
'Quantified Conservation' & Trading Programs for Regulatory Compliance

Erik Ringelberg, California Director

The Freshwater Trust

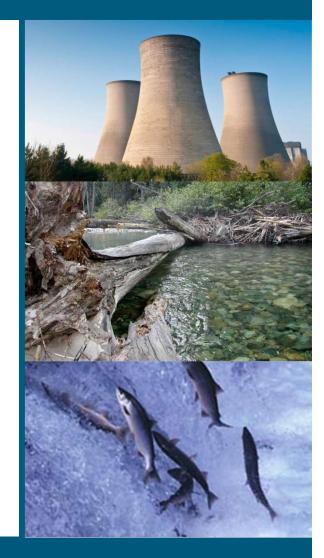
Consulting and Water Quality Trading Services

Analysis & Quantification

Feasibility analysis and quantification of "uplift" -GHG and N benefits in units for regulatory compliance.

Permitting Support

Provide guidance and permitting support to gain agency approval for regional solutions to meet Clean Water Act and Endangered Species Act obligations.*

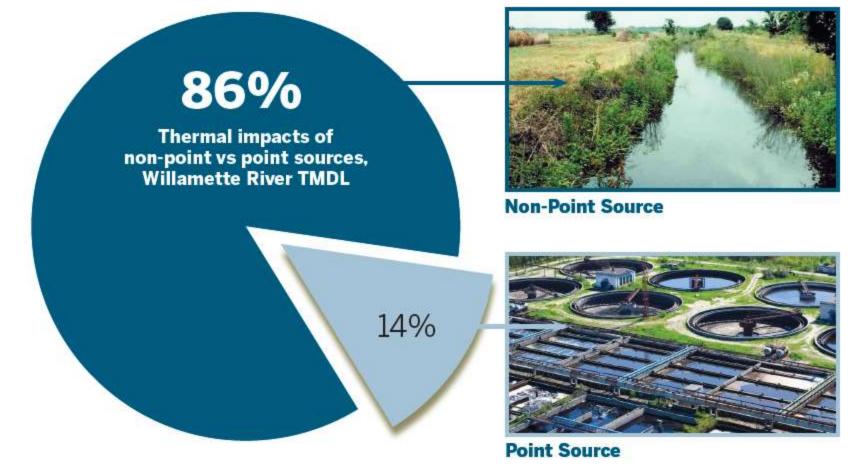


Credit Program Management

Design, manage & implement compliance programs and deliver certified credits.

WQ Trading Origins

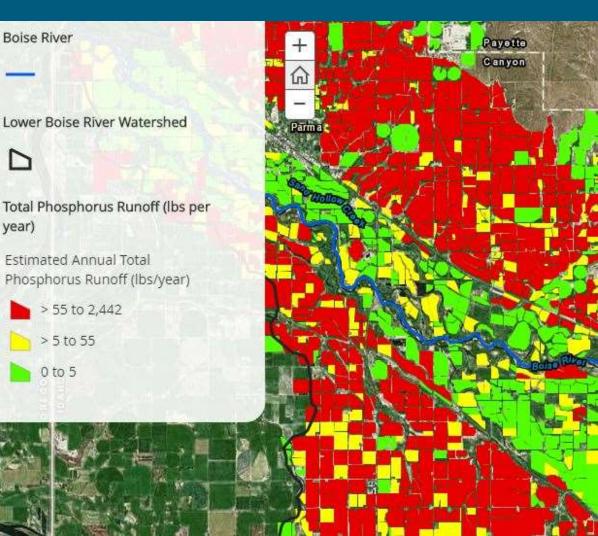
- → Conservation reacts to challenges (fish, wildlife, water quality [N/P] and quantity, climate change, etc.) after impacts
- Regulatory drivers are focused on the obvious point sources- small percent of overall impacts
- → Technological solutions employed by regulated entities are appropriate for some, but not all. Wide net, often too broad. We rethink risks...


