenhouse gases, N2O has a relatively high global warming potential of 298 on a 100-year time 
scale and a long atmospheric lifetime of approximately 114 years (US EPA, 2019). Less than 1% 
of atmospheric N2O is removed annually, primarily by UV photolysis in the stratosphere (Montzka 
et al., 2011). A smaller portion undergoes a photo-oxidation reaction with O(1D), which produces 
NOx and in turn contributes to ozone depletion in the stratosphere (Morgan et al., 2004). For these 
reasons, nitrous oxide is one of the greenhouse gases targeted for emission reduction by the Kyoto 
protocol (1997) and a focus of global monitoring networks. The present-day atmospheric 
concentration of 330 ppb (Butler and Montzka, 2020) is significantly greater than pre-industrial 
levels, estimated around 270 ppb using ice-core and firn air samples (Machida et al., 1995; Battle 
et al., 1996). Many studies have characterized the annual increase from pre-industrial levels as 
quasi-linear with a global slope value ranging between 0.7–1.0 ppb/year during the last century 
(Prinn et al., 1990; Machida et al., 1995; Prinn et al., 2000; Thompson et al., 2004). Thompson et 
al. (2004) suggested that the magnitude of this growth rate depends on latitude, as larger growth 
rates are observed in the Northern hemisphere with interhemispheric differences ranging from 0.4 
to 1.4 ppb/year from 1987 to 2003. The growth rate also exhibits some interannual variability, 
which may be attributed in part to variations in tropospheric transport, the magnitude of the 
stratospheric sink, and the influence of El Niño conditions in certain years (Nevison et al., 2007). 
Finally, several studies report an observed acceleration in this growth rate over the last century 
(e.g. Prinn et al.,1990; Battle et al.,1996). According to the World Meteorological Organization 
Greenhouse Gas Bulletin for observations through 2018, the increase in atmospheric 
concentrations from 2017 to 2018 was larger than both the increase from the previous year and the 
average growth rate of the past decade (WMO, 2019). 
Other studies observe a significant seasonal cycle in tropospheric N2O (e.g., Liao et al., 2004; 
Nevison et al., 2004; Jiang et al., 2007; Nevison et al., 2007). Like the growth rate, the phase and 
peak-to-peak amplitude of the seasonal cycle has a latitudinal dependence. In the Northern 
hemisphere, this seasonal cycle appears to have a minimum during late spring/early summer, 
which is attributed to an influx of N2O-poor air from the stratosphere due the seasonally varying 
strength of Brewer-Dobson circulation (Jiang et al., 2007). This explanation is supported by studies 
showing a correlation between the seasonal cycles of N2O with other long-lived atmospheric gases 
such as chlorofluorocarbons (CFCs), which act as tracers for N2O since both are well-mixed in the 
troposphere and are primarily destroyed by photochemical reactions in the stratosphere (Nevison 
et al., 2004). Finally, the observed seasonal amplitudes for the Northern hemisphere are greater 
than those observed for the Southern hemisphere (e.g. Nevison et al., 2004; Zhou et al., 2019). 
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Jiang et al. (2007) reported amplitudes at high latitudes exceeding 1 ppb compared to an observed 
amplitude of 0.29 ppb for the South Pole. 
The increase in global N2O concentrations from pre-industrial levels is attributed to both natural 
and anthropogenic sources. The largest source of global N2O emissions is microbial activity in 
fertilized agricultural soils, as nitrous oxide is a biproduct of nitrification/ denitrification processes 
occurring within the global nitrogen cycle (US EPA, 2019). Therefore, growing global 
concentrations are largely linked to the increased use and production of inorganic fertilizers along 
with the cultivation of nitrogen-fixing crops (Montzka et al., 2011). Agricultural activities also 
generate indirect emissions in the form of leaching and run-off, which can in turn increase 
emissions from natural soils and bodies of water (Syakila and Kroeze, 2011). Other anthropogenic 
sources of N2O emissions include fossil fuel combustion, chemical production, biomass burning, 
and treatment of domestic wastewater (US EPA, 2019). While a fair amount of research has been 
done to investigate mechanisms for N2O production in plants under various agricultural 
management practices (e.g., Horwath, 2012; Butterbach-Bahl et al., 2013) and some research has 
worked to estimate emissions from wastewater treatment plants (e.g., Wunderlin et al., 2011; 
Daelman et al., 2015; Vasilaki et al., 2019) and automobile combustion (e.g., Huai et al., 2004; 
Borsari and Assunção, 2009; Graham et al., 2009), urban sources of nitrous oxide are not well 
understood or quantified. Estimating N2O emissions using bottom-up approaches includes 
significant uncertainties because of the difficulty in quantifying sources and an incomplete 
understanding of emissive processes (Montzka et al., 2011). 
Most N2O emission inventories are derived at the state or national level while few attempts have 
been made to estimate nitrous oxide emissions for an urban region. In California, interest in 
quantifying local emissions is stimulated by state and city policy goals concerning emission 
reduction and air quality improvements. The California Global Warming Solutions Act, which was 
passed in 2006, aims to reduce GHG emissions in California to 40% below 1990 levels by 2030. 
As California is home to a number of large cities, like Los Angeles, which contain large 
proportions of the statewide population and contribute significantly to anthropogenic emissions, 
monitoring urban emissions plays an important role in the statewide goal. Airborne campaigns, 
such as CalNex in 2010, have aimed to quantify emissions for both rural and urban regions in 
California, such as the Central Valley and greater Los Angeles, respectively (Xiang et al., 2013). 
In addition, the Total Carbon Column Observing Network (TCCON), a ground-based Fourier 
Transform spectrometer (FTS) network, has sites within the SoCAB, which encompasses greater 
LA, that have been taking total column GHG measurements, including N2O, starting in 2007 
(Wunch et al., 2009). 
While airborne campaigns provide data in target regions with high spatial resolution, the temporal 
extent of these measurements are limited, given that flights are conducted infrequently. Similarly, 
ground-based networks provide data with high temporal resolution, as GHG concentrations are 
measured frequently, but can only provide limited spatial coverage for a sprawling megacity like 
Los Angeles. This study uses remote sensing observations from CLARS-FTS to quantify nitrous 
oxide emissions for the Los Angeles Basin by applying a top-down tracer-tracer ratio method to 
N2O and CO2 observations. This method has been previously employed to study urban methane 
(CH4) emissions in Los Angeles (Wunch et al., 2009; Wong et al., 2015; Wong et al., 2016). 
Towards this goal, this study also investigates the temporal trends of N2O mixing ratio excess 
within the LA basin. Given the importance of megacities to anthropogenic emissions, the methods 
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applied in this study could serve as a model for new approaches to monitoring urban greenhouse 
gases. The results of N2O are shown in Chapter 4. 

1.3 CO and Aerosols in Los Angeles 
After decades of emissions control in California, the air pollutants associated with passenger cars 
have decreased substantially. However, LA is still one of the most polluted cities in the US. Its 
large anthropogenic emissions, special meteorological conditions, and unique geographic 
landscape are favorable for smog formation and lead to severe air quality problems in LA. 
Extensive bottom-up and top-down studies have been conducted in LA to quantify anthropogenic 
emissions on a basin-wide scale (e.g., Cui et al., 2015; Hedelius et al., 2018; Gurney et al., 2019). 
However, to implement effective emission control policies, advanced top-down measurements 
must be able to capture the fine-scale spatial/local emission gradients. More than 83% of CO is 
emitted from mobile sources (of which 47% are from on-road motor vehicles) as indicated by 
bottom up CO emission estimates (CARB, 2016) in the SOCAB, which consists of the urban areas 
of LA, Orange, Riverside, and San Bernardino counties in Southern California. Since CO is an 
effective tracer of atmospheric transport process, quantification of the diurnal, weekly, and 
seasonal patterns of XCO enhancement will shed light on the atmospheric emissions of trace gases 
in the LA megacity, possibly leading to better emission reduction strategies to mitigate their 
adverse effects on public health and global warming. Moreover, CO is also a tracer for emissions 
of several other co-emitted species, including volatile organic compounds (Borbon et al., 2013), 
CO2 (Gamnitzer et al., 2006) and black carbon (Guo et al., 2017); knowledge gained from XCO 
will help constrain these co-emitted species. 
CO is emitted to the atmosphere mainly as a result of incomplete combustion. CO has an adverse 
impact on public health because of its toxicity. It also participates in atmospheric chemical 
reactions that form ozone. The fact that CO has a low background concentration and moderately 
long atmospheric residence time from weeks to months (Holloway et al., 2000) makes it an 
effective tracer for monitoring atmospheric transport processes as well as for detecting pollution 
sources of anthropogenic origin (e.g., Pommier et al. 2013; Borsdorff et al. 2018a). In order to 
identify hotspots for emissions control purposes, observation systems and networks must be 
capable of providing measurements with high spatial and temporal resolution. 
Space-borne instruments, e.g., Tropospheric Monitoring Instrument (TROPOMI; Borsdorff et al. 
2018b), Measurement of Pollution in the Troposphere (MOPITT; Jiang et al., 2017) and 
Tropospheric Emission Spectrometer (TES; Rinsland et al., 2006), provide measurements of CO 
with global coverage. However, CO measurements from space-borne instruments (e.g., TES) only 
observing at the CO absorption channel at 4.7 µm in the thermal infrared band are strongly 
weighted to the mid-troposphere and relatively insensitive to the PBL CO variability. Borsdorff et 
al. (2019c) demonstrated that TROPOMI can detect CO on sub-city scales. However, these 
measurements from Low Earth Orbiting (LEO) satellites have limited temporal resolution (usually 
one overpass a day), and are not an ideal proxy for local emissions partly due to their weak 
sensitivity to surface layer CO mixing ratio (Jiang et al., 2018). Ground-based measurements of 
CO in cities, e.g., from the Total Carbon Column Observing Network (TCCON) (Wunch et al., 
2009; Hedelius et al., 2018) and the NASA megacity network (Verhulst et al., 2018) have limited 
spatial coverage. Such limitations make them rely heavily on transport modeling (Feng et al., 2016), 
whereby the model transport module may contribute non-negligible uncertainties to fine scale 
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simulation (Lauvaux et al. 2009), for inferring urban-scale emissions. In this study, we present the 
results from CLARS-FTS on mapping the CO column-averaged dry-air model fraction (XCO) 
enhancement in the LA megacity. The results are shown in Chapter 5. 
The CLARS observation geometry makes the measurements not only highly sensitive to the 
atmospheric composition but also very susceptible to influence by aerosol scattering and 
absorption due to the long light path across the boundary layer (Zhang et al., 2015; Zeng et al., 
2017). Using absorption spectroscopy of molecular oxygen, Zhang et al. (2015) and Zeng et al. 
(2017) demonstrated the capability of CLARS-FTS observations in monitoring the air pollutants 
in the LA basin. Aerosols, including those that contribute to poor air quality, are produced 
primarily within the planetary boundary layer (PBL), which is the bottom layer of the atmosphere 
and couples the Earth’s surface and the atmosphere above. However, this near-surface layer is 
relatively poorly modeled, including the air pollutants trapped within this mixing layer. Aerosols 
in the atmosphere affect the Earth’s energy balance directly by scattering and absorption of 
sunlight and indirectly through aerosol-cloud interactions. It has been shown that the aerosol direct 
and indirect effects are the two largest sources of uncertainties in quantifying anthropogenic 
radiative forcing (Stocker et al., 2014). The adverse impact of aerosols on public health makes 
particulate matter air pollution the world’s largest environmental health risk (Heft-Neal et al., 
2018). 
A wide range of observation techniques, including space-based, airborne, and ground-based 
remote sensing, has been developed to provide constraints on the aerosol optical and microphysical 
properties. However, due to the large spatiotemporal variation in the loading, vertical distribution 
and microphysical properties of aerosols, their effects on the retrieval uncertainty in greenhouse 
gas measurements space are not well quantified. Multi-angle measurements provide additional 
constraints on the angular dependence of aerosol scattering (Diner et al., 2018). The aerosol phase 
function, which characterizes the angular signature of scattering, has been continuously monitored 
from ground-based and space-borne observations. The ground-based network of AERONET 
stations has been instrumental for global monitoring of aerosol variability and retrieval of their 
optical and microphysical properties, including phase function (Kaufman et al., 1994; Dubovik et 
al., 2000). The NASA Multi-angle Imaging SpectroRadiometer (MISR; Diner et al., 2005) has 
been successful in retrieving aerosol microphysical properties associated with different 
anthropogenic and naturally occurring aerosol types (Kahn et al., 2001). Benefiting from its multi-
angle observing capability, MISR is able to sample a large range of scattering angles, from about 
60° and about 160° at mid-latitudes, concentrating on backward scattering (>90°) for most of their 
observing angles. However, the range of scattering angles these instruments can sample in the 
forward scattering directions is limited. Ground-based instruments mostly focus on forward 
scattering, whereas space-borne instruments concentrate on backward scattering. There is a dearth 
of research on the remote sensing of aerosol angular scattering effects over a wider range of 
scattering angles (from backward to forward), especially with relevance to observing at city scales 
with diurnal capability. 
This study of using CLARS-FTS observations to investigate urban aerosols in LA has two 
objectives. First, we report multi-year (2011–2018) measurements of aerosol scattering, at a wider 
range of scattering angles than any existing instrument, from CLARS-FTS, which provides diurnal 
observations of aerosol scattering inside the LA megacity. Second, we use measurements of 
oxygen absorption from CLARS-FTS to investigate the diurnal and seasonal variabilities of 
angular scattering due to aerosols in the LA basin. Since oxygen is a well-mixed gas with known 
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concentration, the measurement is a proxy for the average length of the light paths (direct and 
scattered) and therefore an indicator of the strength of aerosol scattering. The results of aerosols 
are shown in Chapter 6. 
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Chapter 2. Overview of CLARS observatory 

2.1 CLARS-FTS 
CLARS, a novel mountain-top observatory, is a first-of-its-kind observation system to monitor 
urban emissions from a top-down perspective. CLARS is unique in the following ways: (1) it 
mimics a geostationary satellite observatory for LA with approximately hourly- and kilometer-
scale mapping capability; (2) the free tropospheric background atmosphere is measured 
simultaneously; and (3) the measurements are highly sensitive to anthropogenic emissions due to 
the long light path along the planetary boundary layer (PBL). As shown in Figure 2.1, compared 
to satellite, CLARS has a longer path in the PBL compared to satellite measurements and therefore 
higher sensitivity to urban emissions. Compared to ground/tower-based stations that only sample 
the bottom layer of the atmosphere and are subject to the highly variable boundary layer height, 
CLARS samples the whole atmospheric column and is therefore not affected by this issue. The 
CLARS-FTS has been measuring greenhouse gases (GHGs) and air pollutants continuously since 
September, 2011, thus providing the longest available data record that covers the entire LA basin. 

Figure 2.1. (a) Schematic figure showing the observation geometries and modes, including Los Angeles 
Basin Survey (LABS) and Spectralon Viewing Observation (SVO) modes, of CLARS-FTS; (b) CLARS 
observatory on the top of Mt. Wilson overlooking the LA basin and measures column abundances of 
CO2, CH4, N2O, CO, O2, and other trace gases; (c) The 33 surface reflection points across the Los Angeles 
basin. The background image is adopted from © Google Earth. 
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CLARS-FTS was designed and built at Jet Propulsion Laboratory (JPL). It is optimized for 
reflected sunlight measurements with high spectral resolution in the near-infrared (NIR) region 
(4,000 –15,000 cm-1). CLARS-FTS uses a pointing system to target a set of predefined reflection 
points in the LA basin as well as a local diffuse reflector (Spectralon) for measurements of the free 
tropospheric background (Figure 2.1). As shown in Figure 2.2, the surface reflection points of 
CLARS are densely distributed and are capable of capturing the changes in GHGs over the whole 
basin. Two operating modes are on the CLARS-FTS measurement schedule: Los Angeles Basin 
Surveys (LABS), and Spectralon Viewing Observations (SVO). In LABS mode, the pointing 
system stares at each ground site in the LA basin and CLARS-FTS records atmospheric absorption 
spectra using reflected sunlight as the light source. In SVO, CLARS-FTS measures the trace gas 
concentration above the CLARS site by pointing at a Spectralon (diffuse reflector) target on the 
rooftop. Since the CLARS mountaintop site is located above the boundary layer, SVO 
measurements give the background trace gas abundances in the free troposphere. In the downward 
viewing geometry used in the CLARS-FTS measurements, the sunlight travels through the 
boundary layer twice: once on the way to the target and a second time from the target to CLARS. 
The resulting light path through the boundary layer is typically greater than 20 km which is several 
times longer than other commonly used viewing geometries, e.g., observing the direct solar beam 
from the surface, or measurement of surface-reflected sunlight from aircraft and spacecraft vantage 
points. CLARS covers the whole basin every 1.5 hours. Depending on the season, the total number 
of observations within a single day ranges from 160 to 260, and the number of repeated scans of 
the whole basin is between five to eight times. Additional details may be found in Fu et al. (2014). 

Figure 2.2. The spatial distribution of a priori emissions of CO2, CH4, N2O, and CO, overlaid with the 33 
CLARS surface targets. The CH4 emission inventory comes from the EPA gridded 2012 methane emissions 
(0.1-degree resolution); The CO emission inventory comes from the National Emissions Inventory (NEI) by 
EPA (4-km spatial resolution). The CO2 emission inventory comes from Hestia project (1-km spatial 
resolution); The N2O emission inventory comes from the Emission Database for Global Atmospheric 
Research (EDGAR; 0.1-degree resolution). 
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  2.2.1 Slant column density and dry-air mole fraction of trace gases 

  
  

          = 0.2095 ∗ 
𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺 (𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺𝐺𝐺𝐺𝐺/𝑚𝑚2)

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 (2.1) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑂𝑂2/𝑚𝑚2) 

  2.2.2 Data filtering 

 
Table 1: Data filter criteria for removing low quality retrievals  

Filter  Criterion for removal  
 High clouds   SVO O2 SCD Retrieved : O2 SCD Geometric      ≥1.1 or ≤1.0 

 Low clouds and/or aerosols    LABS O2 SCD Retrieved : O2 SCD Geometric  ≥   1.1 or ≤  0.9 
Large SZA   SZA ≥  70 

 Low SNR   SNR ≤  100 
 Poor spectral fitting   Fitting residual RMS ≥   1 standard deviation above mean 

 

2.2  CLARS-FTS  Retrievals of GHGs  

To derive slant column densities (SCDs)  of atmospheric trace gases from the measured absorption 
spectra,  we use the  retrieval algorithms  of CLARS-GFIT, which is  a modified version of the  GFIT  
program  (Fu et  al, 2014), to  retrieve CO2, CH4, N2O,  CO, and O2  SCDs using the same spectral  
bands and spectroscopic parameters used by the Total Carbon Column Observing Network  
(TCCON; Toon et al., 1992; Wunch et  al., 2011)  network.  From retrieved  SCDs, dry-air column  
averaged volume mixing ratios of greenhouse gases (XGHGs)  are calculated by normalizing GHG  
SCD measurements to the dry-air total column, which can be derived from the measured SCD for  
O2  (Equation 2.1) and the dry-air O2  mole fraction:  

Using this  method improves measurements of trace gas mixing ratios  since any existing systematic  
errors in retrievals of both the greenhouse gas and O2  SCDs will be  minimized in computing the  
ratio (Fu et al., 2014).  

