California Drought: Current Conditions and Future Possibilities in a Changing Climate

Michael Anderson, Ph.D., PE
State Climatologist, California
February 27, 2014
Talk Overview

• Current Conditions
• 20th Century California Drought
• Paleodroughts
• Expected Impacts from Climate Change
• Future Drought Characteristics
Daily Drought Information Summary (02/24/2014)

Report generated: 02/24/2014 12:05

Reservoir Storage as of 02/23/2014 at midnight

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>River</th>
<th>Storage (in Acre Feet)</th>
<th>% of Capacity</th>
<th>Storage Year Ago This Date</th>
<th>% of Capacity Year Ago This Date</th>
<th>% Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity Lake</td>
<td>Trinity</td>
<td>1,180,196</td>
<td>48</td>
<td>1,981,350</td>
<td>81</td>
<td>110</td>
</tr>
<tr>
<td>Shasta Lake</td>
<td>Sacramento</td>
<td>1,730,766</td>
<td>38</td>
<td>3,589,145</td>
<td>79</td>
<td>109</td>
</tr>
<tr>
<td>Lake Oroville</td>
<td>Feather</td>
<td>1,388,506</td>
<td>39</td>
<td>2,826,095</td>
<td>80</td>
<td>116</td>
</tr>
<tr>
<td>New Bullards Bar Res</td>
<td>Yuba</td>
<td>471,479</td>
<td>49</td>
<td>779,282</td>
<td>81</td>
<td>126</td>
</tr>
<tr>
<td>Folsom Lake</td>
<td>American</td>
<td>290,077</td>
<td>30</td>
<td>559,077</td>
<td>57</td>
<td>104</td>
</tr>
<tr>
<td>New Melones Res</td>
<td>Stanislaus</td>
<td>1,057,926</td>
<td>44</td>
<td>1,607,279</td>
<td>66</td>
<td>110</td>
</tr>
<tr>
<td>Don Pedro Res</td>
<td>Tuolumne</td>
<td>1,055,208</td>
<td>52</td>
<td>1,398,696</td>
<td>69</td>
<td>98</td>
</tr>
<tr>
<td>Lake McClure</td>
<td>Merced</td>
<td>213,924</td>
<td>21</td>
<td>452,793</td>
<td>44</td>
<td>86</td>
</tr>
<tr>
<td>Millerton Lake</td>
<td>San Joaquin</td>
<td>172,068</td>
<td>33</td>
<td>325,694</td>
<td>63</td>
<td>96</td>
</tr>
<tr>
<td>Pine Flat Res</td>
<td>Kings</td>
<td>185,805</td>
<td>19</td>
<td>319,540</td>
<td>32</td>
<td>62</td>
</tr>
<tr>
<td>Isabella</td>
<td>Kern</td>
<td>59,340</td>
<td>10</td>
<td>82,482</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>San Luis Res (Offstream)</td>
<td>678,066</td>
<td>33</td>
<td>40</td>
<td>1,201,459</td>
<td>59</td>
<td>70</td>
</tr>
</tbody>
</table>

Snowpack Water Content as of 02/24/2014

<table>
<thead>
<tr>
<th>Region</th>
<th>Water Content (in inches)</th>
<th>% Average to Date</th>
<th>% of Apr 1 Average</th>
<th>Water Content (in inches) Last Year This Date</th>
<th>% Average Last Year This Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Sierra</td>
<td>3.20</td>
<td>13</td>
<td>11</td>
<td>17.50</td>
<td>72</td>
</tr>
<tr>
<td>Central Sierra</td>
<td>7.60</td>
<td>30</td>
<td>25</td>
<td>17.30</td>
<td>67</td>
</tr>
<tr>
<td>Southern Sierra</td>
<td>4.40</td>
<td>21</td>
<td>17</td>
<td>12.10</td>
<td>59</td>
</tr>
<tr>
<td>Statewide</td>
<td>5.50</td>
<td>23</td>
<td>19</td>
<td>15.80</td>
<td>67</td>
</tr>
</tbody>
</table>

Precipitation Index Accumulation as of 02/24/2014

<table>
<thead>
<tr>
<th>Index</th>
<th>Season to Date</th>
<th>% of Average</th>
<th>Season to Date Last Year</th>
<th>% of Average Last Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Sierra</td>
<td>12.90</td>
<td>38</td>
<td>34.10</td>
<td>101</td>
</tr>
<tr>
<td>Southern Sierra</td>
<td>8.51</td>
<td>32</td>
<td>21.04</td>
<td>79</td>
</tr>
</tbody>
</table>

Provisional Data, Subject to Change
CONDITIONS FOR MAJOR RESERVOIRS: 23-FEB-2014

Data as of Midnight: 23-Feb-2014

- **Trinity Lake**: 48% (Total Cap), 66% (Hist. Av)
- **Lake Shasta**: 38% (Total Cap), 53% (Hist. Av)
- **Lake Oroville**: 39% (Total Cap), 57% (Hist. Av)
- **Folsom Lake**: 44% (Total Cap), 72% (Hist. Av)
- **New Melones**: 44% (Total Cap), 72% (Hist. Av)
- **San Luis**: 33% (Total Cap), 40% (Hist. Av)
- **Millerton Lake**: 33% (Total Cap), 51% (Hist. Av)
- **Pyramid Lake**: 98% (Total Cap), 103% (Hist. Av)
- **Castaic Lake**: 84% (Total Cap), 97% (Hist. Av)

