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Outline

 Part 1: Background and context

 Part 2: Updates to the OPGEE model

› Improving stream tracking

› Gas processing simulation with process simulators

› Gas fugitives modeling with improved datasets and 

statistical modeling

› Gas functional unit allowed for primarily gas fields

Masnadi et al., Science, 361 (6405), 851-853. 
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Part 1: Background and context
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OPGEE model

Source: El-Houjeiri and Brandt (2012a, 2012b)

• Model is called Oil Production Greenhouse gas Emissions 

Estimator (OPGEE)

• Estimates emissions given field parameters and technologies

The first open-source GHG
tool for oil and gas operations
• Anyone can download, modify and use
• 36 published papers, complete 

documentation (~400 pp.) with all 
sources defined

• Funded by CARB, U.S. DOE, Carnegie 
Endowment, Ford Motor Co., Saudi 
Aramco
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OPGEE model timeline

• Model development started in 2010

• First official version: OPGEE v1.0 released September 2012

• Second official version: OPGEE v2.0 released Feb 2018

• Third official version (candidate): OPGEE v3.0a - Introduced today

• Bibliography at end of slides:

Used in studies of crude oil CI for 
• US (Cooney et al. 2017, Yeh et al 

2017, Brandt et al. 2016)
• Canada (Cai et al. 2015, 

Englander et al. 2015)
• China (Masnadi et al. 2018a)
• Globe (Masnadi et al. 2018b)

Methods development
• Overall (El-Houjeri et al. 2013)
• Drilling (Vafi et al. 2016)
• Gas processing (Masnadi et al. 

2020
• Uncertainty (Vafi et al. 2014a, 

2014b, Brandt et al. 2015)
• Time trends (Masnadi et al. 

2018c, Tripathi et al. 2017)
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Part 2: Updates to the model
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Challenge 1: Model organization and stream tracking

• OPGEE v2.0 had drawbacks in model organization and stream 

tracking

• Gas balance sheet tracked gas species, but other streams were not 

reliably tracked

• Process units were not on individual sheets, and unclear exactly which 

mass flows were entering and leaving each sheet

• Pressures and other properties of streams not reliably tracked

• No easy way to navigate along the processing path

• OPGEE v3.0a includes a completely reworked model “skeleton”

• All streams of oil, water, gas, etc. are tracked in mass flows

• Conservation of mass ensured at process unit and total model level

• Pressures, temperatures, and other properties tracked

• Navigation aided by graphical view of process connections (PFD)
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Improvement: OPGEE 3.0 process flow sheet map 

Production site boundary

Post-transport and storage Post distribution

Streams differentiated by color
Green – Oil
Red – Gas
Blue – Water
Yellow – Electricity
Purple – Other gas
Black – Raw bitumen
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Graphical navigation

Trace flows along 
processing paths and click 
to navigate to sheets

Mass flows into and out of 
each process unit tracked
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Flow sheet

Mass flows

Properties

Stream number 
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Mass balance tracking and error flagging

Errors easier to spot with mass balance
tracking across entire model
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Field

Transport

Gas as a primary product, different assessment points

OPGEE 2.0 always required oil to 

be the primary product

CI: gCO2/MJ oil at refinery inlet 

OPGEE 3.0 allows for gas as the 

primary product

CI: gCO2/MJ gas at transportation 

system inlet

Oil at field boundary or refinery inlet

Gas at field boundary, 
transportation inlet or consumer
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Challenge 2: Gas processing simulation

• OPGEE v2.0 had relied on ”textbook” treatment of gas processing units 

• Models largely taken from classic text Manning and Thompson

• Simple models of energy use and power requirements per unit of throughput

• No way to customize process unit energy use for particular conditions

• Feedback from industry: “Why not use process simulation tools?”

• OPGEE v3.0a includes ”proxy” models generated from process simulation tools

• Obtained access to Aspen HYSYS process simulation package

• Work from template models of 4 key gas processing units

• Acid Gas Removal, Dehydration, Demethanizer, Claus Unit

• Simulated many cases at a variety of conditions

• Generated statistical representations to predict Aspen HYSYS results

M.S. Masnadi *, P.R. Perrier , J. Wang , J. Rutherford , A.R. Brandt. 

Statistical proxy modeling for life cycle assessment and energetic analysis. 

Energy DOI: 10.1016/j.energy.2019.116882 
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Example: AGR modeling using process 
simulation software

 Modeled AGR unit in Aspen HYSYS chemical process simulation

 Five different solvents (amines):

› 1. MEA; 2. DEA (30% wt.); 3. DEA high load (35% wt.); 4. MDEA; 5. DGA

 Five independent variables: 

› 1. CO2 concentration; 2. H2S concentration; 3. Regeneration reflux ratio; 4. 