Before the retrieved mixing ratio data are analyzed, several filters summarized in  Table 1  are 
applied to remove low  quality retrievals  (Wong et al., 2015).  Data with  poor spectral fitting,  
identified as instances with large solar zenith angles  (SZAs), low signal-to-noise ratios  (SNRs), 
and large root-mean-square (RMS)  values  from the spectral fitting, are  removed. Retrievals  with 
high uncertainty values, defined as more than  3 times the standard deviation from the mean  
uncertainty, are also removed. Additionally, the ratio between retrieved and geometric O2  slant 
column densities are used to remove retrievals  affected by cloud and aerosol scattering. The  
geometric O2  SCD is calculated  assuming no scattering occurs, along with additional assumptions  
outlined in Fu et al. (2014). Because oxygen is well-mixed in the atmosphere, deviation in the  
retrieved O2  SCD from the geometric O2  SCD implies variations in the light path  due to clouds  
and/or aerosols (Zeng et al., 2018; Zeng et al., 2020), and can therefore be used to identify 
observations that represent especially cloudy or hazy days. The filter  criteria for the ratio between  
retrieved and  geometric O2  is slightly different for LABS and SVO data sets due to the enhanced  
influence of boundary layer aerosols on LABS retrievals. In general, aerosol scattering results in 
shorter light paths through PBL, and based on the  viewing mode geometries, LABS retrievals are  
more likely  to have retrieved/geometric O2  SCD ratios that are less than 1.0.  
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Figure 2.3 shows the measurements of XCO2, XCH4, XN2O, and XCO from CLARS LABS and 
SVO modes from September 2011 to December 2020. The target observations in the PBL are 
significantly higher than the Spectralon observations that are the free tropospheric background 
measurements. Steady increases in XCO2, XCH4, and XN2O can be observed due to the excess of 
annual anthropogenic emissions in the atmosphere. The XCO, however, shows a slightly 
decreasing trend attributable to improved emission controls in the automobile fleet. A detailed 
analysis of these trace gases is present in the following sections. 

Figure 2.3. Measurements of XCO2, XCH4, XN2O, and XCO by CLARS-FTS from 2011 to 2020. The 
LABS mode (blue symbols) measures the trace gas concentration within the boundary layer while the 
SVO mode (red symbols) measures the background value above the boundary layer. 

2.3 Tracer-tracer method to estimate CH4 and N2O emissions 
The XGHG excess is calculated by subtracting the overall background estimation from the XGHG 
LABS retrievals: 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑥𝑥𝑥𝑥 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝐵𝐵𝐵𝐵𝐵𝐵 (2.2) 
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The uncertainty in the corrected XGHGxs value is calculated using error propagation based on 
LABS retrieval uncertainties and uncertainties in the background estimate. Using Equation (2.2), 
the XCH4 excess (XCH4,xs), XN2O excess (XN2Oxs), and XCO2 excess (XCO2,xs) are calculated. 
In order to confine analysis to emissions within the basin, XCO2,xs values less than 2ppm are 
removed, as in Wunch et al. (2009). A basin-averaged emissions value for CH4 and N2O can be 
separately estimated by applying a tracer–tracer correlation method to XCH4xs versus XCO2,xs, and 
XN2Oxs versus XCO2,xs, respectively. The objective of this method is to derive an alternate CH4 
and N2O emission estimates for comparison against bottom-up emissions inventories. These 
results are especially useful for greenhouse gases like CH4 and N2O, which are more difficult to 
constrain using bottom-up estimation methods compared to CO2, whose emission sources are well-
known and quantifiable to a high degree of accuracy. This tracer-tracer method was previously 
applied using CLARS-FTS observations to estimate CH4 emissions for the LA basin (Wong et al., 
2016). 
In this method, excess ratios of (XN2Oxs/ XCO2,xs) and (XCH4,xs/ XCO2,xs) are separately calculated 
for each observation. These ratios can be averaged on different time scales in order to reduce 
associated uncertainties. Although previous studies which employed CLARS-FTS observations to 
study urban methane, such as Wong et al. (2016), used orthogonal distance regression (ODR) to 
quantify monthly correlations between excess mixing ratios, He et al. (2019) found that data 
anomalies may bias estimated correlation slopes and thereby affect the determination of emission 
ratios. Therefore, the method of determining monthly excess ratios in order estimate top-down 
CH4 and N2O emissions was adjusted to be consistent with the method developed in He et al. 
(2019), which averages individual observations over various time scales. A basin-averaged excess 
ratio value (Rbasin) is calculated for each given year and month by weighting individual 
observations by their uncertainties. The formula for the basin-averaged monthly ratio is given by 
Equation 2.3: 

𝑖𝑖=𝑁𝑁 
𝑖𝑖=1 𝐵𝐵𝑖𝑖𝑤𝑤𝑖𝑖 𝑅𝑅𝑏𝑏𝐵𝐵𝑥𝑥𝑏𝑏𝐵𝐵,𝑚𝑚𝑚𝑚𝐵𝐵𝑚𝑚ℎ𝑚𝑚𝑙𝑙 = ∑ 
𝑖𝑖=𝑁𝑁 where 𝑤𝑤𝑏𝑏 = 1

2 (2.3) 
∑𝑖𝑖=1 𝑤𝑤𝑖𝑖 𝜎𝜎𝑖𝑖 

where N is the total basin measurements for a given month and year, ri is the ratio value for an 
individual observation, and the weight wi is defined as the reciprocal of the squared uncertainty in 
the ratio observation. Uncertainty values, 𝜎𝜎𝑏𝑏, are determined by applying standard rules of error 
propagation to the individual uncertainties of XN2Oxs (or XCH4,xs) and XCO2,xs, both of which are 
largely dominated by the original retrieval uncertainties. Top-down N2O (or CH4) emissions can 
then be estimated for the LA basin using the basin-averaged XN2Oxs/ XCO2,xs ratio value (or 
XCH4,xs/ XCO2,xs) and a bottom-up CO2 emission inventory, correcting for the difference in molar 
mass by multiplying the ratio of the molecular weights of the two GHGs (Equation 2.4): 

𝑀𝑀𝑊𝑊𝑁𝑁2𝑂𝑂 𝐸𝐸𝑁𝑁2𝑂𝑂| 𝑚𝑚𝑚𝑚𝑡𝑡 𝐵𝐵𝑚𝑚𝑤𝑤𝐵𝐵 = 𝐸𝐸𝑆𝑆𝑂𝑂2| 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑡𝑡 × 𝑅𝑅𝑏𝑏𝐵𝐵𝑥𝑥𝑏𝑏𝐵𝐵,𝑚𝑚𝑚𝑚𝐵𝐵𝑚𝑚ℎ𝑚𝑚𝑙𝑙 × (2.4) 
𝑀𝑀𝑊𝑊𝐶𝐶𝑂𝑂2 

In this study, the bottom-up CO2 monthly emissions estimates are derived using Hestia-LA v.2.5 
(Gurney et al., 2019, data available at: https://doi.org/10.18434/T4/1502503), CARB CO2 
estimates (California Environmental Protection Agency Air Resources Board, 2019b, data 
available at: https://www.arb.ca.gov/app/ghg/2000_2017/ghg_sector.php), and ODIAC CO2 
emissions (https://db.cger.nies.go.jp/dataset/ODIAC/). Hestia-LA is a high spatial resolution 
bottom-up CO2 emission dataset that has been developed for the Los Angeles Basin (Gurney et al., 
2012, 2019). Hestia-LA provides CO2 emissions associated with the combustion of fossil fuel and 
cement production in five counties (Los Angeles, Orange, San Bernardino, Riverside and Ventura) 
in the LA Basin. The Hestia dataset provides more accurate estimates for CO2 emission in the LA 
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Basin than other widely used datasets such as Open-source Data Inventory for Anthropogenic CO2 
and Fossil Fuel Data Assimilation System (Wong et al., 2015). The random and systematic error 
in the Hestia-LA gives the uncertainty around 11% with 95% confidence interval (Gurney et al., 
2019). A comparison of CO2 emission inventories from Hestia, CARB, and ODIAC is shown in 
Figure 2.4. CARB inventory is scaled from state total emission by population ratio of SOCAB (18 
million) to total California population (38 million). To match the mean value of Hestia, CARB 
inventory is further scaled by 0.69. ODIAC is shifted upward by 3.5TgCO2/month. Consistencies 
between the three datasets can be clearly observed. Scaled CARB and ODIAC present a decreasing 
trend from 2011 to 2018. The seasonal cycles amplitudes between Hestia and shifted ODIAC are 
also consistent. We therefore use the shifted ODIAC emissions for the following analysis since it 
provides the most updated data to 2019. Emission estimate for the year 2020 in LA, which has 
been shown to be greatly affected by the lock-down measures during COVID-19 pandemic, is not 
available at this moment, and will not be analyzed in the report. Monthly N2O (or CH4) emissions 
estimates for the LA basin can be computed by combining the monthly emission values with the 
excess ratio of XN2Oxs/ XCO2,xs (or XCH4,xs/ XCO2,xs) using Equation 2.4. 

Figure 2.4 A comparison of CO2 emission inventories from Hestia, CARB, and ODIAC. CARB 
inventory is scaled from state total emission by population ratio of SOCAB (18 million) to total 
California population (38 million). CARB inventory is further scaled by 0.69 to fit the Hestia 
total. ODIAC is shifted upward by 3.5TgCO2/month to match the Hestia. The CO2 emission 
inventories are assumed to have a 10% uncertainty (Gurney et al., 2019). 

In order to justify the application of the above tracer-tracer ratio method, the correlation of XN2Oxs 
and XCO2,xs (or XCH4,xs and XCO2,xs) was checked for each surface reflection point location using 
orthogonal distance regression. Such correlation has been carefully examined by Wong et al (2005) 
and Wong et al. (2006). Here, we only show the result for XN2Oxs. Using orthogonal distance 
regression (ODR), rather than simple linear regression, allows for consideration of uncertainties 
in both GHG mixing ratios. With the exception of surface reflection point #29, which was omitted 
from analysis due sparse data post- filtering, correlations for all surface reflection point locations 
had p-values < 0.01, where in most cases the p-value was in fact much smaller, i.e. < 0.002. The 
R2 value for all correlations was larger than 0.4 and for a majority of surface reflection points, R2 > 
0.55. Figure 2.5 provides an example of ODR results for two specific surface reflection points, 
Santa Anita Race Track and West Pasadena, whose locations within SoCAB can be seen in Figure 
2.1(c). In addition to illustrating the presence of a correlation between XN2Oxs and XCO2xs values, 
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Figure 2.5 also shows the variability in the correlation slope value for different surface reflection 
point locations. 

Figure 2.5: XN2Oxs/XCO2,xs ODR correlation plots for two example surface reflection points, Santa 
Anita Race Track (left) and West Pasadena (right), where ODR slopes are shown by the red lines. The 
R2 values for both plots are greater than 0.4 and the p-values for both plots are much smaller than 
0.001. 

Certain assumptions are inherent in applying this tracer-tracer ratio method to derive top down 
N2O emissions. In a manner similar to section 4.1 of Wong et al. (2015), these assumptions are 
discussed in detail in Appendix A1. The main points are summarized here. First, we assume 
XN2Oxs and XCO2,xs are correlated even though the two GHGs are not emitted from the same 
sources. This assumption is based on the fact that these GHGs behave like inert tracers in the PBL 
given their relatively long chemical lifetimes. Second, we assume the averaged XN2Oxs/XCO2,xs 
ratio for a given surface reflection point is sensitive to emissions over a horizonal path weighted 
toward the reflection point, along with air mass advected into the atmospheric path, and is therefore 
relatively independent of local emission ratio variations. Finally, the effect of aerosol scattering 
on the XN2Oxs/XCO2,xs excess ratio is assumed to be negligible. Evidence to support this 
assumption is presented in the discussion section of Chapter 4. 
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Chapter 3. CH4 emissions in LA from 2011 to 2019 

In this study, we resolve seasonal and spatial variability of CH4 emissions from 2011 to 2019 and 
regress it against consumption data as an important step towards reconciling California’s methane 
budget. The goal is first to leverage our powerful 2011–2019 data record to quantify seasonal to 
interannual variability in LA CH4 emissions. Secondly, we investigated whether the seasonality of 
LA CH4 emissions is related to natural gas consumption. Finally, we quantified the relative 
contribution of each sector (including residential, commercial, industrial, vehicle, and power plant) 
to the seasonality of LA CH4 emissions. 

3.1 Background estimation for XCH4 and XCO2 

To use the tracer-tracer method, as introduced in Chapter 2, to estimate CH4 emissions, we need 
to examine temporal distributions of excess XGHG (XGHGxs), which requires the determination 
of the XGHG background. In this study, the background is defined using SVO observations along 
with NOAA Mt. Wilson Observatory (MWO) in-situ flask measurements collected near the 
CLARS-FTS instrument (https://www.esrl.noaa.gov/gmd/dv/site/MWO.html?stacode=MWO). 
CLARS Spectralon retrievals represent free tropospheric mixing ratios for the atmosphere above 
CLARS-FTS, while nighttime flask measurements can be used as a representation of the 
background for the portion of the atmosphere below CLARS-FTS. This is justified by the fact that 
the height of the PBL reduces to far below the CLARS facility during the night, and therefore, in-
situ measurements approximate background conditions for the lower troposphere over the region 
without human activities. Using both data sets allows the derivation of an unbiased background 
along the same optical path as LABS measurement mode. 
The NOAA portion of the background is determined using the nighttime measurements collected 
between the hours of 22:00 and 6:00 Local Time. Then the overall background is determined by 
weighting SVO and NOAA background estimates according to the number of molecules in the 
respective path lengths. The SVO background is applied for the path above CLARS height and the 
NOAA background is applied (1) for the path from the CLARS height to the surface and (2) for 
the reflected path from the surface to the CLARS instrument. A full explanation of background 
calculation is provided in Appendix A2. 

3.2 Auxiliary datasets 
3.2.1 Monthly natural gas consumption dataset 
Natural gas usage data are the sum of natural gas usage data from residential, commercial, 
industrial, vehicle, and power plant sectors in the SOCAB. The residential, commercial and 
industrial data are available publicly on Southern California Gas Company (SoCalGas) database 
(SoCalGas, 2018). Power plant data are provided by the California Energy Commission (CEC) 
online database (CEC, 2018). An example for the residential sector is shown in Figure 3.1(a). The 
time series of the natural gas consumption for the three important sectors are shown in Figure 
3.1(b). 
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Figure 3.1 

3.2.2 Monthly average surface air temperature 
The monthly average surface air temperature data in Los Angeles Downtown/USC, CA (171 
meters above sea level) are obtained from the stational data inventory in the NOAA/NWS 
Cooperative Observer Network (https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca5115). All months 
from Sept. 2011 to Dec. 2020 are used. The surface air temperature in this study is the temperature 
of the free air conditions surrounding the station at a height between 1 and 2 meters above ground 
level. The air should be freely exposed to sunlight and wind.  It is not close to or shielded by trees, 
buildings, or other obstructions. The temperature data from the observatory are averaged for every 
15 seconds, and then averaged to the daily and monthly data. 

3.3 Results of CH4 emissions 
Figure 3.2 shows the time series and seasonal cycles of monthly excess ratio of XCH4,xs/XCO2,xs 
from 2011 to 2020 averaged over all surface reflection targets in LA basin. The excess time series 
shows a small decreasing trend (slope=0.016/year). However, this trend is not significant (p-value 
from linear regression is 0.67). Figure 3.2(b) clearly shows the seasonal cycle of excess ratio. 
Winter seasons have significantly larger excess ratio than summer seasons, indicating larger CH4 
emissions in winter relative to CO2 emissions. There are high values of excess ratio that are 
possibly associated with some known special events. The spike in emissions in November, 2015 
coincides with the period of maximum emissions from a very large natural gas storage well 
blowout at Aliso Canyon that impacted the entire LA basin (Conley et al., 2016).  
The peak blowout of Aliso Canyon methane leakage occurred in November 2015. If we compare 
the November methane emissions for different years, we can clearly see the emission spike in 
November 2015, which agrees with the blowout time of Aliso Canyon methane leakage. One of 
the assumptions underlying in the methane emission derivation is that the 33 discrete surface target 
sites are sufficient to represent the average 𝑋𝑋𝑆𝑆𝐺𝐺4𝑥𝑥𝑥𝑥 over SOCAB. During the Aliso Canyon blowout 

𝑋𝑋𝑆𝑆𝑂𝑂2𝑥𝑥𝑥𝑥 

period, the enhancement of 𝑋𝑋𝑆𝑆𝐺𝐺4𝑥𝑥𝑥𝑥 varies among different target sites, depending on the distance 
𝑋𝑋𝑆𝑆𝑂𝑂2𝑥𝑥𝑥𝑥 

with the Aliso Canyon, as well as the wind speed and direction. The spike in March 2019 is likely 
associated with the excessively high usage of natural gas in the same month, as shown Figure 3.1. 
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The year 2020 has seen large reduction in traffic emissions, a large contributor to CO2 emissions 
in LA, due to the lockdown measures because of COVID-19 pandemic. As a result, the excess 
ratio from March to July in 2020 is higher than previous years mainly due to the reduced CO2 
emissions.  

Figure 3.2 (a) Excess ratio of XCH4,xs/XCO2,xs from 2011 to 2020 averaged over all surface reflection 
targets; (b) Comparison of seasonal cycles of the excess ratio of XCH4,xs/XCO2,xs. The uncertainty is 
calculated as the standard error of the observations for each month. 

