Updates to OPGEE

OPGEE v3.0a candidate model

Adam R. Brandt, Mohammad S. Masnadi, Jeff Rutherford, Jacob Englander Energy Resources Engineering Department, Stanford University CARB OPGEE Modeling update California Air Resources Board October 14th, 2020

Stanford University

resources engineering

Outline

- Part 1: Background and context
- Part 2: Updates to the OPGEE model
 - > Improving stream tracking
 - > Gas processing simulation with process simulators
 - Gas fugitives modeling with improved datasets and statistical modeling
 - > Gas functional unit allowed for primarily gas fields

Part 1: Background and context

Model is called Oil Production Greenhouse gas Emissions Estimator (OPGEE)

OPGEE model

• Estimates emissions given field parameters and technologies

The **first** open-source GHG tool for oil and gas operations

- Anyone can download, modify and use
- 36 published papers, complete documentation (~400 pp.) with all sources defined
- Funded by CARB, U.S. DOE, Carnegie Endowment, Ford Motor Co., Saudi Aramco

OPGEE model timeline

- Model development started in 2010
- First official version: OPGEE v1.0 released September 2012
- Second official version: OPGEE v2.0 released Feb 2018
- Third official version (candidate): OPGEE v3.0a Introduced today
- Bibliography at end of slides:

Used in studies of crude oil CI for

- US (Cooney et al. 2017, Yeh et al 2017, Brandt et al. 2016)
- Canada (Cai et al. 2015, Englander et al. 2015)
- China (Masnadi et al. 2018a)
- Globe (Masnadi et al. 2018b)

Methods development

- Overall (El-Houjeri et al. 2013)
- Drilling (Vafi et al. 2016)
- Gas processing (Masnadi et al. 2020
- Uncertainty (Vafi et al. 2014a, 2014b, Brandt et al. 2015)
- Time trends (Masnadi et al. 2018c, Tripathi et al. 2017)

Part 2: Updates to the model

Challenge 1: Model organization and stream tracking

- OPGEE v2.0 had drawbacks in model organization and stream tracking
 - Gas balance sheet tracked gas species, but other streams were not reliably tracked
 - Process units were not on individual sheets, and unclear exactly which mass flows were entering and leaving each sheet
 - Pressures and other properties of streams not reliably tracked
 - No easy way to navigate along the processing path
- OPGEE v3.0a includes a completely reworked model "skeleton"
 - All streams of oil, water, gas, etc. are tracked in mass flows
 - Conservation of mass ensured at process unit and total model level
 - Pressures, temperatures, and other properties tracked
 - Navigation aided by graphical view of process connections (PFD)

Improvement: OPGEE 3.0 process flow sheet map

Streams differentiated by color Green – Oil Red – Gas Blue – Water Yellow – Electricity Purple – Other gas Black – Raw bitumen

Graphical navigation

Trace flows along processing paths and click to navigate to sheets

Stream num	her:		3	101	26	42	
Stream description:			Crude oil at well bottom	Water at well bottom	Gas at well bottom	Lifting gas to wellbore	
Phase	Component	Unit	0	0	0	Value	
Solid	Petroleum co	tonne/d	-	-	-		
Liquid	Crude oil	tonne/d	204.2	-	-		
Liquid	Liquified petro	tonne/d	-	-	-		
Liquid	Water	tonne/d	29	999			
Liquid	Total liq.	tonne/d	233	999	-		
Gas	N2	tonne/d	-	_	0.9		
Gas	O2	tonne/d	-	_			
Gas	CO ₂	tonne/d	-	-	4.4		
Gas	H ₂ O	tonne/d	-	-	-		
Gas	CH4	tonne/d			22.5		
Gas	C2H6	tonne/d			2.0		
Gas	C3H8	tonne/d	-	-	1.5		
Gas	C4H10	tonne/d	-	-	1.0		
Gas	со	tonne/d	-	-	-		
Gas	H2	tonne/d	-	-	-		
Gas	H ₂ S	tonne/d	-		0.6		
Gas	SO ₂	tonne/d					
Gas	Total gas	tonne/d			32.9		
Electricity	Total Elec.	MWh/d	<u> </u>				
Phase	Property	Unit	Value	Value	Value	Value	
all	Temp	۰F	150.0	150.0	150.0	150.0	
all	Pressure	psia	1227.7	1227.7	1227.7	-	

