

Research Webinar: California Landfill Gas Emissions

March 4, 2021 2:00 p.m. – 3:30 p.m. (PST)

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Estimation and Comparison of Methane and Nitrous Oxide Emissions and Gas Collection System Efficiencies in California Landfills

Presentation of Final Report Jim Hanson, Ph.D., PE Nazli Yesiller, Ph.D. Derek Manheim, Ph.D.

CARB Webinar: March 4, 2021

4

Research Overview

- Detailed assessment of California landfill gas emissions
 - California landfill characterization selection of test sites
 - 82 landfill gas (LFG) species investigated
 - Field analysis and supplementary laboratory testing
 - Emissions determined using static flux chamber and aerial methods
- Gas collection efficiency estimates
 - Aerial measurements, ground measurements, LandGEM (USEPA model)
- Results
 - Effects of gas collection system provided
 - Intra- and inter-landfill variations provided
 - Effects of cover characteristics provided
 - Effects of operational, environmental, and climatic conditions assessed

5

Landfill Classification

Main Factor			Variation		
	Waste in place		Amount of waste disposed at the site		
	Disposal area		Permitted waste footprint area		
Facility Size	Waste column height		Average depth of waste at the site		
	Permitted throughput		Annual waste intake		
Climate			Classification designation by Köppen Geiger System		
Oil and Gas O	perations		Oil and gas operation sites, proximity of the landfill to these		
Fault Lines			California quaternary faults, proximity of the landfill to faults		
Population De	nsity		Urban and rural areas		
Gas System			Yes, no		
Tire Disposal			Yes, no		
		Daily	Conventional-soil type and thickness Alternative daily covers (ADCs) including green waste, construction & demolition, biosolids, tarp, spray-on products		
Course		Intermediate	Soil type and thickness		
Cover Conditions		Final	Presence of final cover: Yes, no Type and thickness of final cover - Traditional: single covers [compacted clay (CCL), geosynthetic clay liner (GCL), geomembrane (GM)]; composite covers [GM- CCL, GM-GCL] - Alternative: monolithic or capillary break		
Relative Fraction of Cover Categories			Relative areas of daily, intermediate, and final covers (% of waste footprint)		
Working Face			Size of active waste disposal area		
Range for Age of Waste			Age of wastes		
Landfill Config	uration		Canyon, area		
Operational Conditions			In relation to N_2O emissions, leachate recirculation, biosolids		

6

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Landfill Climate

Landfill Location - Oil and Gas, Fault Lines

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Landfill Location - Population Density

Landfill Operations – Gas Collection System

11

Landfill Operations – Tire Disposal

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

"D = daily, I = Intermediate, F = Final

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Landfills Selected for Research

*D = daily, I = Intermediate, F = Final

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Field Investigation

- Aerial Tests
 - Emissions estimates were obtained
 - Whole site emissions
 - Data for methane emissions
 - 16 landfills tested (30% of waste-in-place in California)
 - Cavity ring down spectroscopy used
- Ground Tests
 - Flux was measured
 - Flux data by cover type
 - Flux converted to emissions using relative areal extent of different cover types
 - Data for all 82 gases obtained
 - 5 landfills tested (13% of waste-in-place in California)
 - Large scale flux chambers: (1 m x 1 m x 0.4 m)
 - Measurements and sample collection for geotechnical properties
- Tests conducted in wet and dry seasons

Field Investigation – Aerial Measurements

- Mass balance method
- Single engine plane equipped with Picarro G2401-m Analyzer

M: mass V: volume

$$Q_c = \langle \frac{\partial m}{\partial t} \rangle + \iiint \nabla \cdot \boldsymbol{F}_c dV = \left\langle \frac{\partial m}{\partial t} \right\rangle + \oint \boldsymbol{F}_c \cdot \hat{\boldsymbol{n}} \, dS$$

Field Investigation – Ground Measurements

Installation of flux chamber

Field Investigation - Ground Measurements

Dual chambers installed at each measurement location

Field Investigation – Ground Measurements

Flux determined using concentration measurements over time

 $F = \frac{dC}{dt} * \frac{V}{A}$

dC/dt: concentration gradient (the rate of change of concentration over time within the flux chamber)