Figure 3.3 shows the monthly CH4 emissions in the LA basin from Sept. 2011-Dec. 2019 along 
with the monthly average for the observing period overlaid year-by-year. Los Angeles CH4 
emissions exhibit a consistent seasonal pattern, ranging from a minimum of ~20 Gg/month in June-
July to a maximum of ~40 Gg/month in December-January. We define the observed difference 
between measured winter and summer CH4 emissions as the “seasonal excess” to distinguish it 
from the annual excess emissions defined above. Figure 3.3(a) shows the data represented as a 
continuous time series, illustrating the prominent winter emissions maxima. From the linear 
regression, we can also see that the CH4 emissions in LA has a near-significant reduction for the 
past 9-year, with an averaged decreasing rate of 0.325 Gg/month. 

Figure 3.3 (a) Monthly CH4 emission estimates from September 2011 to December 2019. A linear 
regression is applied to data from 2012 to 2019. The regressed line with associated slope and p-value are 
also shown. The uncertainty is calculated as the standard error of the observations for each month. 

As discussed above, multiple previous studies have identified fugitive emissions from natural gas 
infrastructure as a likely contributor to the observed SOCAB annual excess CH4 emissions. Figure 
3.4 compares our CH4 emissions data and monthly natural gas consumption in the SOCAB from 
the residential, commercial and industrial sectors as provided by the utility company (see Section 
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3.2). The natural gas consumption data are based on metered customer usage. While the usage data 
do not include contributions from transmission line leaks, compressor stations, blowdowns, flaring 
events and other sources upstream of customer meters, these sources may correlate with metered 
usage. Figure 3.4 shows that the observed Dec-Jan peaks in monthly CH4 emissions closely track 
natural gas consumption. 

Figure 3.4. SOCAB CH4 emissions expressed as a continuous time series (left axis). Monthly natural 
gas consumption data in the LA basin from the residential, commercial and industrial sectors (right axis). 
The natural gas consumption from the power plant sector does not show significant seasonal variability 
(He et al., 2019) and is not included here. The correlation coefficient between the two time series is 0.70. 
The natural gas consumption time series has been shifted to the left by a half-month. This temporal shift 
may be explained by the time difference in consumption and record from meters. The temporal shift can 
also been verified from the correlation between natural gas usage and air temperature. Shifting the natural 
gas usage by the same half-month results in the largest correlation coefficients. 

Figure 3.5. Correlation between derived monthly CLARS methane emissions and monthly total natural 
gas distribution to consumers in SOCAB from September 2011 to August 2017. Points are color-coded 
by season illustrating the progressive increase in emissions from summer (red) to winter (blue). A linear 
regression based on ODR, which considers the data uncertainty, is applied. The linear equation is 
indicated. The errors for the slope and intercept are 0.0018 and 1.289, respectively. 

Figure 3.5 shows the weighted linear least squares fit between derived monthly CH4 emissions 
and utility natural gas consumption in the SOCAB. The black line is the linear regression weighted 
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by the uncertainties in the derived CH4 emissions and uncertainties in the consumption data are 
assumed to be ± 10%. The regression slope is 0.0180 ± 0.0018 and the y-intercept is 14.0 ± 1.3 
Gg/month with R2 = 0.50. We interpret the slope as the fraction of the post-meter natural gas 
consumption emitted into the atmosphere while the y-intercept gives the CH4 emissions 
extrapolated to zero metered consumption, i.e. associated with non-metered emissions. The latter 
would include emissions from landfills, wastewater treatment, local geological sources, natural 
gas transmission lines and mains, etc. These sources may have their own seasonality that this 
simple 2-parameter model cannot capture. The fraction of emissions to consumption derived here, 
(1.8 ± 0.18)% is somewhat smaller than the range 2.5-6% estimated previously (Wennberg et al., 
2012). 
The correlation between utility natural gas consumption and CH4 emissions may be due to 
increased wintertime demand by appliances for space heating, water heating, cooking, and other 
purposes that involve heat generation. To gain further insight into the source sectors responsible 
for this correlation, we use data on natural gas consumption classified by end use in California 
from the local utility, SoCalGas, and the California Energy Commission. Monthly data are 
available for five sectors: residential, commercial, industrial, vehicle fuel and electric power. 
Residential and commercial consumption both peak in the winter months, industrial consumption 
shows small peaks in the summer while electric power consumption peaks strongly in the late 
summer (August-September). Consumption by the transportation sector is only a few percent of 
the total and is not considered. Peaks in industrial consumption are less pronounced and out of 
phase with residential/commercial usage.  A multivariate correlation analysis shows that U.S. 
Energy Information Administration data for natural gas consumption from the sum of the 
residential and commercial sectors correlates well (correlation coefficient, R2 = 0.88) while the 
correlations between industrial consumption and residential/commercial consumption are less 
evident (R2 = 0.19 and 0.27, respectively). 
To quantify the sectoral contributions, the regression equation is given by, 

top−down residential commercial industrial 
monthly = a + a1 ( NG + NG ) + a2 × NG (6) ECH 4 0 monthly monthly monthly 

where: 
ECH4 = total monthly excess CH4 emissions inferred from CLARS data (Gg) 
NGi = reported monthly sectoral natural gas consumption (Gg) 
ai = regression coefficients 
The best-fit regression coefficients are 27.03, 0.029 and -0.0048 for a0, a1 and a2, respectively. 
45.6% of the variance between the model and observations is explained by the sum of residential 
and commercial consumption, and 7.7% is explained by industrial consumption. The results from 
the regression modeling indicate that there is a strong connection between CH4 emissions into the 
atmosphere and residential/commercial natural gas consumption based on time series analysis of 
both data sets. Taking a0 as the background excess methane emission in the LA basin, we see that 
the seasonal component results in a doubling of the total emissions relative to the background. 
Note that the pattern of emissions must have a seasonal component in order to explain the 
observations. Quiescent emissions (persistent leaks) from equipment and plumbing cannot explain 
the strong seasonal signal. 
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Figure 3.6. Left: The correlation between monthly natural gas consumption and inverse monthly mean 
temperature at USC/LA Downtown. Right: The correlation between CLARS inferred monthly CH4 
emissions and inverse monthly mean temperature at USC/LA Downtown. Increased natural gas 
consumption for space and water heating at lower ambient temperatures may provide the link to higher 
observed CH4 emissions. 

There have been few long-term studies in the SOCAB of CH4 emissions from the most important 
sources (natural gas infrastructure, post-meter equipment, landfills, and wastewater treatment 
plants), providing weak evidence for seasonal variability from these sources (Wong et al., 2016). 
Only post-meter consumption mimics the observed CH4 emissions pattern (Wong et al., 2016). 
Figure 3.6 shows clear correlations between the inverse of the ambient temperature measured near 
downtown Los Angeles and both natural gas consumption and CH4 emission rates. Reduced 
surface air temperatures drive air and water heating demands, resulting in the expected increase in 
observed CH4 emissions with decreasing surface temperature (see Section 3.2). These 
observations reinforce the connections between ambient temperature, heating demand and fugitive 
natural gas emissions. Figure 3.6 also provides some insight for considering the temperature as an 
important variable linking natural gas consumptions and CH4 emissions. 
3.2 Discussions of CH4 emissions 
Since there are no national air quality standards for methane, very little work has been done to 
characterize the methane emission factors from natural gas-fired appliances such as furnaces, water 
heaters, stoves, ovens, swimming pool and spa heaters and similar equipment. Currently, the only 
available emission factor for CH4 from natural gas-fired furnaces is 5 g/GJ for both commercial 
and residential furnaces (U.S. Environmental Protection Agency, 2018). From Figure 3.4, SOCAB 
winter natural gas consumption surpasses 1000 Gg/month. Using the EPA emission factor, this 
would result in about 0.29 Gg/month seasonal excess methane emissions, which is far less than 
the observed value of ~20 Gg/month.  
There are a number of factors that may close the gap between top-down and bottom-up estimates 
of seasonal excess methane emissions. Far more research needs to be conducted on emission 
factors from gas-fired appliances and industrial combustors under different operating conditions 
(start-up, operation, shut-down). While increased demand for space heating is clearly associated 
with lower ambient temperatures in the winter, water heating demand also increases because of 
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decreases in supply water temperature. For example, in the mild, Mediterranean climate of 
Pasadena, California, measurements from 2001-2016 at six locations showed an average difference 
of 12 °C in supply water temperature from winter to summer (Kimbrough, 2017). Significantly 
larger seasonal temperature variability would be expected in colder climates. There is increasing 
evidence that the probability density functions for CH4 emissions have a long tail, characterized 
by a small number of emitters with very large emissions, perhaps due to malfunctioning equipment 
or improper operating conditions (Zavala-Araiza et al., 2015). This will require a concerted 
measurement campaign examining large numbers of emitters (thousands) under actual operating 
conditions targeting residential, commercial and industrial sectors (Fischer et al., 2018). 
3.3 Section conclusions 
In conclusion, using mountaintop remote sensing with coverage over the greater Los Angeles 
basin, we observe seasonal excess methane emissions that correlate very well (R2=0.50) with 
combined commercial and residential natural gas consumption. From the covariance we observe 
that the emissions arise from two terms: one that is seasonally invariant (14.0 ± 1.3 Gg/month) and 
another that peaks in the colder months of the year corresponding to (1.8 ± 0.18) % of residential 
plus commercial natural gas consumption. Other natural gas consumption sectors (industrial, 
power plant and transportation) either have no clear seasonal relationship that matches the 
observed emissions or are too small. The available emission factor data for residential and 
commercial natural gas-fired combustion sources fail to explain the observed emissions. Indeed, 
far more work needs to be done to measure the seasonally varying probability distribution 
functions of emitters under actual operating conditions. 
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Chapter 4. Long term trend of N2O emissions in LA 

4.1 Temporal Variability in XN2O Excess 
Time series using data from all reflection locations illustrate significant temporal variability in 
XN2Oxs in the LA basin. The plot of monthly averages of XN2Oxs (Figure 4.1) illustrates that 
CLARS consistently observed seasonal fluctuations in XN2Oxs during 2013 to 2019. The weighted 
mean value of XN2Oxs for the entire basin during this time period is 15.0 ± 0.1 ppb, and the mean 
uncertainty for excess values is 13.8 ppb.  

Figure 4.1 Monthly mean XN2Oxs from 2013 to 2019 shown in black with the uncertainty given by the 
grey area. March 2014 is removed from the plot due to an instrumental issue which resulted in only 3 
days of data collection. 

Comparing interannual monthly means yields further insight into the observed seasonal cycle of 
XN2O excess. Figure 4.2 shows the monthly weighted mean plotted versus month for each year 
from 2013-2018. The black line indicates the weighted mean calculated for each month using all 
years of data. For most years, peak excess values were observed in the winter or spring months 
with clear minima occurring around late summer/ early fall. Similarly, the smallest interannual 
variability in monthly means occurs during months with smaller excess values, while greater 
variability from year to year is observed in winter and spring.  

Figure 4.2 The plot of basin-wide weighted mean XN2Oxs vs month for years 2013-2018. The 
black line gives the monthly weighted mean for all years of data. 
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To further analyze this time series, a basin-averaged XN2Oxs value is calculated for each day of 
the year for years 2013-2019 using a weighted averaged of available surface reflections point 
values on the given day. Performing PCR on the set of daily basin-averaged XN2Oxs values, no 
significant linear interannual trend is observed in XN2Oxs from 2013 to 2019 for SoCAB. Summing 
the seasonal terms from the PCR results yields a seasonal cycle with a peak-to-peak amplitude of 
5.6 ± 2.5 ppb where minima occur in August and maxima occur in early February. These results 
are visually consistent with Figure 4.2. 

4.2 Mapping XN2Oxs/XCO2,xs Excess Ratios 
Maps of the XN2Oxs/XCO2,xs excess ratios according to surface reflection point location also show 
significant spatial variability across the LA basin (Figure 4.3). These XN2Oxs/XCO2,xs values lie 
in the range 0.80 – 1.50 with uncertainties on the order of about 0.05 (see Supplementary Table 2 
for exact values). 

Figure 4.3 (a) Map of XN2Oxs/XCO2,xs excess ratios (ppb/ppm) by surface refection point 
location for 2013-2019; (b) Associated map of uncertainties in XN2Oxs/XCO2,xs excess ratios 
(ppb/ppm) determined from error propagation. 

Figure 4.3(a) indicates greater XN2Oxs/XCO2,xs values in the central section of SoCAB, with a 
particularly large ratio associated with surface reflection point located in Orange county (see 
Figure 2.1). The region of the map corresponding to ratio values > 1.1 tends to be more densely 
populated and additionally houses a number of wastewater treatment plants. Figure 4.3(b) shows 
the associated uncertainty map for reference. Larger uncertainty values are observed for targets 
farther from CLARS (indicated by the red dot) due to higher retrieval uncertainties for greater slant 
distances through the PBL.  

4.3 Bottom-up N2O emissions estimate for LA Basin 
Figure 4.4 illustrates the seasonal time series of top-down N2O emissions for SoCAB during 2013-
2018. Like Figure 4.1 for XN2Oxs, Figure 4.4 indicates seasonal variability in emissions with most 
monthly emission values falling in the range of 8-14 Gg N2O per month. Applying principal 
component regression to the monthly emission values, no statistically significant interannual trend 
is observed for top-down emissions. Uncertainty in these seasonal estimates shown in grey is 
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determined considering uncertainty in the basin-averaged XN2Oxs/XCO2,xs excess ratio and the 
uncertainty in the HESTIA-LA bottom-up CO2 emission inventory, which is estimated to be about 
10% (Gurney et al., 2019).  

Figure 4.4 Top-down seasonal N2O emissions for LA Basin from 2013 to 2018. Uncertainty 
shown in grey is quantified considering uncertainty in the basin-averaged XN2Oxs/XCO2,xs value 
for a given month and year and uncertainty in the HESTIA-LA bottom-up CO2 inventory, 
estimated at 10% of the CO2 emissions value. 

Figure 4.5. Top-down monthly emissions versus month for each year from 2013 to 2018. The 
black line indicates the weighted average of monthly emissions for all years of data. The 
uncertainty in each monthly emission estimate is shown with error bars. 

Figure 4.5 further examines the seasonal cycle in emissions by illustrating both the interannual 
variability and the consistent monthly trend derived from all years of data. In Figure 4.5, monthly 
emissions are plotted versus month for each year from 2013 to 2018.  The black line indicates the 
weighted average of monthly emissions for all years of data. The uncertainty in monthly emissions 
estimate and in the weighted average are shown with error bars. Monthly emissions follow a 
similar temporal pattern to the XN2Oxs (Figure 4.2), where minima tend to occur during the late 
summer and early fall. Larger monthly emissions values correspond to winter and spring months. 
For all years, we see a general declining trend starting from January through the start of the fall, 
which generally includes a clear dip in monthly emissions during the month of February. In a 
manner similar to XN2Oxs (Figure 4.2), months associated with greater monthly emissions also 
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exhibit higher degrees of interannual variability, whereas fall emissions, which tend to be smaller, 
are also less variable from year to year. 

Monthly emissions in Figures 4.4 and 4.5 can be aggregated to estimate annual N2O emissions 
for SoCAB for the years 2013-2018.  Exact values of annual emissions along with associated 
uncertainties are listed in Table 4.1. Figure 4.6 shows the annual time series of N2O emissions 
derived from CLARS-FTS observations in dark blue, in comparison with other N2O emissions 
estimates for greater LA (SoCAB) and for California (statewide). The emissions estimates 
referring only to SoCAB are distinguished by square markers and light or dark blue color. The 
light blue square represents a 2007 emission estimate reported by Wunch et al. (2009), which 
employed a similar tracer-tracer correlation method using TCCON measurements of N2O and CO2. 
The star markers represent to statewide N2O emissions estimates with the red line referring to the 
California Air Resource Board (CARB) bottom-up inventory from 2006 to 2017 (California 
Environmental Protection Agency Air Resources Board, 2019b), and the pink line indicating a 
statewide N2O emissions estimate from CalNex flights made in 2010 (Xiang et al., 2013). 

Figure 4.6. CLARS-FTS annual top-down N2O emissions for SoCAB as compared with 
another top-down SoCAB N2O emissions estimate for 2007 (Wunch et al., 2009), shown in light 
blue, and two estimates of statewide N2O emissions. The CARB statewide bottom-up inventory 
is shown in red (CARB, 2019b), and a statewide estimate from the CalNex aircraft campaign in 
2010 is shown in pink (Xiang et al., 2013). 

Table 4.1 Annual N2O Emissions calculated for 2014-2018 (Gg/y) 
Annual Uncertainty 

2014 144 5 
2015 131 4 
2016 133 4 
2017 120 4 
2018 124 4 
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Applying a linear regression to annual emissions estimates gives a p > 0.05, and therefore a 
statistically significant interannual decrease is not observed from the top-down basin emissions 
estimates. Figure 4.6 illustrates that the CLARS estimate of annual emissions is larger than even 
statewide N2O emission estimates, although CLARS annual emissions are consistent within 
uncertainties with the Xiang et al. (2013) statewide estimate along with the Wunch et al. (2009) 
SoCAB estimate. The discrepancy between the CLARS SoCAB N2O emissions estimate and the 
CARB statewide inventory aligns with other studies reporting discrepancies between bottom-up 
and top-down emissions values for various GHGs (Montzka et al., 2011), a fact that highlights the 
importance of comparing results from the two methods.  

4.4 Discussion on N2O emissions 
4.1.1 Impacts of aerosol scattering on the tracer-tracer excess ratio 
The light scattering effect due to aerosols changes the light path and therefore affects the GHG 
retrievals from CLARS-FTS (Zhang et al., 2015; Zeng et al., 2020). The tracer-tracer ratio method 
used to calculate XN2Oxs/XCO2,xs cancels out the aerosol scattering effect to first order. Here we 
further examine its impact under different aerosol abundances by using different filter criteria for 
the observed O2 ratios. Figure 4.7 shows the time series of the basin-averaged XN2Oxs/XCO2,xs 
excess ratio calculated using three different filter criteria for O2 ratios (Geometric O2 SCD: 
Retrieved O2 SCD) when filtering the LABS data set. The blue line indicates filter criteria applied 
for analysis in this study, while the green and red represent increasingly narrow filter limits 
respectively. 

