

Advanced Clean Fleets: Drayage Workgroup

December 9, 2020

Agenda

- Background and Planning
- Drayage Concept Overview
- Drayage Truck Baseline Population and Emissions: EMFAC 202x
- Drayage Operational Characteristics
- Infrastructure Planning
- ZE Drayage Truck Market Overview
- Funding Opportunities
- Next Steps and Timeframe

Background and Planning

Zero-Emission Planning: A Key Part of California's Future

- 2016 ZEV Action Plan
- 2016 Sustainable Freight Action Plan
- 2017 San Pedro Ports Clean Air Action Plan
- 2019 Oakland Seaport Air Quality 2020 and Beyond
- 2020 Mobile Source Strategy Update

Zero-Emission Executive Order N-79-20

9.23.20-EO-N-79-20-text.pdf (ca.gov) <u>https://www.gov.ca.gov/</u>wp-content/uploads/2020/09/9.23.20-EO-N-79-20-text.pdf

Suite of CARB Regulations

Advanced Clean Fleets Rulemaking

- Advanced Clean Fleets (ACF) is the follow-up effort to the Advanced Clean Trucks (ACT) Regulation to ensure the transition and market demand for zero-emission medium and heavy-duty vehicles
- Advanced Clean Trucks Board Resolution
 - Return by the end of 2021 with a ZE fleet rule
- Support California's transition to zero-emission where feasible
 - 2035 Drayage, public fleets, last mile delivery
 - 2040 Refuse, buses, utility fleets (may include NZEVs)
 - 2045 For all other trucks and buses where feasible
- Work with sister agencies
 - Workforce development
 - ZEV infrastructure

ACT Resolution: <u>https://ww3.arb.ca.gov/regact/2019/act2019/finalres20-19.pdf</u>

Disadvantaged Community Considerations

- Assembly Bill 617 directs CARB to identify community level strategies
- Communities seek action on transportation and freight emissions
- Seek rapid transition to ZE technology

Disadvantaged Community Considerations

- Disadvantaged communities refer to the areas throughout California which suffer the most from a combination of economic, health, and environmental burdens.
- The intermodal seaports and railyards under the current Drayage Truck Regulation are all located in or within ~1 mile of a disadvantaged community.

Drayage Concept Overview

Drayage: 2035 Zero-Emission Goal

 Transition all Class 7 and 8 drayage trucks operating at intermodal seaports or railyards to full zero-emission by 2035

Current Drayage Truck Definition

§ 2027. In-Use On-Road Diesel-Fueled Heavy-Duty Drayage Trucks.

Drayage trucks *are*:

Any in-use on-road vehicle with a gross vehicle weight rating (GVWR) greater than 26,000 pounds that is used for transporting cargo, such as containerized, bulk, or break-bulk goods, that operates:

- on or transgresses through a port or intermodal railyard property for the purpose of loading, unloading or transporting cargo, including transporting empty containers and chassis or,
- off port or intermodal railyard property transporting cargo or empty containers or chassis that originated from or is destined to a port or intermodal railyard property.

Final Reg language (ca.gov):

https://ww2.arb.ca.gov/sites/default/files/classic//msprog/onroad/porttruck/finalregdrayage.pdf

Current Drayage Truck Definition Cont.

§ 2027. In-Use On-Road Diesel-Fueled Heavy-Duty Drayage Trucks.

Drayage trucks **are not**:

- Vehicles operating off of port or intermodal railyard properties that transport cargos that have originated from a port or rail yard property but have been off-loaded from the equipment (e.g., a trailer or container) that transported the cargo from the originating port or rail yard
- or
- Vehicles operating off of port or intermodal railyard properties that transport cargos that are destined for a port or rail yard but will be subsequently transferred into or onto different equipment (e.g., a trailer or container) before being delivered to a seaport or intermodal railyard.

Final Reg language (ca.gov)

 $\frac{\text{https://ww2.arb.ca.gov/sites/default/files/classic//msprog/onroad/porttruck/finalregdrayage.pdf? g}{a=2.215666647.1107543387.1606146193-354412339.1596474861}$

Zero-Emission Drayage Truck Concept Considerations

- Current drayage fleet will have to meet or exceed
 2010 MY engine standards beginning in 2023
- Drayage fleets and operations are diverse
- Goal to transition all Class 7 and 8 drayage trucks operating at intermodal seaports or railyards to full zero-emission by 2035

Zero-Emission Drayage Truck Concept Stakeholder Input

- Availability and state of ZE technology
- Cost of ZE technology
- Incentives and funding support for fleets
- Challenges to infrastructure development
- Prioritization of ZEV deployments in disadvantaged communities