Legend
- Blue Bar: Storage level for date
- Gold Bar: Total reservoir capacity
- Red Line: Historic level for date

% of Capacity	% Historical Avg
Trinity Lake: 48% | 66%
Lake Shasta: 38% | 53%
Lake Oroville: 39% | 57%
Folsom Lake: 44% | 72%
New Melones: 44% | 72%
San Luis: 33% | 40%
Millerton Lake: 33% | 51%
Pyramid Lake: 98% | 103%
Castaic Lake: 84% | 97%

Click for printable version of current data. Report Generated: 24-Feb-2014 12:57 PM
Northern Sierra
8 Station Index

WRCC
WestMap

Annual Average: 50 inches
Maximum Year (1983): 88.5 inches
Minimum Year (1924): 17.1 inches
Period of Record 1921- Present
*WY2014 assumes no further precipitation this year
What will California drought look like in the next century as climate warms?
Location Matters
Precipitation Characteristics
The Northern CA 8-Station Index

Eight Stations: Mt. Shasta City, Shasta Dam, Mineral, Quincy, Brush Creek, Sierraville, Blue Canyon, and Pacific House
Monthly 8 Station Distribution

Average : 50 Inches
Drought Average: 38 Inches
Snowpack
Drought Average April 1st: 60%

Snowpack Characteristics
Runoff Characteristics
Drought Runoff Characteristics – Sacramento Basin

The graph shows the percentage of Drought Years and Period of Record for different periods:
- **Oct Mar**: 60% Drought Years and 40% Period of Record
- **Apr-Jul**: 70% Drought Years and 30% Period of Record
- **Water Year**: 65% Drought Years and 35% Period of Record

The chart indicates a higher proportion of drought years compared to the period of record across all three timeframes.
Paleodroughts

Woodhouse et al., 2006: Upper Colorado River Basin Streamflow Reconstruction

Palaeo droughts
100+yr. Droughts in California?

“Here I present a study of relict tree stumps rooted in present-day lakes, marshes and streams, which suggests that California’s Sierra Nevada experienced extremely severe drought conditions for more than 2 centuries before AD~1112 and for more than 140 years before AD~1350.”

“Future natural or anthropogenically induced warming may cause a recurrence of the extreme drought conditions”

“California's mediaeval precipitation regime, if it recurred with today's burgeoning human population, would be highly disruptive environmentally and economically.”

1921-1940 Sacramento Basin

- Only 6 years with above average rainfall in 8 Station Index (1921, 1925, 1927, 1936, 1938, 1940)
- Average annual precipitation 44 inches during this time
- Water year runoff average 14.9 MAF
- WSI Class Distribution: 2W, 4AN, 4BN, 5D, 5C
Climate Change Impacts

- Less Precipitation Falling as Snow
- Drier Springs
- Increased Variability
Signs of Change?

- Driest Precipitation Year Southern CA 2007
- Driest Spring Northern Sierra 2008
- Water Year 2009 Precipitation Distribution
Future Drought Characteristics

- Decrease in Spring Precipitation decreases odds of “March Miracles”

- Dry springs and smaller snowpacks will yield lower base flow values earlier in year

- Ability to manage water increasingly constrained by hydrologic conditions and regulatory decisions
What If Drought Year – 8 Station Index

- Blend elements of past drought years to represent climate change drought year

- Low 10 Monthly Average: 6.91 inches

- Low 10 Seasonal Total Average: 17.10 inches

- 1977/1991/1924 Seasonal Mix: 11.07 inches
What If Drought Year - Runoff

- No snowpack for spring runoff
- Fall runoff increase requires more precipitation
- Winter flows harder to maintain
- Average of 10 Lowest Drought Flows:
 Oct-Mar: 3.8 MAF (10.4 MAF)
 Apr-Jul: 2.6 MAF (6.8 MAF)
 Water Year: 7.5 MAF (18 MAF)
Multi-Year Sequencing

- **20th Century** shows 2, 3, 4, and 6 Yr droughts
- 20-year dry period 1921-1940 in observed record for 8 Station Index & Sacramento Basin Runoff
- Paleorecord shows multiple 10+ year droughts as well as 2 century-long dry periods (climate shifts)
Conclusions

• 20th century drought characteristics show wintertime precip/runoff deficits sometimes offset by wetter than average springs

• Climate change is expected to have fewer wet springs potentially increasing drought occurrence and severity risk.
Conclusions

• The expectation of increased variability means future conditions can change quickly with 2013 serving as an example.

• Planning for future droughts can take advantage of information in the historical record including paleoreconstructions. The trick will be to increase our understanding of causal mechanisms and watershed response.
Questions?

manderso@water.ca.gov