Figure 4.7. Time series of basin-averaged XN2Oxs/XCO2,xs  excess ratio for various O2 ratio 
(Geometric O2 SCD: Retrieved O2 SCD) filter criteria applied to LABS data set. 

By imposing narrower filter limits, larger amounts of data affected by aerosol and cloud scattering 
are excluded from analysis, and the data set is restricted to increasingly clear observations. 
However evident from Figure 4.7, narrowing filter limits does not have a significant effect on the 
basin-wide weighted average XN2Oxs/XCO2,xs values. While XN2O and XCO2 are retrieved in 
different spectral windows, the dependence of aerosol scattering on wavelength does not result in 
a bias in the excess ratio of the two GHGs. Thus, it is reasonable to assume that the effect of aerosol 
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scattering on the XN2Oxs/XCO2,xs excess ratio values is negligible.  By extension, we can conclude 
that the effect of aerosol scattering on top-down N2O emissions results, derived by applying the 
tracer-tracer correlation method, is also negligible. 

4.4.2 Comparison of XN2O results with previous studies 
CLARS-FTS LABS retrievals of XN2O includes values which are generally larger than boundary 
layer XN2O measurements reported by previous studies. For example, Wunch et al. (2009), who 
also used ground-based remote sensing to measure GHG concentrations in the LA basin, provide 
daily XN2O retrievals for 5 days of measurements within the range of ~290-300 ppb, and estimate 
XN2O anomalies on the order of 20 ppb. In another study of urban XN2O, Byrne et al. (2020) 
report open path Fourier Transform Infrared (OP-FTIR) measurements of XN2O in the boundary 
layer over downtown Toronto as ranging between 327-338 ppb. From a survey of global NDACC 
and TCCON sites, Zhou et al. (2019) report similar magnitudes for XN2O retrievals ranging from 
290-340 ppb for various locations. 
In contrast, it is clear from the time series in Figure 2.3 that the set of CLARS-FTS LABS 
retrievals from all surface reflection point locations during the period 2013-2019 exhibits a greater 
degree of variability compared to these previous studies and includes some observations of XN2O > 
340 ppb. However examining the distributions of LABS retrievals for two specific surface 
reflection point locations indicates that the majority of XN2O retrievals lie below the threshold of 
340 ppb, an observation that is somewhat obscured by the time series. 
In general, larger XN2O values are associated with larger slant distances in the basin and 
correspondingly larger retrieval uncertainty values. The effect of these data on subsequent analysis 
is minimized through the application of averaging methods which weight data according to 
associated uncertainties. For example, examining the excess XN2O values inferred from CLARS-
FTS LABS observations, we see that while some data are significantly larger than 20 ppb, the 
weighted mean of all XN2Oxs observations is 15.0 ± 0.1 ppb. Therefore, the weighted mean is 
comparable to anomaly values reported in Wunch et al., (2009). As an extension given that 
multiple averaging methods are applied in order to estimate the top-down N2O emissions for the 
LA basin, larger retrieval values with greater associated uncertainties have a negligible effect on 
the final result. 
Furthermore, certain large retrieval values which do not have large associated uncertainties may 
represent true signal, as the CLARS-FTS data record for all GHGs generally exhibits a high degree 
of variability, both spatially and temporally, within SoCAB. This can be understood in part due to 
the unique qualities of the CLARS-FTS viewing geometry in LABS mode, which makes it highly 
sensitive to GHG concentrations within the PBL. In particular, CLARS-FTS retrievals are more 
heavily weighted toward the boundary layer compared to TCCON and NDACC total column 
measurements (Wunch et al., 2009; Zhou et al., 2020), which are comparatively more sensitive to 
the atmosphere above the PBL. Given that the concentration of N2O in the upper atmosphere is 
smaller than its background levels in the lower troposphere, it is reasonable that total column 
retrievals would be smaller than CLARS-FTS retrievals, even for a similar location. In addition, 
through its method of spatial scanning, CLARS-FTS can make observations for a large area, while 
total column measurements are primarily representative of conditions in close proximity to the 
instrument location. The spatial coverage of the CLARS-FTS measurement capability represents 
an additional source of variability within the data. 
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Finally, the methodology for removing low-quality retrievals prior to analysis enhances the 
robustness in reported retrieval results. Specifically, the quality of CLARS-FTS retrievals is 
verified by the application of several data filters, one of which targets the root-mean-squared (RMS) 
residuals due to spectral fitting. Observations with RMS spectral residuals greater than one 
standard deviation from the mean are removed. As a result, RMS residual values are less than 1.5% 
for all GHG observations, and a large majority of observations have RMS values less than 1%. 
Observations with retrieval uncertainties more than three standard deviations above the mean are 
also filtered out. The relatively small RMS values from spectral fitting and the low retrieval 
uncertainty values of the filtered data provides additional confidence in the CLARS-FTS retrieval 
results. 
4.4.3 Trends in XN2O in the free troposphere 
CLARS-FTS observations of free tropospheric N2O mixing ratios yield an interannual increase of 
0.95 ± 0.04 ppb/year. This result is highly consistent with recent studies quantifying the 
interannual increase in background XN2O over the past decade (Zhou et al., 2019). From CLARS-
FTS SVO observations, we also observe a seasonal cycle, which has a minimum occurring in April 
and a maximum occurring in late October with a peak-to-peak seasonal amplitude of 4.3 ± 0.4 
ppb. This result agrees with other reports of a seasonal cycle in tropospheric N2O with a minimum 
in late spring/ early summer. This seasonal minimum has been previously attributed to an influx 
of N2O-poor air from the stratosphere (e.g., Liao et al., 2004; Nevison et al., 2004; Jiang et al., 
2007). Furthermore, the peak-to-peak amplitude for the seasonal cycle observed by CLARS-FTS 
is comparable in magnitude to seasonal amplitudes observed by TCCON and NDACC stations in 
the Northern hemisphere (Zhou et al., 2019). 
4.4.4 Trends in XN2O Excess in the LA Basin 
CLARS-FTS observations of XN2Oxs exhibit a seasonal cycle which has a minimum in late 
summer/early fall and a maximum in winter/ early spring with a peak-to-peak amplitude of 5.6 ± 
2.5 ppb. One hypothesis for this observed seasonal cycle in XN2Oxs could relate to precipitation 
trends for Southern California. Previous work has shown that greater soil moisture can increase 
N2O fluxes from fertilized soils depending on soil type and temperature (e.g. Avrahami and 
Bohannan, 2009; Butterbach-Bahl et al., 2013, Horwath, 2012). In LA, the summer/early fall is 
usually a period of extended drought and could correspond with conditions of low soil moisture. 
Similarly, the greater interannual variability in monthly means during winter/spring months could 
also relate to rainfall patterns since although winter/spring months are generally wetter months in 
LA compared to the summer, seasonal precipitation varies widely from year to year. Another 
explanation for the spring maximum relates to fertilization patterns in Los Angeles. Townsend-
Small et al. (2011) reports that fertilization rates for urban landscapes in Los Angeles are equal or 
greater than that for agricultural fields, with comparable N2O emission factors. Given that rapid 
increases in N2O fluxes are observed directly following fertilization (e.g. Townsend-Small et al., 
2011), application of fertilizer to urban lawns in spring months could correlate to overall increase 
in XN2Oxs in this season. 
4.4.5 Top-Down N2O Emissions from CLARS-FTS observations 
Monthly N2O emissions derived from CLARS-FTS observations for SoCAB range from 6-19 Gg 
N2O per month during the years 2013 to 2018. Examining monthly emissions for each year along 
with the weighted average of monthly emissions from all years of observation, we observe a 
seasonal cycle similar to that of XN2Oxs, where minima occur during late summer/ early fall and 
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annual maxima tend to occur in the winter. We similarly observe slightly less interannual 
variability during the fall months when the estimated monthly emissions are smallest. It is not clear 
from these results how various source sectors, whose seasonal cycles likely differ in phase and 
amplitude, impact the overall seasonal cycle observed by CLARS-FTS. For example, another 
source of N2O emissions which is likely an important factor in overall emissions from SoCAB is 
coastal upwelling. Townsend-Small et al. 2014 found that coastal waters were a positive source of 
N2O, and positive fluxes from the ocean surface would likely be largest during the summer when 
upwelling is the strongest. However, this seasonal signal is not necessarily apparent in the basin-
wide emission results. Overall, more work is needed disentangle the relative contributions from 
various source sectors in order to better analyze the seasonality of N2O emissions within the 
SoCAB basin.  
The derived annual N2O emissions for SoCAB from 2014 to 2018 range between 124 – 144 Gg 
N2O per year. These annual emission estimates are significantly larger the CARB statewide 
bottom-up inventory for N2O, which reports a mean annual N2O emission of about 46 Gg per year 
for the same time period. Other studies have reported similar discrepancies between top-down and 
bottom-up estimates. For example, Xiang et al. (2013) suggested that bottom-up N2O inventories 
could be significantly underestimating annual emissions for California. Using data from CalNex 
flights conducted in 2010, Xiang et al. (2013) estimated statewide annual emissions at 132 ± 35 
Gg N2O for that year, which is roughly 2 times larger than the respective annual emission estimate 
from the CARB inventory. 
Very few estimates of N2O emissions on a citywide scale have been reported, and only one other 
estimate of N2O emission has been made for SoCAB specifically (Wunch et al., 2009). Wunch et 
al. (2009) employed a tracer-tracer correlation method, similar to that used in this study and 
reported a XN2O/ XCO2 anomaly ratio value of 0.5 ± 0.3. This anomaly ratio yielded an annual 
emission estimate for 2007 of 100 ± 60 Gg N2O. This anomaly ratio value is slightly smaller than 
XN2Oxs/XCO2,xs excess ratios observed by CLARS-FTS. For example the mean excess ratio for 
the West Pasadena location, which is the closest surface reflection point to the TCCON tower used 
in Wunch et al. 2009, is 1.16 ± 0.02 for 2013 to 2019. Similarly, the SoCAB emission estimate 
from Wunch et al. (2009) is slightly smaller than that derived from CLARS-FTS observations, but 
the two values agree within their uncertainties. 
4.4.6 Relative importance of N2O sources in urban setting 
CLARS-FTS observations clearly indicate significant enhancements of XN2O above background 
levels in the PBL. These emissions largely originate within the Los Angeles megacity, which is 
home to approximately 40% of the state’s population. The observation of urban XN2Oxs highlights 
the importance of urban N2O sources in contributing to cumulative statewide emissions. Yet most 
statewide and national estimates prioritize quantifying rural emissions derived from agriculture. 
For this reason, it is difficult to justify estimating citywide emissions by downscaling statewide 
N2O inventories using proportional populations. Rather, quantifying the overall N2O emissions in 
an urban setting requires an understanding of both the N2O source sectors and their variabilities. 
The following discussion contains an assessment of the relative importance of urban N2O emission 
sources based on information contained in the California’s 2000-2014 Greenhouse Gas Emissions 
Inventory Technical Support Document (CARB, 2016), which outlines the methodology used in 
calculating their bottom-up N2O emissions inventory for California. 

35 



  

 
  

 
 

  
    

 
 

 

   
 

   
 

  
 
 

  
  

 
 

    
 

  
  

 
 

  
  

 
   

  

 
  

  
  

 
 

  
  

   

A major source of anthropogenic N2O emissions worldwide is combustion from fossil fuels 
(Montzka et al., 2011). According to the CARB inventory, N2O emissions from fuel combustion 
fall under the category of Energy and comprise about 27% of the total N2O emissions inventory 
for 2017, making it the second largest contributor to statewide emissions after agriculture, forestry, 
and other land use (CARB, 2019a). Of activities within the category of fuel combustion, 
transportation contributes more emissions than any other activity. 24% of all N2O emissions in the 
CARB 2017 statewide inventory are derived from aviation, on-road transportation, railways, and 
water-borne navigation (CARB, 2019a). Top-down studies on N2O, which quantify relative 
contributions from various economic sectors, have also highlighted the importance of 
transportation in statewide emissions (Xiang et al., 2013).  Given that LA has a high traffic density 
and is a large transportation hub for aviation and overseas shipping, N2O emissions from 
transportation likely play a significant role in total urban emissions. Other sources of N2O 
associated with combustion include electricity generation, heat production, and petroleum refining, 
all of which make up a smaller proportion of the CARB inventory but likely contribute to emissions 
in areas of LA adjacent to these industrial centers. 
A second important source of urban N2O emissions is derived from the fertilization of urban lawns. 
As previously stated, Townsend-Small et al. (2011) reported urban landscapes (lawns and athletic 
fields) have annual N2O fluxes equal to or greater than agricultural fields with comparable 
emission factors. Though the understanding of emission factors for different soils under various 
conditions is continuously improving (e.g. Bouwman et al., 2002; Horwath et al., 2012; Zhiseng 
et al., 2020), it is difficult to aggregate emissions from urban lawns based on heterogeneity of 
fertilizer application practices and land cover type. For this reason, emissions from urban 
landscapes are often not quantified or underestimated in statewide N2O bottom-up emissions 
inventories, which could partially explain some of the discrepancy between top-down and bottom-
up N2O emissions estimates for urban areas. 
Other sources of urban N2O emissions associated with microbial activity include landfills, 
composting organic waste, and wastewater treatment plants. The statewide CARB estimate of N2O 
emissions from landfills is primarily calculated according to recorded quantities of combusted 
landfill gas. Therefore, N2O emitted directly from microbial activity in the landfill is not included 
in this estimate. Additionally, according to CARB, industrial composting of organic waste has 
increased by 3 times in the last 20 years and represents a growing source of N2O emissions (CARB, 
2016). The annual CARB inventory only accounts for industrial composting in its emissions 
estimate, meaning backyard composting in residential areas, which is popular in Los Angeles, also 
represents a source of urban emissions that is currently not captured by the bottom-up estimate. 
Finally, wastewater treatment plants can also serve as important sources in urban settings. The 
CARB inventory divides N2O emissions from wastewater treatment plants into two categories: 
direct emissions and indirect emissions due to the effect of effluent on aquatic environments. N2O 
emissions under various wastewater plant management practices have been consistently studied in 
order to determine optimal conditions to minimize direct emissions from the plant (e.g., Wunderlin 
et al., 2011; Daelman et al., 2015; Vasilaki et al., 2019). Generally, direct plant emissions are small 
compared to indirect emissions from effluent discharged into aquatic ecosystems (CARB, 2016), 
which are more difficult to quantify. For a highly populated coastal city, such as Los Angeles, 
these indirect emissions are likely significant sources to the regional N2O budget, given the large 
anthropogenic effect on nearby aquatic ecosystems. Furthermore, previous research has suggested 
that even direct emissions may be greater in Los Angeles compared to other cities, due to the 
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importance of water reclamation processes in reducing dependencies on imported water resources, 
which can be necessary in arid environments. Surveying several wastewater treatment plants in 
Southern California, Townsend-Small et al. (2014) found that plants which utilize processes for 
nitrogen removal may lead to in-situ N2O emission rates that are three or more times greater than 
traditional treatment processes, which aim for carbon oxidation only. Given that LA has a higher 
proportion of wastewater treatment plants that use nitrogen removal processes compared to other 
cities, direct emissions may play an elevated role in regional emissions compared to other urban 
areas. 

4.5 Section conclusions 
This section employed a unique data set from a mountaintop remote sensing instrument, CLARS-
FTS, which has surveyed GHG mixing ratios in the LA basin since 2011, in order to examine the 
climatology of N2O in this region. CLARS-FTS observations were used to investigate the temporal 
variability of N2O excess mixing ratios and to calculate a top-down N2O emissions estimate for 
SoCAB. No significant interannual trend is observed in XN2Oxs, but XN2Oxs  does exhibit a 
seasonal cycle with minima in late summer/ early fall and maxima in the early spring. A similar 
seasonal cycle is observed in top-down monthly emissions estimates calculated using a tracer-
tracer ratio method with CO2. The seasonal cycle could in part be related to precipitation and 
fertilization patterns in Los Angeles, as both soil moisture levels and fertilization practices are 
important factors in N2O fluxes from urban lawns. 
Top-down monthly emissions estimates range from 6-19 Gg N2O per month, while annual 
emissions range from 124–144 Gg per year for the years 2014 to 2018. Annual emissions estimates 
are roughly 3 times larger than statewide bottom-up inventories, but consistent within uncertainties 
with the top-down SoCAB emission estimate for 2007 reported by Wunch et al. (2009). The 
discrepancy between top-down and bottom-up N2O estimates for both California and SoCAB 
highlights the difficulty in constraining N2O emissions using bottom-up methods and in 
quantifying urban emissions on a local level. 
Extending the length of the CLARS-FTS database is essential to reducing statistical noise and 
enhancing future work that would utilize these unique observations to study GHG and pollutant 
concentrations in the LA basin. With respect to the topic of urban N2O, more work is needed in 
order to clarify the relative importance of various source sectors to anthropogenic emissions. 
Future work could examine specific instances of anomalies in the XN2Oxs/XCO2,xs excess ratio in 
order to connect these observations with emissions from special events. Another approach would 
be to employ N2O isotopologes (Yoshida and Toyoda, 2000) to isolate and quantify relative 
contributions from different source sectors to the overall change in XN2O over time and to the 
seasonal cycle in N2O emissions. All in all, enhancing our understanding of the landscape of urban 
N2O emissions is key to evaluating local measures for emission reduction. 
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Chapter 5. Diurnal, weekly and seasonal cycles of CO 
emissions in LA 