Zero-Emission Drayage Truck Concept

 Beginning in 2023, any truck added to the CARB Drayage Truck Registry must be zero-emissions

Zero Emission Drayage Trucks by 2035

Zero-Emission Drayage Truck Concept Drayage Legacy Fleet Transition

- Set limits for the legacy drayage fleet
 - All drayage trucks would be required to be zero-emission by 2035
 - Model year engines older than 13 years must report mileage annually
 - Drayage trucks with mileage over 800,000 miles, or a maximum of 18 years from certification, will no longer be compliant in the CARB Drayage Truck Registry

Drayage Truck Baseline Population and Emissions: EMFAC 202x

Air Quality Planning & Science Division Mobile Source Analysis Branch

Drayage Trucks

• Drayage Trucks in EMFAC:

- EMFAC includes Class 8 port trucks with diesel, electric or natural gas motive power
- Drayage trucks visiting railyards are not identified in EMFAC due to lack of data, but they are included within other Class 8 Truck categories

Data Sources (1)

- Vehicle Population Data
 - DMV Vehicle Registration Database
 - $_{\odot}$ List of VINs from Major Ports (Ports of LA/LB and Oakland)
 - $_{\odot}$ VIN lists provided by ports are used to identify drayage vehicles in DMV
 - $_{\odot}$ Other Port Trucks are estimated (based on past survey data)

State of California Department of Motor Vehicles

Data Sources (2)

- Vehicle Miles Traveled (VMT)
 - Telematics data from Geotab
 - California Vehicle Inventory and Use Survey (CalVIUS) in 2018
- Future forecasting:
 - Mercator Report for Ports of LA/LB
 - Tioga Report for Port of Oakland

CY2019 Drayage Truck Inventory

Vehicle Category	Port of Oakland (POAK)	Port of LA/LB (POLA)	Other Ports*	Railyards **
Instate Class 8 ⁺ Active Trucks***	4,224 [‡]	13,951‡	1,453‡	TBD
Instate Class 8 ⁺ Inactive Trucks***	n/a***	2,770		
Instate POAK Class 8 already in POLA ⁺	136			
Class 4-7 ⁺	22	180		
Out of State [†]	823	854		
Class 2b-3 or Gasoline	329	3,177		
Total	5,534	20,932	1,453	TBD

[†] Non-gasoline

T7 POLA Class 8, T7 POAK Class 8, and T7 Other Ports Class 8 in EMFAC202x

* Estimate based on past Surveys; Requesting updated information from other Sea Ports

^{**} To be determined (TBD); Requesting information from Railroads

** For POLA, trucks with more than 112 visits/year are considered as "active trucks". 112 visit/year was determined based on POLA monthly active truck counts. POAK did not provide monthly visit data and therefore all of their class 8 in-state trucks were considered active.

2019 Port Truck Model Year Distribution

*POLA: Port of Los Angeles/Port of Long Beach

Port Truck VMT Growth Rates

- Based on port specific forecasts of cargo growth rates
 - LA/LB: Mercator report (Feb. 2016)
 - Oakland: Tioga report (May 2020)
 - Other ports: weighted average of LA/LB (87.5%) and Oakland (12.5%)
- Does not account for mode shifts between truck and rail transport
 CARB

Current EMFAC202x Projections Technology & Age Distribution

CARB Truck & Bus Surveillance Program (TBSP)

- To date, 38 MY2013+ trucks tested on dyno over 6 test cycles
- Most trucks also tested with PEMS

In-Use Tests Using Chassis Dyno

Real World Tests using PEMS

PEMS Route	Driving Type
DP-WSAC-ART	Arterial
DP-WSAC-ART	Arterial / Freeway
DP-WSAC-INDEXT	Low Load / Low Speed
DP-PLAC	Uphill / Downhill

EMFAC202x: Baseline Emissions for NOx and PM2.5

(Preliminary results - subject to change)

Next Steps

- Exploring potential data sources for other drayage categories:
 - ✓ Railyards
 ✓ Other ports
 ✓ Other ports
 ✓ Waterfront of Opportunity
- Emission benefit analysis based on latest available data and proposed regulatory concepts

EMFAC Drayage Emission and Population Contacts

- EMFAC202x will be released late 2020 or early 2021.
- EMFAC web database: <u>https://arb.ca.gov/emfac/</u>
- Mobile Source Emission Inventory: <u>https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory</u>
- Contacts:
 - General questions about EMFAC: <u>emfac@arb.ca.gov</u>
 - Emission inventory for Advanced Clean Fleets regulation: Stephanie Kong at <u>stephanie.kong@arb.ca.gov</u>