V: volume within the static flux chamber

A: area of the landfill surface enclosed by the chamber

19

Field Investigation – Additional Tests

Drilling for temperature sensor installation, temperature measurement, cover thickness measurement, raw gas concentration measurement

Field Investigation – Additional Tests

Cover temperature measurement, sand cone test

Field Investigation – Additional Tests

Cover thickness determination

Laboratory Geotechnical Characterization

Sieve, hydrometer, Atterberg limits, cover materials

Field Investigation – Ground Measurements

Landfill Cover Characteristics

- 3 common cover categories in active landfills
 - **Daily** soil, alternative daily covers (green waste, contaminated soil, auto fluff, construction and demolition waste); regulatory requirement: 6 in. compacted earthen material, 11 other materials, approved other
 - Intermediate soil, soil+green waste; regulatory requirement: 12 in. compacted earthen material (no waste > 180 days), approved alternative material
 - Final conventional (compacted earthen material), alternative (monolithic); regulatory requirement: 2-feet foundation layer, 1-foot impermeable layer at 1 x 10⁻⁶ cm/sec (cannot be more permeable than bottom liner), 1-foot vegetation layer, approved alternative material
- A total of 31 distinct cover types tested

Ground Measurements – Example

Chiquita Canyon Landfill

Cover Type	Cover Type Description	Thickness (cm)
DC-Cl	Daily Cover - Clean Soil	34
DC-Co	Daily Cover - Contaminated Soil	50
IC-S	Interim Cover - Soil	30
IC-W	Interim Cover - Winter (Placement of Waste)	40
Interim Cover - Ol Green Waste		65
IC-NGW	Interim Cover - New Green Waste	98
FC	FC Final Cover	

Ground Measurements - Overview

Landfill Name	Landfill Location	Waste in Place ^a (m ³)	Waste in Place ^b (m ³)	Landfill Climate Zone	Annual Ppt. (mm) ^c	Avg. Daily Temp (°C) ^c	Test Locations per Season
Santa Maria Regional Landfill	Santa Maria	1,360,577	8,385,395	Csb	462	14.9	5
Teapot Dome Disposal Site	Porterville	3,038,622	5,369,126	Bsk	278	17.4	5
Potrero Hills Landfill	Suisun City	26,454,935	52,928,614	Csa	462	18.2	7
Site A	Livermore	44,173,397	45,108,745	Csb	387	15.8	6
Chiquita Canyon Landfill	Castaic	55,227,178	42,266,798	Csb	630	16.1	7

^aWIP values reported by sites ^bWIP values obtained from SWIS (2017) ^cNOAA 30-year average for 1981-2010

27

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Landfill Gas Constituents Analyzed

- Baseline GHGs
 - 4 gases: Methane, carbon dioxide, nitrous oxide, and carbon monoxide
 - Methane and carbon dioxide: main LFG constituents
- Non Methane Volatile Organic Compounds
 - 78 NMVOCs: Under 11 chemical families
 - Reduced Sulfur Compounds
 - F-Gases
 - Halogenated Hydrocarbons
 - Organic Alkyl Nitrates
 - Alkanes
 - Alkenes
 - Aldehydes/Alkenes
 - Aromatic Hydrocarbons
 - Monoterpenes
 - Alcohols
 - Ketones

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Landfill Gas Constituents – Characteristics

