Prelim. 5-1141060

HR

RECEIVED

AUG 0 3 2015

Permits Services SJVAPCD

Visalia Newspapers, Inc. P.O. Box 31, Visalia, CA 93279 559-735-3200 / Fax 559-735-3210

State Of California ss: **County of Tulare**

Advertiser:

CALIFORNIA NEWSPAPER SERV/TUL

915 E FIRST ST

LOS ANGELES

, CA 90012

Order # 0000601665

RE: NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF

Accounting Clerk, for the below mentioned newspaper(s), am over the age of 18 years old, a citizen of the United States and not a party to, or have interest in this matter. I hereby certify that the attached advertisement appeared in said newspaper on the following

Newspaper: Visalia Times Delta

7/22/2015

I acknowledge that I am a principal clerk of said paper which is printed and published in the City of Visalia, County of Tulare, State of California. The Visalia Times Delta was adjudicated a newspaper of general circulation on July 25, 2001 by Tulare County Superior Court Order No. 41-20576. The Tulare Advance Register was adjudicated a newspaper of general circulation on July 25, 2001 by Superior Court Order No. 52-43225.

I declare under penalty of perjury that the foregoing is true and correct. Executed on 2_ day of 🗻 2015 in Visalia, California.

Declarant

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF **EMISSION REDUCTION CREDITS**

Certificate of Publication

\$157.82

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pol-lution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 lb-NOX/yr, 18,479 lb-SOX/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

The analysis of the regulatory basis for this proposed action, Project #S-1141060, is available for public inspection at http://www.vaileyair.org /notices/public_notices_idx.htm and at any District office. For additional Information, please contact the District at (661) 392-5500. Written District at (661) 392-5500. Written comments on this project must be submitted by August 24, 2015 to ARNAUD MARJOLLET, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308. 7/22/15

CNS-2775520# VISALIA TIMES-DELTA

Indur# 2775520

PUBLIC NOTICE CHECK LIST

PROJECT #: <u>S-834</u> PROJECT #: <u>S-1141060</u>

REQST. COMPL. V	ERC PRELIMINARY PUBLIC NOTICE Newspaper Notice Emailed to Clerical (Check box and tab to generate Notice) Send email to "OA-PublicNotices" containing the following: SUBJECT: facility name, facility id#, project #, type of notice (prelim/final) BODY: project description and why it is being noticed (Emission Reduction Credit Banking)
ENCLOSED	DOCUMENTS REQUIRE:
$\frac{1}{2} \frac{V}{V}$	Enter Correct Date, Print All Documents from File and Obtain Director's Signature
√ <u>∧</u>	Determine date comment period will end, enter date on Newspaper Notice and Aviso en Español, and Email <i>PRELIMINARY</i> Newspaper Notice for
√	Publication in Visalia Times-Delta Pub Date: 7/20/15 Due Date: 8-24-/ Mail/email PRELIMINARY Notice Letter to Applicant (email address: [sfp@sierraforest.net]) with the following attachments:
√ V.	 ✓ Application Evaluation ✓ Newspaper Notice Email PRELIMINARY Public Notice package to EPA
\[\frac{1}{\frac{1}{2}} \]	Email PRELIMINARY Public Notice package to CARB Email PRELIMINARY Newspaper Notice, Aviso en Español and Public Notice package to "webmaster" Wholler
1 1	After posted on website, send email with weblink of Newspaper notice, Aviso en Español, and full public notice package to: √ specific [C, S, or N] region and District wide permitting notification list-
	serves (both English and Spanish list serves) √ facility specific distribution list, (AQE – enter email address from PAS facility details notifications tab, if none enter NONE below): [email address]
1	Mail the newspaper notice and aviso en español (NN/AE), or full public notice package (FPNP) to the persons on facility specific distribution list, as follows (entered by AQE, if none, enter NONE below): NN/AE orFPNP Name/address:[names]
√ ↓	☐NN/AE or ☐FPNP Name/address:[names] Send PRELIMINARY Public Notice package to EDMS
<u> </u>	Other Special Instructions (please specify):
Date Comple	ted July 15, 2015/By Homero Ramirez
	/-financl
	webteam
	hist serve

CALIFORNIA NEWSPAPER SERVICE BUREAU

DAILY JOURNAL CORPORATION

Mailing Address: 915 E FIRST ST, LOS ANGELES, CA 90012 Telephone (213) 229-5300 / Fax (213) 229-5481 Visit us @ WWW.LEGALADSTORE.COM

Yolanda SAN JOAQUIN VALLEY AIR POLL CONTROL DIST 1990 E. GETTYSBURG AVE. FRESNO, CA 93726

COPY OF NOTICE

Notice Type:

GPN GOVT PUBLIC NOTICE

Ad Description

ERC Preliminary Public Notice, Sierra Power

To the right is a copy of the notice you sent to us for publication in the VISALIA TIMES-DELTA. Please read this notice carefully and call us with any corrections. The Proof of Publication will be filed with the County Clerk, if required, and mailed to you after the last date below. Publication date(s) for this notice is (are):

07/22/2015

CNS 2775520

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 Ib-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

PM10/yr, and 199,163 lb-CO/yr.

The analysis of the regulatory basis for this proposed action, Project #S-1141060, is available for public inspection at http://www.valleyair.org/notices/public_notices (dx.htm and at any District office. For additional information, please contact the District at (661) 392-5500. Written comments on this project must be submitted by August 24, 2015 to ARNAUD MARJOLLET, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308.

7722715
CNS-2775520#
VISALIA TIMES-DELTA

Daily Journal Corporation

Serving your legal advertising needs throughout California. Call your local

BUSINESS JOURNAL, RIVERSIDE	(951) 784-0111
DAILY COMMERCE, LOS ANGELES	(213) 229-5300
LOS ANGELES DAILY JOURNAL, LOS ANGELES	(213) 229-5300
ORANGE COUNTY REPORTER, SANTA ANA	(714) 543-2027
SAN DIEGO COMMERCE, SAN DIEGO	(619) 232-3486
SAN FRANCISCO DAILY JOURNAL, SAN FRANCISCO	(800) 640-4829
SAN JOSE POST-RECORD, SAN JOSE	(408) 287-4866
THE DAILY RECORDER, SACRAMENTO	(916) 444-2355
THE INTER-CITY EXPRESS, OAKLAND	(510) 272-4747

From: Yolanda Alvarez

Sent: Friday, July 17, 2015 2:22 PM

To: Gerardo Rios EPA (SJV_T5_Permits@epa.gov); Mike Tollstrup (mtollstr@arb.ca.gov)

Cc: 'sfp@sierraforest.net'

Subject: ERC Preliminary Public Notice for Sierra Power Corporation; Facility: S-834, Project#

S-1141060

Attachments: Preliminary S-1141060.pdf; Newspaper.pdf

Importance: High

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

Yolanda R. Alvarez

Office Assistant ||

San Joaquin Valley APCD

1990 & Gettysburg Avenue

Fresno, CA 93726

volanda alvarez@vallevair org

yolanda.alvarez@valleyair.org Service*Teamwork*Attitude*Respect

From:

Microsoft Outlook

To:

'sfp@sierraforest.net'

Sent:

Friday, July 17, 2015 2:22 PM

Subject:

Relayed: ERC Preliminary Public Notice for Sierra Power Corporation; Facility: S-834,

Project# S-1141060

Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server:

 $"sfp@sierraforest.net" (\underline{sfp@sierraforest.net}) < \underline{mailto:sfp@sierraforest.net} > \\$

Subject: ERC Preliminary Public Notice for Sierra Power Corporation; Facility: S-834, Project# S-1141060

From:

Microsoft Outlook

To:

Gerardo Rios EPA (SJV_T5_Permits@epa.gov)

Sent:

Friday, July 17, 2015 2:22 PM

Subject:

Relayed: ERC Preliminary Public Notice for Sierra Power Corporation; Facility: S-834,

Project# S-1141060

Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server:

Gerardo Rios EPA (<u>SJV T5 Permits@epa.gov</u>) (<u>SJV T5 Permits@epa.gov</u>) < <u>mailto:SJV T5 Permits@epa.gov</u>>

Subject: ERC Preliminary Public Notice for Sierra Power Corporation; Facility: S-834, Project# S-1141060

From:

Yolanda Alvarez

Sent:

Friday, July 17, 2015 2:26 PM

To:

WebTeam

Subject:

valleyair.org update: ERC Preliminary Public Notice for Sierra Power Corporation; Facility:

S-834, Project# S-1141060

Attachments:

Preliminary S-1141060.pdf; Newspaper.pdf; Aviso.pdf

July 17, 2015 (Facility S-834 Project S-1141060) NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr. The comment period ends on August 24, 2015.

Newspaper Notice

Aviso

Public Notice Package

Yolanda R. Alvarez

Office Assistant ||

San Joaquin Valley APCD

1990 & Gettysburg Avenue

Fresno, CA 93726

yolanda.alvarez@valleyair.org Service * Teamwork * Attitude * Respect

AVISO DE DECISIÓN PRELIMINAR PARA LA PROPUESTA OTORGACIÓN DE CERTIFICADOS DE REDUCCIÓN DE EMISIONES

POR EL PRESENTE SE NOTIFICA que el Distrito Unificado para el Control de la Contaminación del Aire del Valle de San Joaquín está solicitando comentarios del público para la propuesta emisión de Certificados de Reducción de Emisiones (ERC, por sus siglas en inglés) a Sierra Power Corporation para el cierre de una instalación de cogeneración de biomasa, en 9000 Road 234 in Terra Bella. La cantidad de ERCs propuestas para bancar es 83,915 lb-NOx/año, 18,479 lb-SOx/año, 27,806 lb-PM10/año y 199,163 lb-CO/año.

El análisis de la base regulatoria para esta acción propuesta, Proyecto #S-1141060, está disponible para la inspección pública en http://www.valleyair.org/notices/public_notices_idx.htm y en cualquiera de las oficinas del Distrito. Para más información en Español, por favor comuníquese con el Distrito al (661) 392-5500. Comentarios por escrito acerca de este propuesto permiso inicial deben de ser sometidos antes del 24 de Agosto del 2015 a ARNAUD MARJOLLET, DIRECTOR DEL DEPARTAMENTO DE PERMISOS, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308.

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

The analysis of the regulatory basis for this proposed action, Project #S-1141060, is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm and at any District office. For additional information, please contact the District at (661) 392-5500. Written comments on this project must be submitted by August 24, 2015 to ARNAUD MARJOLLET, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308.

From:

Yolanda Alvarez

Sent:

Monday, July 20, 2015 5:23 PM

To:

All Region (Notices_of_Permitting_Actions-All_Regions@lists.valleyair.org); South

(Notices_of_Permitting_Actions-Southern_Region@lists.valleyair.org)

Subject:

Public Notice on Permitting Action S-1141060

The District has posted a new permitting public notice. The public notice can be viewed on our website at: http://www.valleyair.org/notices/Docs/2015/07-17-15 (S-1141060)/Newspaper.pdf

For a list of public notices and public notice packages, please visit our website at: <a href="http://www.valleyair.org/notices/public_notices_idx.htm#PermittingandEmissionReductionCreditCertificateNotices_idx.htm#PermittingandEmissionReductionRe

Thank you,

Yolanda R. Alvarcz
Office Assistant ||
San Joaquin Valley APCD
1990 & Gettysburg Avenue
Tresno, CA 93726

yolanda.alvarez@valleyair.org Service * Teamwork * Attitude * Respect

From:

Yolanda Alvarez

Sent:

Monday, July 20, 2015 5:24 PM

To:

All Spanish (Avisos_Sobre_Acciones_de_Permisos-Todos@lists02.valleyair.org)

Subject:

Aviso Publico Sobre Acciones de Permisos S-1141060

El Distrito del Aire a publicado un nuevo aviso público de permiso. El aviso público se puede ver en nuestro sitio de web en: http://www.vallevair.org/notices/Docs/2015/07-17-15 (S-1141060)/Aviso.pdf

Para obtener una lista de avisos públicos y paquetes de avisos públicos, por favor visite nuestro sitio de web en:

http://www.valleyair.org/notices/public notices idx.htm#PermittingandEmissionReductionCreditCertificateN otices

Gracias,

Yolanda R. Alvarcz

Office Assistant ||
San Joaquin Valley APCD
1990 & Gettysburg Avenue
Tresno, CA-93726

yolanda.alvarez@valleyair.org Service*Teamwork*Attitude*Respect

JUI 17 2015

Kent Duysen Sierra Power Corporation P O Box 10050 Terra Bella, CA 93270

Re:

Notice of Preliminary Decision – Emission Reduction Credits

Facility Number: S-834 **Project Number: S-1141060**

Dear Mr. Duysen:

Enclosed for your review and comment is the District's analysis of Sierra Power Corporation's application for Emission Reduction Credits (ERCs) resulting from the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs proposed for banking is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. After addressing all comments made during the 30day public notice comment period, the District intends to the issue the ERCs. Please submit your written comments on this project within the 30-day public comment period, as specified in the enclosed public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Homero Ramirez of Permit Services at (661) 392-5616.

Sincerely.

Arnaud Mariollet

Director of Permit Services

AM:har/ya

Enclosures

Mike Tollstrup, CARB (w/enclosure) via email CC:

Gerardo C. Rios, EPA (w/enclosure) via email CC:

Seved Sadredin

Executive Director/Air Pollution Control Officer

San Joaquin Valley Air Pollution Control District ERC Application Review

Facility Name: Sierra Power Corporation

Date: July 13, 2015

Mailing Address: P O Box 10050

Engineer: Homero Ramirez

Terra Bella, CA 93270

Lead Engineer: Stephen Leonard

Contact Person: Kent Duysen

Telephone: (559) 535-4893

Facility ID: S-834

Project #: S-1141060

I. SUMMARY:

The primary business of Sierra Power Corporation (S-834) is the generation of electricity for sale and steam for use at the neighboring sawmill/lumber plant, Sierra Forest Products (S-556). Sierra Power Corporation has applied for Emission Reduction Credits (ERCs) resulting from the permanent shutdown of a 9.4 MW cogeneration system with a biomass-fired boiler (S-834-3-6) and associated fuel handling and solid material handling equipment (S-834-1-3, -6-3, and -10-2).

The equipment has been shut down and replaced by a 32 MMBtu/hr natural gas-fired boiler (S-834-7) that is now a full time unit. Previously, the boiler had been designated a standby service unit, but it has recently been retrofit with ultra-low NOx burners. Therefore, as is explained in the Calculations section, the Post-Project Potential to Emit from this 32 MMBtu/hr boiler will be subtracted from the Historic Actual Emissions to determine the Actual Emissions Reductions.

The following emission reductions have been found to qualify for ERC banking certificates. See Calculations section below.

Bankable Emissions Reductions Credits (ERC), lb/qtr						
Pollutant	ERC#	1 st Qtr.	2 nd Qtr.	3 rd Qtr.	4 th Qtr.	
NOx	S-4585-2	22,809	20,168	19,717	21,221	
SOx	S-4585-5	5,028	4,439	4,338	4,674	
PM10	S-4585-4	7,619	6,656	6,491	7,040	
CO	S-4585-3	54,424	47,737	46,597	50,405	
VOC		0	0	0	0	

II. APPLICABLE RULES:

Rule 2201	New and Modified Stationary Source Review Rule (4/21/11)				
Rule 2301	Emission Reduction Credit Banking (1/19/12)				
Rule 4352	Solid Fuel Fired Boilers, Steam Generators and Process Heaters				
	(12/15/11)				

III. PROJECT LOCATION:

The equipment operated at 9000 Road 234 in Terra Bella.

IV. METHOD OF GENERATING REDUCTIONS:

Actual Emission Reductions (AER) are being generated with the permanent shutdown of the following equipment:

PTO	Equipment :
S-834-1-3	FUEL SCREENING AND HANDLING SYSTEM SERVED BY A HUMIDIFIER FOGGER/SPRAY SYSTEM
S-834-3-6	9.4 MW COGENERATION SYSTEM WITH 171.2 MMBTU/HR STAGED AIR BIOMASS-FIRED BOILER WITH FIRED HEAT RECOVERY STEAM GENERATOR WITH PEABODY LOW-NOX NATURAL GAS-FIRED BURNERS, AMMONIA INJECTION SYSTEM, MULTICLONES, LOW TEMPERATURE SCR EXHAUSTING TO ELECTROSTATIC PRECIPITATOR, AND FLUE GAS RECIRCULATION
S-834-6-3	ASH COLLECTION SYSTEM UTILIZING ENCLOSED AUGERS AND WATER MIST SERVING BIOFUEL BOILER (S-834-3)
S-834-10-2	FUEL HANDLING SYSTEM CONSISTING OF TWO SILOS, ONE HOG UNIT, SCREENS, AND CONVEYORS SERVED BY A HUMIDIFIER FOGGER SPRAY SYSTEM

The applicant has surrendered the four Permits to Operate identified above for the equipment in order to validate the emission reduction credits. Copies of the PTOs are included as Attachment A. As required by Rules 2201 and 2301, creditable emission reductions are to be based upon the historical actual emissions over the appropriate baseline period, and the use of acceptable emission factors.

V. CALCULATIONS:

A. Assumptions

- The actual emission reductions are from shutdown of the equipment resulting in a reduction of fuel combustion emissions from the cogeneration system (S-834-3) and the fugitive PM10 emissions from the fuel screening and handling systems (S-834-1 and -10) and the ash collection system (S-834-6).
- The steam provided by the shutdown equipment has been replaced by the boiler S-834-7. Therefore the actual emission reductions from the shutdown equipment will be reduced by the Potential Emissions for the replacement boiler.

