Health and Economic Impacts of the 2012-2014 California Drought: Lessons Learned

Josué Medellín-Azuara
Acting Associate Professor, UC Merced
Associate Director, UC Agricultural Issues Center
Drought and Public Health Symposium
Sacramento, California, February 4, 2019
Water Resources in California

Hanak et al. (2011) Managing California’s Water
California is a land of climate extremes that change quickly.
The 2012-2016 drought

Some Sectors affected

- Agriculture
- Urban water use
- Ecosystems
- Small rural water systems
- Recreation
- Forests
- Hydropower

Some Health and Employment Implications

- Stress due to insecure employment and Income
- Relocation and childcare
- Air quality effects
- Dry wells
- Concentration of contamination in wells
Agriculture is the main economic driver in the San Joaquin Valley

San Joaquin Valley

<table>
<thead>
<tr>
<th>Category</th>
<th>Employment</th>
<th>Revenues</th>
<th>GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3%</td>
<td>13%</td>
<td>5%</td>
</tr>
</tbody>
</table>

California

<table>
<thead>
<tr>
<th>Category</th>
<th>Employment</th>
<th>Revenues</th>
<th>GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Hanak et al. 2017 Water stress and a changing San Joaquin Valley
Recent droughts highlight the role of groundwater in agriculture

http://droughtimpacts.ucdavis.edu
Also see: Why California needs better groundwater management

2015 Estimated Agricultural Drought Impacts

<table>
<thead>
<tr>
<th>Description</th>
<th>Impact</th>
<th>Base year</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought water shortage (million acre-ft)</td>
<td>8.7</td>
<td>26.4</td>
<td>33%</td>
</tr>
<tr>
<td>Groundwater replacement (million acre-ft)</td>
<td>6.0</td>
<td>8.4</td>
<td>72%</td>
</tr>
<tr>
<td>Net water shortage (million acre-ft)</td>
<td>2.7</td>
<td>26.4</td>
<td>10%</td>
</tr>
<tr>
<td>Drought-related idle land (acres)</td>
<td>540,000</td>
<td>9 million*</td>
<td>6%</td>
</tr>
<tr>
<td>Crop revenue losses ($)</td>
<td>$900 million</td>
<td>$40 billion</td>
<td>2.3%</td>
</tr>
<tr>
<td>Dairy and livestock revenue losses ($)</td>
<td>$350 million</td>
<td>$13 billion</td>
<td>2.7%</td>
</tr>
<tr>
<td>Costs of additional pumping ($)</td>
<td>$590 million</td>
<td>$780 million</td>
<td>75.5%</td>
</tr>
<tr>
<td>Net revenue losses ($)</td>
<td>$1.8 billion</td>
<td>54 billion rev.</td>
<td>3.3%</td>
</tr>
<tr>
<td>Total economic impact ($)</td>
<td>$2.7 billion</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Direct job losses (farm seasonal)</td>
<td>10,100</td>
<td>200,000#</td>
<td>5.1%</td>
</tr>
<tr>
<td>Total job losses</td>
<td>21,000</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* NASA-ARC estimate of normal Central Valley idle land is 1.2 million acres.

Total agriculture employment is about 412,000, of which 200,000 is farm production.
Most agricultural income and employment is in fruits, nuts and vegetables.
Agricultural employment mostly growing, especially for contract labor

Agricultural Employment in California

Source: Author calculations with data from the Employment and Development Department
Job Losses and Boxes Delivered by Emergency Services

- Food boxes were delivered to regions with job losses
- Tulare Lake Basin is the most seriously affected

Migrant & Seasonal Farm Worker Emergency Drought Relief Needs Assessment Report

Prepared for: California Department of Community Services & Development
Prepared by: La Cooperativa de Campesina, Profile Research & Marketing, Inc.
Date: November, 2015
Water Quantity and Quality Issues in Small Water Systems

This graphic displays locations of reported dry water supply wells, as collected and located by the Governor’s Office of Planning and Research as of 04-27-15.

Many of the locations are close to one another and difficult to clearly display on a statewide scale because the points overlap. This graphic depicts nearly 1,900 points.

Dry wells

Concentration of Pollutants

Well Nitrate Concentration
Maximum Finding 2000-2009
[mg/L as Nitrate]
- up to 2.0
- 2.1 - 10.0
- 10.1 - 22.5
- 22.6 - 45.0
- 45.1 - 90.0
- over 90.0

http://groundwaternitrate.ucdavis.edu
Solutions for nitrate in groundwater

Safe drinking water programs

- Small systems (population less than 3,300) with contaminated wells and MCL violations

Farm programs to reduce nitrogen loading

Nitrogen loading to groundwater (kilogram per hectare per year)

- 0 - 5
- 5 - 10
- 10 - 35
- 35 - 50
- 50 - 75
- 75 - 100
- 100 - 150
- 150 - 200
- > 200

Sacramento River hydrologic region
San Joaquin River hydrologic region
Tulare Lake hydrologic region

Hanak et al. 2017 Water stress and a changing San Joaquin Valley
Range of approaches for salinity, dust management

- Salts
 - Major infrastructure (desalinate, “brine line”)
 - Crop choices, irrigation management
- Dust from idled fields
 - Cover crops
 - Solar
 - Habitat

Hanak et al. 2017 Water stress and a changing San Joaquin Valley
Conclusions Drought Impacts

• Some health impacts: income and employment stress, air quality, access to safe drinking water
• Droughts help focus attention and encourage improvements in water management.
• A diversified economy with deep global connection buffered economic effects of drought.
• Major droughts have less impact under diversified water sources
• Small rural water systems are specially vulnerable to drought both in water quality and quantity
• Every drought is different
Thank you!

jmedellin-azuara@ucmerced.edu

I am grateful for past and current collaboration my many colleagues at UC Davis and other institutions, in particular: Jay Lund, Richard Howitt, Daniel Sumner and Ellen Hanak and Alvar Escriva-Bou. Funding from the California Department of Food and Agriculture is acknowledged.