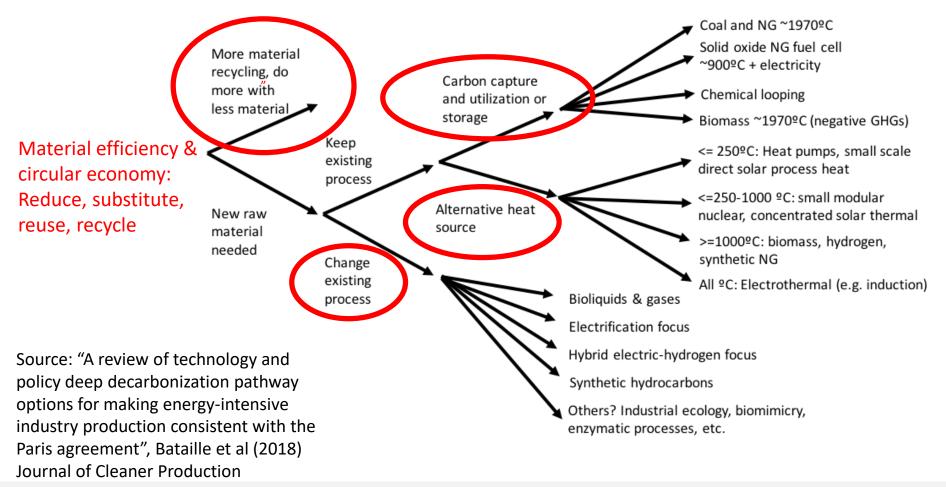
Technology and Policy Pathways to Net-zero Heavy Industry

Dr. Chris Bataille

Institut du Développement Durable et des Relations Internationales (IDDRI.org)

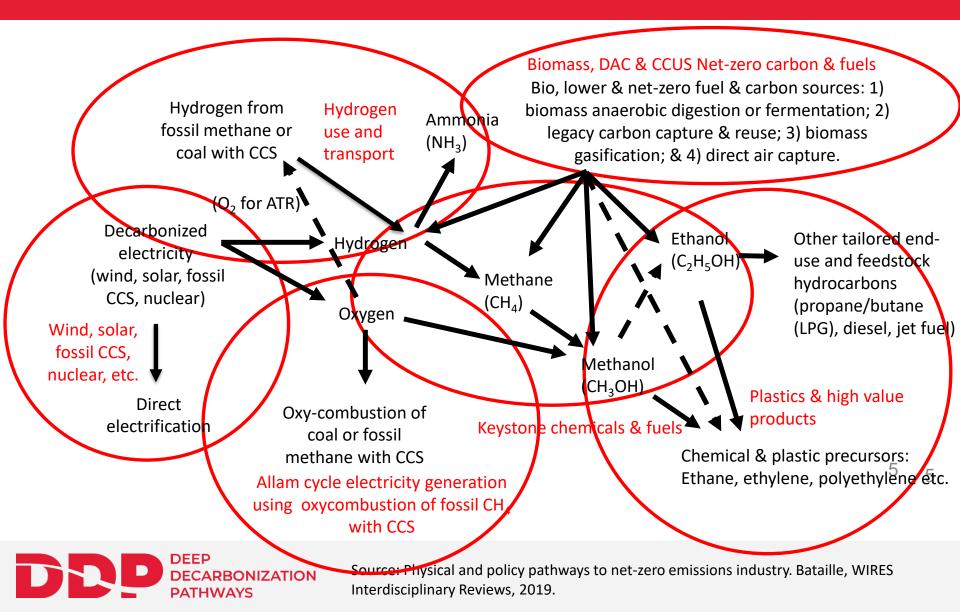
July 15 2020



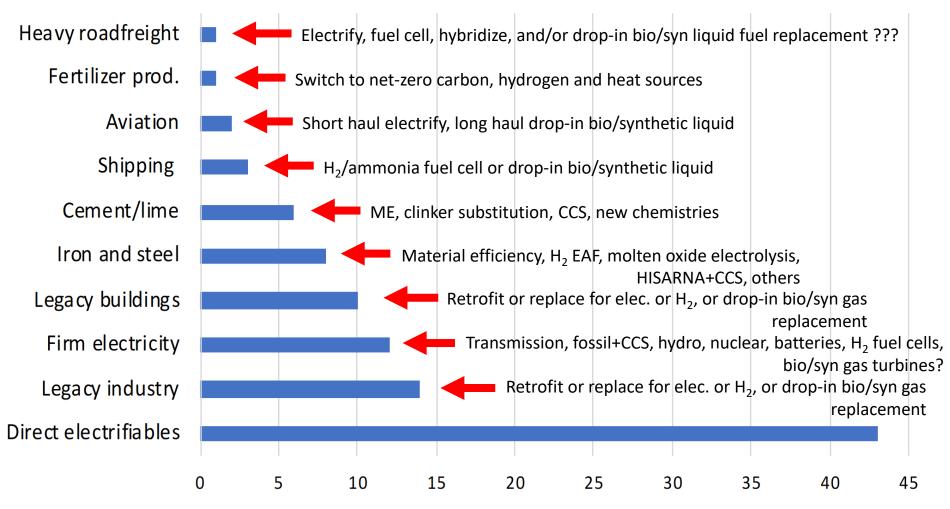
While much of industry can be electrified, there are big sector specific challenges