Mass flows into and out of each process unit tracked

Stanford University

9

Flow sheet

000	AutoSave 🔵 OFF) 	∽∽ড ∓							DPGE	E_3.0a_BET	A_frozen.xlsm ~											۹ ک
Home I	nsert Draw	Page Layout	Formulas	Data	Review	View	🖓 Tell me	1													🖻 Sh	are 🖓 (Comments
PL. X	Cut Helv	vetica	× 10 ×	A* A*	Ξ =	- 87 -	ab,	Wrap Text 🗸	N	umber	~		B. E.		₩v f	1 . :	∑ AutoSum	* A .	0.	12	-88 .		
	Copy ~							mup text -			1.0.00					[👽 Fill 🗸	ZV		7/			
Paste	Format B	$I \underline{\cup} \checkmark \mid \underline{\vdash}$	· <u>·</u> ·	<u>A</u> v	= = -	= = :	*= 🖽	Merge & Cente	er∽ \$	• % 9	.00 →0	Formatting as	Table Styles	insert	Delete Fo	ormat	🔗 Clear 🗸	Filter	Select	ldeas	Sensitivity		
Clipbo	ard	F	ont			AI	ignment			Numbe	er	Sty	les		Cells			Editing		Ideas	Sensitivity		
LL7	$\times \checkmark f_x$	=IF(AND(LJ7=0	,LK7=0),1,LK7	/⊔7)																			
A	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z																						
1 Active fi	eld flow sheet			F	Field:	Generic							To: Inputs		To: Active		To: Flows						
3	Ind	ex code ↓		Stream nur	mber →																		
4 number:	UM		1	_							•		10	11 12	13	14	4 15	5 16	3 1	7 11	3 19	20	2
				C+r	2	h	n	IIM	h	or	\rightarrow												
Stream	STR	FAM N		JU	CC	7 		un	ID	CI		Stabilize	d Upgraded	Diluted	Crude oil to	Transported	Petcoke	NGI /diluent	LPG to	LPG to	Crude oil to	Crude oil to	
5 description	AME		2									storage	storage	storage	transport	refinery	upgrader	to dilution	crude oil	exports	upgrader	dilution	Matura
7 Solid	Petroleum co M_P	°C	4 tonne/d	value v	value -	value 	value	value	value	Value -	value v	alue Value	- Value		value	value -		- value	value	- value		Value -	- Value
8 Liquid	Crude oil M_O		5 tonne/d	204.2	-	204.2	204.2	-	-	204.2	204.2	- 2	03.9		203.8	203.8	3 -		-			-	
9 Liquid	Liquified petr M_LI	PG	6 tonne/d										-	-					-	- 2			_
10 Liquid	Water M_W	v	7 tonne/d	28.6	-	28.6	28.6	-		28.6	-		-		-	-		-	-	-		-	
11 Liquid 12 Gas	Total liquids M_TO N2 M_N	OTLIQ I2	8 tonne/d 9 tonne/d	232.8	-	232.8	232.8			232.8	204.2	- 2	- 03.9		203.8							-	-
13 Gas	O2 M_O	02	10 tonne/d	-	-	-	-	-	-	-			-				N Л .		ן ד	• ••		-	-
15 Gas	H2O M_H	120	12 tonne/d	-	-	-	-	-	-	-	-		-				IVIà	ASS	S TI	OV	VS-	-	-
16 Gas	CH4 M_C C2H6 M C	2	13 tonne/d	-	-	-	-	-	-	-	-		-							•••	•••	-	-
18 Gas	CaHe M_C	3	15 tonne/d	-	-	-	-	-	-	-	-	-	-		-	-				-	-	-	-