5.1 Time series of XCO from CLARS-FTS observations in LA 
Figure 5.1(a) shows the time series of all available XCO retrievals from CLARS. Since we focus 
on the CO climatology in LA, XCO outliers, which are defined as data that are more than three 
standard deviations away from the mean, are excluded from the XCO retrievals. Seasonal cycles 
with peaks in spring and troughs in summer can be clearly seen in both LABS and SVO mode 
observations. This cycle, well known from previous CO observations, is driven by the seasonal 
change of OH, the dominant sink of CO in the atmosphere (Spivakovsky et al., 2000; Canty and 
Minschwaner, 2002). Before spring, when OH is relatively low, CO concentration accumulates 
and eventually reaches its peak in early spring. In summer, the OH production reaches its peak and 
drives the CO concentration down. The XCO from LABS, which measures the PBL change 
contributed by anthropogenic emissions, is significantly higher and has larger variability than SVO 
values, which measure the background change above the PBL. The difference between the two, as 
shown in Figure 5.1(b), is about 55.1 ppb on average. The XCO enhancement, as shown in Figure 
5.1(c), is about 87.2 ppb on average, which is about 59% of the average LABS XCO measurement. 
Such a high enhancement of XCO in the LA megacity makes it easy to be detected and therefore 
makes it a good tracer of source emissions. Both the XCO difference and the enhancement show 
a weak seasonal cycle due to the seasonal pattern of atmospheric dynamics. In the following 
sections, we investigate the diurnal, weekly, and seasonal pulses of XCO enhancement and how 
they are associated with anthropogenic emissions and atmospheric dynamics in the LA megacity. 
We primarily focus on CO climatology; interannual variability will not be discussed in this paper. 
Measurements potentially affected by wildfire emissions, which will lead to extremely high CO 
concentration, have also been filtered by excluding days with large wildfires (e.g., Woolsey 
wildfire and Holy wildfire in 2018), filtering out observations with high fitting residuals and low 
O2 ratio resulting from strong aerosol emissions during wildfires, and removing data that are more 
than three standard deviations away from the mean. 
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Figure 5.1. Top panel: Time series of XCO retrievals from CLARS, including both LABS and SVO 
observing modes. These measurements have been filtered and corrected to remove the bias due to aerosol 
scattering effects. Furthermore, XCO outliers, which are defined as data that are more than three standard 
deviations away from the mean, are excluded from the XCO retrievals; Middle panel: XCO difference 
between LABS and SVO modes; Bottom panel: XCO enhancement, which is the difference between 
PBL and background XCO, is calculated by applying the geometric correction (Appendix A3) to the 
XCO difference in the middle panel. An averaging kernel smoothing correction (Appendix A4) is also 
implemented to account for the different vertical sensitivity of the LABS and SVO modes. The monthly 
means of XCO difference and enhancement are also shown. 
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5.2. Diurnal cycles of XCO enhancement 
The XCO enhancement is averaged hourly and mapped to illustrate the diurnal patterns in the LA 
basin from 8 am to 5 pm, as shown in Figure 5.2. All retrievals from 2011 to 2018 are used. 
Following Wong et al. (2015), natural neighbor interpolation (Sibson, 1981) is used to generate 
the maps using XCO enhancement from the 33 surface reflection points. The corresponding hourly 
mean wind fields at ~50 meters above ground from WRF-Chem simulations—which uses 
ECMWF ERA5 reanalysis for the initial and boundary conditions — are also shown. The results 
indicate three clear features: (1) The XCO enhancement is generally higher in the early morning 
(8–10 h) near the downtown area and the northern LA basin, when the land-sea breeze (typically 
land breeze in summer and sea breeze in winter) is weak. This pattern is generally consistent with 
bottom-up CO emission estimates in the LA basin. The east-west contrast of XCO enhancement 
in the early morning is about 50 ppb; (2) A strong diurnal variability in XCO enhancement can be 
observed. The XCO enhancement increases and expands from morning to early afternoon 
primarily driven by increasing CO emissions and atmospheric transport even though the winds are 
relatively weak compared to late afternoon. On average, the magnitude of the XCO enhancement 
in the day time is about 16.8% (an increase of 10.5 ppb from 62.5 ppb at 8–9 h to 73.0 ppb at 14– 
15 h; Figure 5.3); (3) Atmospheric dynamics (sea breeze and wind fields in Figure 7) and terrain 
effects significantly affect the spatial distribution of XCO enhancement in the late afternoon. The 
dynamical effect also has a strong seasonal cycle, which will be discussed in Section 5.4. When 
winds from the ocean cross downtown and bring the pollution eastward, the XCO enhancement in 
the downtown areas drops rapidly. In the late afternoon, the high XCO enhancement is mostly 
concentrated in and just below the San Gabriel Mountains in the north, as the winds drive the 
emissions toward the mountains. The XCO enhancements in Figure 5.3 are averaged values over 
all the 33 sites. The drop between 14 h and 15 h is about 20% (from 72 ppb to 57 ppb). As can be 
seen in Figure 5.2, between 14–15 h and 15–16 h, the XCO enhancement in some sites near the 
ocean drops by more than 50%, due to the strong sea breeze from the ocean. On average, there is 
a 20% drop between 14 h and 15 h. The rise and mixing of the PBL may have an impact in diluting 
the local CO, but it is the strong sea breeze in the late afternoon that pushes the CO-rich air 
eastward and out of the observation domain. The reproduction of diurnal patterns of XCO 
enhancement using WRF-Chem model simulations is described in Section 5.5. This diurnal 
variability is different from in-situ measurements from ground-based or tower stations (Newman 
et al., 2013), because surface measurements are sensitive to local traffic induced emissions while 
column abundance measurements are more sensitive to emissions integrated over a larger area and 
are driven by regional-scale meteorology (McKain et al., 2012). 
These diurnal patterns revealed by CLARS-FTS observations have important implications for the 
inversion of urban carbon emissions from trace gas concentration measurements. First, the 
snapshot measurement provided by current LEO satellites (mostly with overpasses at local time of 
13.5 h) is not representative of the emission pattern due to the high diurnal variability in urban 
trace gas concentrations. Second, ground-based measurements need to be combined with accurate 
atmospheric dynamics models for reliable emission inversion. Given the fact that most of the 
megacities are located in coastal regions with strong diurnal sea-land circulation, the diurnal 
patterns as shown in the LA basin highlight the importance of atmospheric dynamics in deriving 
carbon fluxes in coastal cities. This diurnal pattern of atmospheric dynamics has been a feature 
characterizing the landscape of the LA megacity (Lu and Turco, 1995). 
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Figure 5.2. Hourly maps of XCO enhancement (ppb) in the LA megacity using CLARS measurements 
averaged from 2011 to 2018. The map is obtained by interpolating measurements at the 33 surface 
targets. The winds are monthly averages for January (black) and July (grey) at 100 meters above ground 
from ECMWF ERA5 reanalysis from 2012 to 2019. A comprehensive analysis of winds in the LA basin 
is presented in Appendix A5. The length of the arrows is proportional to the wind speed. The red arrow 
on the top left indicates a wind speed of 5 m/s, for reference. 

Figure 5.3. Hourly mean of diurnal XCO enhancement (ppb), which is an average of all CLARS 
retrieved values in the LA megacity from 2011 to 2018. The error bars denote the standard deviation. 
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5.3 Weekly cycles of XCO enhancement 
The CO emission contrast between weekday and weekend has been reported using ground-based 
and airborne measurements (Kim et al. 2016) in the LA basin. This is primarily due to a 70–80% 
decrease in heavy-duty truck emissions over the weekends (Marr et al., 2002). Here, we report the 
spatial pattern of XCO enhancement weekday-weekend contrast in the LA megacity, as shown in 
Figure 5.4. To first order, the spatial patterns of XCO enhancement averaged over weekday and 
weekend are similar and generally consistent with the CO emission inventory. On average, the 
weekday XCO enhancement (90.5 ppb) is about 11.4% larger than the weekend value (81.2 ppb). 
This result is consistent with results from CalNex measurements and model simulations driven by 
the CO emission inventory (Kim et al. 2016), in which the weekend CO concentration is about 10% 
and 12% less than weekday values for the CalNex measurements and model simulations, 
respectively. The spatial distribution of weekday-weekend contrast can be seen in Figure 5.4(c), 
which shows the ratio of weekday to weekend XCO enhancements. It is interesting to see that 
areas with relatively larger ratios are located in the western and southern parts of the LA basin. A 
possible explanation may be that these two areas experience larger decreases in heavy-duty truck 
emissions over weekends compared to weekdays. However, further investigation is needed with 
more truck emission observations over highways and local streets, which are currently not 
available, making the investigation beyond the scope of this study. Given the assumption that there 
are no major changes in  atmospheric dynamics between weekdays and weekends, the spatial 
pattern of weekday-weekend contrast indicates the pattern of change of anthropogenic CO 
emissions, which is dominated by the change in heavy-duty truck traffic (Marr et al., 2002). In LA, 
more than 83% of CO is emitted from mobile sources and among them 47% is from on-road motor 
vehicles. We compare the weekly variability of XCO enhancement with the traffic count, as shown 
in Figure 5.4(d). The traffic count is the sum of hourly flows over the day from the Caltrans 
Performance Measurement System (Caltrans PEMS, 2019). The PEMS traffic count data is 
collected in real-time from over 39,000 individual detectors distributed along the freeway system 
in California. Here we use the data from Los Angeles and Ventura counties, San Bernardino and 
Riverside counties, and Orange county, respectively. Since PEMS traffic count data are only 
available on highways, we assume their weekly variability is representative of the total traffic in 
LA. The variabilities in both quantities correlate well with each other when considering the data 
uncertainty. Compared to the average weekday (Monday through Friday) XCO enhancement, 
Saturday enhancements are 3.3% lower and Sunday values 14.0% lower. For the traffic count, the 
corresponding values are 3.3% and 14.8%, respectively. The consistency shows the effectiveness 
of CLARS-FTS measurements in quantifying the change of human activity-related carbon 
emissions between weekdays and weekends. The mismatch between the weekly time series of 
XCO enhancement and traffic count can be attributed to the following two causes: (1) vehicle 
count is assumed to be a direct indicator of emissions; this may not always be true since the 
variation in emission factors for different vehicle types is not considered. Different vehicle types 
will have different emission factors, implying that the total emission could be different even if the 
traffic count remains the same; (2) the PEMS traffic sensors are only available on highways. 
Therefore, PEMS traffic count data may not be representative of all the traffic in the basin, 
especially those on local streets. 
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Figure 5.4. Weekly variability of XCO enhancement in the LA megacity. (a) Spatial pattern of weekday 
XCO enhancement averaged over all retrievals from 2011 to 2018; (b) Same as (a) but for weekends; (c) 
Ratio of weekday and weekend XCO enhancements; (d) Weekly variability of XCO enhancement 
compared with traffic counts from PEMS (pems.dot.ca.gov). Daily measurements for all stations in 
District 7 (Los Angeles and Ventura counties), District 8 (San Bernardino and Riverside), and District 
12 (Orange County) are used. The spatial distribution of sensors is shown in Appendix A6. The PEMS 
traffic count data is collected in real-time from over 39,000 individual detectors distributed along the 
freeway system in California. 

5.4. Seasonal cycles of XCO enhancement 
The spatial pattern of seasonal XCO enhancement, as shown in Figure 5.5, shows significant 
change from season to season. Spatial correlation of the corresponding wind fields with XCO 
enhancement indicates that such changes are primarily driven by seasonal wind patterns. In winter, 
the strong Santa Ana winds (Raphael et al. 2003) coming from the northeast can be clearly seen. 
However, the atmosphere in the basin is relatively calm and the spatial distribution of XCO 
enhancement shows higher values around the downtown region and the foothill region below the 
San Gabriel Mountains in the north. In summer, the sea breeze is much stronger than in the other 
seasons, leading to higher contrast in XCO enhancement between northern and southern LA. In 
spring and autumn, the sea breeze is moderate. On average, the XCO enhancements for spring, 
summer, autumn, and winter are 71.5 ppb, 60.2 ppb, 66.0 ppb, and 71.3 ppb, respectively. Due to 
the spatial mapping capability of CLARS and the fact that CLARS measurements are largely 
unaffected by PBLH changes, analysis of the influence of atmospheric dynamics in regulating the 
CO concentration in the LA megacity becomes more effective and straightforward; on the other 
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hand, this may be harder for conventional ground-based measurement networks, whose samples 
of the near surface CO change have smaller footprints than those of CLARS column measurements. 
To get the same mapping capability, a large number of ground-based measurement towers may be 
needed. Further, the diurnal variability of PBLH needs to be simultaneously and accurately 
quantified for supporting the analysis of ground-based measurements (Newman et al. 2013), which 
is challenging. 

Figure 5.5. Spatial pattern of averaged XCO enhancement in the LA megacity for different seasons 
(Spring: March, April, and May; Summer: June, July, and August; Autumn: September, October, and 
November; Winter: December, January, and February). CLARS-FTS measurements from 2011 to 2018 
are used to calculate the mean for all surface targets and to produce maps. The winds are monthly means 
for January (black) and July (grey) at 100 meters above ground averaged over 2012-2019 from ECMWF 
ERA5 reanalysis. A comprehensive analysis of winds in the LA basin is presented in Appendix A5. The 
length of the arrows is proportional to the wind speed. The red arrow on the top left indicates a wind 
speed of 5 m/s, for reference. 
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5.5. Evaluation using WRF-Chem simulations 
The ability of the CLARS observation system to capture the atmospheric patterns of urban 
emissions in LA has not yet been studied. CLARS retrievals provide the slant column mixing ratio 
of CO. However, the quantity of interest is the change of XCO in the urban PBL. The spatial 
patterns of the relationship between the observed slant column XCO from CLARS and the change 
in XCO in the LA PBL need to be quantified. This quantification will define the representativeness 
of the CLARS observing strategy for capturing the variability of XCO enhancement. An effective 
approach for this investigation, similar to the OSSE (Observing System Simulation Experiment; 
Byrne et al. 2017) technique, is to use model simulations to create synthetic CLARS XCO 
measurements (as shown in Figure 5.6(a)) and calculate XCO enhancement in the urban PBL (as 
shown in Figure 5.6(b)). By comparing these two datasets (retrieved XCO enhancement and 
assumed truth), we will be able to answer the following question: how accurately can the CLARS 
observatory, or more generally a mountain-top remote sensing instrument, reproduce the general 
pattern of XCO enhancement in a city, given its very special slant observing geometry? 
A description of the WRF-Chem model is in Appendix A7. Figure 5.6(a) shows the XCO 
enhancement in summer from WRF-Chem model simulations. The XCO enhancement in the 
morning agrees with the trend in the emission changes, in which the enhancement increases until 
the early afternoon while the sea breeze is getting stronger and gradually bringing more CO rich 
air eastward. In the late afternoon, the strong breeze brings high XCO air to the north-east of the 
basin. We apply the CLARS observation operator, by tracing the light path using the observation 
and solar geometries of CLARS, to the simulation data and create synthetic CO measurements, 
which act as a proxy for CLARS observations where the simulation field represents the “truth”. 
We then compare the derived maps of XCO enhancement from CLARS synthetic observation to 
the “true” XCO enhancement. The result is shown in Figure 5.6(b). Clearly, the CLARS synthetic 
data capture the essential features of the model simulations in (a). A scatter plot is shown in Figure 
5.7 to quantify the correlation between the CLARS synthetic and WRF-Chem simulations. Both 
maps show a high degree of agreement for all hours of day (r2=0.69). CLARS synthetic maps, 
created from sampling the 33 surface reflection points, can explain more than 69% of the spatial 
variability of the “true” atmosphere from WRF-Chem. The CLARS synthetic maps show higher 
values than the model simulations (with a regression slope of 1.09). This is because of the 
heterogeneous distribution of XCO in the northern LA basin such that the reflected light path of 
CLARS is always passing through a high concentration atmosphere on its way to the CLARS 
instrument in summer. This result demonstrates the representativeness of the CLARS observing 
strategy towards capturing realistic XCO enhancements in the LA megacity. 
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Figure 5.6. (a) Hourly maps of XCO enhancement in the basin simulated by WRF-Chem. The locations 
of the 33 surface reflection points of CLARS are indicated by white circles; The winds are averaged over 
the simulation days from model wind fields at 925 hpa simulated by WRF-Chem, which in turn is driven 
by ECMWF ERA5. The length of the arrows is proportional to the wind speed. The red arrow on the 
bottom left indicates a wind speed of 5m/s, for reference. (b) Hourly maps of XCO enhancement 
produced by first applying the observation operator to the WRF-Chem simulation in (a) to generate 
synthetic CLARS observations and then deriving the XCO enhancement maps. The CLARS observation 
operator traces the light paths, and the corresponding CO and O2 densities along the path, in order to 
generate the SCD that CLARS might measure if the WRF-Chem simulation represents the “true” 
atmosphere. The simulations are generated for July 2016, representing a summer scenario. For the winter 
scenario, refer to Appendix A8. Please note that the data ranges for the color bars in (a) and (b) are not 
the same for the sake of spatial pattern comparison. 
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Figure 5.7. Correlation between maps from CLARS synthetic and WRF-Chem simulations. The CLARS 
synthetic data are sampled from the 2 km by 2 km grids of WRF-Chem. There are about 1000 points in 
the study domain. 
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5.6. Reduction of CO enhancement in LA during COVID-19 

Carbon monoxide (CO) is a primary pollutant subject to a National Ambient Air Quality (NAAQS) 
standard. Health effects of CO are related to the onset of tissue hypoxia caused by binding with 
hemoglobin in the blood, increasing mortality for individuals with underlying conditions such as 
heart disease. In urban areas such as Los Angeles, more than 70% of CO is emitted from mobile 
sources with smaller contributions from fossil-fueled power plants and other stationary sources 
(Zeng et al., 2020). As discussed in Section 1, lockdown measures had a very large impact on 
vehicle miles traveled (VMT) in the South Coast Air Basin (SoCAB) resulting in a clear signal in 
CO emissions as measured by the CLARS-FTS remote sensing spectrometer on Mt. Wilson, 
overlooking the SoCAB. Figure 5.8 shows that the CO column abundance decreased by 37.5% in 
April, 2020 compared with the April mean from 2012-2019. The LA downtown region, where CO 
concentrations are normally the highest, experienced the largest decrease. 