Cogeneration system (S-834-3):

- Biomass-fired boiler (S-834-3) was fired solely on wood fuels as required by conditions 7 and 8 of its Permit to Operate. The wood fuels are separated into agricultural byproducts and wood and wood residuals for their different heating values as explained below.
- Heating value of agricultural byproducts is 8.25 MMBtu/short ton¹
- Heating value of wood and wood residuals is 17.48 MMBtu/short ton ¹
- The table below lists the amounts of fuels that have been consumed (in bone dry tons per year, BDT/yr) based on records submitted by the applicant. Such records are found in Attachment C.

Fuel Consumption (by Weight) (BDT/yr) ²						
2011 2012 2013						
Agricultural byproducts	65,887	34,018	38,676			
Wood and wood residuals*	15,535	45,383	36,530			
Total	81,422	79,401	75,206			

^{*} Wood and wood residuals includes urban and sawmill chips and residue.

See EPA's Emission Factors for Greenhouse Gas Inventories available at http://epa.gov/climateleadership/documents/emission-factors.pdf in Appendix E.

Records of fuel use for calendar years 2011, 2012, and 2013 are found in Appendix C. These records are the summary data sheets for each year that were used to report GHGs to CARB under AB32, the California Global Warming Solutions Act of 2006

• The equivalent heat input rating (in MMBtu/yr) is:

Fuel Consumption (by Heat Input) (MMBtu/yr) ³							
2011 2012 2013							
Agricultural byproducts	543,568	280,649	319,077				
Wood and wood residuals	271,552	793,295	638,54				
Total							

- As is explained in the Baseline Period Determination section, the baseline period has been determined to be the period from the beginning of January 2012 through the end of December 2013.
- Note that the applicant has submitted copies of the annual records of fuel consumption by weight of raw material (that has been submitted to CARB to report GHGs under AB32). However, the applicant only has monthly records of fuel deliveries by weight (not the monthly records of fuel consumption). Since the fuel delivery quantities are indicative of the fuel consumption quantities (as annual records demonstrate), the monthly fuel consumption values will be estimated from the monthly fuel delivery values. The monthly proportion of fuel delivered will be multiplied by the annual fuel consumption quantity to estimate the monthly fuel consumption values. See Attachment D for the calculation of the monthly fuel consumption values.
- The monthly fuel consumption during the baseline period is listed below. These values are calculated in Attachment D.

	Calcula	ated Fuel	Calculated Fuel		
	Consumption (BDT)		Consumption	on (MMBtu)	
	2012	2013	2012	2013	
January	7,384	7,819	99,875	99,555	
February	7,176	7,954	97,056	101,287	
March	6,836	4,784	92,462	60,919	
April	8,815	5,784	119,223	73,645	
Мау	6,101	3,635	82,524	46,286	
June	5,788	6,970	78,286	88,752	
July	7,198	5,729	97,360	72,950	
August	7,899	5,606	106,833	71,384	
September	5,083	4,774	68,753	60,791	
October	5,560	4,507	75,209	57,389	
November	6,017	7,998	81,382	101,840	
December	5,543	9,646	74,978	122,824	
Total	79,401	75,206	1,073,943	957,621	

³ The equivalent heat input rating is calculated by multiplying the amounts of the two types of fuels consumed and heating value of the corresponding type of fuel as stated above.

Fuel/ash handling equipment (S-834-1, -6, and -10):

- The amount of material handled by the fuel handling S-834-1 and S-834-10 will be equivalent to "Calculated Fuel Consumption" values identified in the table above.
- The amount of material handled by the ash collection system S-834-6 is 3,934 ton/yr (984 ton/qtr) (per the applicant as shown in Attachment C).
- Fugitive PM10 emission for each screen, hopper, and conveyor may be estimated using the AP-42 Section 13.2.4 (Aggregate Handling and Storage Piles) equation for calculation of drop point emissions from aggregate handling operations:

EF = k(0.0032)×
$$(U/5)^{1.3}$$
 / $(M/2)^{1.4}$ lb/ton
where:
k = particle size multiplier, (dimensionless)
= 0.35 for particle size < 10 μ m (i.e. PM10)
U = mean wind speed, (miles per hour)
= 5 mph (per applicant) ⁴
M = material moisture content (%)
= 4.8% (per applicant) ⁵
 $EF = 0.35 \times (0.0032) \times (5/5)^{1.3}$ / $(4.8/2)^{1.4}$ lb/ton = 0.00033 lb/ton
(per drop/emission point)

- The control efficiency of 90 percent will be assumed for the water spray.
- The following are the emission points for the fuel screening and handling system (S-834-1), for a total of seven emission points:
 - o One trommel screen
 - o One hopper
 - o Five conveyors
- The following are the emission points for the ash collection system (S-834-6), for a total of one emission point:
 - o One discharge point
- The following are the emission points for the fuel handling system (S-834-10), for a total of four emission points:
 - o Two storage silos
 - o One hog unit
 - o One conveyor

⁴ The 5.0 mph value proposed by the applicant is acceptable as it is less than the 6.35 mph value for Bakersfield in EPA Tanks 4.0.

⁵ Per AP-42 Section 1.6 (Wood Residue Combustion in Boilers), the moisture content of as-fired wood may vary from 5 to 75 weight percent depending on the residue type and storage operation, so the proposed value of 4.8 percent is an acceptable conservative assumption.

⁶ Per AP-42 Section 13.2.4.4 (Aggregate Handling and Storage Piles), continuous watering of materials loaded onto piles can reduce total particulate emissions from aggregate storage operations by up to 90 percent. The same control will be conservatively assumed for this operation.

B. Emission Factors

District Rule 2201, Section 3.1 defines Actual Emissions as "emissions having occurred from a source, based on source test or monitoring data, actual fuel consumption, and process data. If source test or monitoring data is not available, other appropriate, APCO-approved, emission factors may be used."

Cogeneration system (S-834-3):

 The cogeneration system (S-834-3) was source tested during the baseline period in 2012 and 2013. The source test results are found in Attachment B and summarized in the table below. The average source test emission factors calculated below will be used to determine the Actual Emission Reductions from the cogeneration system.

Emission Factors						
	Permitted Emission Factor (lb/MMBtu)	2012 Source Test (lb/MMBtu)	2013 Source Test (lb/MMBtu)	Average Source Test Emission Factor (lb/MMBtu)		
NOx	0.108	0.098	0.0902	0.094		
SOx	0.061	0.0019	0.0397	0.021		
PM10	0.066	0.0323	0.0355	0.034		
СО	0.314	0.2377	0.2392	0.238		
VOC	0.066	0	0	0		

Fuel/ash handling equipment (S-834-1, -6, and -10):

The Emission Factor for each drop/emission point is 0.00033 lb-PM10/day.

C. Baseline Period Determination

Pursuant to Section 3.9 of Rule 2201, the Baseline Period is a period of time equal to either:

- 3.9.1 The two consecutive years of operation immediately prior to the submission date of the Complete Application; or
- 3.9.2 At least two consecutive years within the five years immediately prior to the submission date of the Complete Application if determined by the APCO as more representative of normal source operation.

⁷ Fugitive PM10 emission for each screen, hopper, and conveyor were estimated using the AP-42 Section 13.2.4 equation for calculation of drop point emissions from aggregate handling operations in Section A above.

The applicant submitted the application on March 4, 2014. The two consecutive years of operation prior to the submission of the application has been determined to be representative of normal source operation. Therefore the baseline period will be the period from the beginning of January 2012 through the end of December 2013.

D. Baseline Data

The baseline fuel use data is taken from the fuel use and production records in Attachment D.

Baseline Fuel Consumption (MMBtu)						
Month	2012	2013	Monthly Average	Quarterly Average		
January	99,875	99,555	99,715			
February	97,056	101,287	99,171	275,577		
March	92,462	60,919	76,691			
April	119,223	73,645	96,434			
May	82,524	46,286	64,405	244,358		
June	78,286	88,752	83,519			
July	97,360	72,950	85,155			
August	106,833	71,384	89,108	239,035		
September	68,753	60,791	64,772			
October	75,209	57,389	66,299			
November	81,382	101,840	91,611	256,811		
December	74,978	122,824	98,901			

Baseline Fuel Consumption (BDT)						
			Monthly	Quarterly		
Month	2012	2013	Average	Average		
January	7,384	7,819	7,601			
February	7,176	7,954	7,565	20,977		
March	6,836	4,784	5,810			
April	8,815	5,784	7,299			
May	6,101	3,635	4,868	18,546		
June	5,788	6,970	6,379]		
July	7,198	5,729	6,464			
August	7,899	5,606	6,752	18,145		
September	5,083	4,774	4,929]		
October	5,560	4,507	5,034			
November	6,017	7,998	7,007	19,636		
December	5,543	9,646	7,595			

E. Historical Actual Emissions (HAE)

HAE - Combustion Emissions

The HAE due to the combustion emissions are determined by multiplying the quarterly fuel use by the emission factors presented above.

		HAE from Fu	iel Use (S-8:	34-3) - Quarter 1		
NO _x	0.094	lb/MMBtu x	275,577	MMBtu/qtr =	25,904	lb/qtr
SO _x	0.021	lb/MMBtu x	275,577	MMBtu/qtr =	5,787	lb/qtr
PM10	0.034	lb/MMBtu x	275,577	MMBtu/qtr =	9,370	lb/qtr
CO	0.238	lb/MMBtu x	275,577	MMBtu/qtr =	65,587	lb/qtr
VOC	0	lb/MMBtu x	275,577	MMBtu/qtr =	0	lb/qtr
		HAE from Fu	el Use (S-80	34-3) - Quarter 2).	
NO _x	0.094	lb/MMBtu x	244,358	MMBtu/qtr =	22,970	lb/qtr
SOx	0.021	lb/MMBtu x	244,358	MMBtu/qtr =	5,132	lb/qtr
PM10	0.034	lb/MMBtu x	244,358	MMBtu/qtr =	8,308	lb/qtr
CO	0.238	lb/MMBtu x	244,358	MMBtu/qtr =	58,157	lb/qtr
VOC	0	lb/MMBtu x	244,358	MMBtu/qtr =	0	lb/qtr
		HAE from Fu	el Use (S-83	34-3) - Quarter 3	}	1.8
NO _x	0.094	lb/MMBtu x	239,035	MMBtu/qtr =	22,469	lb/qtr
SO _x	0.021	lb/MMBtu x	239,035	MMBtu/qtr =	5,020	lb/qtr
PM10	0.034	lb/MMBtu x	239,035	MMBtu/qtr =	8,127	lb/qtr
CO	0.238	lb/MMBtu x	239,035	MMBtu/qtr =	56,890	lb/qtr
VOC	0	lb/MMBtu x	239,035	MMBtu/qtr =	0	lb/qtr
		HAE from Fu	el Use (S-83	34-3) - Quarter 4		
NO _x	0.094	lb/MMBtu x	256,811	MMBtu/qtr =	24,140	lb/qtr
SO _x	0.021	lb/MMBtu x	256,811	MMBtu/qtr =	5,393	lb/qtr
PM10	0.034	lb/MMBtu x	256,811	MMBtu/qtr =	8,732	lb/qtr
CO	0.238	lb/MMBtu x	256,811	MMBtu/qtr =	61,121	lb/qtr
VOC	0	lb/MMBtu x	256,811	MMBtu/qtr =	0	lb/qtr

HAE - Fuel Handling Emissions

A special	HAEf	rom Fuel Sc	reening and	Handlin	g Syst	em (S-834-	1)	100
Qtr 1: PM ₁₀	0.00033	lb/ton per emission point x	20,977	ton/qtr ×	7	Emission points =	48	lb/qtr
Qtr 2: PM ₁₀	0.00033	lb/ton per emission point x	18,546	ton/qtr ×	7	Emission points =	43	lb/qtr
Qtr 3: PM ₁₀	0.00033	lb/ton per emission point x	18,145	ton/qtr x	7	Emission points =	42	lb/qtr
Qtr.4: PM ₁₀	0.00033	lb/ton per emission point x	19,636	ton/qtr x	7	Emission points =	45	lb/qtr

		HAE from F	uel Handlin	ig Systen	n (S-8	34-10)		
Qtr 1. PM ₁₀	0.00033	lb/ton per emission point x	20,977	ton/qtr x	4	Emission points =	28	lb/qtr
Qtr. 2: PM ₁₀	0.00033	lb/ton per emission point x	18,546	ton/qtr ×	4	Emission points =	25	lb/qtr
©tr 3: PM₁₀	0.00033	lb/ton per emission point x	18,145	ton/qtr x	4	Emission points =	24	lb/qtr
Qtr 4: PM₁o	0.00033	lb/ton per emission point x	19,636	ton/qtr x	4	Emission points =	26	lb/qtr

el - Alexandra	ACIDITETRICA LATRICA	HAEfi	rom Ash Ha	ndling (S	-834-6	american melang and a		an acceptable of
Qtr 1: PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr ×	1	Emission points =	0.3 → 0	lb/qtr
Qtr 2. PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr x	1	Emission points =	0.3 → 0	lb/qtr
Qtr 3. PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr x	1	Emission points =	0.3 → 0	lb/qtr
Qtr 4: PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr x	1	Emission points =	0.3 → 0	lb/qtr

The total HAE (lb/qtr), which is the sum of the HAE for S-834-1, -3, -6, and -10 is calculated below:

100 July 1			I HAE (Ib/qtr) Quarter 1		West Control
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE
NO _x	25,904	0	0	0	25,904
SO _x	5,787	0	0	0	5,787
PM ₁₀	9,370	48	0	28	9,446
CO	65,587	0	0	0	65,587
VOC	00,007	0	0	0	00,007
VOO	0		Quarter 2		
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE
NO _x	22,970	0	0	0	22,970
SO _x	5,132	0	0	0	5,132
PM ₁₀	8,308	43	0	25	8,376
СО	58,157	0	0	0	58,157
VOC	0	0	0	0	0
	Strate Spice of		Quarter 3		
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE
NO _x	22,469	0	0	0	22,469
SO _x	5,020	0	. 0	0	5,020
PM ₁₀	8,127	42	0	24	8,193
CO	56,890	0	0	0	56,890
VOC	0	0	0	0	0
	100	A CONTRACTOR OF THE SECOND	Quarter 4		
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE
NO _x	24,140	0	0	0	24,140
SO _x	5,393	0	0	0	5,393
PM ₁₀	8,732	45	0	26	8,803
СО	61,121	0	0	0	61,121
VOC	0	0	0	0	0

F. Adjustments to HAE

Pursuant to Section 3.22, Historical Actual Emissions must be discounted for any emissions reduction which is:

- required or encumbered by any laws, rules, regulations, agreements, orders, or
- attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or
- proposed in the District Air Quality Plan for attaining the annual reductions required by the California Clean Air Act.

- Any Actual Emissions in excess of those required or encumbered by any laws, rules, regulations, orders, or permits. For units covered by a Specific Limiting Condition (SLC), the total overall HAE for all units covered by SLC must be discounted for any emissions in excess of that allowed by the SLC.
- a. There are no agreements or orders regarding the operation or emissions reductions associated with the cogeneration system or its fuel handling operations. The discounts for any Rules will be discussed under the applicable Rules listed below. Therefore, no adjustments will be made to the HAE under this section.
- b. There are no reductions from the cogeneration system or its fuel handling operations that are attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan. Therefore, no adjustment to the HAE will be made in this section.
- c. There are no reductions from the cogeneration system or its fuel handling operations that are proposed in the District Air Quality Plan for attaining the annual reductions required by the California Clean Air Act. Therefore, no adjustments will be made to the HAE under this section.
- d. There are no SLCs related to the operation of the cogeneration system or its fuel handling operations. The emissions were taken from the permit limits or lower (source test results). Any adjustments to be made for any Rules will be addressed under the applicable Rules listed below. Therefore, no adjustments will be made to the HAE under this section.

The emission units comply with all NSR requirements and Federal Requirements. No adjustments to the HAE are required under Rule 2201.

G. Actual Emissions Reductions (AER)

Actual Emissions Reductions are calculated as follows:

AER = HAE - PE2

Where:

HAE = Historic Actual Emissions PE2 = Post-project Potential to Emit

The shutdown equipment was replaced by a 32 MMBtu/hr natural gas-fired boiler (S-834-7), which has been retrofit with ultra-low NOx burners and is now allowed to operate as a full time unit. This boiler had not operated during the baseline period. After its retrofit, it is now able to operate full time, and it now supplies the process steam that the shutdown equipment did.