20 Gas	CO M_C	20	16 tonne/d 17 tonne/d	-		-		-		-			-			-			-			-	-
21 Gas	H2 M_H	12	18 tonne/d	-	-	-	-	-	-	-	-		-					-	-	-	-	-	-
23 Gas	SO2 M_S	02	20 tonne/d	-	-	-	-	-		-	-		-						-			-	
24 Gas 25 Electricity	Total gas M_TO Total Elec. E_El	OTGAS	21 tonne/d 22 MWh/d	-	-	-	-	-	-		-		-						-				-
26 Phase	Property		23 Unit	Value N	/alue	Value	Value	Value	Value	Value N	Value V	alue Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
28 All	Temp (abs) T_AB	BS	24 P 25 •R	609.7		609.7	609.7			549.7	549.7	- 3)3.7		519.7			-	-	- 519.	r	-	-
29 All 30 All	Pressure (abs P Contains oil OIL	01	26 psia 27 (0-11	1556.6	- 1	1227.7	1000.0	- 1	- 1	150.0	150.0	- 1	0.0		14.7				-	- 400.0		- 1	
31 Liquid	Crude oil API API	0	28 •API	30.0	8.0	30.0	30.0	8.0	8.0	30.0	30.0		30.0		30.0							-	
32 Liquid 33 Liquid	Solution gas GOR	AMA_O	29 - 30 scf/bbl	0.876	1.014	0.876	0.876	1.014	1.014	0.876	0.876	1.076 0	876 1.0 6.8		0.876	0.	D				-	1.076	-
34 Liquid	Saturated oil FVF	_SAT	31 bbl/STB	1.170	-	1.138	1.117	-		1.022	1.022	- 1	149		1.000	0	Ρr	nn	her	ΤΙΑ	י 2נ	-	
36 Liquid	Petroleum iso ISO_	_CO	33 -	0.000	-	0.000	0.000	-		0.000	0.000	- 0	000		0.000	0.	• •					-	-
37 Liquid 38 Liquid	Petroleum FV FVF Petroleum vol OVF	_UNSAT	34 bbl/STB 35 m3/std-m3	1,170	-	1,138	1,117		-	1.022	1.022	- 1	1 149		1.000	0,969	-	-		- 1.00		-	
39 Liquid	Petroleum de RHO	O_LB	36 lb/ft3	49.146	-	49.900	50.415	**		53.684	53.684	- 47	657		54.687	56.432	2 -			- 67.17	5	-	
40 Liquid 41 Liquid	Petroleum flor Q_O)_bbl	37 tonne/m3 38 bbl/d	0.787	-	0.799	0.808	-	-	0.860	0.860	- 0	763 680		0.876	0.904	1 - 3 -		-	- 2	-	-	-
42 Liquid	Petroleum flo Q_O	O btu	39 m3/d 40 Btu/lb	259	17016	256	253	17210	17010	238	238	10	267		233	18191	5 -			- 4		-	-
44 Liquid	Energy densi LHV	_0	41 MJ/kg	42.3	40.045	42.290	42.290	40.045	40.045	42.290	42.290	- 42	290		42.290	42.290	-		-	50.000		-	-
45 Liquid 46 Liquid	Energy densi LHV Energy flow r E_LH	_O_bbl /	42 mmBtu/bbl 43 mmBtu/d	5.0 8184	-	5.1 8184	5.1 8184	-	-	5.5 8184	5.5 8184	- 8	4.9		5.6 8167	5.8	3 -		-	8		-	-
47 Liquid	Energy flow r E_LH	HV_O	44 GJ/d	8635	-	8635	8635	-		8635	8635	8	620		8617	8617	7 -		-	- 104	-	-	
C	i i otar molar nd TOTI	motana i	ionnoru																				
4 b	Inputs Sec	condary inputs	Results	Uncertai	nty A	ctive Field	Flow S	Sheet	llocation	Energy S	ummary	GHG Summary	GHG S	ummary - NE\	W VFF	Summary	Explor	ation	Drilling & d	evelopment	Reser	roir W	+