Water Quality Trading 101

- Regulated point/area source is able to secure and document reductions from a nonpoint source
- PS to NPS trading programs can be more cost-effective and make better **ecological** sense than end-of-pipe technology controls
- Successful WQT programs must have:
 - → **Standards** for eligible projects and project quality
 - A Calibrated models for credit measurement
 A
 - Transparent systems for reporting and tracking performance and custody of credits

These create **Trust** and **Stability**

Example: Rethinking NPS Challenge


Source http://www.deq.state.or.us

Target Practice - Quantified Outcomes

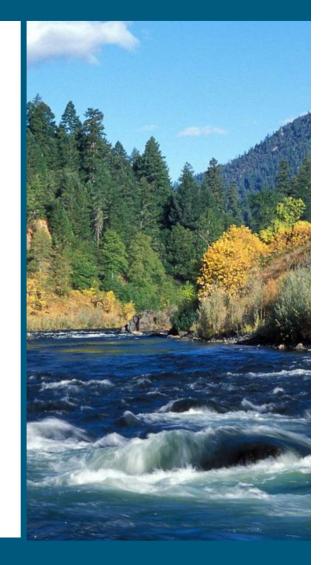
Using data and technology to ensure every practice/ops action taken translates to a positive environmental outcome:

- → Prioritize
- → Implement
- → Track

Three Keys for Markets

To be a viable...

Clear Authority:


→ Regulators must adopt and support required rules (biggest impediment to success)

Clear Framework:

 → Approved standards and protocols for measuring reductions/ecosystem services, and implementing credit generating projects

Clear Roles:

→ Producers, Regulators, Oversight, and Third parties willing to assure delivery of compliance-grade credits with secure, turnkey projects

Example Transaction Process

Nuts and bolts: Nutrient Reduction

After Restoration
Vegetation filters runoff
ØIII Ø

Nutrient & Sediment Reduction

	Phosphorus	Nitrogen	Sediments				
Before (pre-project)	10	100	2,000				
After (post-project)	5	25	100				
UPLIFT	5 lbs/yr	75 lbs/yr	1,900 lbs/yr				
Sample conservation actions	Plant streamside vegetationImplement cover cropsLivestock exclusion						

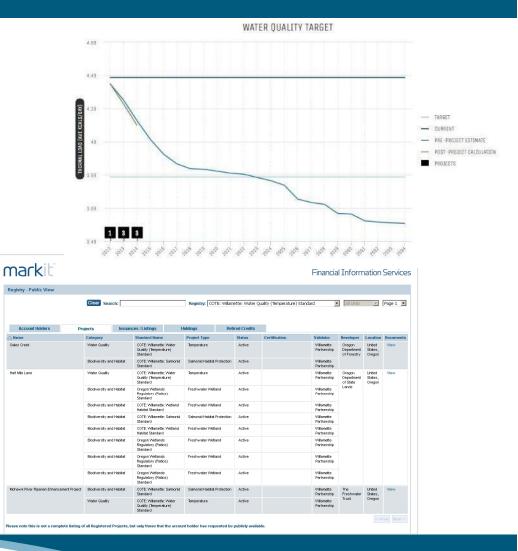
 Nitrogen, phosphorus and sediment load reductions are modeled by comparing baseline (preproject) conditions to modeled conditions after modified farm practices or BMPs

 → Assess impact of site-level actions as a component of a basin-scale water quality challenge

Buffer Project Implementation

Removing invasives

Planting natives


Calculating Credits: Example Ledger

Credit Type	Pre-project	Post-Restoration	Reduction
Temperature (kCals/day)	56,246,205	41,726,475	14,519,730
Phosphorus (lbs/year)	6	1	5
Nitrogen (lbs/year)	103	12	91
Sediment (lbs/year)	8,243	3,331	4,912

Verification, Registration, Tracking

Next Steps: Scaling and Credit Weight

Making your program scale from one farm to a watershed: For example saving pounds per acre from other operations seems minor, but from a regional perspective that is program compliance, reduced risk and, potentially a multimillion dollar benefit to a Groundwater Agency. If we can stack GHG, GW and WQ credits, track and transact them efficiently, we all win.