The Post-Project Potential to Emit (PE2) of for boiler S-834-7 is calculated below with the following equation:

■ PE2 = EF (lb/MMBtu) × Heat Input (MMBtu/hr) × Op. Sched. (hr/year)

		PE2 for S-834-7								
Pollutant	EF2 (lb/MMBtu)	Heat Input (MMBtu/hr)	Operating Schedule (hr/year)	Annual PE2 (lb/year)	PE2 (lb/qtr)					
NO _X	0.008	32	8,760	2,243	561					
SO _X	0.00285	32	8,760	799	200					
PM ₁₀	0.014	32	8,760	3,924	981					
СО	0.073	32	8,760	20,463	5,116					
VOC	0.003	32	8,760	841	210					

Actual Emissions Reductions are calculated in the table below:

1.00		Total HAE (lb/qtr	
18.1	Wall general fire	Quarter 1	
	HAE	PE2	AER = HAE PE2
NO _x	25,904	561	25,343
SO _x	5,787	200	5,587
PM ₁₀	9,446	981	8,465
CO	65,587	5,116	60,471
VOC	0	210	-210 → 0
green and the second	A Maria di Para	Quarter 2	
	HAE	PE2	AER = HAE - PE2
NO _x	22,970	561	22,409
SO _x	5,132	200	4,932
PM ₁₀	8,376	981	7,395
CO	58,157	5,116	53,041
VOC	0	210	-210 → 0
10.00	4	Quarter 3	A STATE OF THE STA
	HAE	PE2	AER = HAE – PE2
NO _x	22,469	561	21,908
SO _x	5,020	200	4,820
PM ₁₀	8,193	981	7,212
CO	56,890	5,116	51,774
VOC	0	210	-210 → 0

		Quarter 4	
	HAE	PE2	AER = HAE - PE2
NO _x	24,140	561	23,579
SO _x	5,393	200	5,193
PM ₁₀	8,803	981	7,822
СО	61,121	5,116	56,005
VOC	0	210	-210 → 0

H. Air Quality Improvement Deduction (AQID)

The Air Quality Improvement Deduction (AQID) is 10% of the AER per Rule 2201, subsection 6.5, and is summarized as follows:

-	Air Quality Improvement Deduction (lb/qtr)								
Quarter	NOx	SOx	PM10	CO	VOC				
1 st	2,534	559	847	6,047	0				
2 nd	2,241	493	740	5,304	0				
3 rd	2,191	482	721	5,177	0				
4 th	2,358	519	782	5,601	0				

I. Bankable Emissions Reductions Credits

The total bankable emissions reductions for ERC are equal the AER minus the air quality improvement deduction calculated above. The amount of bankable emission reductions are listed in the table below:

Ва	Bankable Emission Reductions Credits (lb/qtr)								
Quarter	NOx	SOx	PM10	СО	VOC				
1 st	22,809	5,028	7,619	54,424	0				
2 nd	20,168	4,439	6,656	47,737	0				
3 rd	19,717	4,338	6,491	46,597	0				
4 th	21,221	4,674	7,040	50,405	0				

VI. COMPLIANCE:

Rules 2201 (New and Modified Stationary Source Review Rule) and 2301 (Emission Reduction Banking)

To be eligible for banking, emission reduction credits (ERCs) must be verified as being real, surplus, permanent, quantifiable, and enforceable pursuant to District Rules 2201 and 2301. In addition, the application must be submitted within the timeliness specified in Rule 2301.

A. Real

The Actual Emission Reductions (AERs) quantified above were based on actual, historical emissions and were calculated from source test results, recognized emission factors, and actual fuel consumption data supplied by the applicant. The equipment under permits S-834-1, -3, -6, and -10 has been shut down and the Permits to Operate have been surrendered. The voluntary shutdown of the equipment results in actual emission reductions; therefore, the reductions are real.

B. Enforceable

Permits to Operate S-834-1, -3, -6, and -10 have been surrendered. Any new equipment placed at this location will be required to obtain an Authority to Construct and a Permit to Operate subject to the provisions of New and Modified Stationary Source Review (Rule 2201) prior to operation. Thus, the quantified AER is enforceable.

C. Quantifiable

The actual emission reductions (AER) quantified above are based on actual, historical emissions calculated from fuel use data, source tests, and emission factors. Therefore, the AER is quantifiable.

D. Permanent

The permittee permanently shut down the equipment, and surrendered their valid Permits to Operate. Therefore, the AERs are permanent.

E. Surplus

The shutdown of the equipment was voluntary. The resulting emission reductions are not mandated by any law, rule, regulation, agreement, or order of the District, State, or Federal Government. Additionally, the reductions are not attributed to a control measure noticed for workshop or proposed, nor contained in a State Implementation Plan. Therefore, the reductions are surplus.

F. Timeliness

The permits were surrendered with the ERC application on March 4, 2014 with the submission of this ERC banking application. Because the ERC application was submitted within 180 days after the date that shutdown occurred, the application is timely.

Rule 4352 (Solid Fuel Fired Boilers, Steam Generators and Process Heaters)

The purpose of this rule is to limit emissions of NOx and CO from solid fuel fired boilers, steam generators and process heaters. Shutdown biomass-fired boiler S-834-6 was subject to this rule.

The permitted emission limits of the shutdown boiler were in compliance with this rule. The boiler had been limited to NOx emissions of 84 ppmvd @ 3% O2 (0.108 lb/MMBtu) and CO emissions of 400 ppmvd @ 3% O2 (0.314 lb/MMBtu). These limits comply with the requirements of Table 1 (NOx and CO Emission Limits) of Section 5.1 which limit NOx emissions to 90 ppmv corrected to 3% O2 and CO emissions to 400 ppmv corrected to 3% O2 for operations using biomass fuel, effective on and after January 1, 2013.

There are no further reduction in emission limit scheduled by the rule. And there are no other agreements or orders regarding the operation or emissions reduction associated with the cogeneration system. Therefore, no adjustments need to be made to the HAE as is discussed in Section V.F. (Calculations, Adjustments to HAE) of this evaluation.

VII. RECOMMENDATION:

After public notice, comments and review, issue ERC Banking Certificates S-4585-2, '-3, '-4, and '-5 to Sierra Power Corporation for the following amounts:

	Bankable Em	issions Red	uctions Credit	s (ERC), Ib/qt	•
Pollutant	ERC#	1 st Qtr.	2 nd Qtr.	3 rd Qtr.	4 th Qtr.
NOx	S-4585-2	22,809	20,168	19,717	21,221
SOx	S-4585-5	5,028	4,439	4,338	4,674
PM10	S-4585-4	7,619	6,656	6,491	7,040
CO	S-4585-3	54,424	47,737	46,597	50,405
VOC		0	0	0	0

Attachments:

- A Copies of Permits to Operate
- B Source Test Results
- C Fuel Consumption Records
- D Calculation of Monthly Fuel Consumption
- E Heating Values for Wood Products
- F Draft Emission Reduction Credit Certificates

Attachment A Copies of Permits to Operate

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-1-3

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

FUEL SCREENING AND HANDLING SYSTEM SERVED BY A HUMIDIFIER FOGGER/SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Fuel screening system shall consist of a Trommel screen, hopper, five (5) conveyors, and a humidifier-fogger/spray system to control emissions. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions from fuel receiving shall be controlled by humidifier-fogger system and wind dust screen. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Whenever fuel receiving system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, screens, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 5. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 8. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

The second second

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAO 234, TERRA BELLA, CA 5-834-1-3 Sep 21 2010 1200PM -- \$10040COJ

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-3-6

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

9.4 MW COGENERATION SYSTEM WITH 171.2 MMBTU/HR STAGED AIR BIOMASS-FIRED BOILER WITH FIRED HEAT RECOVERY STEAM GENERATOR WITH PEABODY LOW-NOX NATURAL GAS-FIRED BURNERS, FLUE GAS RECIRCULATION, AND AMMONIA INJECTION SYSTEM, EXHAUSTING TO MULTICLONES AND ELECTROSTATIC PRECIPITATOR

PERMIT UNIT REQUIREMENTS

- Boiler and heat recovery steam generator exhausts shall vent through multicylones and electrostatic precipitator (ESP) before being discharged to atmosphere. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. ESP shall be equipped with automatic rapping system, induced draft exhaust fan, and 72' high by 61" diameter exhaust stack. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. ESP rapping frequency and duration shall be pre-programmed and identical for each location and only one rapping position shall be energized at any one time. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Exhaust stack shall be equipped with continuous emissions monitors (CEM) for NOx, CO, oxygen, opacity, and volumetric flowrate of exhaust. [District NSR Rule and Rule 4352, 5.5; 40 CFR 60.48b(b); 40 CFR 64] Federally Enforceable Through Title V Permit
- 5. Continuous emission monitoring system shall be operated; maintained, and calibrated pursuant to the requirements of 40 CFR 60.7 (c) and 60.13. CEMs must also satisfy the Performance Specifications of 40 CFR 60 Appendix B and the Relative Accuracy Test Audit of Appendix F. [District Rules 1080 and Rule 4352, 5.5; 40 CFR 60.48b(e)] Federally Enforceable Through Title V Permit
- 6. Fuels for combustor shall be limited to natural gas, sawmill/forest residue (consisting of sawdust, bark, chips, shavings, and clean dry construction wood waste), almond and walnut shells, peach and olive pits, vineyard prunings, and orchard prunings or chips. [District NSR Rule] Federally Enforceable Through Title V Permit
- 7. No plastic, rubber, tar paper, asphalt shingles, plaster, metals, painted or chemically treated wood products or wastes shall be burned in combustor. [District NSR Rule] Federally Enforceable Through Title V Permit
- 8. A daily record of the quantities and types of fuels burned in the combustor shall be maintained and submitted to the District quarterly. [District NSR Rule and Rule 4352, 6.2] Federally Enforceable Through Title V Permit
- 9. Nitrogen oxide emissions (as NO2) shall not exceed any of the following: 84 ppmvd @ 3% O2 (0.108 lb/MMBtu), 408.8 lb/day, or 67.6 tons/year. The averaging for NOx lb/MMBtu limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rule, Rules 4301, 5.2.2, 4352, 5.1 and 40 CFR 60.41b and 60.44b(d)] Federally Enforceable Through Title V Permit
- 10. Carbon monoxide emissions shall not exceed any of the following: 400 ppmvd @ 3% O2 (0.314 lb/MMBtu) or 233.11 tons/year. The averaging for CO ppm limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rules, District Rule 4352, 5.3 and 40 CFR 60 Subpart Db] Federally Enforceable Through Title V Permit
- 11. Particulate matter (PM10) concentration shall not exceed 0.016 gr/dscf corrected to 12% CO2 as determined by CARB Method 5. [District NSR Rule and Rule 4301, 5.1 and 5.2.3; 40 CFR 60.43b(c)] Federally Enforceable Through Title V Permit

PERMIT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE. These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234, TERRA BELLA, CA 5-826-3-6; Sep 21 2010 12 00PM - SIGNGCOJ

- 12. Volatile organic compound emissions shall not exceed any of the following: 0.066 lb/MMBtu or 48.8 tons/year.
 [District NSR Rule] Federally Enforceable Through Title V Permit
- 13. Sulfur oxide emissions (as SO2) shall not exceed any of the following: 0.061 lb/MMBtu or 41.6 tons/year. [District NSR Rule and Rule 4301, 5.2.1 and 4801] Federally Enforceable Through Title V Permit
- 14. Source testing using the following test methods shall be done annually: NOx EPA Method 7E or ARB Method 100, and EPA Method 19, CO EPA Method 10 or ARB Method 100, O2 EPA Method 3 or 3A, or ARB Method 100, Stack Gas Flow Rate (velocity) EPA Method 2, Stack Gas Moisture Content EPA Method 4, and Fuel Heating Value ASTM Method D2015 or E711. [District Rules 1081, 2520, 9.3.2 and 4352, 6.3] Federally Enforceable Through Title V Permit
- 15. The District must be notified 30 days prior to any compliance source test, and a source test plan must be submitted for approval 15 days prior to testing. [District Rule 1081] Federally Enforceable Through Title V Permit
- 16. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081] Federally Enforceable Through Title V Permit
- 17. Sierra Power Corporation shall maintain records of emissions and operational data for NOx (ppmv @ 3% O2, lb/MMBtu, lb/day and lb/year), CO (ppmv @ 3% O2 and lb/year), electrical output (kW-hr) recorded on a 24-hour basis, exhaust gas stack flow, CFM), and opacity (percent). [District NSR Rule] Federally Enforceable Through Title V Permit
- 18. NOx, CO, and PM10 emissions shall be measured with annual source testing conducted by an independent testing laboratory using sample collection by an ARB certified testing laboratory and shall be witnessed by District, or witness authorized by the District. [District Rules 1081, 2520, 9.3.2 and 4352, 6.3 and 6.4; 40 CFR 60.46b] Federally Enforceable Through Title V Permit
- 19. Source test emissions for this unit shall be calculated using the arithmetic mean, pursuant to District Rule 1081 (Amended December 16, 1993), of three thirty-minute test runs for NOx and CO. This mean shall be multiplied by the appropriate factor. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 20. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 21. NOx and carbon monoxide daily emissions shall be measured by use of CEM data, fuel rate data and daily hours of operation data. A written record of the required compliance demonstrations shall be maintained and made available for District inspection for a period of five years. [District Rule 2520, 9.3.2 and 9.4.2] Federally Enforceable Through Title V Permit
- 22. SOx source testing shall be done annually using EPA method 5 or 8 or a continuous emissions analyzer in accordance with EPA method 6C. [District Rules 1081, 2520, 9.3.2, and 4801] Federally Enforceable Through Title V Permit
- 23. Particulate matter emissions shall not exceed 0.10 lb/MMBtu. [40 CFR 60.43b(c)(1)] Federally Enforceable Through Title V Permit
- 24. Owner or operator shall not cause to be discharged into the atmosphere any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. [40 CFR 60.43b(f)] Federally Enforceable Through Title V Permit
- 25. The particulate matter, and opacity standards shall apply at all times, except during periods of startup, shutdown or inalfunction, [40 CFR 60.43b(g), 60.46b(a)] Federally Enforceable Through Title V Permit
- 26. The owner or operator shall install, calibrate, maintain, and operate a continuous monitoring system for measuring the opacity of emissions discharged to the atmosphere and record the output of the system, [40 CFR 60.48b(a)] Federally Enforceable Through Title V Permit
- 27. The continuous emissions monitoring systems shall be operated and data recorded during all periods of operation of the affected facility except for continuous monitoring system breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments. [40 CFR 60.48b(c)] Federally Enforceable Through Title V Permit

PERMIT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE
These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234, TERRA BELLA, CA 3-634-3-6; Seg 21 2010 12 00PM - SIDNGCOJ

- 7 28. The procedures under 40 CFR 60.13 shall be followed for installation, evaluation, and operation of the continuous monitoring systems. The span value for a continuous monitoring system for measuring opacity shall be between 60 and 80 percent. [40 CFR 60.48b(e)] Federally Enforceable Through Title V Permit
- 29. The permittee shall record and maintain records of the amount of wood and natural gas fuel combusted each day, and calculate the annual capacity factor individually for wood and natural gas on a 12-month rolling average with a capacity factor calculated at the end of each month. [40 CFR 60.49b (d)] Federally Enforceable Through Title V Permit
- 30. The owner or operator shall submit excess emission reports of all 6-minute periods during which the average opacity exceeds the opacity standards under 40 CFR 60.43b(f) during the reporting period. [40 CFR 60.49b(h)] Federally Enforceable Through Title V Permit
- 31. At the time of each annual source test for PM, the permittee shall establish the acceptable range of primary and secondary current and voltage readings for the electrostatic precipitator. Minimum readings for each parameter shall be established at 15% below the average value measured during the PM source test. Maximum readings for each parameter shall be established at 15% above the average value measured during the PM source test. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 32. During each day of operation, the permittee shall record electrostatic precipitator voltage and current readings and compare the readings with the acceptable range of current and voltage levels established during the most recent annual PM source test. Upon detecting any excursion from the acceptable range of current or voltage readings, the permittee shall investigate the excursion and take corrective action to minimize excessive emissions and prevent recurrence of the excursion as expeditiously as practicable. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 33. Devices used to measure primary and secondary voltage and current shall be maintained in accordance with the manufacturer's specifications. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 34. The permittee shall comply with the compliance assurance monitoring operation and maintenance requirements of 40 CFR part 64.7. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 35. The permittee shall comply with the recordkeeping and reporting requirements of 40 CFR part 64.9. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 36. If the District or EPA determine that a Quality improvement Plan is required under 40 CFR 64.7(d)(2), the permittee shall develop and implement the Quality Improvement Plan in accordance with 40 CFR part 64.8. [40 CFR part 64] Federally Enforceable Through Title V Permit

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-6-3

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

ASH COLLECTION SYSTEM UTILIZING ENCLOSED AUGERS AND WATER MIST SERVING BIOFUEL BOILER (S-834-3)

PERMIT UNIT REQUIREMENTS

- 1. Discharge point of ash system shall be controlled by water spray to prevent visible emissions of 20% opacity or greater. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 3. Enclosure shall be completely inspected annually for evidence of particulate matter leaks and repaired as needed. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234,TERRA BELLA, CA \$-834-6-3 - Sep 21 2010 12:00PM ~ 5/0NISCOV

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-10-2

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

FUEL HANDLING SYSTEM CONSISTING OF TWO SILOS, ONE HOG UNIT, SCREENS, AND CONVEYORS SERVED BY A HUMIDIFIER FOGGER SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Particulate matter emissions from fuel handling system shall be controlled by humidifier-fogger spray system. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Whenever fuel handling system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 5. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234,TERRA BELLA, CA 5-836-10-7: Sep 21 2018 12 80PM - SICKGCOJ

Attachment B Source Test Results

SJVUAPCD SOUTHERN

San Joaquin Valley Air Pollution Control District Source Test Results

8/20/12 1:53 pm

Company: SIERRA POWER CORPORATION	ON Test Date:	06/08/2012 Pass ⊠ Fail □
Permit#: S-834-3-6 FacilityID: 834	Unit ID: COGEN	
Witnessed By: HAULMAA	Area Inspector: GOONR	
Reason For Testing: Annual	RATA Dist Performed	Stationary/RATA⊠ QTR: 2 Unit Dormant □
Test Company: ENVIRONMENTAL SERVI	CES & TES Fribject Number: EST	-834-060812
Next Test:	Test Company Conta	ct: Mr. Tim Naquin
Equipment: 9.4 MW BIOMASS FIRED BOI	LER W/ NH3/SCR, ESP, CEM, FO	GR, MULTICYCLONES
Equipment Type: Boiler	Input Rate: 171.0 MMBTU	Output Rate: 9.4 MW
Control Equipment: Catalyst ☐ Scrubber ☐ Batter LoNOx ☐ Incin ☐ ES DLN ☐ PSC ☐ PC Cyclone ☒ TEOR-Gas ☐		<u>=</u>
Fuel Data And Operational Data:		
Fuel Type: BIOMASS F-Factor: 92 Second Fuel: O2 % Stack:		Fuel Rate: 10.0 TPH Process Rate:
Comments: ANNUAL COM, RATA	ì	
Enforcement Action: NOV#:		
Report Rec: 07/27/2012 Revie	ewed By: LAFOREG	Results Sent Date:
Test Results:	•	