Drayage Operational Characteristics

Drayage Operations

CALSTART Drayage Driver Study 2013: Key Performance Parameters for Drayage Trucks Operating at the Ports of Los Angeles and Long Beach

- Trip Lengths: 81% less than 60 miles
- Overnight Storage: 80-90% return to local yards near the ports
- Truck Trips: Typically 3 roundtrips per day
- Shifts Per Day: 85-90% one shift per 100+ miles
 day

Key Performance Parameters for Drayage Trucks Operating at the Ports of Los Angeles and Long Beach: https://calstart.org/wp-content/uploads/2018/10/I-710-Project_Key-Performance-Parameters-for-Drayage-Trucks.pdf

CALSTART 2013: Drayage Typical Inp					
Distance					
Trip Distance	% of Trips	% Total			
<10 miles	13%	13%			
10-20 miles	23%	36%			
20-40 miles	23%	59%			
40-60 miles	22%	81%			
60-100 miles	15%	96%			
100+ miles	5%	*100%			
	•				

*Exception due to rounding.

Drayage Operations: March 2019 San Pedro Ports CAAP

Operational parameter	Units	Value		
Minimum Operational Capabilities Needed				
Maximum Shift Distance	miles	600		
Maximum Shifts per Day	#/day	2		
Maximum Daily Mileage	miles	800		
Maximum Weight (GCWR)	lbs	80,000		
Top Speed (0 % grade)	mph	60		
Gradeability @ 0 mph	% grade	15% at 80,000 lbs		
Gradeability @ 40 mph	% grade	6% at 80,000 lbs (short distance bridge climb)		
Gradeability @ 35 mph	% grade	6% at 57,000 lbs (sustained)		
# of Shifts between		2 shifts with less than 5 hours for		
charging/fueling		charging/fueling, or 1 shift with diesel-like fueling		
		times		

Average Operational Assumption for Economic and Infrastructure Analyses			
Average Shift Distance	miles	160	
Average Shift Duration	hours	9.9	
Average Shifts per Day	#/day	1.6	
Average Daily Operating Time	hours	14.8	
Average Daily Mileage	miles	238	

https://cleanairactionplan.org/documents/final-drayage-truck-feasibility-assessment.pdf/

Infrastructure Planning

Sister Agency Infrastructure Coordination

- California Energy Commission
 - Biennial statewide charging infrastructure assessment (AB 2127)
 - Light-duty, heavy-duty, off-road
 - Spatially model future infrastructure and energy demand
- California Public Utility Commission
 - Developing Transportation Electrification Framework
 - Support SB 350 and other transportation electrification goals
- Go-BIZ for infrastructure support and deployment

SB 350 Transportation Electrification

- California utilities supporting battery electric truck and bus deployments
- \$686 million approved through 2023 for three largest utilities
 - Pay for design and electrical service upgrades on customer property
 - Support charging 18,000 trucks, buses, and off-road vehicles through 2023
 - Rebates for chargers in DACs
- Publicly-owned utilities developing own programs
- New electricity rates to encourage electric vehicles

Transportation Electrification (SB 350) www.cpuc.ca.gov/sb350te/

Other Infrastructure Planning

Charging Infrastructure Strategies: Maximizing the Deployment of Electric Drayage Trucks in Southern California UCLA Luskin Center for Innovation 2019

Source: POLB(2018), Caltrans(2018), CalEPA(2018), SCE(2019), SCAG(2012) Service Layer Credits: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, @ OpenStreetMap contributors, and the GIS Use Community Figure 32.

Charger Placement in the Long-term (including non-SCE Area)

Source: SCAG(2012).Geofabrik (2018).SCE(2019).Caltrans(2018).California Open Data (2016

Figure 35. TAZs with High VMT of Heavy-duty Drayage Trucks Entering or Departing the Ports

Charging Infrastructure Strategies <u>https://innovation.luskin.ucla.edu/wp-content/</u> uploads/2019/06/Charging_Infrastructure_Strategies.pdf

ZE Drayage Truck Market Overview

Market Availability for ZE Drayage Trucks

Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP) eligibility vehicle list:

ZE Drayage Truck Specifications

Make	Model	BEV	Fuel Cell	Estimated Range (miles)
Freightliner	eCascadia	х		250
Volvo	VNR Electric	х		150- 350
Peterbilt	579 EV	х		150
Kenworth	T680E	х		150
BYD	8TT	х		125
Lion	Lion8	x		Up to 250
Tesla	Semi	x		300-500
Hino & Toyota	XL7 Electric		х	n/a
Nikola	Two, Tre	х	Х	100-350 500-750
Hyundai	XCIENT		х	240
XOS	ET- One	х		300-360

39

Information in this table is pulled from OEM websites and publically available literature.