Figure 5.8. (a) Maps of CO column abundance (XCO) in excess of the background in the Los Angeles 
(LA) basin averaged for the month of April. Left panel (Normal): April noontime average for 2012-2019. 
Right panel (COVID-19): April 2020 during lockdown. These maps are interpolated from the 33 surface 
observation targets by CLARS-FTS; (b) The histogram of difference between XCO excess measurements 
in (a) for all the surface observation targets. The averaged XCO excess reduction is 37.5% on average 
due to the lockdown order. 
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6. Inferring long term trend in aerosol compositions using angular 
scattering effect of aerosols 
In this section, we take advantage of the multi-angle observational geometries of CLARS-FTS to 
constrain the aerosol angular scattering effect, which is associated with aerosol compositions, 
using the O2 absorption spectroscopy. CLARS-FTS provides a wide range of scattering angles, 
from about 20° (forward) to about 140° (backward). 
In order to study the aerosol scattering effect, we retrieved the O2 SCD in the oxygen singlet delta 
(1∆) band, which results from the transition between singlet and triplet oxygen (Leshchishina et 
al., 2010), at 1.27 µm using GFIT algorithm. However, aerosol scattering effects are not considered 
in the GFIT retrieval algorithm. Therefore, errors in the O2 SCD retrieval are largely due to light 
path changes caused by aerosol scattering; this bias can be used to investigate the aerosol optical 
properties (Zhang et al., 2015; Zeng et al., 2018). The surface reflectance at the target reflection 
points can be calculated from the ratio of SVO-observed (incident solar spectrum) and LABS-
observed (reflected sunlight) solar radiance under clear atmospheric conditions (defined as O2 ratio 
larger than 0.98) using continuum measurements (where gas absorption is negligible) around the 
oxygen 1∆ band. 
For this study, we chose three surface reflection points located in the western San Gabriel Basin: 
West Pasadena (W-P), Santa Anita (S-A), and Santa Fe Dam (S-F), as shown in Figure 6.1(a). 
CLARS measurements over these three reflection points cover a wide range of aerosol scattering 
angles. Moreover, the aerosols in this area originate from the LA downtown area since the sea 
breeze induced by land-sea thermal contrast brings air pollution from downtown eastward to the 
San Gabriel Basin. The pollution in this region is especially severe in the afternoon, when the 
pollution may be trapped aloft as the mixed layer stabilizes (Lu and Turco, 1994). Observations of 
aerosol scattering from these three surface reflection points provide information on the aerosols 
from the LA megacity in general. 

Figure 6.1. (a) CLARS-FTS near the top of Mt. Wilson and three of its surface reflection points in the LA 
basin: West Pasadena, Santa Anita, and Santa Fe Dam. The AERONET site at Caltech and meteorological 
station at USC in LA downtown are also indicated. The background image is adopted from Google Maps; 
(b) Schematic diagram of CLARS-FTS observing geometries. As an example, the light path change (in 
dotted red) due to aerosol scattering along the optical path from the basin surface to the instrument is 
illustrated. The aerosol scattering includes contributions from single scattering and multiple scattering. 
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6.1 O2 Ratio as an indicator of aerosol scattering effect 
In this study, we use the oxygen (O2) SCD ratio (denoted by O2 ratio), which is the ratio of retrieved 
O2 SCD (denoted by O2,retrieved SCD) to geometric O2 SCD (denoted by O2,geometric SCD), as a 
proxy for light path change due to aerosol scattering: 

O2,retrieved SCD O2 ratio = (6.1) 
O2,geometric SCD 

The geometric O2 SCD is derived from National Center for Environmental Prediction (NCEP) 
reanalysis data with known observing and solar geometries and a constant oxygen dry-air volume 
mixing ratio of 0.2095.  We also assume hydrostatic equilibrium and no scattering or absorption 
along the optical path (Zhang et al., 2015). In a non-scattering atmosphere, O2 SCD retrievals from 
CLARS-FTS should have the same value as the geometric O2 SCD. The Rayleigh scattering 
contribution is negligible since we employ measurements in the near infrared band at 1.27 µm. In 
a scattering atmosphere with aerosols, the change in optical light path due to aerosol scattering 
makes the retrieved O2 SCD deviate from the calculated geometric O2 SCD. Therefore, the 
deviation of O2 ratio from unity provides a proxy for the extent of aerosol scattering over the basin, 
when the deviation is larger than the retrieval uncertainty, which is 0.5% for LABS measurements 
(Fu et al., 2014; Zeng et al., 2018). This approach of utilizing the O2 retrieval as a proxy for 
scattering effects is equivalent to that used for GOSAT (Yokota et al., 2009) and OCO-2 (Crisp et 
al., 2008) retrievals, where O2 A-band observations are compared with reanalysis data to 
discriminate light path-induced changes from changes in actual trace gas concentration (O’Dell et 
al., 2012; Taylor et al., 2016). The O2 

1∆ absorption band at 1.27 µm used by CLARS-FTS for 
retrieving O2 SCD is shown in Figure 6.2. The O2 ratio effectively quantifies the strength of 
aerosol scattering. The rule of thumb for using the O2 ratio to quantify aerosol scattering effects is: 
the lower the O2 ratio, the stronger the aerosol scattering. If the O2 ratio is 1.0, then there is 
negligible aerosol scattering effect. 

Compared to the visible band, the 1.27 µm NIR band is much less sensitive to the fine 
mode aerosol particles (e.g., fresh smoke is almost transparent at 1.27 µm because of its very small 
particle sizes, which is on the order of 0.1 µm). Comparatively, it is the large mode particle aerosols 
that have larger impacts on GHG retrievals from NIR measurements with wavelengths greater than 
1 µm. However, given the large amount of fine mode aerosol particles in the LA Basin, their 
impacts on the measurements in the 1.27 µm band can be large. Here we use MERRAero AOD 
reanalysis data (Rienecker et al., 2011) at 1.24 µm (which is very close to 1.27 µm) to calculate 
the contribution of fine mode aerosols to the total aerosol loading, as shown in Figure 6.4(b). We 
used data for the five composite MERRA aerosols (black carbon, organic carbon, sulfate, dust, 
and sea salt) at 1300h local time over the LA region and averaged them from 2012 to 2014. Data 
below the CLARS elevation (1.67km) are used in this analysis. From Figure 6.4(b), it is evident 
that the monthly contribution from fine mode aerosols (black carbon, organic carbon, and sulfate), 
due to their high abundance in LA, is around 40% to 60%. Therefore, the O2 ratio at 1.27 µm used 
in this study can be used to infer aerosol scattering effects for both fine- and coarse-mode aerosols. 
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Figure 6.2. An example of normalized radiances in the oxygen 1∆ band at 1.27 µm, centered at 7885 cm-

1 (1.27 µm) with width of 240 cm-1, selected for retrieving O2 SCD from CLARS-FTS measurements. 
The blue lines indicate CLARS-FTS measurements, including contributions from all trace gases and 
solar lines at a solar zenith angle of 69°. The red lines show the simulated absorption spectra calculated 
by the 2S-ESS RT model (Appendix A9) assuming no aerosol scattering effects. The black vertical bars 
indicate the spectral line positions of O2. The spectra were measured at 15:20 local time over the West 
Pasadena surface reflection point. 

Figure 6.3. Illustration of the observing geometries of CLARS-FTS, including the scattering angle (Θ), 
solar zenith angle (θs), viewing zenith angle (θv) and relative azimuth angle (Δϕ). The scattering angle 
can be calculated from the zenith angles and the relative azimuth angle using Equation (6.2). 

The scattering angle is defined as the angle between the incident and scattered light beams, as 
shown in Figure 6.3. From spherical geometry (Liou, 2002), the scattering angle can be derived 
from the incoming and outgoing directions: 

cos(Θ) = 𝜇𝜇 𝜇𝜇′ + (1 − 𝜇𝜇′)1/2(1 − 𝜇𝜇′2)1/2 cos(𝜙𝜙′ − 𝜙𝜙)                                  (6.2) 

where 𝜇𝜇 and 𝜇𝜇′ are the cosines of solar and viewing zenith angle, respectively, and 𝜙𝜙 and 𝜙𝜙′ are 
the solar and viewing azimuth angles, respectively. The aerosol scattering phase function defines 
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the angular distribution of aerosol scattering energy in terms of scattering angle. Figure 6.4(a) 
shows the scattering phase functions following the Henyey-Greenstein approximation for various 
values of the asymmetry parameter g. The Henyey-Greenstein phase function (Henyey and 
Greenstein, 1941) has an analytical expression: 

1 1−g2 

PHG(Θ) =                                               (6.3) 
4π (1+g2−2g cos(Θ))3/2 

g=0.0 corresponds to isotropic scattering, where the scattering energy is the same in all directions. 
As the peak of the phase function sharpens in the forward direction, g increases. In Figure 6.4(a), 
g=0.67 is the averaged asymmetric parameter at 1020 nm derived from the AERONET retrievals 
at Caltech (see Appendix A10). As a comparison, the phase functions for the five types of aerosols 
obtained from the MERRA aerosol reanalysis data (Rienecker et al., 2011) and calculated using 
the GOCART model (Colarco et al., 2010) are also shown. Clearly, the averaged phase function 
from AERONET ranges between the phase function of aerosols from natural sources (dust and sea 
salt) and those from mostly anthropogenic sources (black carbon, organic carbon and sulfate). 

Figure 6.4. Aerosol scattering phase function for five different aerosol types, including black carbon, 
dust, organic carbon, sea salt, and sulfate, and two phase functions following the Henyey-Greenstein 
approximation with asymmetry parameter (g) values of 0.67 and 0.0, respectively. The value g of 0.67 
is the averaged asymmetry parameter in Pasadena inferred from AERONET-Caltech; (b) Monthly 
averaged fraction of AOD at 1.24 µm for five different composite MERRA aerosol types (black 
carbon, organic carbon, sulfate, dust, and sea salt) at 1300h local time in LA, averaged over the time 
period from 2012 to 2014. MERRA AOD data below CLARS-FTS elevation (1.67km) are used. The 
five types of aerosols are obtained from MERRA aerosol reanalysis data (Rienecker et al., 2011), with 
optical properties calculated using the GOCART model (Colarco et al., 2010). 
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6.2. Simulating aerosol scattering using radiative transfer model 
6.2.1 2S-ESS RT Model 
The Two-Stream-Exact-Single-Scattering (2S-ESS) RT model (Spurr and Natraj, 2011) is used to 
simulate the observations and quantify the effect of aerosol scattering on the changes in O2 ratio 
retrieved from CLARS-FTS. The 2S-ESS RT model is a numerically efficient but quite accurate 
(typically within a few percent of exact calculations and in most cases with biases less than 1%) 
technique for simulating radiances for hyperspectral observations. This model analytically 
computes the single scatter contribution in an exact manner by using all scattering phase function 
moments, and uses the two-stream approximation only to simulate the multiply scattered radiation 
field. The exact single scattering calculation largely eliminate biases due to the severe truncation 
of phase function inherent in a traditional two-stream approximation. Therefore, the 2S-ESS model 
is much more accurate than a typical two-stream model, especially in optically thin atmospheres 
where single scattering dominates or in scenarios dominated by strong gaseous absorption where 
the single scattering approximation is also very accurate. This model has been widely used for 
remote sensing of trace gases in previous studies (Xi et al., 2015; Zhang et al., 2015; Zhang et al., 
2016; Zeng et al., 2017; Zeng et al., 2018). The settings of the RT model follow those used by 
Zhang et al. (2015) and Zeng et al. (2018). Basically, the a priori profile of atmospheric 
composition is obtained from NCEP-NCAR reanalysis data (Kalnay et al., 1996); the absorption 
coefficients for the oxygen molecules and the vertically stratified optical depths are computed 
using the GFIT program (Toon et al., 1992); the surface reflection is derived from CLARS-FTS 
measurements; Rayleigh scattering calculations are included in the model; the aerosol scattering 
phase function in the RT model is assumed to follow the Henyey-Greenstein approximation 
(Henyey and Greenstein, 1941). Below the CLARS altitude, the atmosphere is divided into five 
layers. Aerosols in these layers are assumed to be horizontally homogeneous. The aerosol optical 
properties, including single scattering albedo and asymmetry parameter, are adopted from 
AERONET measurements at Caltech. The radiance computed by the RT model is convolved using 
the CLARS-FTS instrument line shape (ILS) (Fu et al., 2014). The spectral resolution of the output 
radiance wavelength grid is set to be the same as the CLARS measurement resolution (0.06 cm-1). 
The signal-to-noise ratio (SNR) is assumed to be constant at 300. Gaussian white noise is then 
added to the simulated spectra. The aerosol optical depth (AOD) measurements from AERONET-
Caltech cover the wavelength range from 340 nm to 1020 nm; however, the O2 

1∆ absorption bands 
(7885 cm-1, ~1270 nm) used in this study are outside that range. To calculate the AOD in this band,
we use the Ångström exponent law (Seinfeld and Pandis, 2006) to extrapolate the AERONET data. 
The extrapolated AOD is evenly distributed in the PBL. 

In order to quantitatively evaluate the effect of aerosol scattering on the retrieval of O2 
SCD from CLARS-FTS, we estimate the retrieval bias caused by aerosol scattering using a two-
step process. First, synthetic spectral radiance data are generated by the 2S-ESS RT model using 
observed AOD from AERONET-Caltech. Second, O2 SCD is retrieved by fitting the synthetic 
spectra using the RT model based on Bayesian inversion theory (Rodgers, 2000). In the retrieval, 
the RT model has the same configuration as that used for generating the synthetic spectrum, but 
with AOD set to zero and not retrieved. As shown in Zeng et al. (2018), this two-step process 
reproduces the O2 SCDs measured by CLARS and approximately quantifies the effect of 
neglecting aerosol scattering in the retrieval. The non-linear Levenberg-Marquardt algorithm is 
employed for fitting the spectra (Rodgers, 2000). A scaling factor, viz., the ratio of retrieved O2 
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SCD to the geometric O2 SCD derived from NCEP reanalysis data, is the state vector element to 
be retrieved using the Bayesian inversion approach. This scaling factor is equivalent to the O2 ratio. 
6.2.2 O2 Ratio as an Indicator of Aerosol Scattering Effects 
The correlation between O2 ratio, an indicator of light path changes due to aerosol scattering, and 
AOD, and its sensitivity to SSA, asymmetry parameter and surface albedo are shown in Figure 
6.5. In general, the O2 ratio decreases with increasing AOD. However, the slope decreases as the 
AOD increases. When aerosols are present, there are direct and diffuse (primarily aerosol 
scattering) components of solar radiation reaching CLARS-FTS. The diffuse component can be 
further separated into single scattering and multiple scattering components. The single scattering 
shortens the length of the light path through the lower atmosphere and leads to less O2 molecular 
absorption (in this case, O2 ratio < 1.0), while multiple scattering increases the absorption path 
length and leads to more absorption (in this case, O2 ratio >1.0). Therefore, if the single scattering 
effect dominates (for optically thin atmospheres), the O2 ratio is less than 1, as shown in Figure 
6.5. As the AOD increases, the multiple scattering component becomes more important, which 
increases the O2 ratio. This explains the decreasing correlation slope between O2 ratio and AOD 
as AOD increases. 

The O2 ratio increases with decreasing SSA. On the other hand, it increases with increasing 
asymmetry parameter or surface albedo. This can be explained as follows. When SSA decreases, 
the aerosol becomes relatively darker and the scattering effect becomes weaker, resulting in a 
larger O2 ratio. When the surface albedo is large, the surface contribution becomes dominant 
compared to the aerosol scattering effect. When asymmetry parameter increases, more scattering 
is concentrated in the forward direction (scattering angle < 20°) and less in other directions. 
Therefore, the light path is not modified significantly, leading to an increase in O2 ratio. It can be 
concluded that O2 ratio is an effective indicator of aerosol scattering effects and that the 
correlations establish sensitivity to aerosol and surface optical properties. 

Figure 6.5. Correlation between O2 ratio and AOD at 1.27 µm and its sensitivities to changes in SSA, 
asymmetry parameter, and surface albedo, respectively. The averaged SSA, asymmetry parameter, and 
albedo, from AERONET measurements at Caltech, are 0.92, 0.67, and 0.21, respectively, with 
corresponding standard deviation (one sigma) values of 0.13, 0.05, and 0.02. The dashed and dotted lines 
represent scenarios when the parameter is increased and decreased by one sigma, respectively. SSA is 
set to be 1.0 if the sum is over 1.0. The RT model settings are described in Section 3.1. The simulation 
is for the West Pasadena target, with a constant solar zenith angle of about 40°. The scattering angle is 
about 55°. 
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6.3. Results of aerosol angular scattering effects 
6.3.1 Diurnal Variability of Aerosol Scattering Angle 
The viewing zenith angles for the W-P, S-A, and S-F surface reflection points are 83.13°, 80.48°, 
and 84.07°, respectively. For these three surface reflection points, the reflected light goes through 
8.36, 6.04, and 9.68 times the air mass, respectively, of nadir mode geometry in the PBL where 
most urban pollutants are trapped. Further, the observation geometries span a wide range of aerosol 
scattering angles. As illustrated in Figure 6.6, the S-F measurements are in the forward scattering 
direction in the morning, moving to backward scattering in the afternoon. The reverse is the case 
for W-P. A detailed quantitative description of diurnal scattering angle changes is provided in 
Figure 6.7. For S-F, the scattering angle increases from 30° (forward scattering) in the morning to 
120° (backward scattering) in the afternoon. Conversely, for W-P, the scattering angle decreases 
from 140° (backward scattering) in the morning to 20° (forward scattering) in the afternoon. 
Interestingly, the scattering angle change for S-A is much smaller compared to W-P and S-F. For 
all seasons, the change for S-A is less than about 20°. Moreover, from Figure 6.7, the scattering 
angles have seasonal dependence due to the change in the geometries of the incoming solar beam. 
The scattering angles in summer are generally larger than those in winter. Considering such distinct 
diurnal variability of scattering angles at these surface reflection points and the long reflected light 
path within the PBL, CLARS-FTS measurements are highly sensitive to the scattering effects due 
to urban aerosols. 

Figure 6.6. Illustration of incident (solid red) and reflected (dashed red) sunlight at the three surface 
reflection points (W-P for West Pasadena, S-A for Santa Anita, and S-F for Santa Fe Dam) for three 
different times of the day: (a) morning, (b) noon, and (c) afternoon. The light paths are the projections 
on the surface. The actual light paths in 3-D space are not shown. 
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Figure 6.7. Diurnal variation of aerosol scattering angle, calculated using Equation (6.3), from 8.0 h 
to 16.0 h local time over the three surface reflection points of West Pasadena, Santa Anita, and Santa 
Fe Dam for four different seasons: Winter, Spring, Summer, and Autumn, represented by the observing 
geometries on Jan 15, April 15, July 15, and October 15, respectively. 