Pollutant	Unit	Result	Limit	O2 Correction	Failed	Unit ID
CO	lbs/MMBtu	0.2392	0.312			COGEN
CO	ppm	305.0	400.0	3		COGEN
CO RATA	ppm	8.84	10.0	3		COGEN
Flow RATA	dscfm	2.8	20.0			COGEN
NH3	ppm	4.41	10.0			COGEN
NOX	lbs/MMBtu	0.0902	0.108			COGEN
NOx	ppm	71.34	84.0	3		COGEN
NOx RATA	ppm	9.08	20.0	3		COGEN
O2 RATA	% Difference	0.54	1.0			COGEN
PM10	gr/dscf@12% CO2	0.015	0.016			COGEN
PM10	lbs/hr	4.41	14.97			COGEN
SO2	lb/MMBtu	0.0397	0.061			COGEN
VOC	lbs/MMBtu	0.0	0.066			COGEN

	SOURCE	E TEST I	DEVIEW		,,*, ·· ,					
	SOURC	<u> </u>	KEAIEA	<u>*</u> .						
				,			•			: -
COMPANY	SIERRA I	POWER			REVIEWED					
TEST DATE	6/8/2012				DATE	8/20/2012				
PERMIT#	S-834-3-6	== 000=			REV.AA			1		•
UNITID	BIOMASS BO	JILER COGE	N				•	•		
EQUIP DESCRIPTION										
INPUT RATED @					INPUT HP					
MEASURED STACK Q	42431							•		
FUEL DATA	NAT. GAS	<u> </u>	NASTE		OIL		SOLID		- ,	
BTU/CF				btu/gal			btu/lb		-	
F-FACTOR	9240						f-factor	9240)	
H2S ppm							lb/hr ton/hr	40	1	
RATE MCFD MCF/HR	0.00		0.00	gal/min gal/hr	0	••	ton/day	10 240		
INPUT IN MMBTU/HR	0.00 _, 0.00		0.00		0.00		mmbtu/hr	. 240	•	
THROTTLE	#DIV/0!		0.00	•	5.05		DSCFM			•
THROTTEE	#01470:									
CEM DATA	RAW ppm	@3% 02	@15% 02	lb/hr	Ib/MMBTU	gm/BHp-Hr	lb/MMsc1		lbs/day	@19%02
O2 %		0.8565	0.2823					Ib/MMBTU		0.0909
NOx		0.00	0.00	0.00	0.0000				0.00	
.00		0.00	0.00	0.00	0.0000	0.000			0.00	
SO2		0.00	0.00	0.00	0.0000	0.000	0.00	#DIV/0!	0.00	0.0000
SO2 BY FUEL			WG	0.00	#DIV/0!		TECR OF CAL	CUI ATION C		<u> </u>
Q-std CALCULATED	42431		WT. F-F	#DIV/0!			TW	CULATION (T	emp's or U BY O2	2)
HYDROCARBONS	DAW nnm	ppm as CH4		lb/hr	lb/hr CH4		Ta		ÖŽW	
VOC METHANE	1196	1196.00		128.53	128.53	•	Ts		02s	
ETHANE	2.05	3.83		0.41	0.41		%FRG =	#DIV/01	%FRG=	100.00
PROPANE	0	0.00		0.00	0.00	•	DESTRUCT			
BUTANE	ō	0 00		0 00	0.00		INLET			
PENTANE	0	0.00		0.00	0.00		OUTLET			
HEXANE	0	0.00		0.00	0.00	-	% DESTR=	#DIV/0!		·
						gm/bHP-HR			lb/hp-hr	_
TOTAL VOC	1198.05	1199.83		128.95	128.95	1.769		3094.68		
TOTAL NonMeth/Eth.	0.	0.00		0.00	0.00	0.000	0.0000	0.00	0.0000).
VOC @ 3% & 15%		0 00	0.00							
PARTICULATE M-5	gridscf = 0	01691	ib/hr≃	5 971	lb/mmbtu=	0.0355	lbs/day=	143.30	gridscf12%=	0.0147
Vm (meter voi)	45.81	%CO2	13.77	Vmstd	43,626			1 10.00	Bueserisio	0,0141
Vic (vol. of H2O)	236.3	%O2	7.77	Bws	0.203		•		•	• •
Y (meter calib.)	0.9957	Ср	0.836	Md	30.514	Temp F =	271		lb/hr	•
Pbar (barom. press)	29.95	dp	0.95	Ms	27.972	Temp R =	731		ton/hr	
Pg (stack static press)	0.15	Tş		Q(dscfm)	41 198, 19	Nozz.dia			lb/ton	#DIV/0!
H (meter diff. press.)	1.19	An	2.91E-04	Iso	99.27	An=	_. 1.76714438	Dry Q-lb/hr=	195762.5	
Tm (abs. meter temp)		ample time	72	Vs	66.25	Q wet scfm	21464	Wet Q-lb/hr=		
A (stack area sqft)	19.63	part. (mg)	47.8	Q-acfm				dscmm= OR LB/HR PPN		
SO2/SO4	Vsoin	Va	Vt-Vtb	Normality	lb/dscf	lb/hr	lb/mmbtu	Vmstd		LQUALION
SO2 METHOD 6	9				#DIV/0!	#DIV/0!	#DIV/01		#DIV/01	-
SO4 m-8 nozzle/probe	5				#DIV/0!	#DIV/01	#DIV/01	ENTER ^	#D(V/01	
filter	5	1			#DIV/0!	#DIV/0!	#DIV/0!		#DIV/01	•
cond.	5	1		4-4-1 004	#DIV/0!	#DIV/01	#DIV/0!		#DIV/01	•
				total SO4	#DIV/0!	#DIV/01	#DIV/0!		#DIV/01	·
Other Compounds	MW	RAW ppm	@3% O2	@15% O2	lb/hr	Ib/MMBTU	lb/day			
O2 %	14.2		2 67	0.88				•		•
CO2	44.00		0.00	0.00	0.00	0.0000	0.00			-
METHANOL	32.04		0.00	0.00	0.00	0.0000	0.00			
FORMALDEHYDE	30.03		0.00	0.00	0.00	0.0000	0.00			
Enter Qstd							-4.	·	•	
F-Factor							ppm 3%=	0 51544137		
NH3	mg=	0.24	Vmstd =	19.57	ppm =	0.6	ppm 15% =	0.2	ib/hr =	0
	WW athana! -	AC 07 14	lothand = 3	204				 -		
MW ethanol = 46.07 Methanol = 32.04										

• ,

SJVUAPCD SOUTHERN

San Joaquin Valley Air Pollution Control District Source Test Results

8/7/13 1:58 pm

Company: SIERRA POWER CORPORATION	ON Test Date: 06/05/2013 Pass 🛛 Fail 🗌									
Permit#: S-834-3-6 FacilityID: 834	Unit ID: COGEN									
Witnessed By: LAFOREG	Area Inspector:GOONR									
Reason For Testing: Annual ☑ Initial ☐ CGA ReTest ☐ RepTest ☐ AMS Postponed ☐	☐ RATA ☐ Stationary/RATA ☐ QTR: 2 ☐ Dist Performed ☐ Unit Dormant ☐									
Test Company: ENVIRONMENTAL SERVICE	CES & TESFftbject Number: EST-834-060613									
Next Test: 6/21/2014	Test Company Contact: Mr. James Taplin									
Equipment: 9.4 MW BIOMASS FIRED BOILER W/ NH3/SCR, ESP, CEM, FGR, MULTICYCLONES										
Equipment Type: Boiler	Equipment Type: Boiler Input Rate: 171.0 MMBTU Output Rate: 9.4 MW									
Control Equipment: Catalyst Scrubber Bag LoNOx Incin ES DLN PSC PC Cyclone TEOR-Gas	· = = = = = = = = = = = = = = = = = = =									
Fuel Data And Operational Data:										
Fuel Type: BIOMASS F-Factor: 924										
Second Fuel: O2 % Stack: Comments: COGEN ANNUAL	8.7 Stack Flow: 33854 Process Rate:									
Enforcement Action: NOV#:										
Report Rec: 07/30/2013 Revie	ewed By: LAFOREG Results Sent Date:									
Test Results:										

est Results:						
Pollutant	Unit	Result	Limit	O2 Correction	Failed	Unit ID
CO	lbs/MMBtu	0.2377	0.312	<u> </u>		COGEN
CO	ppm	303.0	400.0	3		COGEN
CO RATA	ppm	5.02	10.0	3		COGEN
Flow RATA	dscfm	7.75	20.0			COGEN
NH3	ppm	2.25	10.0	15		COGEN
NOx	lbs/MMBtu	0.098	0.108			COGEN
NOx	ppm	76.03	84.0	3		COGEN
NOx RATA	ppm	17.47	20.0	3		COGEN
O2 RATA	% Difference	0.52	1.0			COGEN
PM10	gr/dscf@12% CO2	0.012	0.016			COGEN
SO2	lb/MMBtu	0.0019	0.061			COGEN
VOC	lbs/MMBtu	0.0	0.066			COGEN

SOURCE TEST REVIEW

COMPANY TEST DATE PERMIT#

SIERRA POWER

6/5/2013 S-834-7-4

REVIEWED BEAR MTN DATE 8/7/2013

REV.AA

UNIT ID BOILER

EQUIP DESCRIPTION										
INPUT RATED @					INPUT HP					
MEASURED STACK Q	33854		****		~ **		m m i im			
FUEL DATA	NAT, GAS		WASTE	-	OIL	night-rainteiligi giral di igirana a 186 ilmana apap, da .	SOLID	the special character and the parameters are a subsequently again.	•	
BTU/CF F-FACTOR				btu/gal			btu/lb f-factor			
H2S ppm							lb/hr			
RATE MCFD	- 1 A			gal/min			ton/hr			
MCF/HR			0.00	gal/hr	0		ton/day	. 0		
INPUT IN MIMBTU/HR			0.00	g	0 00		mmbtu/hr	ō		
THROTTLE			3.54		3 3 3		DSCFM	ວ		
CEM DATA	RAW ppm	@3% 02	@15% 02	lb/hr	Ib/MMBTU	gm/BHp-Hr	b/MMsc	Wt. F-F	lbs/day	@19%02
02 %		1.4954	0.4929	······································	***************************************	- 	- Marie Control of the Control of th	ID/MMBTU	-tut-A-mitten et-Alaba Si regyesta fer kalin	0.1587
NOx	51.05	76.34	25.16	12.39	0.0981	0.378	0.00	#DIV/0t	297 2 8	8,1032
co	174	260.20	85.78	25.70	0.2036				518.73	
SO2	9.8	1.20	0.39	0.27	0.0021	CONTRACTOR AND	0.00	#DIV/0!	6.48	0.1270
SO2 BY FUEL				0.00	#DIV/0!					
Q-std CALCULATED	33854		WT. F-F	#DIV/0!				CULATION (T		2)
							Tw	21	BY 02	
HYDROCARBONS		ppm as CH4		lb/hr	lb/hr CH4		Ta		02w	14.00
VOC METHANE	1156	1156.00		99.12	99 12		Ts	ar gang kila a samu a	025	
ETHANE	2.31 0	4.32		0.37	0.37		%FRG =	#DIV/01	%FRG=	100.00
PROPANE	19.5 (4)	0,00		0.00	0.00					****
BUTANE PENTANE	and the second second	0.00		0,00	0.00 0.00		INLET	116.7		
HEXANE	A4 2	0.00 0.00		0.00	0.00		OUTLET	0.24		
FIEAMIYE	ga agi	0.00		0.00	0.00	landaun un	% DESTR=	99.79		
TOTAL VOC	1158.31	1:60.32		99.49	99 49	gm/bHP-HR 2.985	~~~	lbs/day 2387.81	1b/hp-hr 0.0066	-
TOTAL NonMeth/Eth.	11.00.01	0.00		0.00	0.00	2.800 0.000			0,0000	
VOC @ 3% & 15%	•	0.00	0.00	0,00	9.90	\$.000	0.0000	0.00	0,0000	
		0.50								
PARTICULATE M-5	gr/dscf = (0.01375	1b/hr =	3.134	lb/mmbtu=	0.0323	!bs/day=	75.22	gr:dsc/12%=	0.0120
Vm (meter vol)	54.54	%CO2	13.8	Vmstd	52.767				- Mary Court of the Court of th	Security Constitution of the Constitution of t
Vic (vol. of H2O)	283.4	%02	9 17	Bws	0.202	Wet to Dry=	1 253		•	
Y (meter callb.)	0.9942	Cp	0.812	Md	30.575				lb/hr	w 111
Pbar (barom, press)	29.94	dp	0.64	Ms	28.037	TempR=	754		ton/hr	
Pg (stack static press)	9.11	Ts	820	Q(dscfm)	26602.47	Nozz dia	0,155	•	lb/ton	#DIV/01
H (meter diff. press.)	0.96	An	3.86E-04	Iso	105.14	An ≃	0.00013104	Dry Q-lb/hr=	126659.5	
Tm (abs. meter temp)	544 8	ample time	96	Vs	43.90			Wet Q-lb/hr=	145510.2	
A (stack area soft)	19.63	part. (mg)	47	Q-acfm	51710	Q wet scim	33328		753.3	: : <u></u>
				10.00				R LEVAR PP	A CONTRACTOR OF THE PARTY OF TH	QUATION
SO2/SO4	Vsoin	Va	Vt-Vtb	Normality	lb/dscf	lb/hr	lb/mmbtu	Vmstd		•
SO2 METHOD 6	5	1.	1000		#DIV/01	#DIV/0!	#DIV/0!		#DIV/0I	•
SO4 m-8 nozzie/probe filter	5 5	rd.		April 1	#DIV/01	#D(V/0!	#DIV/01	ENTER 1	#DIV/01	
_	MENTE DE LE LA LA	1			#DIV/0! #DIV/0!	#DIV/01 #DIV/0!	#DIV/0!		#DIV/01	
cond.	a garantan jarah Salah Sal Salah Salah Sa			total SO4	#DIV/O!	#DIVIO	#DIV/0! #DIV/0!		#DIV/0! #DIV/0!	
				Wiar 304	ADIA10:	#OIVIO!	#UIVIOI		#U!V/U;	
Other Compounds	MW	RAW pom	@3% 02	Ø15% O2	ib/hr	Ib/MMBTU	lb/day		SO2 Audit	
O2 %		The Party of the P	0.36	0.28	> mac g 4 I f	, mp: 07374420F 1 10F	> > 50 50 50 7	mg/dscm =	ANY STREET, ST	
COZ	44,00		0.00	0.00	0.00	0.0000	0.00	' gom =	171.83	
METHANOL	46.05		0.00	0.00	0 00	0.0000	0.00	• •	150.00	
FORMALDEHYDE	30.03		0.00	0.00	0.00	0.0000	0.00	% accuracy=	12 70	
Enter Qstd	195809						-,		· sa. r 3.7	
F-Factor							ppm 3%=	6.33258595		
NH3	mg≖	1.75	Vmstd =	20.28	ppm =	4.2	ppm 15% =	2.1	lb/hr =	2,231437
	*									
	MW ethanol =	46.07 B	fethanol = 3	2.04		- Daniel - Carlotte -				
				······································	***************************************					distribution of the section of the s

Attachment C Fuel Consumption Records

Information for GHG Report for CY 2011

Sierra Power Fuel Consumption for 2009

Outside purchases - Ag and Urban

SFP Sawmill Chips

TOTAL

67.485 BDT 15,735 BDT

83,220 BDT

Total Steam Produced

750 degrees@ 600PSI

616,632,300#

Electricity Sold

SFP

5,368,900 kw

PG&E

47,162,000 kw

TOTAL

52,530,990 kw

Steam Sold to SFP

65,722,672#

Electricty Purchased from SCE

240,071 kw

No natural gas used

2011 S.P.C. Fuel Consumption

	S.F.P.		S.F	P.C.	Total		
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	\$	
January	1,056.00	\$ 31,680.00	6,579.35	\$ 197,363.95	7,635.35	\$ 229,043.95	
February	1,245.61	\$ 37,368.30	6,566.20	\$ 193,418.87	7,811.81	\$ 230,787.17	
March	1,288.14	\$ 38,644.20	6,108.07	\$ 181,329.09	7,396.21	\$ 219,973.29	
April	1,359.96	\$ 40,798.80	6,201.83	\$ 181,803.99	7,561.79	\$ 222,602.79	
May	998.73	\$ 29,961.90	2,765.16	\$ 79,029.84	3,763.89	\$ 108,991.74	
June	1,449.29	\$ 43,478.70	6,274.11	\$ 187,858.50	7,723.40	\$ 231,337.20	
July	1,749.77	\$ 52,493.10	5,145.49	\$ 151,222.46	6,895.26	\$ 203,715.56	
August	1,383.62	\$ 27,672.40	3,652.64	\$ 102,921.56	5,036.26	\$ 130,593.96	
September	2,525.44	\$ 50,508.80	5,726.78	\$ 168,075.54	8,252.22	\$ 218,584.34	
October	1,835.12	\$ 36,702.40	6,080.19	\$ 180,817.98	7,915.31	\$ 217,520.38	
November	131.39	\$ 2,627.80	5,635.44	\$ 171,018.88	5,766.83	\$ 173,646.68	
December	712.46	\$ 14,249.20	6,749.44	\$ 207,179.14	7,461.90	\$ 221,428.34	
Totals .	15,735.53	\$ 406,185.60	67,484.70	\$ 2,002,039.80	83,220.23	\$ 2,408,225.40	
	18.91%	16.87%	81.09%	83.13%			