Mass balance tracking and error flagging

Errors easier to spot with mass balance tracking across entire model

				Inputs			Outputs						
		From production well	From makeup	From procesing stream	From rest of economy		Reinjected as water	Reinjected as steam	Disposed		Transport to market	To other stream	
P	Petroleum coke			0.00					0.00	0.00	0	0.00	
ι	Jnstabilized crude oil	17925			0.00					0.00	17828	97	
N	Natural gas liquids / Diluen Vater	37532	0	74.67	0.00		0	0	37532	0.00	74.67	0.00	
				Imported	stabilizer	Upgrading				Vented and	Transport to	To other	
		From well	From offsite	fuel gas	and tank	proc. gas	Flared	Reinjected	Consumed	fugitives	market	stream	
N	V2	From well 30.82	From offsite 0.00	fuel gas 0.00	and tank 0.00	proc. gas 0.00	Flared 3.52	Reinjected 21.63	Consumed 4.61	fugitives 1.07	market 0.00	stream 0.00	
N C	№ D2	From well 30.82 0.00	From offsite 0.00 0.00	fuel gas 0.00 0.00	and tank 0.00 0.00	proc. gas 0.00 0.00	Flared 3.52 0.00	Reinjected 21.63 0.00	Consumed 4.61 0.00	fugitives 1.07 0.00	market 0.00 0.00	stream 0.00 0.00	
	√2 D2 CO2	From well 30.82 0.00 145.27	From offsite 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00	and tank 0.00 0.00 0.64	proc. gas 0.00 0.00 0.00	Flared 3.52 0.00 16.59	Reinjected 21.63 0.00 0.00	Consumed 4.61 0.00 0.00	fugitives 1.07 0.00 2.44	market 0.00 0.00 0.00	stream 0.00 0.00 126.88	
	№ D2 CO2 12O	From well 30.82 0.00 145.27 0.00	From offsite 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00	and tank 0.00 0.00 0.64 0.00	proc. gas 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00	Reinjected 21.63 0.00 0.00 0.00	Consumed 4.61 0.00 0.00 0.00	fugitives 1.07 0.00 2.44 0.00	market 0.00 0.00 0.00 0.00	stream 0.00 0.00 126.88 0.00	
	N2 D2 CO2 12O CH4	From well 30.82 0.00 145.27 0.00 741.28	From offsite 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.64 0.00 85.28	proc. gas 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67	Reinjected 21.63 0.00 0.00 0.00 530.71	Consumed 4.61 0.00 0.00 0.00 113.03	fugitives 1.07 0.00 2.44 0.00 97.28	market 0.00 0.00 0.00 0.00 0.00	stream 0.00 0.00 126.88 0.00 0.88	
	N2 D2 CO2 12O CH4 C2H6	From well 30.82 0.00 145.27 0.00 741.28 66.16	From offsite 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.00 0.64 0.00 85.28 5.72	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56	Reinjected 21.63 0.00 0.00 0.00 530.71 6.64	Consumed 4.61 0.00 0.00 0.00 113.03 1.41	fugitives 1.07 0.00 2.44 0.00 97.28 1.31	market 0.00 0.00 0.00 0.00 0.00 54.97	stream 0.00 0.00 126.88 0.00 0.88 0.00	
	N2 D2 CO2 12O CH4 CH4 C2H6 C3H8	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.00 0.64 0.00 85.28 5.72 3.18	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54	Reinjected 21.63 0.00 0.00 530.71 6.64 0.79	Consumed 4.61 0.00 0.00 113.03 1.41 0.17	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85	market 0.00 0.00 0.00 0.00 0.00 54.97 0.00	stream 0.00 126.88 0.00 0.88 0.00 44.35	
	N2 D2 CO2 12O CH4 C2H6 C3H8 C3H8 C4H10	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51 31.97	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.64 0.00 85.28 5.72 3.18 1.91	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54 3.65	Reinjected 21.63 0.00 0.00 530.71 6.64 0.79 0.19	Consumed 4.61 0.00 0.00 113.03 1.41 0.17 0.04	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85 0.55	market 0.00 0.00 0.00 0.00 0.00 54.97 0.00 0.00	stream 0.00 126.88 0.00 0.88 0.00 44.35 29.45	
	N2 D2 CO2 CA2 CAH4 C2H6 C3H8 C4H10 C0	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51 31.97 0.00	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	and tank 0.00 0.00 0.64 0.00 85.28 5.72 3.18 1.91 0.00	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54 3.65 0.00	Reinjected 21.63 0.00 0.00 530.71 6.64 0.79 0.19 0.00	Consumed 4.61 0.00 0.00 113.03 1.41 0.17 0.04 0.00	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85 0.55 0.00	market 0.00 0.00 0.00 0.00 0.00 54.97 0.00 0.00 0.00	stream 0.00 0.00 126.88 0.00 0.88 0.00 44.35 29.45 0.00	
	N2 D2 CO2 H2O D2H4 C2H6 C3H8 C3H8 C4H10 C0 C0 C0	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51 31.97 0.00 0.00	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.64 0.00 85.28 5.72 3.18 1.91 0.00 0.00	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54 3.65 0.00 0.00	Reinjected 21.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.019 0.00 0.00	Consumed 4.61 0.00 0.00 113.03 1.41 0.17 0.04 0.00 0.00	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85 0.55 0.00 0.00	market 0.00 0.00 0.00 0.00 54.97 0.00 0.00 0.00 0.00	stream 0.00 0.00 126.88 0.00 0.88 0.00 44.35 29.45 0.00 0.00	
	N2 202 202 120 244 22H6 23H8 C3H8 C4H10 C0 24 20 24 22 20 24 22 20 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 24	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51 31.97 0.00 0.00 18.75	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.64 0.00 85.28 5.72 3.18 1.91 0.00 0.00 0.00	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54 3.65 0.00 0.00 0.00 2.14	Reinjected 21.63 0.00 0.00 0.00 530.71 6.64 0.79 0.19 0.00 0.00	Consumed 4.61 0.00 0.00 113.03 1.41 0.17 0.04 0.00 0.00 0.00	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85 0.55 0.00 0.00 0.31	market 0.00 0.00 0.00 0.00 54.97 0.00 0.00 0.00 0.00 0.00	stream 0.00 0.126.88 0.000 0.88 0.000 44.35 29.45 0.000 0.000 0.000 0.000 0.000	
	N2 D2 CO2 H2O CH4 22H6 23H6 C4H10 C0 C0 H2 H2S SO2 	From well 30.82 0.00 145.27 0.00 741.28 66.16 48.51 31.97 0.00 0.00 18.75 0.00	From offsite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	fuel gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	and tank 0.00 0.64 0.64 0.00 85.28 5.72 3.18 1.91 0.00 0.00 0.00 0.00	proc. gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Flared 3.52 0.00 16.59 0.00 84.67 7.56 5.54 3.65 0.00 0.00 0.2.14 0.00	Reinjected 21.63 0.00 0.00 0.00 530.71 6.64 0.79 0.19 0.00 0.00 0.00	Consumed 4.61 0.00 0.00 113.03 1.41 0.17 0.04 0.00 0.00 0.00 0.00	fugitives 1.07 0.00 2.44 0.00 97.28 1.31 0.85 0.55 0.00 0.00 0.31 0.00	market 0.00 0.00 0.00 0.00 54.97 0.00 0.00 0.00 0.00 0.00 0.00	stream 0.00 0.01 126.88 0.00 0.88 0.00 44.35 29.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

