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+ Electricity sector specialists, founded 1989
+ Rigorous analysis on a wide range of energy issues

+ Advise utilities, regulators, gov’t agencies, power
producers, technology companies, and investors

+ Offices in San Francisco and Vancouver, international
practice includes China and India

+ Key advisor to California state government on climate
policy, electricity planning, energy efficiency
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California Climate Policy Analysi
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AB32 analysis for
CPUC, CEC, ARB

Options and costs for
electricity and
natural gas sectors

CO2 market design
for electricity sector

Energy+Environmental Economics

Science

P

The Technology Path to Deep G h Gas
2050: The Pivotal Role of Electricity

James H. Williams, et al.

Science 335, 53 (2012);

DOI: 10.1126/science.1208365

1s Cuts by

The Technology Path to Deep
Greenhouse Gas Emissions Cuts by
2050: The Pivotal Role of Electricity

James H. Williams,™? Andrew DeBenedictis,® Rebecca Ghanadan,*> Amber Mahone,*
Jack Moore,” William R. Morrow 111,* Snuller Price,’ Margaret S. Torn®*

Several states and countries have adopted targets for deep reductions in greenhouse gas emissions
by 2050, but there has been little physically realistic modeling of the energy and economic
transformations required. We analyzed the infrastructure and technology path required to meet
California’s goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure
stocks, resource constraints, and electricity system operability. We found that technically feasible
levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread
electrification of transportation and other sectors is required. Decarbonized electricity would become
the dominant form of energy supply, posing challenges and opportunities for economic growth and
climate policy. This transformation demands technologies that are not yet commerdalized, as well as

coordination of i and infrastructure deployment.

t, technology devel
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+ Independent analysis
by E3-LBNL-UCB team
of CA goal of 80%
reductions by 2050

+ Publication in Science
highlights electricity
role
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( SUSTAINABLE DEVELOPMENT

SOLUTIONS NETWORK
\ A GLOBAL INITIATIVE FOR THE UNITED NATIONS
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+ Deep Decarbonization Pathways Project (DDPP)

e National strategies to keep global warming below 2°C
+ 15 countries, >70% of current global GHG emissions
e OECD + China, India, Brazil, South Africa, Mexico, Indonesia

+ 2014 report to UN Secretary General Ban Ki-moon
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pa th ways to Blueprints for Taming the Climate Crisis
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What is the Purpose of National

Deep Decarbonization Pathways?

+ Improve the international climate discourse

e Cards on the table: transparent assumptions about technologies and
cost, clarity about national ambitions, benchmark for progress

e Shift of focus: from policy abstractions to energy sector
transformation, concrete problem solving, mutual benefits

+ Encourage cooperation
e Share best practices

e Concretely understand
different national perspectives

o Identify areas for collaboration
on RD&D, policy, finance

o Identify market opportunities
for low carbon technologies L
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U.S. Deep Decarbonization Rep

E3, UC, LBNL, PNNL team

Williams et al. Nov. 2014

pathways to

deep decarbonization What would it take for US to
IS G S achieve 80% GHG reduction

below 1990 level by 2050?

- Is it technically feasible?

« What would it cost?

- What physical changes are
required?

- What economic and policy
changes are implied?

Energy+Environmental Economics  Report available at http://unsdsn.org



+ DDPP US 2050 target

is 750 MMT (1.7 tons/person)
+ Net 2050 CO2e target 1080 MMT - 330 net from other sources

US GHG emissions by economic sector
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GCAM Used to Model Non-Eneifg:

and Non-CO, Emissions

> o 0 08

+ IAM used in IPCC Fifth Assessment Report

+ Biomass production and indirect LUC emissions

+ Non-energy and non-CO, GHG mitigation

+ Assess sensitivity to terrestrial carbon sink assumptions
+ Analysis by Andy Jones, LBNL + Haewon McJeon, PNNL
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PATHWAYS used to model enel“g

emissions

Represents physical infrastructure of energy system
80 demand sectors, 20 supply sectors
Annual time steps with equipment lifetimes

Incorporates infrastructure inertia

+ + + + +

Makes decarbonization pathways “real”
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PATHWAYS Model Methodology:"
Bottom-Up Energy Demand “

+ Infrastructure stock rollover model (keeps track of
“stuff” e.g. number of light bulbs by type and

— vintage)
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PATHWAYS Model: Sectoral and"

L
® o 08

Geographic Granularity

+ 9 US Census regions separately modeled

+ Allows for an understanding of sectoral impacts and
equity differences in future energy systems

+ Illustrates the challenges of certain sectors
+ Focuses policymakers on difficult choices

+ A light bulb is not a water heater. California is not
Texas.

