

California Air Resources Board Workshop

29 October 2020

ADVANCED POWER & ENERGY PROGRAM

UNIVERSITY of CALIFORNIA • IRVINE

Jack Brouwer, Ph.D. Director

National Fuel Cell Research Center

UCIrvine UNIVERSITY OF CALIFORNIA

Outline

- Hybrid SOFC-GT systems for locomotive applications
- How zero-emissions rail may evolve
- Air Quality, Health & GHG impacts

© National Fuel Cell Research Center, 2020

Background: Solid Oxide Fuel Cells

Hybrid SOFC-GT Systems – Highest Efficiency Fueled Generation!

UCI APEP has been advancing hybrid SOFC-GT systems for > 20 years

Hybrid SOFC-GT Systems for Locomotives

> 10 years advancement for locomotive applications (funding from FRA, CARB, SCAQMD)

- 1. Martinez, A.S., Brouwer, J., and G.S. Samuelsen, *Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part I. Development of a Dynamic 3.5 MW SOFC-GT FORTRAN Model*, <u>J. Power Sources</u>, Vol. 213, pp. 203-217, 2012.
- 2. Martinez, A.S., Brouwer, J., and G.S. Samuelsen, *Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part II. System Packaging and Operating Route Simulation*, <u>J. Power Sources</u>, Vol. 213, pp. 358-374, 2012.
- 3. Martinez, A.S., Brouwer, J., and Samuelsen, G.S., *Comparative analysis of SOFC–GT freight locomotive fueled by natural gas and diesel with onboard reformation*, <u>Applied Energy</u>, Vol. 148, Pages 421-438, 2015.
- 4. Azizi, M.A., Ahrend, P.N., Brouwer, J., and Samuelsen, G.S., "Prototype Design and Evaluation of Hybrid Solid Oxide Fuel Cell Gas Turbine Systems for use in Locomotives," Federal Railroad Administration, Office RPD-32, Report Number <u>DOT/FRA/ORD-19/43</u>, 2019.
- 5. P. Ahrend, A. Azizi, J. Brouwer, and G. S. Samuelsen, "A Solid Oxide Fuel Cell-Gas Turbine Hybrid System for a Freight Rail Application," 2019, ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference, 2019.

1 MW Switcher loco. dynamic demand

3 MW Long-haul loco. dynamic demand

Bakersfield-Mojave Route

- Investigated use of reformed diesel, LNG, LH₂ fuel options
- Calculated power demand required for a 240 ton, 3 MW locomotive pulling 10 freight cars (1440 tons total)
- Dynamic notching model for target speed between 4.5 and 27 m/s
- Feasibility of carrying fuel (tender requirements) & fitting system in locomotive footprint & volume

NFCRC

Hybrid Battery SOFC-GT Locomotive

• Add Li-Ion battery to design and simulate dynamics

Battery Cycle Data – Bakersfield to Mojave

Battery Requirements

- Demonstrated application in a dynamic battery simulation
- Lithium-ion Battery requires up to 400 kW of power (186 A at 2.15 kV)
- Required energy storage capacity is 100 kWh
- Within range of reasonable power-to-energy ratio (2-13)
- At \$200/kWh, cost is estimated to be at most \$20K
- Small fraction of the cost of SOFC-GT-LIB system

Tesla Battery Packs

Outline

- Hybrid SOFC-GT systems for locomotive applications
- How zero-emissions rail may evolve
- Air Quality, Health & GHG impacts

Possible Zero Emissions Rail Evolution

- Electrify as much as possible in-port rail, short-range rail, add catenaries for mediumrange rail
- Battery electric rail
 - Relatively cost-effective today
 - But limited by short range, lower payload, long fueling/charging time
- Proton exchange membrane (PEM) fuel cell + hydrogen emerging
 - Historical switcher demonstrations in U.S. (e.g., BNSF)
 - Current demonstrations in Europe
 - TBD demonstrations in CA (recent CEC GFO)
- Line-Haul projects all in R&D phase
 - Require high gravimetric and volumetric energy density
 - Require heavy payload
 - Require long distance (long duration) storage (fuel)

UCI SOFC-GT work Renewable fuels: e.g., H₂, RNG

© National Fuel Cell Research Center, 2020

Possible Zero Emissions Rail Evolution

• Gravimetric & Volumetric Energy Density of various options

12/25

Possible Zero Emissions Rail Evolution

- Gravimetric & Volumetric Energy Density of various options
- NH₃, MeOH, EtOH, DME synthetic LNG may become attractive zero emission options
- SOFC can directly use these energy carriers

Benny Mestemaker, Bernardete Castro, Erik van der Blom, Henk Cornege, *Zero emission vessels from a shipbuilders perspective*, 2nd International Conference on Smart & Green Technology for Shipping and Maritime Industries, 2019.