SPC's 2011 SCE Bill

Portion of SPC's bill that was consumed by the sawmill

January 2011	38 ,68 0 kw	
February	10,026	· ***
March	41,218	20,600 kw
April	42,839	19,300
May	78,728	64,900
June	34,796	11,200
July	27,8 60	11,700
August	100,492	67,400
September	16,112	9,600
October	9,041	4,200
November	133,123	93,900
December	63,956	54,000
TOTAL	596,871 kw	356,800 kw

Actual use by Sierra Power

240,071 kw

Data for GHG Calculations for 2012 - Sierra Power Corporation

Fuel Consumed

Ag	34,018 BDT
Urban	33,055 BDT
Sawmill Residue	12,328 BDT
TOTAL	79,401 BDT

Sierra Power boiler operates @ 95,000#/hr, 600 psi, 750 degree steam - 656,264,000# of steam generated in 2012

The gross generation for 2012 was 59,014,000 kw

175,931 kw purchased from SCE for start ups etc

SPC sold 49,352,704 kw to PG&E and 5,335,300 to Sierra Forest Products

SPC sold 65,904,554# of steam to Sierra Forest Products's dry kilns to dry lumber

2012 S.P.C. Fuel Consumption

ا	S.F.	ם	1	P.C.	Tot	al
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	\$
lanuary	186.50	\$ 3,730.00	6,237.73	\$ 181,818.07	6,424.23	\$ 185,548.07
ebruary	862.65	\$ 17,253.00	6,061.64	\$ 188,151.96	6,924.29	\$ 205,404.96
/larch	1,071.56	\$ 21,431.20	5,774.76	\$ 177,679.02	6,846.32	\$ 199,110.22
April	890.53	\$· 17,810.6	7,446.09	\$ 218,886.60	8,336.62	\$ 236,697.20
<i>l</i> lay	200.48	\$ 4,009.60	5,154.07	\$ 149,766.30	5,354.55	\$ 153,775.90
lune	1,000.01	\$ 20,000.20	4,889.39	\$ 142,794.17	5,889.40	\$ 162,794.37
luly	1,014.53	\$ 20,290.60	6,080.65	\$ 180,474.86	7,095.18	\$ 200,765.46
∖ugust	987.40	\$ 19,748.00	6,672.25	\$ 193,543.40	7,659.65	\$ 213,291.40
September	1,663.91	\$ 33,278.2	4,293.99	\$ 126,282.54	5,957.90	\$ 159,560.74
October	1,739.89	\$ 34,797.8	4,697.17	\$ 140,610.44	6,437.06	\$ 175,408.24
November	1,823.99	\$ 36,479.8	5,082.75	\$ 151,122.62	6,906.74	\$ 187,602.42
December	886.08	\$ 17,721.6	0 4,682.79	\$ 141,518.61	5,568.87	\$ 159,240.21
Fotais	12,327.53	\$ 246,550.6	67,073.28	\$ 1,992,648.59	79,400.81	\$ 2,239,199.19
	15.53%	11.01	% 84.47 %	88.99%)	

Richard Wilson

From:

sfp@sierraforest.net

Sent:

Monday, February 03, 2014 7:13 AM Richard Wilson Sierra Power's GHG

To: Subject:

2013 GHG Data for Sierra Power Corporation

Gross Generation

53,628,000 kw

Net Generation

49,505,008 kw

Electricity Purchased

.235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag Urban 38,676 BDT

22,674 BDT

Sawmlli Chips

13,856 BDT

TOTAL

75,206 BDT

Let me know if you need other data.

Thanks,

Kent

P.C. Fuel Corروumption 2013 کا 2013

. <u>U</u> .	S.F.	D D	S.P	C	Tot	lel
Month	B.D.T.	\$	B.D.T.	.o. \$	B.D.T.	\$
January	1,220.54	\$ 24,410.80	6 ,60 2.01	\$ 198,583.94	7,822.55	\$ 222,994.74
February	1,123.37	\$ 22,467.40	6,716.81	\$ 203,945.59	7,840.18	\$ 226,412.99
March	713.21	\$ 14,264.20	4,039.83	\$ 123,662.31	4,753.04	\$ 137,926.51
April	1,437.99	\$ 28,759.80	4,883.77	\$ 147,008.13	6,321.76	\$ 175,767.93
May	715.64	\$ 14,312.80	3,069.44	\$ 92,902.15	3,785.08	\$ 107,214.95
June	1,273.39	\$ 25,467.80	5,885.56	\$ 176,805.94	7,158.95	\$ 202,273.74
July	1,170.25	\$ 23,405.00	4,837.66	\$ 145,268.92	6,007.91	\$ 168,673.92
August	1,528.48	\$ 30,569.60	4,733.80	\$ 142,650.51	6,262.28	\$ 173,220.11
September	1,941. 44	\$ 38,828.80	4,031.34	\$ 121,950.15	5,972.78	\$ 160,778.95
October	1,167.62	\$ 23,352.40	3,805.72	\$ 112,458.18	4,973.34	\$ 135,810.58
November	1,135.73	\$ 22,714.60	6,753.50	\$ 210,095.30	7,889.23	\$ 232,809.90
December	428.22	\$ 8,564.40	8,145.08	\$ 253,678.00	8,573.30	\$ 262,242.40
Totals	13,855.88	\$ 277,117.60	63,504.52	\$ 1,929,009.12	77,360.40	\$2,206,126.72
	17.91%	12.56%	82.09%	87.44%		

Richard Wilson

From:

Sent

sfp@sierraforest.net Monday, February 03, 2014 7:13 AM Richard Wilson Sierra Power's GHG

To: Subject:

2013 GHG Data for Sierra Power Corporation

Gross Generation 53,628,000 kw Net Generation 49,505,008 kw **Electricity Purchased** .235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag Urban 38,676 BDT 22,674 BDT

'Sawmill Chips

13,856 BDT

TOTAL . 75,206 BDT

Let me know if you need other data.

Thanks, Kent

0200.07	3144.40	
4918.42	2526.66	
1909.24	1195.55	
1744.28	1045.55	
3995.45	1191.38	
2791.23	1397.32	
3034.09	1374.67	
2560.21	1481.47	
2619.79	1790.35	
1715.21	2121.71	
5069.36	2745.94	
6675.19	2111.24	
40287.84	22726.32	
63014.16		
Aa	Urhan	Chips
•		Jpo
1.020.201	1110.0	
38676.34	22654.02	13856
75186.36		
	4918.42 1909.24 1744.28 3995.45 2791.23 3034.09 2560.21 2619.79 1715.21 5069.36 6675.19 40287.84 63014.16 Ag 13.75 40287.84 1625.25	4918.42 2526.66 1909.24 1195.55 1744.28 1045.55 3995.45 1191.38 2791.23 1397.32 3034.09 1374.67 2560.21 1481.47 2619.79 1790.35 1715.21 2121.71 5069.36 2745.94 6675.19 2111.24 40287.84 22726.32 63014.16 Ag Urban 13.75 1047.3 40287.84 22726.32 1119.6

Ag

3255.37

Urban

3744.48

Month

Jan

MONTHLY DELIVERIES

	AG BDT		URBAN BDT	
			576.31	DWF
	3255.37	Wilson Ag	3168.17	Forwood
JAN	am talk at 1900 — it	3255.37	nam neseption	3744.48
1			182,72	DWF
	4918.42	Wilson Ag	2343.94	Forwood
FEB		4918.42	248.13	2526.66 DWF
	1909.24	Wilson Ag	947.42	Forwood
MAR		1909.24		1195.55
			274	DWF
	1744.28	Wilson Ag	771.55	Forwood
APR		1744.28		1045.55
A. I.		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	333.39	DWF
i	3995.45	Wilson Ag	857.99	Forwood
MAY		3995.45		1191.38
	2791.23	Wilson Ag	124.05	DWF
		0704.00	1273.27	Evergreen
JUN	ANAL BANK	2791.23	and design the state of	1397.32
		Wijson Ag	96.31	DWF
			1278.36	Evergreen
JUL		3034.09		1374.67
	04.0		44704	DWF
	61.9 2498.31	Hogans Wilson Ag	117.24 408.37	Viramontes
	2490.31	Wilson Ag	955.86	Evergreen
AUG		2560.21	000.00	1481.47
	2619.79	Wilson Ag	157. 7 2	Viramontes
	2019.79	Wilson Ag	41.4	DWF
			1591.23	Evergreen
SEPT		2619.79	* * * * * * * *	1790.35
	474F 04	Mileon A-	106.02	DWE
	1715.21	Wilson Ag	106.02 2015.69	DWF
OCT		1715.21	2010.09	Evergreen 2121.71
. 001		17 [0,2]		214111

DELIEVERIES BY SUPPLIER

DEC	391.88	Wilson Ag. 6675.19		2111.24
	118.4	Hogans	2037.88	Evergreen
4	89.17	West Coast Sand	73.36	DWF
. V. s. s. vokili S	75.74	5069,36 JT AG		27,4594
ŽĶ	00.22 812,08 =	West Genet Sand Willson Ag		
		Jī[Ag	24,82,63	Evagrean
		Pacific Coasi	43.93	- DWF
	25.4(8	ভিক্তমান্তমত	219,83	Mamenes

Attachment D Calculation of Monthly Fuel Consumption

	Fuel Purcha		Percen Consum Mo	ption by		ted Fuel tion (BDT)	Calculate Consumption	
	2012	2013	2012	2013	2012	2013	2012	2013
January	6,237.73	6,602.01	9.30%	10.40%	7,384	7,819	99,875	99,555
February	6,061.64	6,716.81	9.04%	10.58%	7,176	7,954	97,056	101,287
March	5,774.76	4,039.83	8.61%	6.36%	6,836	4,784	92,462	60,919
April	7,446.09	4,883.77	11.10%	7.69%	8,815	5,784	119,223	73,645
May	5,154.07	3,069.44	7.68%	4.83%	6,101	3,635	82,524	46,286
June	4,889.39	5,885.56	7.29%	9.27%	5,788	6,970	78,286	88,752
July	6,080.65	4,837.66	9.07%	7.62%	7,198	5,729	97,360	72,950
August	6,672.25	4,733.80	9.95%	7.45%	7,899	5,606	106,833	71,384
September	4,293.99	4,031.34	6.40%	6.35%	5,083	4,774	68,753	60,791
October	4,697.17	3,805.72	7.00%	5.99%	5,560	4,507	75,209	57,389
November	5,082.75	6,753.50	7.58%	10.63%	6,017	7,998	81,382	101,840
December	4,682.79	8,145.08	6.98%	12.83%	5,543	9,646	74,978	122,824
Total	67,073.28	63,504.52	100%	100%	79,401	75,206	1,073,943	957,621

Attachment E Heating Values of Wood Products

Emission Factors for Greenhouse Gas Inventories

Last Modified: 4 April 2014

Red text indicates an update from the 2011 version of this document.

Typically, greathouse gae emissions are reported in units of carbon dioxide equivalent (CC₂e). Gases are converted to CC₂e by multiplying by their global warming potential (GWP). The emissions by the corresponding GWP listed in the total below.

Gas	100-year GWP
CH ₄	25
N-O	296

Source: Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report (AR4), 2007. See the source note to Table 9 for further explanation.

Stationary Combustion Emission Factors

Fuel Type	Heating Value	A CO Factor	SUPL PACTOR	WAY Lactor	ECUY FACTOR	CH, Factor		Unit
	mmBtu per short ton	kg CO ₇ per mm8tu	g CH, per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per short ton	g CH, per short ton	g N ₂ O per short ton	
Coal and Coke								
inthracite Coal	25.09	103.89	11	1,6	2,802	276	40	shert to
lituminous Coal	24.93	93.26	11	1.8	2,325	274	40	shert to
ub-bituminous Cost	17.25	97 17	11	1.6	1,876	190	26	shart to
Ignito Coal	14.21	97.72	11	1,6	1,366	156	23	shert to
Rixed (Commerciei Sector)	21.39	94.27	11	1.8	2,016	235	34	shert to
fixed (Electric Power Sector)	19.73	95.52	11	1.6	1,865	217	32	short to
Aixed (Industriel Coking)	28.26 22.35	93.90 94.87	11	1,6 1.6	2,468 2,116	269 246	42 36	short to
fixed (Industrial Sector)	24.80	113,67	11	1.6	2,819	273	40	short to short to
Fossil Fuel-derived Fue(s (Solid)	(9228.2-93228)		(2) G (3) (4) (4) (4)	Carrante Chicago			2012 OC 200 XX	PLANTE CONSTR
funicipal Solid Waste	9.95	90,70	32	4.2	602	316	42	short to
etroleum Coke (Solid)	30.00	102.41	32	4.2	3,072	980	126	short to
lastics .	38.00	75.00	32	4.2	2,850	1,216	160	shert to
Ires	28.00	85.97	32	4.2	2,407	696	118	shert to
MARKET CONTROL OF THE PARTY AND A CALL MEDICAL PROPERTY.	CONGRESSION		200000000000000000000000000000000000000	10000			0.00	
gricultural Byproducts	8.25	116.17	32	4.2	975	264	35	short to
rest	6.00	111.84	32	4.2	895	256	34 44	short to
iolid Byproducts	10.38 17.48	105.51 93.80	7.2	4.2 3.6	1,096 1,640	332 126	63	short to
Vocd and Wood Residuals	mmBtu per sc1	kg GO ₁ per	g CH, per mmBtu	g N ₂ O per mm8tu	kg CO, per sef	g CH, per scf	g N ₂ O per scf	short to
0,4	1 00 (25 6) 4	nenBlu			のおいまなのであれ	Mark States		
v Netural Gas v.		AP STATE OF THE	TAKE TRANS		the substitute of	erio-ficient		100
atural Gas (per scf)	0.001028	53.06	1.0	0.10	0.05444	0.00103	0.00910	801
Fossil-derived Fuels (Gasagus)	OF THE REAL PROPERTY.	100 TO 100 T	900000000			AMERICAN DE	0.576.400	1400-000
last Furnace Gas	0.000092	274.32	0.022	0.10	0.02524	0.000002	0.000009	scf
dke Ovan Gas ual Gas	0.000599	46.85 59.00	0.48 3.0	0.10	0.02806	0.000288	0.000080	acf acf
	0.001388	61.48	0.022	0.10	0.08169 0.15463	0.004164 0.000055	0.000833	acf
ropane Ges Biomass Fuels (Gesedus)	TEATE TEATURE TO	F-12-7-12-7-12-7-12-7-12-7-12-7-12-7-12-	0.022		0.15403	V.000033	V.000232	10200
andfill Gas	0.000485	52.07	3.2	0.63	0.025254	0.001552	0.000306	8cf
ther Blomass Gases	0.000855	52.07	3.2	0.63	0.034106	0.002096	0.000413	sof
	mmilitu per gallon	kg CO ₂ per	g CH ₄ per menBtu	g N ₂ O per mmBtu	kg CO ₁ per gallon	g CH, per gason	g N ₂ O per gallon	100
	0.6 10.15.2	mmBtu						
Petroleum Products	144 425 245				40000		30,000	
sphalt and Road Oil	0,158	75.36	3.0	0.60	11.91	0.47	0.09	gallan
viation Gasoline	0.120	69,25	3.0	0.60	8.31 6.67	0.36	0.07	gallon
tutane	0.103 0.105	64.77 66.72	3.0	0,80 0.80	7.22	0.31	0.06	gallon
ulylena rude Oli	0.138	74.54	3.0	0.60	10.29	0.41	0.08	gallon gallon
istillate Fuel Oil No. 1	0.139	73.25	3.0	0,60	10.18	0.42	0.08	gation
istillate Fuel Oil No. 2	0.138	73.96	3,0	0.60	10.21	0.41	0.08	gallon
listillate Fua! Oii Na. 4	0.148	75.04	3.0	0,60	10,98	0.44	0.09	gallan
thane	0.068	59.60	3.0	0.60	4.05	0.20	0.04	gallen
thylene	0.056	65.96	3.0	0.80	3.83	0.17	0.03	gation
leavy Ges Olis	0.148	74.92	3.0	0,80	11.09	0.44	0.09	gation
entane	0.099	64.94	3.0	0.80	6.43	0.30	0.06	gallon
sebutylene	0.103 0.135	68,85 75,20	3.0	9.60 9.60	7 09 10,15	0.31	0.06	gallen
erosene erosene-type Jet Fuel	0.135	72.22	3.0	0.60	9,75	0.41	0.08	gallor
iquefied Petroleum Gases (LPG)	0.092	81.71	3.0	0.80	5.68	0.28	0.06	galler
ubricants	0.144	74.27	3.0	0.80	10.69	0.43	0.09	gailon
fotor Gasoline	0.125	70.22	3,0	0.60	8.78	0.38	0.08	galler
lephths (<401 dog F)	0.125	68.02	3.0	0.80	8.50	0.36	0.08	galler
latural Gasoline	0.110	66.68	3.0	0.60	7.36	0,33	0.07	gallen
other Oil (>401 deg F)	0,139	78,22	3.0	0,60	10.59	0.42	0.08	galien
entanes Plus	0.110 0.125	70.02 71.02	3.0	0.60	7.70 8.88	0,33 0,38	0.07	galler
etrochemical Faedstocks etrolaum Coke	0.143	102.41	3.0	0,60	14.64	0.38	90.09	gallen
ropane	0.091	82.87	3.0	0.00	5.72	0.43	0.05	gallon
ropylens	0.091	65.95	3.0	0.80	6.00	0.27	0.05	gallon
esidual Fuel Oli No. 5	0.140	72.93	3.0	0.80	10.21	0.42	0.98	gallon
esidus! Fuel Oil No. 6	0.150	75.19	3.0	0.60	11.27	0.45	0.09	gallon
pocial Naphtha	0.125	72.34	3.0	0.80	9.04	0.38	0.08	galler
til Gas	0.143	66.72	3.0	9.80	9,54	0,43	0.99	gellon
nfinished Oils	0,139	74.54	3.0	0.80	10.38	0.42	0.08	gallon
sed Oil	0.138	74.00	3.0	0.60	10.21	0.41	0.08	gallon
	0.000		1.1	0.11	0.46			
iodiesel (100%) thanol (100%)	0.128 0.084	73.84 68.44	1,1	0.11 0.11	8.45 5.75	0.14	0.01	gailor
endered Animal Fat	0.125	71.06	1.1	0.11	8.88	0.09	0.01	gallon gallan
	0.120	81.55	1.1	0.11	9.79	0.13	0.01	gallan
					V.70	5,15	2.01	
egetable Oil	mmilitu per gallon	kg CO, per	g CH, per menBtu	g N ₂ O per mmBtu		的数据的证据的		ALC: NOW
		kg CO; per mm8tu	g CHL per nenStu	g N ₂ O per mmBtu				