Totals			
Total inputs	Iota. outputs	Batio	
0	0	1.0000	ОК
17925	17925	000	ОК
74.67	74.67	1.0000	OK
37532	37532	1.0000	ОК
	Total		
Total inputs	outputs	Ratio	
30.82	30.82	1.000000	OK
0.00	0.00	1.000000	ОК
145.91	145.91	1.000000	ок
0.00	0.00	1.000000	ок
826.57	826.57	1.000000	ОК
71.89	71.89	1.000000	ОК
51.69	51.69	1.000000	OK
33.88	33.88	1.000000	ОК
0.00	0.00	1.000000	ОК
0.00	0.00	1.000000	ОК
18.75	18.75	1.000000	ОК
0.00	0.00	1.000000	ОК
1179.50	1179.50	1.000000	ОК
		Overall	OK

Gas as a primary product, different assessment points

- OPGEE 2.0 always required oil to be the primary product
- CI: gCO₂/MJ oil at refinery inlet
- OPGEE 3.0 allows for gas as the primary product
- CI: gCO₂/MJ **gas** at transportation system inlet

Oil at field boundary or refinery inlet

Gas at field boundary, transportation inlet or consumer

Challenge 2: Gas processing simulation

- OPGEE v2.0 had relied on "textbook" treatment of gas processing units
 - Models largely taken from classic text Manning and Thompson
 - Simple models of energy use and power requirements per unit of throughput
 - No way to customize process unit energy use for particular conditions
 - Feedback from industry: "Why not use process simulation tools?"
- OPGEE v3.0a includes "proxy" models generated from process simulation tools
 - Obtained access to Aspen HYSYS process simulation package
 - Work from template models of 4 key gas processing units
 - Acid Gas Removal, Dehydration, Demethanizer, Claus Unit
 - Simulated many cases at a variety of conditions
 - Generated statistical representations to predict Aspen HYSYS results

M.S. Masnadi *, P.R. Perrier , J. Wang , J. Rutherford , A.R. Brandt. Statistical proxy modeling for life cycle assessment and energetic analysis. Energy DOI: 10.1016/j.energy.2019.116882

Example: AGR modeling using process simulation software

- Modeled AGR unit in Aspen HYSYS chemical process simulation
- Five different solvents (amines):
 - > 1. MEA; 2. DEA (30% wt.); 3. DEA high load (35% wt.); 4. MDEA; 5. DGA
- Five independent variables:
 - 1. CO₂ concentration; 2. H₂S concentration; 3. Regeneration reflux ratio; 4. Regeneration feed temperature; 5. Acid gas pressure

Sampling approaches

AGR input variables to be sampled:

CO₂ concentration in gas H₂S concentration in gas Reflux ratio Regenerator feed temperature Feed gas pressure Deterministic sampling: Box-Behnken Random sampling: Latin hypercube

Total of ~9000 simulations of AGR systems across independent variables

Proxy modeling (cont'd)

- Experimental design: five independent variables
 - > Settings of each dependent on type of solvent applied
 - Model is allowed to adjust some parameters to make simulation converge (e.g., amine circulation rate)
 - > Save combination of 5 input variables plus multiple outputs

Variable	MEA	DGA	DEA	DEA-HL	MDEA
Reflux ratio [-]	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0	1.5 - 3.0	6.5 - 8.0
Regen. feed temp. [°F]	190 - 220	190 - 220	190 - 220	190 - 220	190 - 220
Feed gas pressure [psia]	14.7 - 514.7	14.7 - 514.7	14.7 - 514.7	14.7 - 514.7	14.7 - 514.7
Amine loading [wt.%]	20	60	30	35	50
Amine circ. rate ^{<i>a</i>}	Var.	Var.	Var.	Var.	Var.
H ₂ S conc. [mol.%]	1 - 20	1 - 20	1 - 20	1 - 20	1 - 20
CO ₂ conc. [mol.%]	1 - 15	1 - 15	1 - 15	1 - 15	1 - 15