CARB Investments in Drayage Technology

- Demonstration projects aim to accelerate the adoption of the next generation of advanced technology.
 - Seven drayage specific demonstration and pilot projects
 - General timeline: 2016 to 2021
 - Deployed at seaports, freight facilities, and intermodal yards
 - 80 electric drayage trucks
 - 15 hydrogen fuel cell, 65 battery electric
 - \$228 M spent in total
 - $_{\odot}$ \$122 M contributed by CARB
 - $_{\circ}$ Also supports some infrastructure

Lessons Learned from CARB Demonstrations and Pilots

- ZE trucks have some technology advantages
 - Torque, power, and gradeability
- Drivers appreciate electric trucks
 - Quieter, no diesel smell, less fatigued, lower maintenance costs, and lower cost per mile for fuel
- Improving technology
 - Range, weight, and recharging time

LCFS Can Reduce ZEV Fleet Fuel Costs

- Market mechanism from established LCFS regulation
- Credit goes to station owner/operator
 - Charging station
 - Hydrogen station
- Report amount dispensed to vehicles quarterly to earn credits
- Sell LCFS credits on open market
 - Sales offset fuel costs

More information on LCFS: <u>https://ww3.arb.ca.gov/fuels/lcfs/lcfs.htm</u>

Funding Opportunities

Proposed Fiscal Year 2020-21 Funding Plan

Plan: https://ww2.arb.ca.gov/sites/default/files/2020-11/proposed fy2020-21 fundingplan.pdf 44

- Board will consider proposed funding plan on Dec. 10, 2020:
 - \$28.64 M for Air Quality Improvement Program (AQIP)
 - \$0 Low Carbon Transportation Incentives
 - \$25 M allotted to Clean Truck and Bus Vouchers (HVIP)
- Prioritization given to Drayage Trucks via temporarily increased incentive amounts
- Modifiers can also support the Drayage Industry: DACs and Fuel Cell Tech
- Implementation workgroup in January

Proposed ZEV Incentives			
Vehicle Weight Class	Base		
Class 2b	TBD		
Class 3	\$45,000		
Class 4-5	\$60,000		
Class 6-7	\$85,000		
Class 8	\$120,000		
Class 8 Drayage Truck Early Adopter*	\$150,000		
*	0 1		

*Drayage tractor voucher amounts revert to Class 8 voucher amounts on 12/31/21

Voucher Modifiers (plus-ups and discounts)			
Disadvantaged Community	+10%		
Class 8 Fuel Cell	+100%		
Public Transit Agencies	+15%		
School Buses for Public School Districts	+65%		
Plug-in Hybrid (>35 mi AER)	-50%		
In-Use Converted/Remanufactured	-50%		

Additional Sources of Incentive Funding

- Joint CEC and CARB grant solicitation (GFO- 20-606)
 - \$44.1 M available for large scale deployment of on-road, zeroemission Class 8 drayage & regional haul trucks
 - Fueling infrastructure also supported
- Volkswagen Environmental Mitigation Trust
- Community Air Protection Incentives
- Carl Moyer Memorial Air Quality Standards Attainment Program
- Prop 1B- Goods Movement Emission Reduction Program
- Local sources of funding: Air Districts, Ports

Joint Solicitation: <u>https://www.energy.ca.gov/solicitations/2020-11/gfo-20-606-zero-emission-drayage-truck-and-infrastructure-pilot-project</u> 2020-21 Long Term Heavy-Duty Investment Strategy: <u>https://ww2.arb.ca.gov/sites/default/files/2020-11/appd_hd_invest_strat.pdf</u>

Next Steps and Timeframe

- Next Steps
 - Continue meeting with fleets and stakeholders
 - Continue interagency infrastructure coordination
 - Continue EMFAC 202x inventory updates
 - Collect and analyze fleet turnover rates and mileage
- Timeframe
 - Next Advanced Clean Fleets (ACF) workshop early 2021
 - Rule recommendation to Board anticipated in December 2021
 - Implementation expected to start in 2023

Comments and Discussion

CARB Contacts

Please send comments and questions to: freight@arb.ca.gov

More information or join email list:

Advanced Clean Fleets Regulation Web Page: <u>https://ww2.arb.ca.gov/our-work/programs/advanced-clean-fleets</u> Email List: <u>https://public.govdelivery.com/accounts/CARB/subscriber/new?topic_id=zevfleet</u>