Sold; gassours, Rjuid and blomass fuels: Federal Register (2009) EPA: 40 CFR Parts 88, 87, 89 et al; Mandatory Reporting of Greenhouse Gasses, Final Rule, 300x109, 261 pp. Tables C-1 and C-2 at FR pp. 58409-58410, Revised emission factors for selected fuels: Federal Register (2010) EPA: 40 CFR Part 88, Mandatory Reporting of Greenhouse Gasser, Final Rule, 170x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions to the Greenhouse Gasser, Final Rule, 170x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions to the Greenhouse Gasser, Final Rule, 170x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions to the Greenhouse Gasser, Final Rule, 170x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for the Greenhouse Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for the Greenhouse Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of Final 2013 Retristions for Gasser, Final Rule, 130x10, 81 pp. 1961, With Amendments from Memo: Table of

Separa and Not Water, EPA (2008) Climate Leacher Greenhouse Gea Inventory Protocol Care Module Guidance - Indirect Emissions from Purchase/Sales of Electricity and Steam. Assumption: 80% boller afficiency and feel type assumed natural gas. Factors are per mmBlu of steam or holl water purchased.

http://www.eps.acv/ahareporting/documente/pdi/2013/documents/mento-2013-lechnical-revisions.pdf http://www.eps.acv/ahareporting/reporters/subpart/c.html

Attachment F Draft Emission Reduction Credit Certificates

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
22,809 lbs	20,168 lbs	19,717 lbs	21,221 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Arnaud Marjollet, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
54,424 lbs	47,737 lbs	46,597 lbs	50,405 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director APCO

Arnaud Marjollet, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
7,619 lbs	6,656 lbs	6,491 lbs	7,040 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director APCO

Arnaud Marjollet, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

9000 ROAD 234

TERRA BELLA, CA

For SOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
5,028 lbs	4,439 lbs	4,338 lbs	4,674 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Arnaud Marjoilet, Director of Permit Services

Visalia Newspapers, Inc. P.O. Box 31, Visalia, CA 93279 559-735-3200 / Fax 559-735-3210

Certificate of Publication

RECEIVED

SEP 2 2 2015

Permits Services SJVAPCD

5-1141060

02406452

4153.71

State Of California ss: **County of Tulare**

Advertiser:

CALIFORNIA NEWSPAPER SERV/TUL

915 E FIRST ST

LOS ANGELES

. CA

90012

Order # 0000695055

RE: NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION

Accounting Clerk, for the below mentioned newspaper(s), am over the age of 18 years old, a citizen of the United States and not a party to, or have interest in this matter. I hereby certify that the attached advertisement appeared in said newspaper on the following

Newspaper: Visalia Times Delta

9/3/2015

I acknowledge that I am a principal clerk of said paper which is printed and published in the City of Visalia, County of Tulare, State of California. The Visalia Times Delta was adjudicated a newspaper of general circulation on July 25, 2001 by Tulare County Superior Court Order No. 41-20576. The Tulare Advance Register was adjudicated a newspaper of general circulation on July 25, 2001 by Superior Court Order No. 52-43225.

I declare under penalty of perjury that the is true and correct. Executed on day of in Visalia, California.

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Policition Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation (EKCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOX/yr, 18,479 lb-SOX/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

No comments were received follow-ing the District's preliminary decision on this project.

The application review for Project #5-1141060 is available for public inspection at http://www.valleyair.org specion at http://www.valleyair.org /notices/public notices_idx.htm, the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERS-FIELD, CA. 93308, and at any other District office. For Monthly Infor-mation, Please Contest the District #16611 392-5500. OS-27906718

VISALIA TIMES-DELTA #695055

Wist serve

AUG 31 2015

SJVUAPCD

PUBLIC NOTICE CHECK LIST

PROJECT #: S-834 PROJECT #: S-1141060

REQST. 90MPL.
√ <u>∨</u>
$\frac{}{}$
$\sqrt{}$

ERC FINAL PUBLIC NOTICE

Newspaper Notice Emailed to Clerical (Check box and tab to generate Notice) Send email to "OA-PublicNotices" containing the following: SUBJECT: facility name, facility id#, project #, type of notice (prelim/final) BODY: project description and why it is being noticed (Emission Reduction Credit banking)

ENCLOSED DOCUMENTS REQUIRE:

V	Enter Correct Date, Print All Documents from File and Obtain Director's
- V	Signature and District Seal Embossed on ERC Certificates
$\sqrt{}$	Email FINAL Newspaper Notice for Publication in Visalia Times-Delta Pub
	Date: 9-3-2015
√ V	Mail FINAL Notice Letter to Applicant by Certified Mail including the
	following attachments: √ Original ERC Certificates 5 - 4585 - 2, -3, -4, and -5
	V Original ERC Certificates 5 − 45 8 5 7 7 , 47 to 7
11/	Email FINAL Public Notice package to EPA
V 1	
Y V	Email FINAL Public Notice package to CARB
Y 1/2/	Email FINAL Newspaper Notice, Aviso en Español and Public Notice
11	package to "webmaster" weblam
V	After posted on website, send email with weblink of Newspaper notice,
	Aviso en Español, and full public notice package to:
	specific [C, S, or N] region and District wide permitting notification list- in the state of the
	serves (both English and Spanish list serves)
	√ facility specific distribution list, (AQE – enter email address from PAS
	facility details notifications tab, if none enter NONE below):
. /	[email address]
1	Mail the newspaper notice and aviso en español (NN/AE), or full public
	notice package (FPNP) to the persons on facility specific distribution list,
1	as follows (entered by AQE, if none, enter NONE below):
	NN/AE or FPNP Name/address:[names]
11/	□NN/AE or □FPNP Name/address:[names]
V /	Send FINAL Public Notice package to EDMS Assign Mailing Date AUG 3 1 2015
<u> </u>	ricolgit Walling Buto
	Other Special Instructions (please specify):
Data Cample	stad August 25, 2015/Dy Hamara Damiraz
Date Comple	eted August 25, 2015/By Homero Ramirez
	Webteam

5Y841m10 # C21006452

CALIFORNIA NEWSPAPER SERVICE BUREAU

DAILY JOURNAL CORPORATION

Mailing Address: 915 E FIRST ST, LOS ANGELES, CA 90012 Telephone (213) 229-5300 / Fax (213) 229-5481 Visit us @ WWW.LEGALADSTORE.COM

Yolanda SAN JOAQUIN VALLEY AIR POLL CONTROL DIST 1990 E. GETTYSBURG AVE. FRESNO, CA 93726

COPY OF NOTICE

Notice Type: GPN GOVT PUBLIC NOTICE

Ad Description ERC Final Public Notice, Sierra Power Corporation;

To the right is a copy of the notice you sent to us for publication in the VISALIA TIMES-DELTA. Please read this notice carefully and call us with any corrections. The Proof of Publication will be filed with the County Clerk, if required, and mailed to you after the last date below. Publication date(s) for this notice is (are):

09/03/2015

CNS 2790671

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Siema Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terns Bella. The quantity of ERCs to be issued is 83,915 ib-NOxlyr, 18,479 ib-SOxlyr, 27,806 ib-PM10/yr, and 199,163 ib-CO/yr.

No comments were received following the District's preliminary decision on this project.

The application review for Project #\$5-1141060 is available for public inspection at http://www.valleyair.org/notices/public_notices/documents/documents/doc

Daily Journal Corporation

Serving your legal advertising needs throughout California. Call your local

BUSINESS JOURNAL, RIVERSIDE	(951) 784-0111
DAILY COMMERCE, LOS ANGELES	(213) 229-5300
LOS ANGELES DAILY JOURNAL, LOS ANGELES	(213) 229-5300
ORANGE COUNTY REPORTER, SANTA ANA	(714) 543-2027
SAN DIEGO COMMERCE, SAN DIEGO	(619) 232-3486
SAN FRANCISCO DAILY JOURNAL, SAN FRANCISCO	(800) 640-4829
SAN JOSE POST-RECORD, SAN JOSE	(408) 287-4866
THE DAILY RECORDER, SACRAMENTO	(916) 444-2355
THE DAILY TRANSCRIPT, SAN DIEGO	(619) 232-3486
THE INTER-CITY EXPRESS, OAKLAND	(510) 272-4747

From: Yolanda Alvarez

Sent: Monday, August 31, 2015 9:40 AM

To: Gerardo Rios EPA (SJV_T5_Permits@epa.gov); Mike Tollstrup (mtollstr@arb.ca.gov)

Subject: ERC Final Public Notice for Sierra Power Corporation; Facility: S-834, Project# S-1141060

Attachments: FINAL S-1141060.pdf; Newspaper.pdf

Importance: High

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

Yolanda R. Alvarez

Office Assistant ||

San Jouquin Valley APCD

1990 & Gettysburg Avenue

Fresno, CA-93726

yolanda.alvarez@valleyair.org Service * Teamwork * Attitude * Respect

From:

Microsoft Outlook

To:

Gerardo Rios EPA (SJV_T5_Permits@epa.gov)

Sent:

Monday, August 31, 2015 9:40 AM

Subject:

Relayed: ERC Final Public Notice for Sierra Power Corporation; Facility: S-834, Project#

S-1141060

Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server:

Gerardo Rios EPA (SJV T5 Permits@epa.gov) (SJV T5 Permits@epa.gov) <mailto:SJV T5 Permits@epa.gov>

Subject: ERC Final Public Notice for Sierra Power Corporation; Facility: S-834, Project# S-1141060

From:

Yolanda Alvarez

Sent:

Monday, August 31, 2015 9:42 AM

To:

WebTeam

Subject:

valleyair.org update: ERC Final Public Notice for Sierra Power Corporation; Facility:

S-834, Project# S-1141060

Attachments:

FINAL S-1141060.pdf; Newspaper.pdf; Aviso.pdf

August 31, 2015 (Facility S-834 Project S-1141060) NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

Newspaper Notice

Aviso

Public Notice Package

Yolanda R. Alvarez

Office Assistant ||

San Joaquin Valley APCD

1990 & Gettysburg Avenue

Fresno, CA-93726

volanda alvarez@vallevair.org

yolanda.alvarez@valleyair.org
Service*Teamwork*Attitude*Respect

AVISO DE DECISIÓN FINAL PARA LA OTORGACIÓN DE CERTIFICADOS DE REDUCCIÓN DE EMISIONES

POR EL PRESENTE SE NOTIFICA que el Oficial para el Control de la Contaminación del Aire a otorgado Certificados de Reducción de Emisiones (ERCs, por sus siglas en inglés) a Sierra Power Corporation por la reducción de emisiones generadas por el cierre de una planta de cogeneración de biomasa, en 9000 Road 234 in Terra Bella. La cantidad de ERCs que serán otorgados son 83,915 lb-NOx/año,18,479 lb-SOx/año, 27,806 lb-PM10/año, y 199,163 lb-CO/año..

No se recibieron comentarios acerca de este proyecto despues del aviso de decisión preliminar del Distrito.

La revisión de la solicitud del Proyecto #S-1141060 está disponible para la inspección del público en http://www.valleyair.org/notices/public_notices_idx.htm, el DISTRITO PARA EL CONTROL DE LA CONTAMINACIÓN DEL AIRE DEL VALLE DE SAN JOAQUIN, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308, y en cualquiera de las oficinas del Distrito. Para más información en Español, por favor comuníquese con el Distrito al (661) 392-5500.

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

No comments were received following the District's preliminary decision on this project.

The application review for Project #S-1141060 is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm, the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308, and at any other District office. For additional information, please contact the District at (661) 392-5500.

From:

Yolanda Alvarez

Sent:

Wednesday, September 2, 2015 1:23 PM

To:

All Region (Notices_of_Permitting_Actions-All_Regions@lists.valleyair.org); South

(Notices_of_Permitting_Actions-Southern_Region@lists.valleyair.org)

Subject:

Public Notice on Permitting Action S-1141060

The District has posted a new permitting public notice. The public notice can be viewed on our website at: http://www.valleyair.org/notices/Docs/2015/08-31-15 (S-1141060)/Newspaper.pdf

For a list of public notices and public notice packages, please visit our website at: <a href="http://www.valleyair.org/notices/public notices-idx.htm#PermittingandEmissionReductionCreditCertificateNotices-idx.htm#PermittingandEmissionReductionRe

Thank you,

Yolanda R. Alvarez

Office Assistant ||
San Joaquin Valley APCD
1990 & Gettysburg Avenue
Fresno, CA 93726

yolanda.alvarez@valleyair.org Service * Teamwork * Attitude * Respect

From:

Yolanda Alvarez

Sent:

Wednesday, September 2, 2015 1:23 PM

To:

All Spanish (Avisos_Sobre_Acciones_de_Permisos-Todos@lists02.valleyair.org)

Subject:

Aviso Publico Sobre Acciones de Permisos S-1141060

El Distrito del Aire a publicado un nuevo aviso público de permiso. El aviso público se puede ver en nuestro sitio de web en: http://www.valleyair.org/notices/Docs/2015/08-31-15 (S-1141060)/Aviso.pdf

Para obtener una lista de avisos públicos y paquetes de avisos públicos, por favor visite nuestro sitio de web en:

http://www.valleyair.org/notices/public notices idx.htm#PermittingandEmissionReductionCreditCertificateNotices

Gracias,

Yolanda R. Alvarez Office Assistant || San Joaquin Valley APCD 1990 & Gettysburg Avenue Fresno, CA-93726

yolanda.alvarez@valleyair.org
Service * Teamwork * Attitude * Respect

AUG 3 1 2015

Kent Duysen Sierra Power Corporation P O Box 10050 Terra Bella, CA 93270

RE: Notice of Final Action - Emission Reduction Credits

> Facility Number: S-834 Project Number: S-1141060

Dear Mr. Duysen:

The Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

Enclosed are the ERC Certificates and a copy of the notice of final action to be published approximately three days from the date of this letter.

Notice of the District's preliminary decision to issue the ERC Certificates was published on July 22, 2015. The District's analysis of the proposal was also sent to CARB and US EPA Region IX on July 17, 2015. No comments were received following the District's preliminary decision on this project.

Seved Sadredin

Executive Director/Air Pollution Control Officer

Northern Region 4800 Enterprise Way Modesto, CA 95356-8718 Tel: (209) 557-6400 FAX: (209) 557-6475

Central Region (Main Office) 1990 E. Gettysburg Avenue Fresno, CA 93726-0244 Tel: (559) 230-6000 FAX: (559) 230-6061

Southern Region 34946 Flyover Court Bakersfield, CA 93308-9725 Tel: 661-392-5500 FAX: 661-392-5585 Mr. Kent Duysen Page 2

Thank you for your cooperation in this matter. If you have any questions, please contact Mr. Leonard Scandura at (661) 392-5500.

Sincerely,

Arnaud Marjollet

Director of Permit Services

AM:har/ya

Enclosures

cc: Mike Tollstrup, CARB (w/enclosure) via email cc: Gerardo C. Rios, EPA (w/enclosure) via email

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate S-4585-2

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

August 26, 2015

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
22,809 lbs	20,168 lbs	19,717 lbs	21,221 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Succeed Muntle

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate S-4585-3

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

August 26, 2015

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
54,424 lbs	47,737 lbs	46,597 lbs	50,405 lbs

[] Conditions	s Attached
----------------	------------

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Sucured Mays la

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate S-4585-4

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

August 26, 2015

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
7,619 lbs	6,656 lbs	6,491 lbs	7,040 lbs

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

Queued Maystles

Arnaud Marjollet, Director of Permit Services

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate S-4585-5

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

August 26, 2015

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For SOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
5,028 lbs	4,439 lbs	4,338 lbs	4,674 lbs

7	O = 10 all 4! = 10 =	A 44 I I
1	Conditions	Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

Arnaud Marjollet, Director of Permit Services

Truewel Mayolles

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Sierra Power Corporation for emission reductions generated by the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella. The quantity of ERCs to be issued is 83,915 lb-NOx/yr, 18,479 lb-SOx/yr, 27,806 lb-PM10/yr, and 199,163 lb-CO/yr.

