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Outline

* Hybrid SOFC-GT systems for locomotive applications

* How zero-emissions rail may evolve

* Air Quality, Health & GHG impacts
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Background: Solid Oxide Fuel Cells

A solid oxide fuel cell (SOFC) electrochemically converts fuel (hydrogen, syngas
e Higher temperature operation: 650°C < T < 1000°C

* Fuel flexible: /7, CO, syngas, hydrocarbons (e.g., CH, ), NH;(?)
 Many companies offer products (stationary power application):
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Hybrid SOFC-GT Systems — Highest Efficiency Fueled Generation!

UCI APEP has been advancing hybrid SOFC-GT systems for > 20 years
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http://www.fuelcellenergy.com/index.php
http://www.sce.com/sc3/
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Hybrid SOFC-GT Systems for Locomotives

> 10 years advancement for locomotive applications (funding from FRA, CARB, SCAQMD)

1.

Martinez, A.S., Brouwer, J., and G.S. Samuelsen, Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part L.
Development of a Dynamic 3.5 MW SOFC-GT FORTRAN Model, J. Power Sources, Vol. 213, pp. 203-217, 2012.
Martinez, A.S., Brouwer, J., and G.S. Samuelsen, Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part II.
System Packaging and Operating Route Simulation, J. Power Sources, Vol. 213, pp. 358-374, 2012.

Martinez, A.S., Brouwer, J., and Samuelsen, G.S., Comparative analysis of SOFC-GT freight locomotive fueled by
natural gas and diesel with onboard reformation, Applied Energy, Vol. 148, Pages 421-438, 2015.

Azizi, M.A., Ahrend, P.N., Brouwer, J., and Samuelsen, G.S., “Prototype Design and Evaluation of Hybrid Solid
Oxide Fuel Cell Gas Turbine Systems for use in Locomotives,” Federal Railroad Administration, Office RPD-32,
Report Number DOT/FRA/ORD-19/43, 2019.

P. Ahrend, A. Azizi, J. Brouwer, and G. S. Samuelsen, “A Solid Oxide Fuel Cell-Gas Turbine Hybrid System for a
Freight Rail Application,” 2019, ASME 2019 13th International Conference on Energy Sustainability, ES 2019,
collocated with the ASME 2019 Heat Transfer Summer Conference, 2019.
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Bakersfield-Mojave Route

* Investigated use of reformed diesel, LNG, LH, fuel options

e Calculated power demand required for a 240 ton, 3 MW locomotive pulling 10 freight cars (1440 tons total)
* Dynamic notching model for target speed between 4.5 and 27 m/s

* Feasibility of carrying fuel (tender requirements) & fitting system in locomotive footprint & volume

Elevation vs Distance Locomotive Power Demand
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Hybrid Battery SOFC-GT Locomotive

 Add Li-lon battery to design and simulate dynamics
Li-lon Battery Model C‘—) > =5 f(— ;@
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Battery Cycle Data — Bakersfield to Mojave
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Battery Requirements

Demonstrated application in a dynamic battery simulation
Lithium-ion Battery requires up to 400 kW of power (186 A at 2.15 kV)

 Required energy storage capacity is 100 kWh

Within range of reasonable power-to-energy ratio (2-13)
* At $200/kWh, cost is estimated to be at most $20K
Small fraction of the cost of SOFC-GT-LIB system
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Outline

* How zero-emissions rail may evolve

© National Fuel Cell Research Center, 2020
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Possible Zero Emissions Rail Evolution

* Electrify as much as possible — in-port rail, short-range rail, add catenaries for medium-
range rail

e Battery electric rail
o Relatively cost-effective today
o But limited by short range, lower payload, long fueling/charging time

* Proton exchange membrane (PEM) fuel cell + hydrogen emerging
o Historical switcher demonstrations in U.S. (e.g., BNSF)
o Current demonstrations in Europe
o TBD demonstrations in CA (recent CEC GFO)

* Line-Haul projects all in R&D phase
o Require high gravimetric and volumetric energy density

o Require heavy payload
o Require long distance (long duration) storage (fuel)

© National Fuel Cell Research Center, 2020 11/25 i



Possible Zero Emissions Rail Evolution

* Gravimetric & Volumetric Energy Density of various options
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Possible Zero Emissions Rail Evolution

s
* Gravimetric & Volumetric
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Why Hydrogen? Lower Cost, Weight, Volume Energy Storage