Chemical Family	Acronym	Potential Source(s)	Example Species	Environmental Impact	
Reduced Sulfur Compounds	RSC	Food/Green Waste, C&D Waste, Waste Tires	Carbonyl sulfide, Carbon disulfide	Olfactory nuisances	
F-Gases	F-gas	Insulation foams (appliance and C&D wastes), refrigerants, aerosol sprays, fire suppression materials	CFC-11, HCFC-141b, HFC-245fa, H-1211	Direct/Indirect Climate Forcings	
Halogenated Hydrocarbons	НН	Textiles, Household Cleaners, Plastics	Chloroform, Trichloroethylene, 1,2-DCE	Hazardous Air Pollutants, Ozone Depleting Substances, Direct/Indirect Climate Forcings	
Organic (Alkyl) Nitrates	ON	Oxidation Byproduct	Methyl nitrate, Isopropyl nitrate	Tropospheric Ozone Formation Potentials, Secondary Organic Aerosol Formation Potentials	
Alkanes	Alk	Household Cleaners, Plastics, Cooking Waste,	Propane, n-Undecane		
Alkenes	Alke	Paper Waste	1-Butene, Isoprene	Tropospheric Ozone Formation Potentials,	
Aldehydes/ Alkynes	Ald	Food Waste, Household Cleaners, Cooking	Acetaldehyde, Butanal	Direct/Indirect Climate Forcings	
Aromatic Hydrocarbons	Ar	Waste, Personal Care Products, Household Sprays, Plastics, Papers, Textiles, Furniture	Benzene, Toluene, Ethylbenzene, Xylenes, Ethyltoluenes	Hazardous Air Pollutants, Tropospheric Ozone Formation Potentials, Secondary Organic Aerosol Formation Potentials	
Monoterpenes	Mon	Green Waste, C&D Waste, Household Cleaners and Sprays, Personal Care Products	α-Pinene, β-pinene, Limonene	Tropospheric Ozone Formation Potentials, Secondary Organic Aerosol Formation Potentials	
Alcohols	Alc	Food Waste Household Cleaners Personal Care	Methanol, 2-Butanol	Transcriberic Ozono Formation Potentials	
Ketones	Ket	Products, Household Sprays	Acetone, Butanone	Direct/Indirect Climate Forcings	

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Landfill Gas Constituents – Sources

Chemical Family	Anthropogenic	Biogenic	Both
GHGs			Х
RSC			X
F-gas	Х		
HH	X		
ON			Х
Alk			Х
Alke			Х
Ald/Alky			Х
Ar	X		
Mon			Х
Alc			Х
Ket			X

30

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Results: Aerial Tests

Flight data, colors proportional to emissions

Results: Ae	rial 7	Tests
--------------------	--------	--------------

Cito	Data	CH ₄ Emission	UC1	Long	Mind Direction	Wind Speed	Lowest Altitude	Highest Altitude
Site	Date	(kg/hr)	(kg/hr)	Laps	wind Direction	(m/s)	(m)	(m)
Stonyford Disposal Site	11/17/17	0.6	0.7	11	354	4.4	62	334
Stonyford Disposal Site	12/6/17	6.1	1.4	20	359	9.6	61	620
Salton City LF	12/4/17	10.8	3	12	5	9.6	46	305
Borrego LF	12/4/17	4.1	1.2	17	109	2.1	48	458
Pumice Valley Landfill	12/6/17	-0.2	1.7	16	18	2	37	620
Mariposa County LF	10/18/17	9	14.7	10	239	2.3	171	495
Taft Recycling Center	10/18/17	-24.6	32.8	4	9	1.6	144	543
Teapot Dome LF	10/18/17	293.7	99.9	10	250	1.1	112	435
Teapot Dome LF	1/11/20	283.8	131.5	14	278	2.3	117	424
Santa Maria Regional LF	11/10/17	90.1	39.1	14	289	10.4	105	491
Santa Maria Reginal LF	7/24/18	312	77.1	17	288	4	61	374
Redwood Landfill	11/17/17	139.8	41.5	8	12	4.8	64	208
Simi Valley LF	12/4/17	637.7	337.2	8	39	16.2	264	518
Yolo County Central Landfill	11/17/17	375.6	68.4	11	344	7.4	61	306
Chiquita Canyon LF	11/10/17	1306.4	207.2	15	236	4.9	167	475
Chiquita Canyon LF	4/19/18	601.9	79.4	27	236	5	81	589
Chiquita Canyon LF	7/24/18	733.8	128.4	17	234	6.8	166	617
Sunshine Canyon LF	4/19/18	718.5	155.4	28	194	3.5	81	871
Sunshine Canyon LF	7/24/18	712	113.6	16	177	4.9	108	512
Site A	12/7/17	1357.6	547	11	77	3.4	122	409
Site A	8/27/18	2076.7	239.7	26	233	3.9	111	843
Frank R Bowerman LF	11/10/17	3275.4	668.5	15	234	1.7	80	876
Potrero Hills LF	12/7/17	2004.2	416.6	12	40	8.6	59	364
Potrero Hills LF	8/23/18	1717.9	251.6	14	245	8.7	81	459 ³²