- The "extract-use-throw away" model for most material use (steel & aluminum as exceptions)
- Maxed out thermodynamic efficiency of core technologies (but not systems)
- Low (<=250°C), medium (250-1000°C) & high (>1000°C) process heat
- Steel iron ore "deoxidization" CO₂ process emissions (& melting heat)
- Cement lime calcination CO₂ process GHGs (and 850/1450^oC process heat)
- Hydrogen production for ammonia for fertilizers and other chemicals; coal & steam methane reforming CO₂ process emissions
- Non-ferrous metals & alloys (big progress in bauxite electrolysis, i.e. Elysis)
- Carbon feedstock needed for chemicals
- Making sure new materials aren't GHG combustion or process intense!

New literature has shown there are emerging and near commercial options to decarbonize all industrial sectors



Dynamic questions that have to be addressed


- 1. Material efficiency & circular economy: High potential, but what happens if it isn't easy, cheap, or fast?
- 2. Electrification: Capacity constraints matter and could be very expensive (electric steel example).
- *3. Carbon capture, utilization, storage:* What happens if CCS reservoirs, CCUS opportunities in a given region are limited?
- 4. Alternative heat sources: Regional limits on biomass, solar, etc.
- 5. What about long-lived legacy facilities? e.g. Chinese BF-BOFs
- 6. How can we build situation specific technology and policy hybrids to solve for all of the above?

One possibility for heat and feedstocks: Regionally tailored hybrids of electricity, hydrogen, biomass & synthetic hydrocarbons?

Potential hybrid actions to eliminate 2016 emissions

% of energy and process carbon dioxide

Source: Bataille, "Physical and policy pathways to low and zero emissions industry", WILEY Interdisciplinary Reviews, 2019

To make this possible, we need a diversified portfolio (i.e. "toolbox") of tools to be used based on regional resources and needs

- "Only where necessary" design for cement and steel
- Aggressive clinker substitution -> alternative cement chemistries
- High temperature heat pumps
- Electrothermal technologies
- Electrolytic smelting & electric virgin steel production (DRI hydrogen EAF or molten oxide electrolysis EAF)
- Lower cost, more efficient electrolysis for hydrogen (alkaline to PEM or solid oxide fuel cells, cost/2, efficiency X2?); methane pyrolysis?
- Electro-catalytic and bio-catalytic instead of thermal processes
- Post-combustion and direct-from-air CO₂ capture
- Woody biomass gasification to commercialize bulk net-zero carbon sources, e.g. for methane & chemical feedstocks

Simple carbon pricing and regulations are not enough: The challenges are more than technological

- While emerging tech exists, innovation will be slow because:
 - of low profit margins
 - competitive; they can't pass on costs without losing market share
 - capital costs are focussed and upfront
 - they often can't capture the benefits of innovation
 - facility lives are long and turnover is slow
 - there is no market for more expensive low GHG materials
- Policy for heavy industry needs to target these challenges directly
- Fundamentally, this is about reducing and controlling risk

Combined strategies for a "local solution finding" policy package

- A multi-level policy commitment to transition to net-zero GHG industry
- Building code, design & recyclability policies for material efficiency/circularity
- A transition pathway planning process including all key stakeholders to assess strategic & tech options, competitive advantages, and uncertainties
- Accelerated R&D and commercialization; create lead markets to build economies of scale w/ green procurement, content regs, supply chain branding, guaranteed pricing & output subsidies (e.g. CfDs)
- Eventual exposure of all sectors to **full GHG pricing** with competitiveness protection, e.g. border carbon adjustments, to "mine" material efficiencies
- Early retirement if necessary for long lived, highly GHG intense facilities
- Supporting institutions: Just transition; monitoring; electricity, H₂ & CCS infrastructure; lifecycle accounting; education; regulatory backdrop

DEEP DECARBONIZATION PATHWAYS Planning as well as subtle, staged, & stringent policy Please send questions to: Email: chris.bataille@iddri.org Twitter DM:@chris.bataille

DDP-INITIATIVE.ORG