Energy+Environmental Economics
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@ PATHWAYS Design Principles =

+ Conservative assumptions about economy, lifestyles

+ Technology is commercial or near-commercial

+ Environmental sustainability (limits on biomass, hydro)
+ Infrastructure inertia

+ Electricity system reliability

$50 500 : -
610 U.S. GDP (Trillion $2012) 100 U.S. population (Millions) __
$30 - 300 -
$20 - 200 -
$10 - 166% increase 100 - 40% increase
$0 . | . 0 . . .
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

U.S. National Energy Modeling System and 2013 Annual Energy Outlook reference case
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80% Reduction in CO,e by 2050%
Achievable

LR

US GHG emissions by economic sector
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Current U.S. energy system

LR

2014

2014 Reference Case

Electricity
Generation

Geothermal — Grid Electricity
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wind ——
Buildings
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Hydro == Hydrogen Production T
g Biofuel Production yerogen - Pipeline Gas

Biomass [== —

Natural Gas @ /

Industry

Coal g Combined Heat and Power
Petroleum
Petroleum Liquid Fuels Transportation
Refining

Energy+Environmental Economics 17
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@ Decarbonized energy syste
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in 2050
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@ Multiple Pathways Are

Technically Feasible
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20 Per capita emissions
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Energy+Environmental Economics ~ Pathways to Deep Decarbonization in the United States 19



Final Energy in 2050 (EJ)

by Scenario
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@ 2050 LDV Final Energy Demand by Fue
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@ Key Determinants of Low Carbon

Energy Systems

Electricity Mix

What is the mix of
renewables,
nuclear, and fossil
fuels with CCS in
electricity
generation?

Energy+Environmental Economics
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Deep Decarbonization Problem-

Solving: Some Novel Solutions

1. Variable generation (wind, solar): > Use
production of hydrogen and synthetic methane to
balance power system & provide low carbon fuel

2. Natural gas pipeline - decarbonize using gasified
biomass and electricity-produced fuels

3. Industry, heavy duty transport 2 replace liquid
fossil fuels with partly decarbonized pipeline gas

4. Biomass 2 not used for ethanol because it is
scarce and has better uses, such as biogas and
biodiesel, while alternatives exist for LDV fuels

23
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Electricity Increasingly Dominaté

CI 3

by Non-Dispatchable Generation®

2014 2018 2022 2026 2030 2034 2038 2042 2046 2050

m Fossil ™ Fossil (CCS) Nuclear
Hydro m Geothermal Biomass

m Wind Solar ® Residential

®m Commercial ® Transportation ® [ndustrial
Intermediate Energy Carriers

Pathways to Deep Decarbonization in the United States, Mixed case results
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Electricity Dispatch and Flexible Loz

Eastern Interconnect — July 2050
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@ Pipeline Gas Composition in 205

Gas energy use (EJ)

@
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Low Carbon Transition

Renewables Case

Liquid and Solid Fuels Gas Fuels Electricity
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Pathways to Deep Decarbonization in the United States, Mixed case results



@ Net Energy System Cost

+ Median 2050 net energy system cost ~1% of GDP ($40T)
+ Uncertainty range -0.2% to + 1.8%

$800
$700
$600
$500
$400
$300
$200
$100

SO -
-$100

Billions

2014 2018 2022 2026 2030 2034 2038 2042 2046 2050

" Residential Commercial ™ Transportation Industrial ¢ Total

Pathways to Deep Decarbonization in the United States, Mixed case results 28



@ Net Cost Components

+ Costs = mostly fixed costs, savings = mostly fuel savings

+ Lower net cost if technology costs lower, fossil fuels higher

$1.75T -
Costs:ALL
$1.5T1 B Waste Heat
M Residual Fuel Qil
$1.25T | B Refinery and Process Gas
B Pipeline Gas
[ Petrochemical Feedstocks
—_ $1T [] Other Petroleum
1< [] Natural Gas Feedstock
a $750G B LPG for Feedstocks
8 [ LPG
[] Liquified Pipeline Gas (LNG)
2 $500G ] Kerosene-Jet Fuel
.S B Kerosene
S $250G [ Hydrogen
£ [ Gasoline
o YO m—— [ Electricity
Q [ Diesel
£ $.250G . = ggkmepressed Pipeline Gas (CNG)
[] Coal
$-500G | 0 : B Biomass
| - 0 B Asphalt & Road Oil
$-750G | o o B Demand Change Measure Costs
= B Stock Costs
$-1T —
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Millions of LDVs in 2050
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Residential Energy Efficiency & Fu

Switching Investment by Decade™
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Generation Technolog (group)
M Eiooas &Biomass

CHP
Coal with CCS
. Conventional Coal
B Conventional Gas
Conventional Hydro
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. Geothermal
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2050 ($/Month)

$(50) $(30) $(10) $10 $30 $50

Vehicle
Costs

Electricity
Costs

$(50) $(30) $(10)

Gasoline

Equipment
Costs

Electricity

Fuel Oil

Pipeline Gas

Net
Household
Costs
$25

Pathways to Deep Decarbonization in the United States, Mixed case results
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CARBON CYCLE SCIENCE
IMPLICATIONS



Dr. Margaret Torn, LBNL, at North American Carbon Program:
“U.S. Deep Decarbonization and Carbon Cycle Implications”

Research needed for prediction, management, monitoring, and verification
« Carbon Sink is pivotal but uncertain (LULUCF)
« Biomass fills critical energy needs but sustainability poorly understood
* Non-CO, GHGs will be larger fraction of emissions
« M&V must address infrastructure change, fuel switching, net-zero fuels