HES has separate power & energy scaling compared to batteries
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Why Hydrogen? Rail (& Ship) Payload & Range

Batteries compared to Hydrogen & Fuel Cells for Container Ships

Containerships: Fraction of Original Cargo Net Tonnage
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Why Hydrogen? Zero Emission Fuels Required for Some End-Uses

 Provide zero emissions fuel 3
to difficult end-uses %
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CHANGING WHAT'S POSSIBLE

Adaptive SOFC for Ultra High Efficiency Power Systems
FuelCell Energy, Inc., UC Irvine

Project Vision

Development of flexible 100kW Solid Oxide Fuel Cell (SOFC) technology
suitable for integration with gas turbine equipment achieving > 70%
electrical efficienqy based on natural gas lower heating value

Project
Development

7 kW Compact SOFC Architecture (CSA) Stack, SOFC Pressurized Module
Atmospheric Pressure
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Outline

* Air Quality, Health & GHG impacts
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Air Quality Impacts of Rail

* Low penetration of zero emissions (electric & fuel cell) tech in locomotives (25%)
* Difference plots versus BAU case, summer meteorology
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Associated with Fuel Cell Electric Technologies in Port Applications, M.S.
Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.
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Air Quality Impacts of Rail

 Medium penetration of zero emissions (electric & fuel cell) tech in locomotives (50%)
* Difference plots versus BAU case, summer meteorology
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Air Quality Impacts of Rail

e High penetration of zero emissions (electric & fuel cell) tech in locomotives (75%)
* Difference plots versus BAU case, summer meteorology
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.
Health ImpaCtS Of Rall “ Mean 2.5 CI* 97.5% Cl*

e Premature Deaths Avoided, All Causes

199.6 14.5 444.2
* Health Impacts from the 388.3 172.1 614.8
: ; 0 587.9 186.6 1058.9
High Penetration (75%)
rail case analyzed

HA, Asthma O 0.02 0.1

(SOCAB only) 04 0.1 10
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* BenMAP-CE (2019) 01 002 03

1.3 0.5 2.0
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Short-Term PM, ;. Exposure
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Asthma Exacerbation, Wheeze Asthma 0.1 0.00 0.1

Exacerbation, Cough Asthma Exacerbation,
Shortness of Breath

HA and ED Visits, Asthma 0.0 -0.01 0.1

*These values represent a 95% HA, All Respiratory 0.7 0.4 1.0

confidence interval for the mean HA, All Cardiovascular (less Myocardial 0.9 0.6 1.1

Infarctions)

HA, Ischemic Stroke 1.2 0.4 2.4

Soukup, James V., Air Quality, GHG, and Human Health Work Loss Days 2.9 2.5 3.4

e e e et Minor Restricted Activity Days 16 13 1.9

University of California, Irvine, 2019. Acute Myocardial Infarction, Nonfatal 1.8 0.6 4.7
- Total Short-Term PM2.5 9.30 5.82 14.81

© National Fuel Cell Research Center, 2020 Total Morbidity (PM2.5+0zone) 15.00 5.81 26.21



Greenhouse Gas Emissions of Rail

 GHG Emissions changes from all Rail Cases analyzed (SoCAB only)

GHG Emissions Changes (thousand tonnes CO,e)

Pathway
RE100
RR100
RG100
NGE50/50

NGR50/50
NGG50/50
NGC50/50
NGO50/50

Low Medium
-865.98 -1731.97
-463.33 -926.66
-640.85 -1281.71
-441.78 -883.56
-240.46 -480.91
-329.22 -658.43
-199.19 -398.38
-220.42 -440.83

High

-2597.95
-1389.99
-1922.56
-1325.35

-721.37
-987.65
-597.57
-661.25

Soukup, James V., Air Quality, GHG, and Human Health Impacts
Associated with Fuel Cell Electric Technologies in Port Applications, M.S.
Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.
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Zero Emissions Rail

* Itis IMPERITIVE to meet our GHG, air quality, and health policy goals

 Renewable hydrogen route is important & will become cost competitive with fossil
petroleum distillate fuels within a decade (with correct policy & regulatory decisions)
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Zero Emissions Rail

© National Fuel Cell Research Center, 2020 25/25
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