Development of Proposed Puff Equation: Evaporative Emissions Minimum Canister Size For Vehicles with a NIRCOS* Fuel System By: California Air Resources Board (CARB)

<u>May 2021</u>

Proposed Equation as of May 2021. Subject to change before official rulemaking occurs.

Any questions or comments, email Jason Gordon: Jason.gordon@arb.ca.gov

*NIRCOS: non-integrated refueling only canister system

Contents:

- I. The equation
- II. How equation was developed
- III. Pressures to use for P_{tvs}
- IV. Examples of calculations
- V. References

I. <u>The equation:</u>

Min Canister nominal WC = $1.6 \times (5.3 \times 14.7/P_{tvs} \times [(P_{tvs} \times V_{tvs})/14.7 - V_{tvs}) + 5 \times V_{tvs}]$

- Gives the working capacity in grams
- Would apply to vehicles with a non-integrated refueling only canister system (NIRCOS)
 - V_{tvs} is tank vapor space (Gallons)
 - This is 90% of the fuel tank capacity
 - P_{tvs} is fuel tank's maximum pressure in-use (absolute pressure in psi)
 - See section III. for guidance on what value to use for $\mathsf{P}_{\mathsf{tvs}}$ for your particular vehicle
- II. <u>How equation was developed:</u>
 - Minimum Canister nominal WC = 1.6 x (Mass HC Puff + Mass HC Refuel)
 - Nominal WC = working capacity, grams, defined per California Evaporative Emission Test Procedure ¹, III.D.3.4
 - Uses a load rate of 15 g/hour butane
 - 1.6 accounts for needing larger WC to accommodate refueling vapor loading rate

Loading:	Adsorption performance ^a :
15 g/hour butane (nominal)	7.8
Refueling (ORVR)	4.8
	12 100

^a g/100c 15 BWC carbon, per Evap Manual²pg. 108.

- Adjustment factor: 7.8/4.8 = 1.6
 - This ratio appears to be about the same for 17 BWC carbon, since the figures in the numerator and denominator appear to increase proportionately.

Nominal WC = 1.6 x ORVR WC

- Mass HC Puff = 5.3 x 14.7/P_{tvs} x ((P_{tvs} x V_{tvs})/14.7 V_{tvs}) This was patterned using Evap Manual² Practice Problem 6-4 pg. 178.
 - V_{tvs} is tank vapor space (Gallons)
 - This is 90% of the fuel tank capacity
 - P_{tvs} is fuel tank's maximum pressure in-use (absolute pressure in psi)
 - See section below for guidance on what value to use for $\mathsf{P}_{\mathsf{tvs}}$ for your particular vehicle
 - Development
 - $(P_{tvs} \times V_{tvs})/T_{tvs} = (P_{atm} \times V_{atm})/T_{atm}$ (from ideal gas law)
 - Assume $T_{tvs} = T_{atm}$
 - $V_{atm} = (P_{tvs} x V_{tvs}) / P_{atm}$ (eqn. 1)
 - $V_{esc} = V_{atm} V_{tvs}$ (eqn. 2)
 - V_{esc} is the volume of the HC vapors which escape from the tank vapor space

- Dens. HC vapor in tank = 5.3 (grams / gallon @ P_{tvs})
 - Per Evap manual², refueling nomograph, RVP 7 fuel, 105 F, Page 82 (represents ~worst case California summer refueling)
- Dens. HC vapor = 5.3 (grams / gallon @ P_{tvs}) x [V_{tvs} (gallon @ P_{tvs}) / V_{atm} (gallon @ P_{atm})] (eqn. 3)
 - This gives Dens. HC vapor once it is released from the tank: (grams / gallon @ Patm)
- Mass HC Puff = Dens. HC vapor x V_{esc}
- Mass HC Puff = $5.3 \times (V_{tvs} / V_{atm}) \times (V_{atm} V_{tvs})$ (subbed in eqn. 2,3)
- Mass HC Puff = 5.3 x (V_{tvs} / (P_{tvs} x V_{tvs})/ P_{atm}) x ((P_{tvs} x V_{tvs})/ P_{atm} V_{tvs}) (subbed in eqn. 1)

Mass HC Puff = 5.3 x (14.7 / P_{tvs}) x [(P_{tvs} x V_{tvs})/ 14.7 - V_{tvs}]

- Mass HC Refuel = 5 x V_{tvs}
 - Assumes 5 grams/gallon vapor generation
 - Per Evap manual² Page 88, 80 F Tank, 67 F Dispense (this vapor generation represents the ~mid-range of refueling situations with RVP 9 gasoline which can yield

different results, such as top fill, bottom fill, air entrainment, for a liquid seal). Assumed that RVP 9 fuel characteristics shown in this figure would have similar characteristics to RVP 7 fuel dispensed at a higher temperature.

- V_{tvs} is tank vapor space (Gallons)
 - This is 90% of the fuel tank capacity

III. <u>Pressures to use for P_{tvs}</u>

- a. Case 1: If vehicle purges fuel tank pressure during engine operation, but does not purge tank pressure during electric driving
 - i. Use either 18.6 psia, or the maximum tank pressure during engine operation $^{\rm b}$ for $P_{\rm tvs}$ whichever is greater
 - Source: 18.6 psia is the estimated pressure inside a sealed fuel tank at 105 degrees F, assuming the tank was initially filled & sealed at 75 degrees F. This value was obtained from Evap Manual² Practice Problem 6-3 pg. 178
- b. Case 2: If vehicle purges tank pressure during both engine operation, and during electric driving
 - i. Use either maximum tank pressure during electric driving^b, or the maximum tank pressure during engine operation^b for P_{tvs}, whichever is greater
- c. Case 3: If vehicle does not purge fuel tank pressure during engine operation, and does not fuel purge tank pressure during electric driving
 - i. CARB's understanding is that NIRCOS fuel tanks are typically purged during engine operation to keep fuel tank pressure manageable. But in the odd case where a vehicle does not purge the tank during engine operation, the manufacturer would input the maximum tank pressure during engine operation^c for P_{tvs}

^b maximum pressure (absolute) in tank reached before it is purged by the engine, under any driving condition

^c maximum pressure (absolute) which would occur in the fuel tank when driving a running loss test with the engine running (charge sustaining operation the entire time), for the particular vehicle for P_{tvs}

IV. Examples of calculations

d. Vehicle A: Vehicle attributes: Fuel tank volume: 12 Gallons, Purges fuel tank during engine operation and maximum in-tank pressure during engine operation is 15.7 psia.
Calculation: Will use 18.6 psia for P_{tvs}, per section III. Above And V_{tvs} is 0.9 * 12 = 10.8 gallons per section I. above Putting these values into the equation:

Min Canister nominal WC = $1.6 \times (5.3 \times 14.7/P_{tvs} \times [(P_{tvs} \times V_{tvs})/14.7 - V_{tvs}) + 5 \times V_{tvs}]$

Min Canister nominal WC = $1.6 \times (5.3 \times 14.7/18.6 \times [(18.6 \times 10.8)/14.7 - 10.8) + 5 \times 10.8]$

Minimum Canister Nominal Working Capacity (for the vehicle in this example) = 106 grams

V. <u>References:</u>

- 1. "California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles", Amended September 2, 2015
- 2. "Evaporative and Refueling Emission Control Training/Workshop Manual", Reddy, Sam R, version 3.0, January 20, 2010.