Training and testing dataset

After 9,000 simulations, dataset is split into training and testing

Training data used to fit optimal model functional form

Test data "held out" and never examined until reporting results

Tested variety of polynomial and other classical models

Quadratic regression balances complexity and fit

$$P = \beta_0 + \sum_{i=1}^5 \beta_a x_i + \sum_{i=1}^5 \sum_{j=i+1}^5 \beta_b \left(x_i \times x_j \right) + \sum_{i=1}^5 \beta_c x_i^2$$

Test fitted AGR model against hold-out set

Demethanizer product composition results

Composition and shares of C1, C2, C3 to streams harder to predict

Take-aways from process simulation

- Quadratic regression able to fit extremely well in most cases
- Most fits have R² >0.95
- OPGEE now produces, for cases within our sampled input ranges, results very close to Aspen HYSYS

Challenges for extension

Expertise and software license

Computational requirements very large for 10,000s of simulations

Unable to extrapolate – Can only model ranges of T, P, composition sampled

Challenge 3: Fugitive and vented CH₄ emissions

- OPGEE v2.0 relied on CARB survey data for fugitive and vented CH4
 - Survey of California producers required detailed reporting on emissions
 - Emissions factors obtained from EPA GHG Inventory
 - Survey unable to account for differences between US regions
 - Independent measurements lacking, with lots of studies done since OPGEE v2.0

 OPGEE v3.0a includes modern, independently measured field data for CH₄ emissions sources

- Two models: "site" and "component" level
- Component level data draws from multiple studies, 1000s of measured leaks
- Monte Carlo sampling approach includes super-emitter characteristics
- Able to recreate observed US wide emissions (e.g., Alvarez et al. 2018)

J.S. Rutherford, E.D. Sherwin, A.P. Ravikumar, G.A. Heath, J.G. Englander, D. Cooley, D. Lyon, M. Omara, Q. Langfitt, A.R. Brandt Closing the gap: Explaining persistent underestimation by US oil and natural gas production-segment methane inventories Submitted: Nature Energy

Different varieties of methane measurement inform our understanding of emissions quantities and sources

Policy and programs

Validation and assessment

Site-level emissions for production operations

Site level loss rates can be assessed from downwind or aboveview measurements

About 1000 sites from many basins compiled in Omara 2018

Relationship between production rate and loss rate imported and used to estimate site-level emissions

Source: Omara 2018

Collecting component-level data from various studies

- Informed by comprehensive literature search of component-level surveys (6 studies, ~3200 measurements)
- Filtered to (in current OPGEE version) include US studies only
 - Limited global coverage
 - Future model versions could include emissions distributions from other regions
- Data consolidated to consistent component and equipment type categories
 - Consistent component definitions (details in full paper) allow combination of samples from different studies
 - Consistent equipment definitions allows generation of component counts per equipment

Development of a bottom-up tool

Development of a bottom-up tool

Development of a bottom-up tool

Fraction loss rates: Oil wells (<100 mscf/bbl)

Results of loss fraction are strong function of well productivity

This effect has been seen repeatedly in the empirical literature

Using equipment distributions in OPGEE

- A separate equipment-level loss fraction distribution is generated for each productivity tranche
 - A stochastic leak process will tend to cause higher loss fraction in less productive wells, even if that well is same age or has similar equipment type
- Resulting equipment distributions can be used in two ways in OPGEE
 - 1. Deterministic: Create average equipment leakage rate for a given productivity tranche
 - 2. Uncertainty: Draw a given number of equipment realizations for the size of the population you are analyzing, randomized from the sampled equipment types

Validating the method

Ideally the method adopted in OPGEE would recreate the key results of the literature on methane emissions from the last 5 years

Key empirical features that have been found repeatedly that any tool should be able to show:

- 1. Larger emissions than classical EPA Greenhouse Gas Inventory methods
- 2. Strong dependence of loss fraction on site productivity
- **3.** Strong "heavy-tailed" behavior of emissions distributions: dependence on large emitters to drive large fraction of emissions

Validating against US estimate of production-segment emissions

US estimate of production-segment emissions by source

- Largest discrepancies between US EPA Greenhouse Gas Inventory and our results:
 - (2.1 Tg CH₄) Tank flashing and venting emissions
 - (1.4 Tg CH₄) Equipment leaks

Results for the upstream US oil and gas sector

Bibliography (1)

