Driving California’s Emissions to Zero

Lew Fulton, Director, Energy Futures, ITS Davis
UC ITS Study for the California EPA
Presented at CARB Scoping Plan Kickoff workshop, June 8 2021
Acknowledgements

This project leveraged earlier UC ITS research funded by the State of California through funding from the Road Repair and Accountability Act of 2017 (Senate Bill 1) and the Public Transportation Account.
Study Goals:

• Identify strategies to significantly reduce transportation-related fossil fuel demand and emissions… including actions that can be taken now,”

• First report to comprehensively evaluate a path to a carbon-neutral transportation system by 2045 while centering equity, health, and workforce impacts.

Study prepared for Cal EPA, and led by four ITS Campuses:

• UC Davis, UC Berkeley, UC Irvine, and UCLA.

Published: April 21, 2021

https://escholarship.org/uc/item/3np3p2t0
Study Priorities and Structure

Guiding Principles
• Equity and Justice
• Health
• Environment
• Resilience and Adaptation
• High Quality Jobs
• Affordability and Access
• Minimize Impacts Beyond Our Borders

Study Structure
• Baseline and scenarios (incorporating findings from the next four topics)
• Light Duty Vehicles
• Heavy Duty Vehicles
• Vehicle Miles Travelled
• Fuels
• Equity and EJ
• Health
• Labor and Jobs
Low Carbon Scenario (LC1)
(to achieve net zero emissions from transportation in 2045)

- Actions/strategies: VMT reduction, zero emission cars and trucks, and low-carbon fuels. Assumes transition to 100% clean electricity. Notes: on left, gasoline and diesel include blended biofuels. On right, biomass-based gasoline (BBG) and biomass-based diesel (BBD) are broken out.

Driving California’s Emissions to Zero
Aggressive low-carbon policies result in carbon reductions and cost savings

LC1 (low carbon) scenario achieves 2045 carbon neutrality, but requires aggressive policy

Driver California’s Emissions to Zero
Side case comparison

In addition to LC1, we considered a “High ZEV”, “High Fuel Cell”, and “High Liquid Fuels” case

<table>
<thead>
<tr>
<th>Scenario</th>
<th>LDV (ZEV sales hit 100% by)</th>
<th>Trucks (ZEV sales hit 100% by)</th>
<th>Fuels (100% low-carbon fuels by)</th>
<th>VMT reduction in 2045 vs BAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC1</td>
<td>2040</td>
<td>2040</td>
<td>2045</td>
<td>15%</td>
</tr>
<tr>
<td>High ZEV</td>
<td>2035</td>
<td>2035</td>
<td>2045 (but less needed)</td>
<td>15%</td>
</tr>
<tr>
<td>High Fuel-cell</td>
<td>2040 (lower BEV)</td>
<td>2040 (lower BEV)</td>
<td>2045 (same as LC1)</td>
<td>15%</td>
</tr>
<tr>
<td>High Liquid Fuel</td>
<td>2045</td>
<td>2045 (except 2050 for long haul trucks)</td>
<td>2045 (but more needed)</td>
<td>15%</td>
</tr>
</tbody>
</table>
Thank You