Examples: Clear Regulatory Framework

Recent crediting protocols developed through *collaborative stakeholder processes*:

- Boise River Phosphorus Trading Framework – 2003 (currently in revisions)
- The Oregon 'General Crediting Protocol' for water quality trading -2009
- **KTAP Protocols** for approved quantification methods for temperature and nutrients in the Klamath River 2012

<image/>									
Step	Step #	Project Developer	Administrator	Investor	Methods, Forms & Instructions	Klamath TAP Products			
Select & Validate Project Site	P1	•			Self-Validation Checklist	Notice of Validation			
Implement Project & Calculate Benefit	P2	•			Field Datasheets, Benefit Release Schedule	Quantified Estimate of Ecosystem Benefits			
Verify Conditions	Р3	•	•		Verification & Monitoring Report, Agency Certification Form	Verified Project			
Register & Issue	P4		-		Verification & Monitoring Report	Issued Ecosystem Benefits			
Track & Transfer	P5				Approval of Transfer Form	Project Report & Defined Ownership of Ecosystem Benefits			
Legend Indicates a necessary	or acti	ve role							

Indicates potential participations or a support role

Example: Even with ARB and SWRCB...

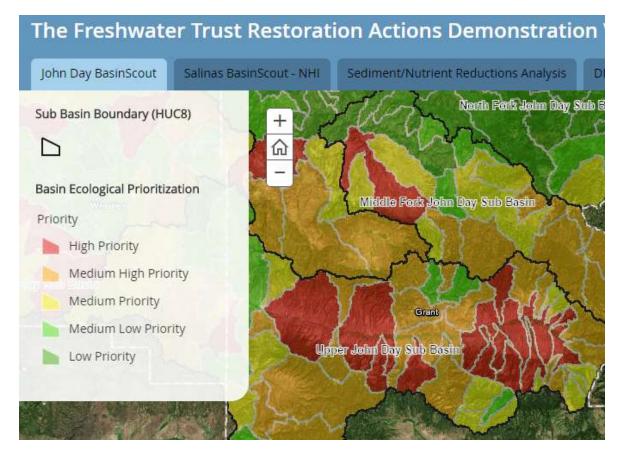
Precedence in CA from successful air pollutant trading programs, still slow to implement, takes advocates and coalition building. Still have to meet compliance...but show how it will be faster.

Santa Rosa Nutrient Offset Program

- Adopted July 2008
- Allows for offsetting actions throughout Laguna de Santa Rosa
 for N

RESOLUTION NO. R1-2008-0061

Approving the Santa Rosa Nutrient Offset Program for the Santa Rosa Subregional Tams
 Water Reclamation System


SANTA ROSA NUTRIENT OFFSET PROGRAM

Markets and Buyers

SGMA Compliance – New funding sources.

ILRP Compliance and CV-Salts – New regulatory drivers that allow trading.

What does success look like?

- Reduced risk for violations and expensive compliance?
- Flexible market that can leverage sufficient multi-value funding through market trading to reduce other implementation costs?
- Regulatory 'certainty'?
- Long-term partnership across producers, industry, conservation, and environmental justice community for shared objectives?

Step 1. Strategic Partnerships

- Establish a small initial strategic working group
 - Ag./Credit Org./Conserv./Board staff if at all possible
 - Set a work product (concept paper) and a timeline (2 months)
 - Report out to who? Conference?
- Group goals are to identify and focus on the strategic impediments and opportunities to informal and formal trading/crediting

Questions?

Alex Johnson

Freshwater Solutions Director alex@thefreshwatertrust.org 503-222-9091 x18

Erik Ringelberg

California Director erik@thefreshwatertrust.org 916-668-7345