Jing, L., H.M. El-Houjeiri, J.C. Monfort, A.R. Brandt, M.S. Masnadi, D. Gordon, J.A. Bergerson. 2020. Carbon intensity of global crude oil refining and mitigation potential. Nature Climate Change. 11-25. DOI: 10.1111/jiec.12954

M.S. Masnadi *, P.R. Perrier , J. Wang , J. Rutherford , A.R. Brandt. Statistical proxy modeling for life cycle assessment and energetic analysis. Energy DOI: 10.1016/j.energy.2019.116882

A.R. Brandt. Accuracy of satellite-derived estimates of flaring volume for offshore oil and gas operations in nine countries. Environmental Research Communications. DOI: 10.1088/2515-7620/ab8e17.

Nie, Y., S. Zhang, R.E. Liu, D.J. Roda-Stuart, A.P. Ravikumar, A. Bradley, M.S. Masnadi, A.R. Brandt, J. Bergerson, X. Bi. Greenhouse-gas Emissions of Canadian Liquefied Natural Gas for Power Generation and District Heating in China: Three Independent Life Cycle Assessments. Journal of Cleaner Production DOI: 10.1016/j.jclepro.2020.120701

Masnadi, M.S., H.M. El-Houjeiri, D. Schunack, Y. Li, J.G. Englander, A. Badahdah, J.E. Anderson, T.J. Wallington, J.A. Bergerson, D. Gordon, S. Przesmitzki, I.L. Azevedo, G. Cooney, J.E. Duffy, G.A. Keoleian, C. McGlade, D.N. Meehan, T.J. Skone, F. You, M.Q. Wang, A.R. Brandt. Global carbon intensity of crude oil production. Science. DOI: 10.1126/science.aar6859

Bibliography (2)

Brandt, A.R., M.S. Masnadi, J.G. Englander, J.G. Koomey, D. Gordon. Climate-wise oil choices in a world of oil abundance. Environmental Research Letters DOI: 10.1088/1748- 9326/aaae76

Masnadi, M.S., D. Schunack, Y. Li, S.O. Roberts, A.R. Brandt, H.M. El-Houjeiri, S. Przesmitzki, M.Q. Wang. Well-to-refinery emissions and net-energy analysis of China's crude-oil supply. Na- ture Energy. DOI: 10.1038/s41560-018-0090-7

Yeh, S., A. Ghandi, B.R. Scanlon, A.R. Brandt, H. Cai, M.Q. Wang, Kourosh Vafi, Robert C. Reedy. Energy intensity and greenhouse gas emissions from oil production in the Eagle Ford shale. Energy & Fuels DOI: 10.1021/acs.energyfuels.6b02916

Cooney, G., M. Jamieson, J. Marriott, J. Bergerson, A.R. Brandt, T.J. Skone. Updating the US life cycle GHG petroleum baseline to 2014 with projections to 2014 using open-source engineering-based models. Environmental Science & Technology DOI: 10.1021/acs.est.6b02819

Masnadi, M.S., A.R. Brandt. Energetic productivity dynamics of global super-giant oilfields. Energy & Environmental Science. DOI: 10.1039/C7EE01031A

Bibliography (3)

Masnadi, M.S., A.R. Brandt. Climate impacts of oil extraction increase significantly with oilfield age. Nature Climate Change. DOI: 10.1038/nclimate3347

Tripathi, V. and A.R. Brandt. Estimating decades-long trends in petroleum field energy re- turn on investment (EROI) with an engineering-based model. PLOS ONE. DOI: 10.1371/jour- nal.pone.0171083

Wang, J., A.R. Brandt, J. O'Donnell. Potential for use of solar energy use in the global petroleum sector. Energy: The International Journal. DOI: 10.1016/j.energy.2016.10.107

Brandt, A.R., T. Yeskoo, S. McNally, K. Vafi, S. Yeh, H. Cai, M.Q. Wang. Energy intensity and greenhouse gas emissions from tight oil production in the Bakken formation. Energy & Fuels. DOI: 10.1021/acs.energyfuels.6b01907

Wallington, T.J., Anderson, J.E., De Kleine, R.D., Kim, H.C., Maas H., Winkler, S.L., Brandt, A.R., Keoleian, G.A. (2016). When comparing alternative fuel-vehicle systems, life cycle as- sessment studies should consider trends in oil production. Journal of Industrial Ecology. DOI: 10.1111/jiec.12418

Brandt, A.R. (2015). Embodied energy and GHG emissions from material use in conventional and unconventional oil and gas operations. Environmental Science & Technology. DOI:10.1021/acs.est.5b03540

Bilbiography (4)