No comments were received following the District's preliminary decision on this project.

The application review for Project #S-1141060 is available for public inspection at http://www.valleyair.org/notices/public_notices_idx.htm, the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308, and at any other District office. For additional information, please contact the District at (661) 392-5500.

AUG 27 2015

Kent Duysen Sierra Power Corporation P O Box 10050 Terra Bella, CA 93270

RE: Emission Reduction Credits - Final Invoice

Project Number S-1141060

Dear Mr. Duysen:

The District has issued the Emission Reduction Credits (ERCs) for the above referenced project. The certificates that represent those ERCs will arrive under separate cover.

Enclosed is an invoice for the engineering evaluation fees pursuant to District Rule 3010. Please remit the amount owed, along with a copy of the attached invoice within 60 days.

Thank you for your cooperation in this matter. If you have any questions please contact Mr. Leonard Scandura at (661) 392-5500.

Sincerely,

Arnaud Marjollet

Director of Permit Services

Leonard Scandura, PE

Permit Services Manager

AM:har

Enclosure

Seyed Sadredin

Executive Director/Air Pollution Control Officer

Glenda_Sobrique

Homero Ramirez	
From:	Yolanda Alvarez
Sent:	Friday, July 17, 2015 2:20 PM
To:	Homero Ramirez
Subject:	Proof of Copy: ERC Preliminary Public Notice, Sierra Power Corporation; S-1141060, Visalia, OrderNo: 2775520
Attachments:	65d36ec6-2f5c-45b2-b077-5a505de4dff5.pdf
Importance:	High
Good Afternoon Home	ro,
Attached is the proof o	f copy for the entitled notice. Notice will print on July 22, 2015.
Thank you,	
Yolanda R. Alvarez	
Sent: Friday, July 17, 20 To: Yolanda Alvarez Cc: glenda sobrique@0	e@dailyjournal.com [mailto:glenda_sobrique@dailyjournal.com] 015 10:12 AM
Attached are the follow	ving documents:
Thank you.	

CALIFORNIA NEWSPAPER SERVICE BUREAU

DAILY JOURNAL CORPORATION

Mailing Address: 915 E FIRST ST, LOS ANGELES, CA 90012 Telephone (213) 229-5300 / Fax (213) 229-5481 Visit us @ WWW.LEGALADSTORE.COM

Yolanda SAN JOAQUIN VALLEY AIR POLL CONTROL DIST 1990 E. GETTYSBURG AVE. FRESNO. CA 93726

CNS 2775520

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollubon Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Sierra Power Corporation for the shutdown of a biomass cogeneration facility, at 9000 Road 234 in Terra Bella The quantity of ERCs proposed for banking is 83,915 Ib-NOxlyr, 18,479 Ib-SOxlyr, 27,806 Ib-PM10/yr, and 199,163 Ib-CO/yr.

PM10/yr, and 199,163 lb-CO/yr.

The analysis of the regulatory basis for this proposed action, Project #S-114/1060, is available for public inspection at http://www.valleyair.org/notices/public notices idx.htm and at any District office. For additional information, please contact the District at (661) 392-5500. Written comments on this project must be submitted by August 24, 2015 to ARNAUI MARJOLLET, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 34946 FLYOVER COURT, BAKERSFIELD, CA 93308.
7/22/15 CNS-2775520# VISALIA TIMES-DELTA

COPY OF NOTICE

Notice Type: GPN GOVT PUBLIC NOTICE

Ad Description ERC Preliminary Public Notice, Sierra Power

To the right is a copy of the notice you sent to us for publication in the VISALIA TIMES-DELTA. Please read this notice carefully and call us with any corrections. The Proof of Publication will be filed with the County Clerk, if required, and mailed to you after the last date below. Publication date(s) for this notice is (are):

07/22/2015

Daily Journal Corporation

Serving your legal advertising needs throughout California. Call your local

BUSINESS JOURNAL, RIVERSIDE	(951) 784-0111
DAILY COMMERCE, LOS ANGELES	(213) 229-5300
LOS ANGELES DAILY JOURNAL, LOS ANGELES	(213) 229-5300
ORANGE COUNTY REPORTER, SANTA ANA	(714) 543-2027
SAN DIEGO COMMERCE, SAN DIEGO	(619) 232-3486
SAN FRANCISCO DAILY JOURNAL, SAN FRANCISCO	(800) 640-4829
SAN JOSE POST-RECORD, SAN JOSE	(408) 287-4866
THE DAILY RECORDER, SACRAMENTO	(916) 444-2355
THE INTER-CITY EXPRESS, OAKLAND	(510) 272-4747

San Joaquin Valley Air Pollution Control District **ERC Application Review**

Facility Name: Sierra Power Corporation

Date: July 13, 2015

Mailing Address:

P O Box 10050

Engineer: Homero Ramirez

P 7/4/15

Terra Bella, CA 93270

Lead Engineer: Stephen Leonard

Contact Person: Kent Duysen

Telephone: (559) 535-4893

Facility ID: S-834

Project #: S-1141060

I. **SUMMARY:**

The primary business of Sierra Power Corporation (S-834) is the generation of electricity for sale and steam for use at the neighboring sawmill/lumber plant. Sierra Forest Products (S-556). Sierra Power Corporation has applied for Emission Reduction Credits (ERCs) resulting from the permanent shutdown of a 9.4 MW cogeneration system with a biomass-fired boiler (S-834-3-6) and associated fuel handling and solid material handling equipment (S-834-1-3, -6-3, and -10-2).

The equipment has been shut down and replaced by a 32 MMBtu/hr natural gas-fired boiler (S-834-7) that is now a full time unit. Previously, the boiler had been designated a standby service unit, but it has recently been retrofit with ultra-low NOx burners. Therefore, as is explained in the Calculations section, the Post-Project Potential to Emit from this 32 MMBtu/hr boiler will be subtracted from the Historic Actual Emissions to determine the Actual Emissions Reductions.

The following emission reductions have been found to qualify for ERC banking certificates. See Calculations section below.

В	Bankable Emissions Reductions Credits (ERC), lb/qtr					
Pollutant	ERC#	1 st Qtr.	2 nd Qtr.	3 rd Qtr.	4 th Qtr.	
NOx	S-4585-2	22,809	20,168	19,717	21,221	
SOx	S-4585-5	5,028	4,439	4,338	4,674	
PM10	S-4585-4	7,619	6,656	6,491	7,040	
CO	S-4585-3	54,424	47,737	46,597	50,405	
VOC		0	0	0	0	

II. APPLICABLE RULES:

Rule 2201	New and Modified Stationary Source Review Rule (4/21/11)			
Rule 2301	Emission Reduction Credit Banking (1/19/12)			
Rule 4352	Solid Fuel Fired Boilers, Steam Generators and Process Heaters			
	(12/15/11)			

III. PROJECT LOCATION:

The equipment operated at 9000 Road 234 in Terra Bella.

IV. METHOD OF GENERATING REDUCTIONS:

Actual Emission Reductions (AER) are being generated with the permanent shutdown of the following equipment:

PTO	Equipment
S-834-1-3	FUEL SCREENING AND HANDLING SYSTEM SERVED BY A HUMIDIFIER FOGGER/SPRAY SYSTEM
S-834-3-6	9.4 MW COGENERATION SYSTEM WITH 171.2 MMBTU/HR STAGED AIR BIOMASS-FIRED BOILER WITH FIRED HEAT RECOVERY STEAM GENERATOR WITH PEABODY LOW-NOX NATURAL GAS-FIRED BURNERS, AMMONIA INJECTION SYSTEM, MULTICLONES, LOW TEMPERATURE SCR EXHAUSTING TO ELECTROSTATIC PRECIPITATOR, AND FLUE GAS RECIRCULATION
S-834-6-3	ASH COLLECTION SYSTEM UTILIZING ENCLOSED AUGERS AND WATER MIST SERVING BIOFUEL BOILER (S-834-3)
S-834-10-2	FUEL HANDLING SYSTEM CONSISTING OF TWO SILOS, ONE HOG UNIT, SCREENS, AND CONVEYORS SERVED BY A HUMIDIFIER FOGGER SPRAY SYSTEM

The applicant has surrendered the four Permits to Operate identified above for the equipment in order to validate the emission reduction credits. Copies of the PTOs are included as Attachment A. As required by Rules 2201 and 2301, creditable emission reductions are to be based upon the historical actual emissions over the appropriate baseline period, and the use of acceptable emission factors.

V. CALCULATIONS:

A. Assumptions

- The actual emission reductions are from shutdown of the equipment resulting in a reduction of fuel combustion emissions from the cogeneration system (S-834-3) and the fugitive PM10 emissions from the fuel screening and handling systems (S-834-1 and -10) and the ash collection system (S-834-6).
- The steam provided by the shutdown equipment has been replaced by the boiler S-834-7. Therefore the actual emission reductions from the shutdown equipment will be reduced by the Potential Emissions for the replacement boiler.

Cogeneration system (S-834-3):

- Biomass-fired boiler (S-834-3) was fired solely on wood fuels as required by conditions 7 and 8 of its Permit to Operate. The wood fuels are separated into agricultural byproducts and wood and wood residuals for their different heating values as explained below.
- Heating value of agricultural byproducts is 8.25 MMBtu/short ton¹
- Heating value of wood and wood residuals is 17.48 MMBtu/short ton ¹
- The table below lists the amounts of fuels that have been consumed (in bone dry tons per year, BDT/yr) based on records submitted by the applicant. Such records are found in Attachment C.

Fuel Consumption (by Weight) (BDT/yr) ²				
2011 2012 201				
Agricultural byproducts	65,887	34,018	38,676	
Wood and wood residuals*	15,535	45,383	36,530	
Total	81,422	79,401	75,206	

^{*} Wood and wood residuals includes urban and sawmill chips and residue.

See EPA's Emission Factors for Greenhouse Gas Inventories available at http://epa.gov/climateleadership/documents/emission-factors.pdf in Appendix E.

Records of fuel use for calendar years 2011, 2012, and 2013 are found in Appendix C. These records are the summary data sheets for each year that were used to report GHGs to CARB under AB32, the California Global Warming Solutions Act of 2006

• The equivalent heat input rating (in MMBtu/yr) is:

Fuel Consumption (by Heat Input) (MMBtu/yr) ³				
2011 2012 2013				
Agricultural byproducts	543,568	280,649	319,077	
Wood and wood residuals	271,552	793,295	638,54	
Total	815,120	1,073,943	957,621	

- As is explained in the Baseline Period Determination section, the baseline period has been determined to be the period from the beginning of January 2012 through the end of December 2013.
- Note that the applicant has submitted copies of the annual records of fuel consumption by weight of raw material (that has been submitted to CARB to report GHGs under AB32). However, the applicant only has monthly records of fuel deliveries by weight (not the monthly records of fuel consumption). Since the fuel delivery quantities are indicative of the fuel consumption quantities (as annual records demonstrate), the monthly fuel consumption values will be estimated from the monthly fuel delivery values. The monthly proportion of fuel delivered will be multiplied by the annual fuel consumption quantity to estimate the monthly fuel consumption values. See Attachment D for the calculation of the monthly fuel consumption values.
- The monthly fuel consumption during the baseline period is listed below. These values are calculated in Attachment D.

		Calculated Fuel Consumption (BDT)		Calculated Fuel Consumption (MMBtu)	
	2012	2013	2012	2013	
January	7,384	7,819	99,875	99,555	
February	7,176	7,954	97,056	101,287	
March	6,836	4,784	92,462	60,919	
April	8,815	5,784	119,223	73,645	
May	6,101	3,635	82,524	46,286	
June	5,788	6,970	78,286	88,752	
July	7,198	5,729	97,360	72,950	
August	7,899	5,606	106,833	71,384	
September	5,083	4,774	68,753	60,791	
October	5,560	4,507	75,209	57,389	
November	6,017	7,998	81,382	101,840	
December	5,543	9,646	74,978	122,824	
Total	79,401	75,206	1,073,943	957,621	

³ The equivalent heat input rating is calculated by multiplying the amounts of the two types of fuels consumed and heating value of the corresponding type of fuel as stated above.

Fuel/ash handling equipment (S-834-1, -6, and -10):

- The amount of material handled by the fuel handling S-834-1 and S-834-10 will be equivalent to "Calculated Fuel Consumption" values identified in the table above.
- The amount of material handled by the ash collection system S-834-6 is 3,934 ton/yr (984 ton/qtr) (per the applicant as shown in Attachment C).
- Fugitive PM10 emission for each screen, hopper, and conveyor may be estimated using the AP-42 Section 13.2.4 (Aggregate Handling and Storage Piles) equation for calculation of drop point emissions from aggregate handling operations:

EF = k(0.0032)×
$$(U_5)^{1.3}$$
 / $(M_2)^{1.4}$ lb/ton
where:
k = particle size multiplier, (dimensionless)
= 0.35 for particle size < 10 μ m (i.e. PM10)
U = mean wind speed, (miles per hour)
= 5 mph (per applicant) ⁴
M = material moisture content (%)
= 4.8% (per applicant) ⁵
EF = 0.35 × (0.0032) × $(5/5)^{1.3}$ / $(4.8/2)^{1.4}$ lb/ton = 0.00033 lb/ton

- The control efficiency of 90 percent will be assumed for the water spray. 6
- The following are the emission points for the fuel screening and handling system (S-834-1), for a total of seven emission points:
 - One trommel screen

(per drop/emission point)

- o One hopper
- Five conveyors
- The following are the emission points for the ash collection system (S-834-6), for a total of one emission point:
 - o One discharge point
- The following are the emission points for the fuel handling system (S-834-10), for a total of four emission points:
 - Two storage siles
 - o One hog unit
 - o One conveyor

⁴ The 5.0 mph value proposed by the applicant is acceptable as it is less than the 6.35 mph value for Bakersfield in EPA Tanks 4.0.

⁵ Per AP-42 Section 1.6 (Wood Residue Combustion in Boilers), the moisture content of as-fired wood may vary from 5 to 75 weight percent depending on the residue type and storage operation, so the proposed value of 4.8 percent is an acceptable conservative assumption.

⁶ Per AP-42 Section 13.2.4.4 (Aggregate Handling and Storage Piles), continuous watering of materials loaded onto piles can reduce total particulate emissions from aggregate storage operations by up to 90 percent. The same control will be conservatively assumed for this operation.

B. Emission Factors

District Rule 2201, Section 3.1 defines Actual Emissions as "emissions having occurred from a source, based on source test or monitoring data, actual fuel consumption, and process data. If source test or monitoring data is not available, other appropriate, APCO-approved, emission factors may be used."

Cogeneration system (S-834-3):

 The cogeneration system (S-834-3) was source tested during the baseline period in 2012 and 2013. The source test results are found in Attachment B and summarized in the table below. The average source test emission factors calculated below will be used to determine the Actual Emission Reductions from the cogeneration system.

	Emission Factors										
	Permitted Emission Factor (lb/MMBtu)	2012 Source Test (lb/MMBtu)	2013 Source Test (lb/MMBtu)	Average Source Test Emission Factor (lb/MMBtu)							
NOx	0.108	0.098	0.0902	0.094							
SOx	0.061	0.0019	0.0397	0.021							
PM10	0.066	0.0323	0.0355	0.034							
СО	0.314	0.2377	0.2392	0.238							
VOC	0.066	0	0	0							

Fuel/ash handling equipment (S-834-1, -6, and -10):

The Emission Factor for each drop/emission point is 0.00033 lb-PM10/day.

C. Baseline Period Determination

Pursuant to Section 3.9 of Rule 2201, the Baseline Period is a period of time equal to either:

- 3.9.1 The two consecutive years of operation immediately prior to the submission date of the Complete Application; or
- 3.9.2 At least two consecutive years within the five years immediately prior to the submission date of the Complete Application if determined by the APCO as more representative of normal source operation.

⁷ Fugitive PM10 emission for each screen, hopper, and conveyor were estimated using the AP-42 Section 13.2.4 equation for calculation of drop point emissions from aggregate handling operations in Section A above.

The applicant submitted the application on March 4, 2014. The two consecutive years of operation prior to the submission of the application has been determined to be representative of normal source operation. Therefore the baseline period will be the period from the beginning of January 2012 through the end of December 2013.

D. Baseline Data

The baseline fuel use data is taken from the fuel use and production records in Attachment D.

	Baseline Fuel Consumption (MMBtu)								
Month	2012	2013	Monthly Average	Quarterly Average					
January	99,875	99,555	99,715						
February	97,056	101,287	99,171	275,577					
March	92,462	60,919	76,691	1					
April	119,223	73,645	96,434						
May	82,524	46,286	64,405	244,358					
June	78,286	88,752	83,519						
July	97,360	72,950	85,155						
August	106,833	71,384	89,108	239,035					
September	68,753	60,791	64,772						
October	75,209	57,389	66,299						
November	81,382	101,840	91,611	256,811					
December	74,978	122,824	98,901	1					

	Baseline Fuel Consumption (BDT)								
Month	2012	2013	Monthly Average	Quarterly Average					
January	7,384	7,819	7,601						
February	7,176	7,954	7,565	20,977					
March	6,836	4,784	5,810	1					
April	8,815	5,784	7,299						
May	6,101	3,635	4,868	18,546					
June	5,788	6,970	6,379						
July	7,198	5,729	6,464						
August	7,899	5,606	6,752	18,145					
September	5,083	4,774	4,929						
October	5,560	4,507	5,034						
November	6,017	7,998	7,007	19,636					
December	5,543	9,646	7,595						

E. Historical Actual Emissions (HAE)

HAE - Combustion Emissions

The HAE due to the combustion emissions are determined by multiplying the quarterly fuel use by the emission factors presented above.