Cito	Data	CH ₄ Emission	UC1	Long	Wind Direction	Wind Speed	Lowest Altitude	Highest Altitude
Site	Date	(kg/hr) (kg/hr	(kg/hr)	Laps	wind Direction	(m/s)	(m)	(m)
Stonyford Disposal Site	11/17/17	0.6*	0.7	11	354	4.4	62	334
Stonyford Disposal Site	12/6/17	6.1*	1.4	20	359	9.6	61	620
Salton City LF	12/4/17	10.8*	3	12	5	9.6	46	305
Borrego LF	12/4/17	4.1*	1.2	17	109	2.1	48	458
Pumice Valley Landfill	12/6/17	-0.2*	1.7	16	18	2	37	620
Mariposa County LF	10/18/17	9*	14.7	10	239	2.3	171	495
Taft Recycling Center	10/18/17	-24.6*	32.8	4	9	1.6	144	543
Teapot Dome LF	10/18/17	293.7	99.9	10	250	1.1	112	435
Teapot Dome LF	1/11/20	283.8	131.5	14	278	2.3	117	424
Santa Maria Regional LF	11/10/17	90.1	39.1	14	289	10.4	105	491
Santa Maria Reginal LF	7/24/18	312	77.1	17	288	4	61	374
Redwood Landfill	11/17/17	139.8	41.5	8	12	4.8	64	208
Simi Valley LF	12/4/17	637.7	337.2	8	39	16.2	264	518
Yolo County Central Landfill	11/17/17	375.6	68.4	11	344	7.4	61	306
Chiquita Canyon LF	11/10/17	1306.4	207.2	15	236	4.9	167	475
Chiquita Canyon LF	4/19/18	601.9	79.4	27	236	5	81	589
Chiquita Canyon LF	7/24/18	733.8	128.4	17	234	6.8	166	617
Sunshine Canyon LF	4/19/18	718.5	155.4	28	194	3.5	81	871
Sunshine Canyon LF	7/24/18	712	113.6	16	177	4.9	108	512
Site A	12/7/17	1357.6	547	11	77	3.4	122	409
Site A	8/27/18	2076 7	239.7	26	233	3.9	111	843
Frank R Bowerman LF	11/10/17	3275.4	668.5	15	234	1.7	80	876
Potrero Hills LF	12/7/17	2004.2	416.6	12	40	8.6	59	364
Potrero Hills LF	8/23/18	1717.9	251.6	14	245	8.7	81	459

Results: Aerial Tests

*BDL - below detection limit

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Ground – LFG and Ambient Gas Concentrations

Results - Ground Tests

- 4 types of flux data: positive, negative, low regression, BDL
- Positive flux measured for all 82 gases
- Methane Flux
 - Overall: -3.7x10° to 9.6x10¹ g/m²-day
 - Positive: $3.0x10^{-4}$ to $9.6x10^{1}$ g/m²-day
 - By landfill: Min 10⁻⁴ to 10⁻²; Max 10¹ g/m²-day
- Nitrous Oxide Flux
 - -4.1x10⁻³ to $1.5x10^{-1}$ g/m²-day
- NMVOC Flux
 - -1.9x10⁻³ to 1.8x10⁰ g/m²-day

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Flux Data – Literature and Current Investigation

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Flux Data – Intra Landfill

Flux Data – Intra Landfill

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Flux Data – Inter Landfill by Cover Type

GHGs

43

NMVOCs

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Flux Data - Seasonal Comparison

GHGs

NMVOCs

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Flux Data - Effects of Tire Disposal

RSC: reduced sulfur compounds, Ar: Aromatic hydrocarbons

45

Emissions Data – Inter Landfill

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Emissions Data - By Cover Type

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Emissions Data - Seasonal Comparison

48

Emissions – Aerial and Ground Measurements

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Emissions - Aerial, Ground, Inventory Data

Site	Ground-Measured CH₄ Mean Direct Emissions (tonnes/year)	Aerial-Measured CH₄ Mean Emissions (tonnes/year)	CARB Inventory of CH₄ Emissions (tonnes/year) ^a	
Santa Maria Regional Landfill	-0.122	1684	148	
Teapot Dome Landfill	1220	3799	142	
Potrero Hills Landfill	1344	16402	2941	
Site A Landfill	945	14792	12627	
Chiquita Canyon Landfill	381	5804	5916	
³ Spokas et al. (2015)				