Vafi, K. A.R. Brandt. GHGfrack: A model for estimating greenhouse gas emissions from drilling vertical and directional wells and hydraulic fracturing. Environmental Science & Tech- nology. DOI: 10.1021/acs.est.6b01940

Sweeney Smith, S., A. Calbry-Muzyka, A.R. Brandt (2016). Exergetic life cycle assessment including both inputs and pollutants. International Journal of Life Cycle Assessment. DOI: 10.1007/s11367-016-1118-5

Kemp, C.E., A.P. Ravikumar, A.R. Brandt (2016) Comparing natural gas leakage detection technologies using an open-source "virtual gas field" simulator. Environmental Science & Tech- nology. DOI: 10.1021/acs.est.5b06068

Kang, C.A., Brandt, A.R., Durlofsky, L (2015). A new carbon capture proxy model for optimizing the design and time-varying operation of a coal-natural gas power station. International Journal of Greenhouse Gas Control. DOI: 10.1016/j.ijggc.2015.11.023

Brandt, A.R., Y. Sun, S. Bharadwaj, D. Livingston, E. Tan, D. Gordon (2015). Energy return on investment (EROI) for forty global oilfields using a detailed engineering-based model of oil production. PLOSone. DOI: 10.1371/journal.pone.0144141

Bilbiography (5)

Brandt, A.R., Yeskoo, T.E., K. Vafi. (2015) Net energy analysis of Bakken crude oil production using a well-level engineering-based model. Energy. DOI: 10.1016/j.energy.2015.10.113

Brandt, A.R., D. Millstein, L. Jin, J.G. Englander (2015). Air quality impacts from well stimulation. An Independent Scientific Assessment of Well Stimulation in California, Volume II: Potential Environmental Impacts of Hydraulic Fracturing and Acid Stimulations. California Council on Science and Technology, Lawrence Berkeley National Laboratory, July 2015.

Englander, J.G., A.R. Brandt, A. Elgowainy, H. Cai, J. Han, S.L. Yeh, M.Q. Wang (2015). Oil sands energy intensity assessment using facility-level data. Energy & Fuels. DOI:10.1021/acs.energyfuels.4b00175

Cai, H., A.R. Brandt, S.L. Yeh, J.G. Englander, J. Han, A. Elgowainy, M.Q. Wang (2015). Well-to-wheels greenhouse gas emissions of Canadian oil sands products: Implications for U.S. petroleum fuels. Environmental Science & Technology. DOI: 10.1021/acs.est.5b01255

Brandt, A.R., Y. Sun, K. Vafi (2015). Uncertainty in regional-average petroleum GHG inten- sities: Countering information gaps with targeted data gathering. Environmental Science & Technology. 49(1) 679-686. DOI: 10.1021/es505376t

Bibliography (6)

Vafi, K., A.R. Brandt, (2014). Reproducibility of LCA models of crude oil production. Environmental Science & Technology. 48(21) 12978-12985. DOI: 10.1021/es501847p

Vafi, K., A.R. Brandt, (2014). Uncertainty of oil field GHG emissions resulting from informa- tion gaps: A Monte Carlo approach. Environmental Science & Technology. 48(17) 10511-10581. DOI: 10.1021/es502107s

Englander, J., A.R. Brandt, S. Bharadwaj. Historical trends in life-cycle greenhouse gas emis- sions of the Alberta oil sands (1970 to 2010). Environmental Research Letters. 8 (2013) 044036. DOI:10.1088/1748-9326/8/4/044036

Brandt, A.R., J. Englander, S. Bharadwaj (2012). The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010. Energy: The International Journal 55(June 15): 693-702. DOI: 10.1016/j.energy.2013.03.080

Brandt, A.R. (2011) Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production. Environmental Science & Technology 46(2): 1253-1261. DOI: 10.1021/es202312p

Bilbiography (7)

Brandt, A.R. (2011). Oil depletion and the energy efficiency of oil production: The case of California. Sustainabilities 3(10): 1833-1844. DOI: 10.3390/su3101833

Yeh, S., S.M. Jordaan, A.R. Brandt, M. Turetsky, S. Spatari, D. Keith (2010). Land use greenhouse gas emissions from conventional and unconventional oil production Environmental Science & Technology 44(22): 8766-8772. DOI:10.1021/es1013278

Brandt, A.R., S. Unnasch (2010). Energy intensity and greenhouse gas emissions from thermal enhanced oil recovery. Energy & Fuels 24(8): 4581-4589. DOI:10.1021/ef100410f

El-Houjeiri, H. M. A.R. Brandt, J.E. Duffy (2013). Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics. Environmental Science & Technology 47(11): 5998-6006. DOI: 10.1021/es304570m