Institute of UNIVERSITY Transportation OF Studies CALIFORNIA

Driving California's Emissions to Zero

Lew Fulton, Director, Energy Futures, ITS Davis

UC ITS Study for the California EPA

Presented at CARB Scoping Plan Kickoff workshop, June 8 2021

Acknowledgements

This project leveraged earlier UC ITS research funded by the State of California through funding from the Road Repair and Accountability Act of 2017 (Senate Bill 1) and the Public Transportation Account.

Background

Study Goals:

- Identify strategies to significantly reduce transportation-related fossil fuel demand and emissions... including actions that can be taken now,"
- First report to comprehensively evaluate a path to a carbon-neutral transportation system by 2045 while centering equity, health, and workforce impacts.

Study prepared for Cal EPA, and led by four ITS Campuses:

• UC Davis, UC Berkeley, UC Irvine, and UCLA.

Published: April 21, 2021

https://escholarship.org/uc/item/3np3p2t0

Study Priorities and Structure

Guiding Principles

- Equity and Justice
- Health
- Environment
- Resilience and Adaptation
- High Quality Jobs
- Affordability and Access
- Minimize Impacts Beyond Our Borders

Study Structure

- Baseline and scenarios (incorporating findings from the next four topics)
- Light Duty Vehicles
- Heavy Duty Vehicles
- Vehicle Miles Travelled
- Fuels
- Equity and EJ
- Health
- Labor and Jobs

Low Carbon Scenario (LC1) (to achieve net zero emissions from transportation in 2045)

 Actions/strategies: VMT reduction, zero emission cars and trucks, and low-carbon fuels. Assumes transition to 100% clean electricity. Notes: on left, gasoline and diesel include blended biofuels. On right, biomass-based gasoline (BBG) and biomass-based diesel (BBD) are broken out.

Driving California's Emissions to Zero

Aggressive low-carbon policies result in carbon reductions <u>and</u> cost savings

Side case comparison

In addition to LC1, we considered a "High ZEV", "High Fuel Cell", and "High Liquid Fuels" case

Scenario	LDV (ZEV sales hit 100% by)	Trucks (ZEV sales hit 100% by)	Fuels (100% low-carbon fuels by)	VMT reduction in 2045 vs BAU
LC1	2040	2040	2045	15%
High ZEV	2035	2035	2045 (but less needed)	15%
High Fuel-cell	2040 (lower BEV)	2040 (lower BEV)	2045 (same as LC1)	15%
High Liquid Fuel	2045	2045 (except 2050 for long haul trucks)	2045 (but more needed)	15%

Institute of Institute of Transportation Studies CALIFORNIA

Thank You