6.3.2 Diurnal Variability of O2 Ratio 
Since all the reflection points are located very close to the AERONET-Caltech site (the distances 
are 5.0, 7.7 and 14.9 km, respectively for W-P, S-A, and S-F), it is reasonable to assume that the 
vertical aerosol loadings at these three locations are almost the same. Therefore, the diurnal 
difference in aerosol scattering effects can be primarily attributed to differences in scattering angle, 
given that the surface reflectance can be estimated with high accuracy. Figure 6.8 shows the O2 
ratio retrievals from CLARS-FTS for W-P, S-A, and S-F. Even though the observed AOD keeps 
increasing from the morning to the afternoon (Figure 6.8(c)), the changes in O2 ratio for S-A are 
relatively small, and remain constant in the afternoon. This is because the change in scattering 
angle for S-A is smaller compared to W-P and S-F. The O2 ratio for W-P, however, decreases from 
the morning to the afternoon, corresponding to enhanced aerosol scattering from two effects: 
increase in AOD and change from backward to forward scattering. On the other hand, the O2 ratio 
for S-F has a small increase from the morning to the afternoon, indicating a weakening scattering 
effect. This is due to the sharp change in scattering angle from forward to backward scattering 
(Figure 6.7), partially offset by the increasing AOD. Such diurnal patterns are very coherent over 
all the measurements (over eight years) at the surface reflection points, as shown in Figure 6.9. S-
F has larger variability compared to W-P and S-A because of the competition between AOD and 
scattering angle effects on the S-F O2 ratio. The same conclusions can be drawn when O2 ratios 
are plotted against scattering angle, as shown in Appendix A11. 

The simulation results from the 2S-ESS RT model are shown as solid and dashed lines in 
Figure 6.8 and as red lines in Figure 6.9. Overall, the RT model qualitatively reproduces the 
diurnal variation of O2 ratios for all surface reflection points. The small differences between the 
measurements and the simulations may be due to the simplified assumption of H-G phase function 
and the usage of identical vertical aerosol loadings at all reflection points. To further investigate 
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the effect of angular scattering dependence, a control run as shown in Figure 6.8(b) was conducted. 
We kept all the same settings as for Figure 6.9(a), except that the asymmetry parameter of the 
aerosol phase function was changed to zero, i.e., scattering was assumed to be isotropic. Therefore, 
any changes in the simulation results can be attributed to the angular scattering effect.  From 
Figure 6.8(b), we can see that the distinctive diurnal patterns of W-P, S-A, and S-F disappear. All 
changes in O2 ratio primarily follow the change in AOD. The results from this experiment suggest 
that the variation in scattering effects between W-P, S-A, and S-F CLARS-FTS measurements is 
primarily driven by the angular distribution of aerosol scattering in the LA basin. 

Figure 6.8. Comparison of O2 SCD ratio, which is the ratio of retrieved O2 SCD to geometric O2 SCD, 
between measurements from CLARS and simulations from the 2S-ESS RT model over the West Pasadena 
(W-P), Santa Anita Park (S-A), and Santa Fe Dam (S-F) surface reflection points. (a) model simulations 
with asymmetry parameter (g=0.67) derived from the average of AERONET-Caltech data from 2011 to 
2018; (b) control experiment (g=0.0) of model simulations assuming no angle-dependent aerosol scattering 
effect; (c) diurnal AOD from AERONET-Caltech on Oct 15, 2013. The AOD are sampled according to the 
observation time of the available CLARS measurements after filtering. 
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Figure 6.9. Multiyear average of O2 ratio for the three surface reflection points, Santa Anita (S-A) on 
the top, West Pasadena (W-P) in the middle, and Santa Fe Dam (S-F) at the bottom from CLARS-FTS 
data for all seasons (original measurements in grey and hourly mean in black). The corresponding 
simulation estimates use the 2S-ESS RT model with averaged solar geometry, aerosol optical properties, 
and surface reflectance. All the data from 2011 to 2018 are used. Appendix A11 shows the same plots 
but with the scattering angle as the x-axis. 

6.3.3. Inter-annual Variability of O2 Ratio 
The interannual variability of the aerosol phase function may indicate changes in aerosol 
composition. For example, if there is an increase in fine mode particles from anthropogenic sources 
(e.g., black carbon, organic carbon, and sulfate), the asymmetry parameter will decrease since the 
angular dependence becomes weaker (as indicated by the phase function change in Figure 6.4). 
On the other hand, if the coarse mode fraction from natural sources (e.g., dust or sea salt) increases, 
the angular dependence will become stronger. Here, we develop a correlation technique between 
measurements at surface reflection points to quantify the strength of the angular dependence of the 
aerosol phase function. This technique investigates the correlation between the O2 ratios from W-
P and S-A in the late afternoon (14-16h in this study) when they have very different scattering 
angles. RT model simulations are shown in Figure 6.10(a); we can see that the O2 ratios are highly 
correlated between W-P and S-A. The slopes depend on the asymmetry parameter. To the first 
order, if the asymmetry parameter is higher, the slope between W-P and S-A will be higher. This 
correlation technique provides a way to quantify the anisotropy of the phase function. 

We applied this correlation technique to the CLARS-FTS measurements as shown in 
Figure 6.10(b). A strong correlation between W-P and S-A can be seen here. The real 
measurements are much noisier because the true aerosol properties have higher variability than 
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those assumed in the RT model simulations, which can affect the retrievals. It is evident that the 
CLARS-FTS measurements are highly mixed for different years, such that one can hardly 
disentangle the measurements by year. A linear regression is applied to fit the data for different 
years. The hypothesis here is that, if there is an interannual trend in the asymmetry parameter, 
there will be a trend in the regression slopes between W-P and S-A O2 ratios. Figure 6.10(c) shows 
the time series of the regression slopes and the comparison with the annually averaged asymmetry 
parameter from AERONET-Caltech. Clearly, there is no significant trend from 2011 to 2018, 
inferred from both CLARS-FTS and AERONET data. This flat trend may be explained by a further 
investigation of wind measurements, as presented in Appendix A12, showing no significant trend 
in eastward wind speeds based on meterorological measurements in LA downtown from 2012 to 
2018. 

Figure 6.10. (a) Correlation of O2 ratios between West Pasadena (W-P) and Santa Anita (S-A) surface 
reflection points for different asymmetry parameters (g) from 0.5 to 0.8 using the 2S-ESS RT model. 
The observing and solar geometries and all other related RT model inputs between 14h and 16h for all 
seasons are used for the RT simulation. The mean values are plotted and their standard deviations are 
shown as the error bars; (b) Scatter plot of O2 ratio between W-P and S-A between 14h to 16h from 
CLARS-FTS retrievals from 2011 to 2018; (c) Regression slopes of O2 ratio between W-P and S-A and 
comparison with annually averaged asymmetry parameter from AERONET-Caltech. The regression 
slopes are derived from applying a linear regression to fit the data in (b) for different years with the 
regression line forced to cross the [1,1] point. 
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6.4. Discussions of aerosol angular scattering effect 
6.4.1 Impact of Aerosol and Surface Properties on O2 Ratios at Different Target Sites 
The correlation between W-P and S-A O2 ratios is a good indicator of the aerosol phase function, 
as demonstrated in Section 6.4.3. Here, we explore the sensitivity of this correlation to different 
aerosol and surface properties, including asymmetry parameter, SSA and surface albedo, as shown 
in Figure 6.11. The simulation is implemented based on average solar and observation geometries 
at 15h for the spring season. The results show that, to the first order, the asymmetry parameter 
determines the different slopes between W-P and S-A, while SSA and surface albedo have smaller 
impacts on the correlation slope. This is because, when SSA or surface albedo changes, the O2 
ratios change simultaneously with similar magnitudes for both W-P and S-A. As a net result, their 
impacts on the correlation slope cancel out. On the other hand, when asymmetry parameter 
(indicative of the scattering phase function) changes, the O2 ratio changes differently between W-
P and S-A, which leads to different correlation slopes as seen in Figures 6.10 and 6.11. The data 
spread in Figure 6.10(b) and the error bars in Figure 6.10(a) are mainly due to the change in solar 
geometry (solar zenith angle and solar azimuth angle) over different seasons. 
6.4.2 Applicability of CLARS Aerosol Observation System to Other Cities 
This measurement system can be used for many other megacities with vantage points above high 
buildings or mountains. Even if the vantage points are not above the boundary layer, the 
measurement system can be optimized for measurements of aerosol optical properties such as 
phase function and single scattering albedo, which do not require the instrument to be situated 
above the PBL. This is different from measuring total aerosol loading or trace gas columns, which 
do have this requirement in order to get the best observation. The surface reflection points should 
be carefully selected to have surfaces with homogeneous characteristics. The universal 
measurement system for all cities will be similar to the current open-path remote sensing 
instrument (Griffith et al., 2018; Byrne et al., 2019) above a high tower or building for trace gas 
studies. Such open-path instruments can be adjusted to monitor the aerosol optical properties on a 
city scale. 

Figure 6.11. Similar to Figure 6.10(a) but varying aerosol SSA and surface albedo to investigate the 
sensitivity of the correlation between W-P and S-A O2 ratio to aerosol and surface properties. (Left) 
Correlation of O2 ratios between W-P and S-A surface reflection points for different asymmetry parameter 
(Asym) values from 0.5 to 0.8, different SSA (average value of 0.92, standard deviation (σ) of 0.13) using the 
2S-ESS RT model, color-coded for different values of Asym. SSA is set to be 1.0 if the sum is over 1.0. The 
simulation is implemented based on average solar and observation geometries at 15h for the spring season; 
(Right) Same as left but for changing surface albedo (averaged value of 0.21, standard deviation of 0.02). 
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Chapter 7. Future work 
7.1 Monitoring the long-term emission trends toward 2030 
To establish compliance with California legislation that mandates the rollback of greenhouse gas 
(GHG) emissions (e.g., 40% reduction in GHG emissions by 2030), comprehensive, long-term 
observing strategies are required. We have demonstrated the capability of CLARS-FTS 
observations in monitoring the near-decadal trends of CH4, N2O, and CO. For future work, we will 
continue to 1) extend the CLARS-FTS data record; 2) process the CLARS-FTS spectra to obtain 
dry air slant column abundances and mixing ratios of the key greenhouse gases CH4 and CO2, as 
well as CO, N2O, water vapor and O2 (used for filtering the effects of aerosols and clouds); and 3) 
calculate trends of CH4 and N2O emissions using the tracer-tracer correlation method relative to 
CO2. Successful completion of this project will provide CH4 emissions data from late 2011 through 
the end of 2020. We will also analyze the data to search for relationships that may enable 
attribution of the measured emissions to the various contributing sectors including leakage from 
the natural gas infrastructure, landfills and sewage treatment plants. Where possible we will 
compare our results with other ongoing studies including surface monitoring stations operated by 
ARB and the Megacities Carbon Project. With CLARS-FTS data extending toward 2030, we will 
be able to provide a clear indication whether technical and administrative controls on CH4 
emissions targets specified in California legislation are succeeding. 

7.2 Inverse modeling to retrieve spatially-resolved CO2 and CH4 emissions to help 
constrain point sources in LA 
CLARS data coupling with inverse modeling framework would generate GHG emission maps with 
1-4-kilometer spatial resolution to inform/detect emission hotpots and the potential super emitters. 
Moreover, the benefit of long-term CLARS data provide an opportunity to dissolve the source 
analysis according to the different temporal behaviors of individual source, including landfills, 
sewage treatment plants and fugitive emissions from natural gas production, storage and 
distribution systems which are primary sources in urban areas. The existing tower network in LA 
(e.g., Megacities Carbon Project) is sparse and subject to the high uncertainty of quantifying 
boundary layer height. Available global retrievals from satellites, e.g., OCO-2 and TROPOMI, 
have limited spatial resolution, limited sensitivity to GHG concentrations in the boundary layer 
and limited overpass time. 
As a future work, we will apply an inverse modeling scheme to CLARS-FTS measurements to 
constrain the anthropogenic GHG emissions down to hourly and few-kilometer scales. The 
inversion analysis is conducted based on Bayesian optimal estimation. The transport from the 
surface to the ambient atmosphere is simulated by a Lagrangian particle dispersion model driven 
by the WRF mesoscale model. High-resolution meteorological simulations were performed using 
the WRF model to drive FLEXPART in order to simulate contributions to GHG mixing ratios 
from surface fluxes. By applying this inverse modeling scheme to CLARS-FTS measurements, we 
can constrain the GHG emissions of CO2 and CH4 down to hourly and kilometer scales. This study 
will be the first decadal trend analysis of spatially- and temporally- resolved anthropogenic GHG 
emissions in a major American megacity, thus providing a model for future studies mapping urban 
emissions at finer scale. It will also provide complementary information to previous global and 
regional trend analyses and significant diagnostic and prognostic information for urban emission 
management purposes. 
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Chapter 8. Conclusions 
8.1 CH4 

Using mountaintop remote sensing with coverage over the greater Los Angeles basin, we observe 
seasonal excess methane emissions that correlate very well (R2=0.50) with combined commercial 
and residential natural gas consumption. From the covariance we observe that the emissions arise 
from two terms: one that is seasonally invariant (14.0 ± 1.3 Gg/month) and another that peaks in 
the colder months of the year corresponding to (1.8 ± 0.18) % of residential plus commercial 
natural gas consumption. Other natural gas consumption sectors (industrial, power plant and 
transportation) either have no clear seasonal relationship that matches the observed emissions or 
are too small. The available emission factor data for residential and commercial natural gas-fired 
combustion sources fail to explain the observed emissions. Indeed, far more work needs to be done 
to measure the seasonally varying probability distribution functions of emitters under actual 
operating conditions. 
8.2 N2O 
CLARS-FTS observations were used to investigate the temporal variability of N2O excess mixing 
ratios and to calculate a top-down N2O emissions estimate for SoCAB. No significant interannual 
trend is observed in XN2Oxs, but XN2Oxs  does exhibit a seasonal cycle with minima in late summer/ 
early fall and maxima in the early spring. A similar seasonal cycle is observed in top-down monthly 
emissions estimates calculated using a tracer-tracer ratio method with CO2. The seasonal cycle 
could in part be related to precipitation and fertilization patterns in Los Angeles, as both soil 
moisture levels and fertilization practices are important factors in N2O fluxes from urban lawns. 
Top-down monthly emissions estimates range from 6-19 Gg N2O per month, while annual 
emissions range from 124 – 144 Gg per year for the years 2014 to 2018. Annual emissions 
estimates are roughly 3 times larger than statewide bottom-up inventories, but consistent within 
uncertainties with the top-down SoCAB emission estimate for 2007 reported by Wunch et al. 
(2009). The discrepancy between top-down and bottom-up N2O estimates for both California and 
SoCAB highlights the difficulty in constraining N2O emissions using bottom-up methods and in 
quantifying urban emissions on a local level. 
8.3 CO 
With CO being an effective tracer of anthropogenic emissions and atmospheric transport processes, 
the diurnal, weekly, and seasonal patterns of XCO enhancements inform the atmospheric pulse of 
the LA megacity. We show for the first time from a measurement perspective these patterns for 
CO in the LA basin. Using CLARS measurements from 2011 to 2018, we find that (1) the XCO 
enhancement shows a distinctive diurnal cycle primarily driven by changes in anthropogenic 
emissions and sea-breeze circulation. The diurnal patterns can be reproduced by WRF-Chem 
model simulations; (2) the XCO enhancement also shows a significant weekly cycle resulting from 
weekly patterns of anthropogenic CO emissions. On average, the XCO enhancements on Sunday 
and Saturday are 16.1% and 4.4%, respectively, lower than corresponding weekday values. The 
weekly XCO enhancement also shows significant correlation with traffic counts; (3) a seasonal 
pattern of XCO enhancement with high (low) spatial contrast in summer (winter) can be observed, 
resulting from seasonal variations in sea-breeze circulation. CLARS mimics geostationary 
observations of LA and can serve as a testbed for future geostationary missions to track 
anthropogenic emissions in cities. Aerosol scattering is the most important factor contributing to 
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biases in trace gas retrievals over urban areas. We demonstrate how to potentially mitigate aerosol-
related biases by using a SCD scaling technique in conjunction with a simple data filter. This 
technique may be of use for future satellite missions measuring CO and/or other trace gases. 
Finally, we demonstrate the capability of WRF-Chem modeling to capture the CO emission 
patterns. Such a comparison would not be possible with conventional existing observations from 
LEO satellites or from ground-based measurements. 
8.4 Aerosols 
We used CLARS-FTS to quantify the angular scattering effect of urban aerosols on a city scale, 
which has been challenging due to a lack of appropriate observing systems. The angular scattering 
effects of aerosols are quantified by careful selection of surface reflection points that allow the 
observatory to measure the scattered light at different scattering angles. In this study, we use the 
ratio of retrieved to geometric O2 SCDs instead of the absolute radiance to study the aerosol 
scattering effects, for two main reasons: (1) O2 ratio has higher sensitivity to the ground level 
aerosols since the air density is higher and there are more O2 molecules per unit volume. Therefore, 
the O2 ratio as defined has advantages for detecting changes in aerosol optical properties close to 
the source of anthropogenic emissions; (2) understanding aerosol scattering effects on trace gas 
retrievals will help evaluate the impacts of light path uncertainty on the retrieval of trace gases 
from space, such as for the recently launched OCO-3 mission. However, if the aerosols are 
optically thick, the O2 ratio may lose sensitivity since the O2 absorption will be saturated. Using 
CLARS-FTS measurements from 2011 to 2018, we found that (1) the observation geometries from 
a mountain-top FTS over the LA megacity make it feasible to examine the aerosol scattering effect 
from forward to backward scattering. The long light path through the PBL makes the observations 
highly sensitive to aerosol scattering within the boundary layer; (2) The diurnal variability of 
aerosol scattering show distinct patterns for different surface reflection points, which are controlled 
by the total aerosol loading and changes in the scattering angle; (3) The changes in the angular 
scattering effects between the surface reflection points can be used to infer changes in the aerosol 
phase function. Analysis of CLARS measurements from 2011 to 2018 showed no significant 
changes in aerosol phase function during this timeframe in the LA megacity. 
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Appendix 

Appendix A1. Detailed assumptions of tracer-tracer correlation method as applied to XN2Oxs 

and XCO2,xs 

• XN2Oxs and XCO2,xs are correlated even though the two GHGs are not emitted from the 
same sources. Both N2O and CO2 have chemical lifetimes that are much longer than the 
time scales for mesoscale transport and therefore will behave like inert tracers in the 
boundary layer. Though N2O and CO2 share some sources, such as fossil fuel combustion, 
certain major sources of N2O, such as microbial activity in soils, are relatively insignificant 
sources of CO2 emissions. Even so, mixing processes in the PBL occur on relatively short 
time scales on the order of 10-20 minutes and CLARS-FTS samples air masses that have 
undergone this short time scale mixing. The strong correlation values at 32 reflection points 
(excluding #29 due to lack of data) supports this mixing assumption over the entire basin. 