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006

Gas Collection Efficiency

• Gas Collection Efficiency (Measured):

(Gas Collection) / (Gas Emissions + Gas Collection)

All parameters determined using site records (collection) and field test program (emissions)

• Gas Collection Efficiency (Modeled):

(Gas Collection) / (Gas Generation)

All parameters determined using site records (collection) and LandGEM (generation)

Gas Generation - LandGEM

a) Baseline: Default L_o and k values

b) Refined: Updated L_o and k values

Gas Collection Efficiency

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Statistical Variability

54

Engineering Significance – Methane Flux

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Nitrous Oxide Flux

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Correlations

- Geotechnical Properties: Fines content, clay content, Atterberg limits, moisture content, degree of saturation, void ratio, density
- Operational Conditions: Waste in place, waste column height, average waste age, % daily cover, waste throughput, cover thickness
- Climatic Conditions: Temperature, precipitation, barometric pressure
- Physicochemical Properties: Molecular weight, vapor pressure, water solubility

Engineering Significance – Clay Content

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Solids Mass

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Thickness

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Precipitation

CalRecycle Contract: DRR16109 and CARB Contract: 16ISD006 Final Report and Presentation available at: https://ww2.arb.ca.gov/resources/documents/landfill-gas-research

Engineering Significance – Additional Analysis

- Flux/emissions as a function of:
 - Variable Distances from Gas Well
 - Interim Cover Thickness
 - System Vacuum Pressure
 - Temporal and Diurnal Variation
- Comparison to modeling results and ground CRDS testing
- Correct understanding of landfilling operations

Gas Emission Control Measures – Covers

- Soil covers generally more effective than non-soil covers
- Higher material quantity (solids mass, thickness) was effective
- Daily covers: Minimize area, duration of coverage; minimize coarse, highly porous materials and C&D wastes
- Intermediate covers: Increased effectiveness with increased thickness up to 1 m, fines content > 30%, minimize area
- Final covers: Conventional earthen covers more effective than alternative cover (methane), PI > 20, thickness > 150 cm (methane), thickness > 75 cm (NMVOCs), fines > 60%, clay content > 12%
- Geotechnical properties, engineering classification (USCS)
- Fat clays (CH soils) most effective in emissions control

Cover Regulations

27 CCR Sections 20670 et seq. for daily/intermediate cover requirements:

- Daily cover 6 inches of compacted earthen material soil applied at end of operating day
 - Alternative daily cover (ADC) as approved
 - 11 materials with specific standards (27 CCR 20690)
 - · Others may be approved with demonstration project
- Intermediate cover (no waste for >180 days) 12 inches compacted earthen material
 - Alternative intermediate cover (AIC) as approved
 - · May be approved with demonstration project
- 27 CCR Sections 21090 and 21140 for final cover requirements:
- Final Cover
 - Prescriptive Standard
 - 2-feet foundation layer
 - 1-foot impermeable layer at 1 x 10⁻⁶ cm/sec
 - Cannot be more permeable than bottom liner (i.e., no "bathtub effect")
 - 1-foot vegetation layer
 - · Alternatives may be approved

65

Gas Emission Control Measures

- Robust cover over wet waste placement zones
- N₂O emissions: Avoid concentrated areas of organic sludges
- NMVOCs are trace components, yet are a significant and detectable fraction of landfill gas with net positive fluxes from all cover categories, appreciable portions of total emissions
- Gas collection efficiency not a measure of emissions
- Flux/emissions of a given chemical/chemical family cannot be used for other chemicals/chemical families (i.e., methane does not serve as a surrogate for other chemicals)
- Both top-down and bottom-up measurements provide context for methane emissions from landfills

Acknowledgment

- Funding provided by CalRecycle and CARB
- Research Collaborators: Dr. Jean Bogner (University of Illinois-Chicago) and Dr. Don Blake (University of California-Irvine)
- Graduate Student: Alexandra Limpert
- Numerous graduate and undergraduate students
- Dr. Amro El Badawy
- Cooperation, field access, and field assistance provided by partner landfills
- Scientific Aviation

All Done!

68