NFCRC

Why Hydrogen? Lower Cost, Weight, Volume Energy Storage

HES has separate power & energy scaling compared to batteries

Why Hydrogen? Rail (& Ship) Payload & Range

Batteries compared to Hydrogen & Fuel Cells for Container Ships

Why Hydrogen? Zero Emission Fuels Required for Some End-Uses

NFCRC

© National Fuel Cell Re

Adaptive SOFC for Ultra High Efficiency Power Systems **FuelCell Energy, Inc., UC Irvine**

Project Vision

Development of flexible 100kW Solid Oxide Fuel Cell (SOFC) technology suitable for integration with gas turbine equipment achieving > 70% electrical efficiency based on natural gas lower heating value

Prototype Completed in 2022

17/42

Outline

- Hybrid SOFC-GT systems for locomotive applications
- How zero-emissions rail may evolve
- Air Quality, Health & GHG impacts

18/25

Air Quality Impacts of Rail

Max \triangle 8-hr O₃ (ppb)

- Low penetration of zero emissions (electric & fuel cell) tech in locomotives (25%)
- Difference plots versus BAU case, summer meteorology

0.20 0.82 0.65 0.16 0.12 0.49 0.33 0.08 0.16 0.04 0.00 0.00 -0.16 -0.04 -0.33 -0.08 0 0 -0.49 -0.12 -0.65 -0.16 -0.82 -0.20

Soukup, James V., *Air Quality, GHG, and Human Health Impacts Associated with Fuel Cell Electric Technologies in Port Applications,* M.S. Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.

Max Δ 24-hr PM_{2.5} (µg/m³)

Air Quality Impacts of Rail

- Medium penetration of zero emissions (electric & fuel cell) tech in locomotives (50%)
- Difference plots versus BAU case, summer meteorology

Max Δ 8-hr O₃ (ppb)

Soukup, James V., *Air Quality, GHG, and Human Health Impacts Associated with Fuel Cell Electric Technologies in Port Applications*, M.S. Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.

Air Quality Impacts of Rail

Max \triangle 8-hr O₃ (ppb)

- High penetration of zero emissions (electric & fuel cell) tech in locomotives (75%)
- Difference plots versus BAU case, summer meteorology

Soukup, James V., *Air Quality, GHG, and Human Health Impacts Associated with Fuel Cell Electric Technologies in Port Applications,* M.S. Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.

Max Δ 24-hr PM_{2.5} (µg/m³)

Health Impacts of Rail

- Health Impacts from the <u>High Penetration (75%)</u> rail case analyzed (SoCAB only)
- BenMAP-CE (2019)

*These values represent a 95% confidence interval for the mean

Soukup, James V., *Air Quality, GHG, and Human Health Impacts Associated with Fuel Cell Electric Technologies in Port Applications*, M.S. Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.

© National Fuel Cell Research Center, 2020

Endpoint	Valuation Estimates (thousands \$/day)				
	Mean	2.5 CI*	97.5% CI*		
Premature Deaths Avoided, All Causes					
Short-Term Ozone Exposure	199.6	14.5	444.2		
Short-Term PM25 Exposure	388.3	172.1	614.8		
Total Premature Deaths	587.9	186.6	1058.9		
Reduced Morbidity Incidence					
Short-Term Ozone Exposure					
HA, Asthma	0.05	0.02	0.1		
HA, All Respiratory	0.4	-0.1	1.0		
School Loss Days	3.8	-0.4	8.1		
Emergency Room Visits, Asthma	0.1	0.02	0.3		
Minor Restricted Activity Days	1.3	0.5	2.0		
Total Short-Term Ozone	5.69	-0.01	11.40		
Short-Term PM _{2.5} Exposure					
Lower Respiratory Symptoms	0.03	0.01	0.1		
Upper Respiratory Symptoms	0.1	0.01	0.1		
Asthma Exacerbation, Wheeze Asthma	0.1	0.00	0.1		
Exacerbation, Cough Asthma Exacerbation,					
Shortness of Breath					
HA and ED Visits, Asthma	0.0	-0.01	0.1		
HA, All Respiratory	0.7	0.4	1.0		
HA, All Cardiovascular (less Myocardial	0.9	0.6	1.1		
Infarctions)					
HA, Ischemic Stroke	1.2	0.4	2.4		
Work Loss Days	2.9	2.5	3.4		
Minor Restricted Activity Days	1.6	1.3	1.9		
Acute Myocardial Infarction, Nonfatal	1.8	0.6	4.7		
Total Short-Term PM2.5	9.30	5.82	14.81		
Total Morbidity (PM2.5+Ozone)	15.00	5.81	26.21		

Greenhouse Gas Emissions of Rail

• GHG Emissions changes from all <u>Rail Cases</u> analyzed (SoCAB only)

GHG Emissions Changes (thousand tonnes CO ₂ e)					
Pathway	Low	Medium	High		
RE100	-865.98	-1731.97	-2597.95		
RR100	-463.33	-926.66	-1389.99		
RG100	-640.85	-1281.71	-1922.56		
NGE50/50	-441.78	-883.56	-1325.35		
NGR50/50	-240.46	-480.91	-721.37		
NGG50/50	-329.22	-658.43	-987.65		
NGC50/50	-199.19	-398.38	-597.57		
NGO50/50	-220.42	-440.83	-661.25		

Soukup, James V., *Air Quality, GHG, and Human Health Impacts Associated with Fuel Cell Electric Technologies in Port Applications*, M.S. Thesis, G.S. Samuelsen, advisor, University of California, Irvine, 2019.

Zero Emissions Rail

- It is IMPERITIVE to meet our GHG, air quality, and health policy goals
- Renewable hydrogen route is important & will become cost competitive with fossil petroleum distillate fuels within a decade (with correct policy & regulatory decisions)

Levelized cost of hydrogen (\$/kg) determined by all-in capital & operating expense analyses

The fossil fuel era will end when the first jurisdiction anywhere in the world determines to make their ports (including rail) zero emissions

Thank you for your attention!

© National Fuel Cell Research Center, 2020