Electricity
Generation |

Powe r—to—Ga%tG

Biofuel
Production

I Hydrogen
jined Heat and Power Production
| SR

Petroleum
Ry v dt s ; Refining
Blo-Energy LULUCF Infrastructure
LBL-USDA switchgrass expt. UMBS AmeriFlux site

M. Torn C. Gough



Carbon Sink Due to Land Use, Land Use Change,
and Forestry (LULUCF) is Pivotal but Uncertain

« Sink is critical to target setting for both energy & non-energy emissions
« Potentially large impact on cost of mitigation - steep cost curves

8,000

7,000

6,000

5,000
Industry

4,000

2059 Mt
CO,e gross
emissions

3,000 Transportation

(Tg CO2-equivalent)

2,000

1,080 Mt

€ CO.,e net
emissions

1,000 Electric Power
Industry

U.S. Gross Greenhouse Gas Emissions

-979 Mt

-1,00(
)045 2050 Sink

Based on US EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 — 2011, Table 2-2



In Deeply Decarbonized System, Non-CQO,
GHGs Become Dominant Form of Emissions

* Decline in absolute terms from present
* |Increase in share of total CO2e from 17% in 2012 to 58% in 2050

2012 EPA inventory 2050 Pathways
Other @2
Other CO, B0 o

5%
/ CH

-~Ta

9%
' ~N,O
F-gases 6%
2%

Energy CO,: 5,066 Mt CO.e Energy CO,: 750 Mt CO,e
Non-energy: 1,435 Mt CO.e Non-energy: 1,161 Mt CO,e
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SUMMARY AND POLICY
IMPLICATIONS



@ Four Seeming Paradoxes:

1. Physical Energy System

+ Deep decarbonization will profoundly transform the
physical energy system of the U.S.
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Four Seeming Paradoxes:

2. Energy Economy

+ Deep decarbonization will profoundly transform the
U.S. energy economy, in terms of what money is spent
on and where investment will flow.

» Energy economy will be dominated by fixed capital costs not
fossil fuel costs (e.g. oil price in current system)

e Energy supply will be more geographically distributed than

current system

+ However, the
change in
consumer costs
for energy
goods and
services is likely
to be small
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Four Seeming Paradoxes:

3. Macro-Economy

+ Deep decarbonization will have a relatively small direct
impact on GDP.

+ However, it can still have significant benefits for the
U.S. macro-economy.
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Four Seeming Paradoxes:

4. Policy Challenges

+ Deep decarbonization does not require federal climate
legislation or an end to partisan gridlock

+ However, it will require that executive branch, state,
regional, and sectoral policies are well-designed and
well-implemented.

o Start with what the policies must achieve - physical changes in
energy system - before creating policy mechanism

e Avoid dead-ends that provide short-term GHG reductions but
don’t lead to 80% by 2050

e Reducing capital and financing costs of low carbon technologies is
critical > demand-side measures depend on consumer adoption

e Coordinated planning and investment across sectors and
jurisdictional boundaries is critical to reach target and reduce
cost

energEnfRQHGM BRGNS Must take infrastructure inertia into account



+ A car purchased today, is likely to replaced at most 2 times before 2050.
A residential building constructed today, is likely to still be standing in 2050.

2015 > 2030 > 2050

Electric lighting
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Comparison of US Pledge and US

DDPP Results

Carbon emissions from energy consumption

Billions of metric tons < China’s pledge
Plan to have carbon
8 - .
dioxide emissions peak
“around 2030”
E3 DDPP Results Overlay
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Source: NY Times November 12, 2014 + Deep Decarbonization Pathways in the United States, 2014
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> ® o 0

Comparing California and US

°e o 0

Pathways

+ Industry is larger share of emissions in US - bigger
challenge for national economy than CA

+ Refineries are larger share of California emissions >
potential bonus for reducing fossil fuel use

+ Generation portfolio choices > California has already
chosen renewable path, rejected nuclear

+ Renewable resource endowments are different >
balancing challenges, diversity opportunities

+ Regional integration assumed in US analysis >
different boundary conditions than CA 2030 analysis
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Thank You!

Jim Williams, Chief Scientist

Energy and Environmental Economics, Inc. (E3)
101 Montgomery Street, Suite 1600

San Francisco, CA 94104

Office: 415-391-5100

Mobile: 510-717-4366

Email: jim@ethree.com
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Non-Energy and Non-CO, GHG_

Mitigation

GCAM analysis shows non-CO, and non-energy mitigation
strategies consistent with 80% reduction target
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@ N,O and F-gas Mitigation
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Principal Non-CO, Mitigation
Strategies by Subsector —'

Subsectorl Absolute®Reductionl Percent®Reduction
(MtCO,e)z

CH, @
Landfills® ? 73%0]
Coal 35 58%
EntericFermentationl 16P 9%_l
Natural®@Gasl 160 19%0
N,Om
Agricultural®oilsL . 9%
AdipicBAcid@®Productionp 270 96 %0
NitricBAcid®roduction 10 89%

Fluorinated@Gasesl

Air@onditioningl ? 63%0

Solvents 32P 82%0]
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