Public Health and Health Equity Considerations of AVs in California

PRODUCED BY TRANSPO GROUP FOR THE CALIFORNIA DEPARTMENT OF PUBLIC HEALTH

Potential Health Impacts

- Impacts to Active Transportation
- Greenhouse Gas Emissions/Air Pollution
- Traffic Safety
- Mental Health
- Potential Impacts of 5G
 Wireless Technology

Health Equity Considerations

Accessibility

- Access to Transportation for All Income Levels
- Cost of Using AVs
- Distribution of TransportationServices
- Accessibility and Mobility for People with Disabilities
- Accessibility and Mobility for Non-Drivers
- Rural Equity Issues

- Job Loss from Automation
- Exposure to Traffic and Associated Impacts
- Personal Safety for Vulnerable Passengers

Primary Determinants of Impacts

- The degree to which transportation is shared
- The degree to which transportation is electrified, and the sources of electrical generation

Other public policies

- Safe operation of AVs
- Access to convenient and affordable transportation for all income levels
- Access to convenient and affordable transportation for people of all abilities
- Access to convenient and affordable transportation for people in rural areas
- Access to job training and new jobs to replace those lost to automation
- Safe use of 5G or other wireless transmission technology
- Measures to improve personal safety for people on shared ride vehicles and buses

Range of Potential Outcomes

Scenario 1

No Policies Addressing Public Health & Health Equity Impacts of AVs are Enacted

Scenario 2

Modest Policies Addressing Public Health & Health Equity Impacts of AVs Are Enacted

Scenario 3

Assertive Policies Enacted to Achieve Health & Health Equity Benefits of AVs

Scenario 2 Modest Policies Enacted

- Modest incentives for electric vehicles
- Modest subsidies for transit-related services and services for people with disabilities
- Safety regulations
- Provisions for access to transportation services for people without credit cards or smart phones
- Dedicated lanes for shared AVs on some freeways
- Requirements to make boarding and disembarking easier for people with disabilities who typically need assistance
- Measures enacted to improve personal safety for vulnerable passengers

Scenario 3 Assertive Policies Enacted

- Pricing, time, and location incentives for sharing rides
- Regulations requiring electric vehicles
- Subsidies for transit-related services and services for people with disabilities
- Regulations requiring an adequate number of vehicles providing service to the public are accessible
- Aggressive vehicle safety regulations
- Provisions for access to transportation services for people without credit cards or smart phones

- Adequate job training and adequate efforts to ensure that people who lose jobs to automation have other employment options available
- Land use planning promoting compact development, and significantly reducing parking
- Regulations prevent the widespread use of 5G wireless technology, or other transmission technology, until research shows that it can be used safely
- Measures enacted to improve personal safety for vulnerable passengers

Table Colors

BLUE = Positive impact

RED = Negative impact

YELLOW = Impact not clear, neutral, not applicable

Impacts on Active Transportation

	Scenario 1	Scenario 2	Scenario 3
Safer to walk/bike			
Increase in walking/biking related to safety gain			
Impact from volume of vehicles			
Transit support reduces vehicles			
Incentives reduce VMT and increase safety			
Road diets allocate more space to walk/bike			
Streets become livelier			
Safer due to vehicle-to-pedestrian/bicycle communication			
Vehicle-to-pedestrian communication makes streets safer to cross			
Land use planning reduces walking/bicycling distance			

Greenhouse Gases and Air Pollution

	Scenario 1	Scenario 2	Scenario 3
VMT increases			
Suburban sprawl further increases VMT			
Suburban form reduces walking/biking/transit			
Zero-occupant vehicles increase VMT			
Transit ridership decreases			
People share rides more for commuting			
Transit support offsets some ridership loss			
More electric vehicles			
All electric vehicles			
Incentives for ridesharing reduce VMT			
Increase in walk/bike reduce VMT			
Land use planning reduces VMT			

Access to Transportation for All Income Levels

Scenario 1 Scenario 2 Scenario 3 Reductions in app-based rides improve access Racial discrimination from drivers eliminated Reductions in congestion improve access Induced travel offsets congestion benefits Bicycling and walking improve low-cost options Profit-based services leave some areas underserved Public transit ridership and service decline Services unavailable to those without credit cards/smart phones Transit subsidies increase service Access card services to those without credit cards/smart phones More ride sharing services available improve access Bicycling and walking become safer and provide low-cost option Pricing, time, & location incentives provide affordable options Land use planning brings cost of building housing down Lower building costs enable people to live in more neighborhoods Parking lots and structures converted to housing or parks

Accessibility and Mobility for People with Disabilities

	Scenario 1	Scenario 2	Scenario 3
Cost of accessible service decreases			
Accessible services more available in profitable areas			
Services may be too expensive for some low-income people			
Language barriers prevent some people from using ride services			
Requirements ensure adequate number of accessible vehicles			
Pricing, time, and location incentives create more options			
With special provisions for people who need assistance, more can ride			
Special language provisions eliminate language barriers			

Job Losses from Automation

•	Scenario 1	Scenario 2	Scenario 3
A high % of TNC, taxi, bus, delivery drivers will lose their jobs			
People who manufacture and service cars will lose jobs			
Job training prepares people for other jobs			
Industrial policy creates jobs for those lost to automation			

Exposure to Traffic and Associated Impacts

Induced travel increases emissions, noise, congestion and crashes

People in urban areas and near freeways will have most exposure

Electrification will nearly eliminate noise and emissions

As VMT decreases, exposure to noise, congestion and emissions will decrease

People in urban areas and near freeways will benefit most

Public Policies to Address Health and Health Equity Outcomes

- Policies to encourage sharing of rides
- Policies to electrify transportation with clean energy sources
- Miscellaneous policies

Policies to Encourage Sharing of Rides

- Pricing
- Providing time advantages
- Providing locational incentives

Policies to Electrify Transportation With Clean Energy Sources

- Tax credits and subsidies to purchase
- Mandate that after a certain date, all vehicles are electric
- Ensure that charging stations are well distributed
- Shift to clean energy sources

Miscellaneous Policies

- Policies to ensure safe operation
- Policies to ensure access to convenient and affordable transportation for all income levels
- Access to convenient and affordable transportation for people with disabilities
- Access to convenient and affordable transportation for people in rural areas
- Access to job training and new jobs to replace those lost to automation

- Land use policies that reduce the need for travel, and make development conducive to walking, bicycling, and transit
- •5G wireless technology should be permitted for widespread adoption only after research demonstrates that it is safe.
- •Efforts should be made to improve personal safety for people sharing rides.

Opportunities for Local Governments to Participate

- Maintain streets well
- Plan streets for lower demand in the future
- Consider adding communications technology to streets
- Curb management will become important
- Eliminate parking codes; encourage flexible parking design that can be converted to other uses
- Look to add AV technology to transit

- Modernize ride service/taxi regulations
- Universal apps for transportation services
- Prepare for loss of revenue from parking and auto sales
- Consider future data and traffic coordination center
- Add AV charging stations in public areas
- Test AV services

Opportunities for Health Agencies

- Participate in AV conferences
- Publish papers on health related issues
- Work with local, state and MPO governing bodies to institute good AV policies
- Host AV discussion panels focusing on health and health equity issues
- Conduct relevant research
- Coordinate with universities on research and policy

Ryan Snyder

310-307-3319 ryan.snyder@transpogroup.com

