Measurements of Diesel Truck Traffic Associated with Goods Movement

Douglas Houston, Margaret Krudysz, and Arthur Winer UCLA Urban Planning and Environmental Health Sciences Departments

HCMS Community Meeting August 1, 2007

Statement of the Problem and Expectation

- Using traffic volumes as a measure of exposure can lead to large uncertainties if traffic counts are inaccurate
- Reliable, current surface street traffic counts are scarce
- Diesel/gasoline split often unknown for surface streets
- Expectation: Air pollutant exposure in port-adjacent communities will be driven predominately by heavy-duty diesel truck (HDDT) traffic emissions.

Overall Objectives and Site Selection

- Direct measurements of port truck traffic:
 - Wilmington and western Long Beach Aug.-Sept. 2006
 - Surface street measurements only
 - Daily variation in traffic volumes
 - Weekday vs. weekend
- Site selection process:
 - High truck volume intersections identified by previous traffic studies
 - Input from community leaders
 - Site surveys for safety and feasibility
 - Proximity to "sensitive" land uses such as schools, amenities

Count Collection Methods

- Data Collection and Reduction:
 - August 15, 2006 and September 19, 2006, period with highest historic container volumes
 - 11 count locations (13 observation days)
 - Videotaped intersection or segment traffic 07:30 18:00
 - 30 minute or 1 hour sampling intervals (5.5 hours/day)
 - Weekdays (T/W/TH) with one 'long day' and one Saturday count
 - Data Reduction: JAMAR electronic traffic counting boards to summarize counts by direction and vehicle class.
 - Port Diesels: Bobtail-only, chassis-only truck, and container trucks

Count Collection Methods

Sample Video Camera Positions

Camera #1Position

Camera #2 Position

JAMAR count board

Data Collection

Site 111 Port Truck Traffic

Study Area and Traffic Count Locations

Diurnal Patterns of Measured Port Diesel Traffic

Peak Volumes > 600 HDDT Per Hour

Peak Volumes > 600 HDDT Per Hour

Peak Volumes > 600 HDDT Per Hour

Third Peak in Early Evening

Key Findings

- Up to 600-700 HDDT per hour at most heavily impacted intersections and line segments in port-adjacent communities
- Many HDDT observed to be smoky and highly polluting
- HDDT travel on surface streets with substantial pedestrian traffic and numerous shops/facilities, as well as near-by schools
- On-road, in-vehicle and near-roadway exposures are expected to be very high for the intersections and line segments we studied

Acknowledgements

We appreciate the support and enthusiasm our research team:

Dorothy Le and Judy Ramirez, Research Assistants

This research was supported by:

- University of California Transportation Center
- The UCLA Ralph and Goldy Lewis Center for Regional Policy Studies
- The UCLA Department of Environmental Health Sciences Community
- The UCLA Department of Urban Planning
- The Dwight D. Eisenhower Transportation Fellowship Program

We also appreciate the support of:

- The California Air Resources Board
- Kathleen Kozawa, UCLA School of Public Health
- Dr. Paul Ong, UCLA School of Public Affairs
- Dr. Michael Geller, USC Department of Environmental Engineering
- Dr. Jun Wu, UCI College of Health Sciences
- Leah Brooks, McGill University Department of Economics