Regeneration feed temperature; 5. Acid gas pressure   
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Sampling approaches

AGR input variables to be sampled:

CO2 concentration in gas

H2S concentration in gas

Reflux ratio

Regenerator feed temperature

Feed gas pressure

Deterministic sampling: 

Box-Behnken

Random sampling: 

Latin hypercube

Total of ∼9000 simulations of AGR systems across independent variables
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Proxy modeling (cont’d) 

 Experimental design: five independent variables

› Settings of each dependent on type of solvent applied

› Model is allowed to adjust some parameters to make simulation converge 

(e.g., amine circulation rate)

› Save combination of 5 input variables plus multiple outputs 
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Training and testing dataset

After 9,000 simulations, dataset is 

split into training and testing

Training data used to fit optimal 

model functional form

Test data “held out” and never 

examined until reporting results

Tested variety of polynomial and 

other classical models

Quadratic regression balances 

complexity and fit

Total dataset

Training data

Test 
data

90% training
10% testing
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Test fitted AGR model against hold-out set

Reboiler

Pump

Condenser

Cooler



1919

Demethanizer product composition results

Composition 
and shares of 
C1, C2, C3 to 
streams harder 
to predict
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Take-aways from process simulation

• Quadratic regression able to fit 

extremely well in most cases

• Most fits have R2 >0.95

• OPGEE now produces, for cases 

within our sampled input ranges, 

results very close to Aspen 

HYSYS

Challenges for extension

Expertise and software license

Computational requirements very 

large for 10,000s of simulations

Unable to extrapolate – Can only 

model ranges of T, P, 

composition sampled
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Challenge 3: Fugitive and vented CH4 emissions

• OPGEE v2.0 relied on CARB survey data for fugitive and vented CH4

• Survey of California producers required detailed reporting on emissions

• Emissions factors obtained from EPA GHG Inventory

• Survey unable to account for differences between US regions

• Independent measurements lacking, with lots of studies done since OPGEE 

v2.0

• OPGEE v3.0a includes modern, independently measured field data for CH4

emissions sources

• Two models: “site” and “component” level

• Component level data draws from multiple studies, 1000s of measured leaks

• Monte Carlo sampling approach includes super-emitter characteristics

• Able to recreate observed US wide emissions (e.g., Alvarez et al. 2018)

J.S. Rutherford, E.D. Sherwin, A.P. Ravikumar, G.A. Heath, J.G. Englander, D. Cooley, 
D. Lyon, M. Omara, Q. Langfitt, A.R. Brandt Closing the gap: Explaining persistent 
underestimation by US oil and natural gas production-segment methane 
inventories Submitted: Nature Energy
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Top-down

e.g., Zhang et al. 2020, 
Permian Basin

Bottom-up

Component-level Site-level

e.g., Alvarez et al. 2018, 
National estimate

e.g., EPA Greenhouse Gas 
Inventory

Policy and programs Validation and assessment

Different varieties of methane measurement inform our 
understanding of emissions quantities and sources
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Site-level emissions for production operations

Site level loss rates can 

be assessed from 

downwind or above-

view measurements

About 1000 sites from 

many basins 

compiled in Omara

2018

Relationship between 

production rate and 

loss rate imported 

and used to 

estimate site-level 

emissions

Source: Omara 2018
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Collecting component-level data from various studies

• Informed by comprehensive literature search of 

component-level surveys (6 studies, ~3200 

measurements)

• Filtered to (in current OPGEE version) include US studies 

only

• Limited global coverage

• Future model versions could include emissions 

distributions from other regions

• Data consolidated to consistent component and equipment 

type categories

• Consistent component definitions (details in full paper) 

allow combination of samples from different studies

• Consistent equipment definitions allows generation of 

component counts per equipment
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Development of a bottom-up tool
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Development of a bottom-up tool
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Development of a bottom-up tool
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Fraction loss rates: Oil wells (<100 mscf/bbl)

Results of loss 
fraction are strong

function of well 
productivity

This effect has been 
seen repeatedly in 

the empirical 
literature
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Using equipment distributions in OPGEE

• A separate equipment-level loss fraction distribution is generated for 

each productivity tranche

• A stochastic leak process will tend to cause higher loss fraction in 

less productive wells, even if that well is same age or has similar 

equipment type

• Resulting equipment distributions can be used in two ways in OPGEE

1. Deterministic: Create average equipment leakage rate for a given 

productivity tranche

2. Uncertainty: Draw a given number of equipment realizations for the 

size of the population you are analyzing, randomized from the 

sampled equipment types
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Validating the method

Ideally the method adopted in OPGEE would recreate the key results of 

the literature on methane emissions from the last 5 years

Key empirical features that have been found repeatedly that any tool 

should be able to show:

1. Larger emissions than classical EPA Greenhouse Gas Inventory 

methods

2. Strong dependence of loss fraction on site productivity

3. Strong “heavy-tailed” behavior of emissions distributions: dependence on 

large emitters to drive large fraction of emissions
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• Total emissions: 
Alvarez et al. 
2018

• Probability 
distributions: 
Omara et al. 
2018

Validating against US estimate of production-segment 
emissions
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• Largest discrepancies 
between US EPA 
Greenhouse Gas 
Inventory and our 
results:

• (2.1 Tg CH4) Tank 
flashing and venting 
emissions

• (1.4 Tg CH4) Equipment 
leaks

US estimate of production-segment emissions by 
source
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Results for the upstream US oil and gas sector

Overall US loss rate = 1.29% (production sector only)
Overall methane CI: 5.1 gCO2/MJ
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