• The XN2Oxs/XCO2,xs ratio values observed at each LABS measurement point are sensitive 
to both the relative emissions over a horizontal path weighted toward the reflection point 
and the composition of the air mass advected into the atmospheric path. The long optical 
path in the boundary layer and the effect of advection smear out the effects of local 
emission ratio variations. 

• The effect of aerosol scattering on the XN2Oxs/XCO2,xs excess ratios is assumed to be 
negligible. Even though N2O and CO2 are retrieved at different wavenumbers (N2O is 
retrieved near the 2.3 𝜇𝜇𝜇𝜇 absorption band, while CO2 is retrieved near the 1.61 𝜇𝜇𝜇𝜇 
absorption band), and aerosol scattering does exhibit a wavelength dependence, the 
difference in the bias due to aerosol scattering does not significantly affect the ratio 
between N2O and CO2 excess values. Evidence to support this assumption is presented in 
section 4.1 of the discussion. 

• The number of discrete reflection points included in each basin averaged XN2Oxs/XCO2,xs 
excess value is sufficient to characterize the average emission ratio over the Los Angeles 
megacity. The CLARS-FTS LABS mode spans slant distances in the range 4–40 km in the 
Los Angeles PBL and therefore should have sufficient spatial coverage of the megacity. 
Although data filtering reduces the number of reflection point locations included in basin-
averaged excess ratio values for specific months and years, all basin-averaged seasonal 
excess ratios are calculated using data with sufficient spatial coverage to be considered 
basin-wide representations. 

• Seasonal bias in the XN2Oxs/XCO2,xs excess ratios is small. Although certain times of the 
year in LA are more likely to be influenced by cloud and aerosol events, we assume 
seasonal bias in the averaged XN2Oxs/XCO2,xs excess ratios to be small. 

• Spatial variation in the atmospheric column of CO2 and N2O above Mount Wilson is 
minimal and does not affect the XN2Oxs/XCO2,xs ratio. Spatial variation in the CO2 and 
N2O mixing ratios above Mount Wilson in the basin is possible due to entrainment of 
boundary layer air mass into the free troposphere and long-range transport, but does not 
contribute significantly to the uncertainty in the XN2Oxs/XCO2,xs ratio. 
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Appendix A2. Background calculation. 
In order to calculate an excess mixing ratio value for each LABS measurement, an unbiased 
background value is derived along the same optical path as the CLARS LABS mode. SVO 
observations result from a direct solar beam and provide a useful representation of background 
mixing ratios for the portion of the atmosphere above the CLARS-FTS facility. At the same time, 
flask observations obtained from a NOAA in-situ instrument also located on Mt. Wilson provide 
a representation for the background below CLARS-FTS height. Since the height of the boundary 
layer reduces far below the CLARS facility during the night, nighttime flask samples provide 
representative background conditions for the lower troposphere above SoCAB, excluding 
influences from human activities. To construct a background for the entire LABS measurement 
path, the SVO retrievals are used for path 1, while NOAA flask measurements collected between 
22:00 - 6:00 LT are used for paths 2 and 3 in Figure A2. The weights applied to SVO and NOAA 
flask measurements are based on the number of molecules along these respective paths: 

𝐵𝐵𝑆𝑆𝑉𝑉𝑂𝑂 ∗(𝐵𝐵1)+ 𝐵𝐵𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁∗(𝐵𝐵2+𝐵𝐵3)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢𝑛𝑛𝑛𝑛 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = (A1) 
𝐵𝐵1+ 𝐵𝐵2+𝐵𝐵3 

where 𝐵𝐵𝑆𝑆𝑆𝑆𝑂𝑂 is the complete result from applying PCR to the data record of SVO retrievals, 𝐵𝐵𝑁𝑁𝑂𝑂𝐿𝐿𝐿𝐿 
is the complete result from applying PCR to the nighttime NOAA flask measurements for 2013-
2019, and 𝑛𝑛1, 𝑛𝑛2, 𝑛𝑛3 give the number of molecules along paths 1, 2, and 3 respectively. The number 
of particles within a vertical column particles can be defined using basic force principles as: 

∆𝑃𝑃∗𝑆𝑆 (A2) 
𝐵𝐵𝑀𝑀𝑎𝑎𝑖𝑖𝑎𝑎 

where ∆𝑃𝑃 is the pressure difference between the top and the bottom of the air column, S is the 
surface area of the column endcaps, and 𝑀𝑀𝐵𝐵𝑏𝑏𝐵𝐵 is the molar mass of air. The number of slant column 
particles can then be determined geometrically: 

∆𝑃𝑃∗𝑆𝑆 𝑛𝑛 = (A3) 
𝐵𝐵𝑀𝑀𝑎𝑎𝑖𝑖𝑎𝑎𝐵𝐵𝑚𝑚𝑥𝑥∅ 

where ∅ is the angle the slant path makes with the vertical. Therefore the weights are 
respectively equal to: 

𝑃𝑃1 𝑋𝑋 𝑆𝑆 𝑛𝑛1 = (A4) 
𝐵𝐵∗𝑀𝑀𝑎𝑎𝑖𝑖𝑎𝑎∗cos (𝜃𝜃) 

(𝑃𝑃2− 𝑃𝑃1) 𝑋𝑋 𝑆𝑆 𝑛𝑛2 = (A5) 
𝐵𝐵∗𝑀𝑀𝑎𝑎𝑖𝑖𝑎𝑎∗cos (𝜃𝜃) 

(𝑃𝑃2− 𝑃𝑃1) 𝑋𝑋 𝑆𝑆 𝑛𝑛3 = (A6) 
𝐵𝐵∗𝑀𝑀𝑎𝑎𝑖𝑖𝑎𝑎∗cos (𝜃𝜃0) 

where 𝜃𝜃 is the solar zenith angle, 𝜃𝜃0 is the viewing zenith angle, and P1, P2 are pressures at the top 
of Mt. Wilson and at the basin surface respectively. The pressure at the top of the atmosphere P0 
is taken to be zero in the equation for 𝑛𝑛1. Plugging in and canceling like terms yields 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢𝑛𝑛𝑛𝑛 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = 𝐵𝐵𝑁𝑁𝑂𝑂𝐿𝐿𝐿𝐿 ∗ 𝐹𝐹1 + 𝐵𝐵𝑆𝑆𝑆𝑆𝑂𝑂 ∗ 𝐹𝐹2 (A7) 
Where 𝐹𝐹1 and 𝐹𝐹2 are defined as 

(𝑃𝑃2− 𝑃𝑃1)∗(cos(𝜃𝜃)+cos(𝜃𝜃0) )𝐹𝐹1 = (A8) 
𝑃𝑃2 cos(𝜃𝜃0)+ (𝑃𝑃2− 𝑃𝑃1)(cos(𝜃𝜃) 

𝑃𝑃1 cos(𝜃𝜃0)𝐹𝐹2 = (A9) 
𝑃𝑃2 cos(𝜃𝜃0)+ (𝑃𝑃2− 𝑃𝑃1)(cos(𝜃𝜃) 
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Figure A2: Diagram of 2-layer model of the atmosphere used for XN2O and XCO2 background 
calculation, where 𝜃𝜃 is the solar zenith angle, 𝜃𝜃0is the viewing zenith angle, and P0, P1, P2 are 
pressures at the top of the atmosphere, at the top of Mt. Wilson and at the basin surface respectively. 
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Appendix A3. Geometric correction for XCO excess from CLARS 

The CLARS derived XCO difference (between LABS and SVO modes) depends on solar zenith 
angle since the LABS mode observation has two ray paths, one from the FTS to the surface that is 
fixed for a given surface target, and the other from the surface to the top of the atmosphere that 
changes with solar geometry. For the same amount of CO concentration in the boundary layer, the 
retrieved XCO difference is different for different solar zenith angles. XCO difference will be 
higher when the angle is smaller, and vice versa. In order to account for this geometric effect, we 
derive a correction factor by assuming a two-layer box model. XCO and XCOxs can be calculated 
using Equations (1) and (2). The atmosphere is approximated by a two-layer model, with the 
interface between the two layers at the CLARS altitude. The boxes above and below CLARS are 
assumed to have CO mixing ratios of M0 and M1 respectively. 

𝑋𝑋𝑋𝑋𝑂𝑂𝑠𝑠𝑠𝑠𝐵𝐵 = M0 (A10) 

(𝑀𝑀0∗ 
1−𝑝𝑝 𝑝𝑝 𝑝𝑝 +𝑀𝑀1∗ +𝑀𝑀1∗ )cos 𝜃𝜃 cos 𝜃𝜃 cos 𝜃𝜃0 

1 𝑝𝑝     (A11) 𝑋𝑋𝑋𝑋𝑂𝑂𝑙𝑙𝐵𝐵𝑙𝑙𝑠𝑠 = 
( + )cos 𝜃𝜃 cos 𝜃𝜃0 

where p is the ratio of the pressure at the CLARS level and the surface pressure (~0.16). 𝜃𝜃0 and 
𝜃𝜃 are the viewing and solar zenith angle, respectively. Then, we have: 

1 1 (1+ 
cos 𝜃𝜃 ( + ) )cos 𝜃𝜃 cos 𝜃𝜃0 cos 𝜃𝜃0𝑋𝑋𝑋𝑋𝑂𝑂𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋𝑂𝑂𝑙𝑙𝐵𝐵𝑙𝑙𝑠𝑠 − 𝑋𝑋𝑋𝑋𝑂𝑂𝑠𝑠𝑠𝑠𝐵𝐵 = (𝑀𝑀1 − 𝑀𝑀0) ∗ 𝑝𝑝 ∗ 1 𝑝𝑝 = (𝑀𝑀1 − 𝑀𝑀0) ∗ 𝑝𝑝 ∗ 

(1+𝑡𝑡∗ 
Cos 𝜃𝜃 ( + ) )cos 𝜃𝜃 cos 𝜃𝜃0 Cos 𝜃𝜃0 

(A12) 
where M1-M0 is the XCO enhancement. From Equation (B3) we can get the correction factor 
between XCO difference and XCO enhancement. 

Figure A3. Scatter plot of XCO excess before and after geometric correction is applied. 

68 



  

  
    

   

   

  

 

 

 

      

            

         

   

 
 
  

Appendix A4. Averaging kernel correction 
Wunch et al. (2009) and Hedelius et al. (2018) recommend that a correction should be implemented when 

comparing observations with different averaging kernels. As an example, Figure A4 shows averaging 

kernels for CLARS-FTS retrievals of CO slant column density at 2.3 µm (the CO absorption band). We 

apply a correction to XCOxs based on the averaging kernel of the measurement. Similar to Wunch et al. 

(2009), the XCO enhancement is divided by the averaging kernel value in the PBL to obtain the corrected 

XCO enhancement. 

Figure A4. Averaging kernel for CLARS-FTS retrievals of CO slant column density at 2.3 µm (4290 cm-

1). (a) Example of diurnal variability of column averaging kernel from the W. Pasadena surface target on 

March 2013; (b) Example of monthly variability of column averaging kernel from W. Pasadena in 2013; 

(c) Example of column averaging kernels for different targets. 
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Appendix A5: Spatial and temporal patterns of winds in LA from ERA5 reanalysis 

Figure A5. (a) Monthly and hourly averaged winds at 100 meters elevation in LA from ECMWF ERA5 reanalysis 
for the time period from 2012 to 2018. As examples, three hours of day are presented: 8h, 12h, and 16h. The data 
are extracted from the NCAR/UCAR CISL Research Data Archive (CISL, 2019). The length of the arrows is 
proportional to the wind speed. The black arrow on the bottom panel indicates a wind speed of 5 m/s, for reference. 
(b) Wind rose map for different seasons. All the hourly averaged wind data from ERA5 from 2011 to 2018 are 
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used. 
Appendix A6. The PEMS measurement network 

Figure A6. PEMS measurement network in LA (http://pems.dot.ca.gov/). Daily measurements for all 

stations in District 7 (Los Angeles and Ventura counties; in red), District 8 (San Bernardino and Riverside; 

in green), and District 12 (Orange County; in blue) are collected. The black squares denote the surface 

reflection points. The sensors basically cover all the major highways but not local roads and streets. 
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Appendix A7. WRF-Chem simulations 
In this study, WRF-Chem v3.7 is used for model simulations of CO in the LA megacity to explain 
the variability of XCO enhancement observed by CLARS and to investigate the representativeness 
of the CLARS observing strategy for capturing this variability. WRF-Chem has been widely used 
for simulations of atmospheric chemistry including pollutant emissions at fine scale (e.g., Grell et 
al., 2005; Kim et al., 2016; Li et al., 2019). In this study, we follow the parameter settings in Li et 
al. (2019). We utilize the Lin cloud microphysics scheme, the RRTM longwave radiation scheme, 
the Goddard shortwave radiation scheme, the YSU boundary layer scheme, the MM5 similarity 
surface layer scheme, the Grell 3-D ensemble cumulus cloud scheme (for coarse-resolution domain 
only), and the unified Noah land surface model. In particular, the urban canopy model (UCM) in 
WRF-Chem is employed. It resolves land–atmosphere exchange over impervious surfaces in urban 
areas (Yang et al., 2015). The following chemistry schemes are included: the TUV photolysis 
scheme, RACM-ESRL gas-phase chemistry, and MADE/VBS aerosol scheme. We run the 
simulation for the first 10 days of four different months: January, April, July, and October in 2016, 
representing winter, spring, summer, and autumn, respectively. The simulation results for the first 
three days are meant as spin up and not used in the analysis. Hourly averages over the remaining 
seven days are used to obtain representative hourly values of CO in the LA megacity. Differing 
from Li et al. (2019), we use the European Centre for Medium-Range Weather Forecasts (ECMWF) 
ERA5 reanalysis dataset (ECMWF, 2019) as initial and boundary meteorological conditions. 
ERA5 reanalysis makes use of advanced modelling and data assimilation systems to combine 
historical observations into global estimates. For emission inventories, we use the US 
Environmental Protection Agency (EPA) National Emission Inventory (NEI) for 2011 (US EPA, 
2011). To match the domain grids in the model, we regridded these inventories. Figure A7 shows 
the three simulation sub-domains and the time series of anthropogenic CO emission. 

Figure A7. (a) Three nested WRF-Chem domains used in this study with horizontal resolutions of 18 km, 
6 km and 2 km, respectively; (b) Diurnal pattern of bottom-up CO emission estimated from EPA inventory 
in the LA megacity, which is the center part of the inner domain (d03) in (a). 
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Appendix A8: Winter case for WRF-Chem simulations and CLARS synthetic data 

Figure A8. Same as Figures 5.6 but for the winter season scenario with simulations for January 2016. 
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Appendix A9: 2S-ESS radiative transfer model 
The 2-stream-exact-single-scattering (2S-ESS) radiative transfer model, developed by Spurr and Natraj 
(2011), is used in this study to simulate the reflected solar radiation observed by CLARS-FTS. 2S-ESS 
computes the single scattering using all moments of the aerosol scattering phase function to produce an 
exact single scattering radiation field, while multiple scattering is calculated using the two-stream 
approximation to achieve high computational efficiency. Under conditions when single scattering 
dominates, such as in urban regions with relatively dark surfaces, the 2S-ESS radiative transfer model 
produces accurate and fast results. This RT model has been used in several previous studies (Xi et al., 2015; 
Zhang et al., 2015, 2016; Zeng et al., 2017, 2018) for GHG and aerosol remote sensing. In the radiative 
transfer model, we use NCEP– NCAR reanalysis data (Kalnay et al., 1996) as the a priori atmospheric 
profile, which has 76 layers from the surface up to 70 km. Similar to Zeng et al. (2018), we separate the 
bottom part of the atmosphere below CLARS into five layers. Absorption coefficients for O2 and CO 
molecules are adopted from the HITRAN database (Rothman et al., 2009). The gaseous optical depth for 
each layer is calculated using GFIT. The procedure for obtaining the surface albedo and AOD is described 
in Section 2.4. The model uses the appropriate solar and CLARS observing geometries. The single 
scattering albedo and phase function were obtained from averaged AERONET-Caltech retrievals. The 
simulated radiance is convolved with the CLARS instrument line shape, which has a full width at half 
maximum (FWHM) of 0.022 cm-1 (Fu et al., 2014). 
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Appendix A10. Aerosol phase function from AERONET-Caltech 

Figure A10. Histogram of asymmetry parameter at 1020 nm from AERONET-Caltech for the time period 
from 2011 to 2018. 
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Appendix A11. Variability of aerosol scattering with scattering angle 

Figure A11. Same as Figure 6.9 but with scattering angle as the x-axis. Multiyear average of O2 ratio for 
the three surface reflection points, Santa Anita (S-A) on the top, West Pasadena (W-P) in the middle, and 
Santa Fe Dam (S-F) at the bottom from CLARS-FTS data for all seasons (The original measurements are 
in grey and the hourly mean in black). The corresponding simulation estimates use the 2S-ESS RT model 
with averaged solar geometry, aerosol optical properties, and surface reflectance. All the data from 2011 to 
2018 are used. 
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Appendix A12. Wind patterns in LA downtown 

The wind measurements are collected from a meteorological station at the USC campus in LA downtown 

(which is in the path of the air pollutant transport between LA downtown and eastern LA where our study 

sites are located). As shown in (a), there is a shift in wind direction from summer (dominated by eastward 

winds from the ocean) to winter (dominated by westward winds from inland). This seasonal cycle may 

explain the large data spread within a year as shown in Figure 6.10(b). However, as shown in (b), the wind 

speeds (eastward direction) are very stable from year to year and there is no obvious trend detected, which 

is consistent with our measurements of aerosol phase function trend as shown in Figure 6.10(c). 

Figure A12. Wind patterns observed by the meteorological station at USC in LA downtown. (a) Wind 
rose diagrams for four different seasons based on all measurements from 2012 to 2018; (b) Monthly 
averaged wind speed in the direction between 250 and 290 degrees, which is the wind direction when 
the wind brings the LA downtown air eastward into the study area of this paper. The gridlines in x-axis 
marks the beginning of the year. The monthly mean is shown using black dots and the uncertainty (one 
sigma) is indicated in grey. Wind speed of zero is not considered in the average. These observations at 
USC can be accessed from the MesoWest datahub hosted by the University of Utah at 
https://mesowest.utah.edu/. The measurements of wind speed and direction are made every minute. 
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