	HAE from Fuel Use (S-834-3) - Quarter 1									
NO _x	0.094	lb/MMBtu x	275,577	MMBtu/qtr =	25,904	lb/qtr				
SO _x	0.021	lb/MMBtu x	275,577	MMBtu/qtr =	5,787	lb/qtr				
PM10	0.034	lb/MMBtu x	275,577	MMBtu/qtr =	9,370	lb/qtr				
CO	0.238	lb/MMBtu x	275,577	MMBtu/qtr =	65,587	lb/qtr				
VOC	0	lb/MMBtu x	275,577	MMBtu/qtr =	0	lb/qtr				
		HAE from Fu	el Use (S-83	34-3) - Quarter 2	<u>}</u>					
NO _x	0.094	lb/MMBtu x	244,358	MMBtu/qtr =	22,970	lb/qtr				
SOx	0.021	lb/MMBtu x	244,358	MMBtu/qtr =	5,132	lb/qtr				
PM10	0.034	lb/MMBtu x	244,358	MMBtu/qtr =	8,308	lb/qtr				
CO	0.238	lb/MMBtu x	244,358	MMBtu/qtr =	58,157	lb/qtr				
VOC	0	lb/MMBtu x	244,358	MMBtu/qtr =	0	lb/qtr				
		HAE from Fu	el Use (S-83	34-3) - Quarter 3	3					
NOx	0.094	lb/MMBtu x	239,035	MMBtu/qtr =	22,469	lb/qtr				
SOx	0.021	lb/MMBtu x	239,035	MMBtu/qtr =	5,020	lb/qtr				
PM10	0.034	lb/MMBtu x	239,035	MMBtu/qtr =	8,127	lb/qtr				
CO	0.238	lb/MMBtu x	239,035	MMBtu/qtr =	56,890	lb/qtr				
VOC	0	lb/MMBtu x	239,035	MMBtu/qtr =	0	lb/qtr				
		HAE from Fu	iel Use (S-83	34-3) - Quarter 4	<u> </u>					
NO _x	0.094	lb/MMBtu x	256,811	MMBtu/qtr =	24,140	lb/qtr				
SO _x	0.021	lb/MMBtu x	256,811	MMBtu/qtr =	5,393	lb/qtr				
PM10	0.034	lb/MMBtu x	256,811	MMBtu/qtr =	8,732	lb/qtr				
CO	0.238	lb/MMBtu x	256,811	MMBtu/qtr =	61,121	lb/qtr				
VOC	0	lb/MMBtu x	256,811	MMBtu/qtr =	0	lb/qtr				

HAE - Fuel Handling Emissions

	HAE from Fuel Screening and Handling System (S-834-1)								
Qtr 1: PM ₁₀	0.00033	lb/ton per emission point x	20,977	ton/qtr x	7	Emission points =	48	lb/qtr	
Qtr 2: PM ₁₀	0.00033	lb/ton per emission point x	18,546	ton/qtr x	7	Emission points =	43	lb/qtr	
Qtr 3: PM ₁₀	0.00033	lb/ton per emission point x	18,145	ton/qtr	7	Emission points =	42	lb/qtr	
Qtr 4: PM ₁₀	0.00033	lb/ton per emission point x	19,636	ton/qtr x	7	Emission points =	45	lb/qtr	

	HAE from Fuel Handling System (S-834-10)								
Qtr 1: PM ₁₀	0.00033	lb/ton per emission point x	20,977	ton/qtr x	4	Emission points =	28	lb/qtr	
Qtr 2: PM ₁₀	0.00033	lb/ton per emission point x	18,546	ton/qtr x	4	Emission points =	25	lb/qtr	
Qtr 3: PM ₁₀	0.00033	lb/ton per emission point x	18,145	ton/qtr x	4	Emission points =	24	lb/qtr	
Qtr 4: PM ₁₀	0.00033	lb/ton per emission point x	19,636	ton/qtr x	4	Emission points =	26	lb/qtr	

	HAE from Ash Handling (S-834-6)									
Qtr 1: PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr x	1	Emission points =	0.3 → 0	lb/qtr		
Qtr 2: PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr ×	1	Emission points =	0.3 → 0	lb/qtr		
Qtr 3; PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr ×	1	Emission points =	0.3 → 0	lb/qtr		
Qtr 4: PM ₁₀	0.00033	lb/ton per emission point x	984	ton/qtr x	1	Emission points =	0.3 → 0	lb/qtr		

The total HAE (lb/qtr), which is the sum of the HAE for S-834-1, -3, -6, and -10 is calculated below:

	Total HAE (lb/qtr)									
	Quarter 1									
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE					
NO _x	25,904	0	0	0	25,904					
SO _x	5,787	0	0	0	5,787					
PM ₁₀	9,370	48	0	28	9,446					
CO	65,587	0	0	0	65,587					
VOC	0	0	0	0	0					
			Quarter 2							
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE					
NO _x	22,970	0	0	0	22,970					
SO _x	5,132	0	0	0	5,132					
PM ₁₀	8,308	43	0	25	8,376					
CO	58,157	0	0	0	58,157					
VOC	0	0	0	0	0					
			Quarter 3							
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE					
NO _x	22,469	0	0	0	22,469					
SO _x	5,020	0	0	0	5,020					
PM ₁₀	8,127	42	0	24	8,193					
CO	56,890	0	0	0	56,890					
VOC	0	0	0	0	0					
			Quarter 4							
	S-834-3	S-834-1	S-834-6	S-834-10	Total HAE					
NO _x	24,140	0	0	0	24,140					
SO _x	5,393	0	0	0	5,393					
PM ₁₀	8,732	45	0	26	8,803					
CO	61,121	0	0	0	61,121					
VOC	0	0	0	0	0					

F. Adjustments to HAE

Pursuant to Section 3.22, Historical Actual Emissions must be discounted for any emissions reduction which is:

- required or encumbered by any laws, rules, regulations, agreements, orders, or
- attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or
- proposed in the District Air Quality Plan for attaining the annual reductions required by the California Clean Air Act.

- Any Actual Emissions in excess of those required or encumbered by any laws, rules, regulations, orders, or permits. For units covered by a Specific Limiting Condition (SLC), the total overall HAE for all units covered by SLC must be discounted for any emissions in excess of that allowed by the SLC.
- a. There are no agreements or orders regarding the operation or emissions reductions associated with the cogeneration system or its fuel handling operations. The discounts for any Rules will be discussed under the applicable Rules listed below. Therefore, no adjustments will be made to the HAE under this section.
- b. There are no reductions from the cogeneration system or its fuel handling operations that are attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan. Therefore, no adjustment to the HAE will be made in this section.
- c. There are no reductions from the cogeneration system or its fuel handling operations that are proposed in the District Air Quality Plan for attaining the annual reductions required by the California Clean Air Act. Therefore, no adjustments will be made to the HAE under this section.
- d. There are no SLCs related to the operation of the cogeneration system or its fuel handling operations. The emissions were taken from the permit limits or lower (source test results). Any adjustments to be made for any Rules will be addressed under the applicable Rules listed below. Therefore, no adjustments will be made to the HAE under this section.

The emission units comply with all NSR requirements and Federal Requirements. No adjustments to the HAE are required under Rule 2201.

G. Actual Emissions Reductions (AER)

Actual Emissions Reductions are calculated as follows:

AER = HAE - PE2

Where:

HAE = Historic Actual Emissions PE2 = Post-project Potential to Emit

The shutdown equipment was replaced by a 32 MMBtu/hr natural gas-fired boiler (S-834-7), which has been retrofit with ultra-low NOx burners and is now allowed to operate as a full time unit. This boiler had not operated during the baseline period. After its retrofit, it is now able to operate full time, and it now supplies the process steam that the shutdown equipment did.

The Post-Project Potential to Emit (PE2) of for boiler S-834-7 is calculated below with the following equation:

■ PE2 = EF (lb/MMBtu) × Heat Input (MMBtu/hr) × Op. Sched. (hr/year)

	PE2 for S-834-7							
Pollutant	EF2 (lb/MMBtu)	Heat Input (MMBtu/hr)	Operating Schedule (hr/year)	Annual PE2 (lb/year)	PE2 (lb/qtr)			
NO _X	0.008	32	8,760	2,243	561			
SO _X	0.00285	32	8,760	799	200			
PM ₁₀	0.014	32	8,760	3,924	981			
СО	0.073	32	8,760	20,463	5,116			
VOC	0.003	32	8,760	841	210			

Actual Emissions Reductions are calculated in the table below:

	Total HAE (lb/qtr)							
Quarter 1								
	HAE	PE2	AER = HAE - PE2					
NO _x	25,904	561	25,343					
· SO _x	5,787	200	5,587					
PM ₁₀	9,446	981	8,465					
СО	65,587	5,116	60,471					
VOC	0	210	-210 → 0					
		Quarter 2						
	HAE	PE2	AER = HAE – PE2					
NO _x	22,970	561	22,409					
SO _x	5,132	200	4,932					
PM ₁₀	8,376	981	7,395					
CO	58,157	5,116	53,041					
VOC	0	210	-210 → 0					
		Quarter 3						
	HAE	PE2	AER = HAE - PE2					
NO _x	22,469	561	21,908					
SO _x	5,020	200	4,820					
PM ₁₀	8,193	981	7,212					
CO	56,890	5,116	51,774					
VOC	0	210	-210 → 0					

		Quarter 4	
	HAE	PE2	AER = HAE - PE2
NO _x	24,140	561	23,579
SO _x	5,393	200	5,193
PM ₁₀	8,803	981	7,822
CO	61,121	5,116	56,005
VOC	0	210	-210 → 0

H. Air Quality Improvement Deduction (AQID)

The Air Quality Improvement Deduction (AQID) is 10% of the AER per Rule 2201, subsection 6.5, and is summarized as follows:

	Air Quality Improvement Deduction (Ib/qtr)									
Quarter	Quarter NOx SOx PM10 CO VOC									
1 st	2,534	559	847	6,047	0					
2 nd	2,241	493	740	5,304	0					
3 rd	2,191	482	721	5,177	0					
4 th	2,358	519	782	5,601	0					

I. Bankable Emissions Reductions Credits

The total bankable emissions reductions for ERC are equal the AER minus the air quality improvement deduction calculated above. The amount of bankable emission reductions are listed in the table below:

В	Bankable Emission Reductions Credits (lb/qtr)							
Quarter	NOx	SOx	PM10	СО	VOC			
1 st	22,809	5,028	7,619	54,424	0			
2 nd	20,168	4,439	6,656	47,737	0			
3 rd	19,717	4,338	6,491	46,597	0			
4 th	21,221	4,674	7,040	50,405	0			

VI. COMPLIANCE:

Rules 2201 (New and Modified Stationary Source Review Rule) and 2301 (Emission Reduction Banking)

To be eligible for banking, emission reduction credits (ERCs) must be verified as being real, surplus, permanent, quantifiable, and enforceable pursuant to District Rules 2201 and 2301. In addition, the application must be submitted within the timeliness specified in Rule 2301.

A. Real

The Actual Emission Reductions (AERs) quantified above were based on actual, historical emissions and were calculated from source test results, recognized emission factors, and actual fuel consumption data supplied by the applicant. The equipment under permits S-834-1, -3, -6, and -10 has been shut down and the Permits to Operate have been surrendered. The voluntary shutdown of the equipment results in actual emission reductions; therefore, the reductions are real.

B. Enforceable

Permits to Operate S-834-1, -3, -6, and -10 have been surrendered. Any new equipment placed at this location will be required to obtain an Authority to Construct and a Permit to Operate subject to the provisions of New and Modified Stationary Source Review (Rule 2201) prior to operation. Thus, the quantified AER is enforceable.

C. Quantifiable

The actual emission reductions (AER) quantified above are based on actual, historical emissions calculated from fuel use data, source tests, and emission factors. Therefore, the AER is quantifiable.

D. Permanent

The permittee permanently shut down the equipment, and surrendered their valid Permits to Operate. Therefore, the AERs are permanent.

E. Surplus

The shutdown of the equipment was voluntary. The resulting emission reductions are not mandated by any law, rule, regulation, agreement, or order of the District, State, or Federal Government. Additionally, the reductions are not attributed to a control measure noticed for workshop or proposed, nor contained in a State Implementation Plan. Therefore, the reductions are surplus.

F. Timeliness

The permits were surrendered with the ERC application on March 4, 2014 with the submission of this ERC banking application. Because the ERC application was submitted within 180 days after the date that shutdown occurred, the application is timely.

Rule 4352 (Solid Fuel Fired Boilers, Steam Generators and Process Heaters)

The purpose of this rule is to limit emissions of NOx and CO from solid fuel fired boilers, steam generators and process heaters. Shutdown biomass-fired boiler S-834-6 was subject to this rule.

The permitted emission limits of the shutdown boiler were in compliance with this rule. The boiler had been limited to NOx emissions of 84 ppmvd @ 3% O2 (0.108 lb/MMBtu) and CO emissions of 400 ppmvd @ 3% O2 (0.314 lb/MMBtu). These limits comply with the requirements of Table 1 (NOx and CO Emission Limits) of Section 5.1 which limit NOx emissions to 90 ppmv corrected to 3% O2 and CO emissions to 400 ppmv corrected to 3% O2 for operations using biomass fuel, effective on and after January 1, 2013.

There are no further reduction in emission limit scheduled by the rule. And there are no other agreements or orders regarding the operation or emissions reduction associated with the cogeneration system. Therefore, no adjustments need to be made to the HAE as is discussed in Section V.F. (Calculations, Adjustments to HAE) of this evaluation.

VII. RECOMMENDATION:

After public notice, comments and review, issue ERC Banking Certificates S-4585-2, '-3, '-4, and '-5 to Sierra Power Corporation for the following amounts:

Bankable Emissions Reductions Credits (ERC), lb/qtr									
Pollutant	ERC#	1 st Qtr.	2 nd Qtr.	3 rd Qtr.	4 th Qtr.				
NOx	S-4585-2	22,809	20,168	19,717	21,221				
SOx	S-4585-5	5,028	4,439	4,338	4,674				
PM10	S-4585-4	7,619	6,656	6,491	7,040				
CO	S-4585-3	54,424	47,737	46,597	50,405				
VOC		0	0	0	0				

Attachments:

- A Copies of Permits to Operate
- B Source Test Results
- C Fuel Consumption Records
- D Calculation of Monthly Fuel Consumption
- E Heating Values for Wood Products
- F Draft Emission Reduction Credit Certificates

Attachment A Copies of Permits to Operate

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-1-3

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

FUEL SCREENING AND HANDLING SYSTEM SERVED BY A HUMIDIFIER FOGGER/SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Fuel screening system shall consist of a Trommel screen, hopper, five (5) conveyors, and a humidifier-fogger/spray system to control emissions. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions from fuel receiving shall be controlled by humidifier-fogger system and wind dust screen.
 [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Whenever fuel receiving system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, screens, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 5. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 8. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Localion: 9000 ROAO 234,TERRA BELLA, CA 5494-1-3 599 21 2010 12 20094 -- SIONOCOJ

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-3-6

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

9.4 MW COGENERATION SYSTEM WITH 171.2 MMBTU/HR STAGED AIR BIOMASS-FIRED BOILER WITH FIRED HEAT RECOVERY STEAM GENERATOR WITH PEABODY LOW-NOX NATURAL GAS-FIRED BURNERS, FLUE GAS RECIRCULATION, AND AMMONIA INJECTION SYSTEM, EXHAUSTING TO MULTICLONES AND ELECTROSTATIC PRECIPITATOR

PERMIT UNIT REQUIREMENTS

- 1. Boiler and heat recovery steam generator exhausts shall vent through multicylones and electrostatic precipitator (ESP) before being discharged to atmosphere. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. ESP shall be equipped with automatic rapping system, induced draft exhaust fan, and 72' high by 61" diameter exhaust stack. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. ESP rapping frequency and duration shall be pre-programmed and identical for each location and only one rapping position shall be energized at any one time. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Exhaust stack shall be equipped with continuous emissions monitors (CEM) for NOx, CO, oxygen, opacity, and volumetric flowrate of exhaust. [District NSR Rule and Rule 4352, 5.5; 40 CFR 60.48b(b); 40 CFR 64] Federally Enforceable Through Title V Permit
- 5. Continuous emission monitoring system shall be operated; maintained, and calibrated pursuant to the requirements of 40 CFR 60.7 (c) and 60.13. CEMs must also satisfy the Performance Specifications of 40 CFR 60 Appendix B and the Relative Accuracy Test Audit of Appendix F. [District Rules 1080 and Rule 4352, 5.5; 40 CFR 60.48b(e)] Federally Enforceable Through Title V Permit
- 6. Fuels for combustor shall be limited to natural gas, sawmill/forest residue (consisting of sawdust, bark, chips, shavings, and clean dry construction wood waste), almond and walnut shells, peach and olive pits, vineyard prunings, and orchard prunings or chips. [District NSR Rule] Federally Enforceable Through Title V Permit
- 7. No plastic, rubber, tar paper, asphalt shingles, plaster, metals, painted or chemically treated wood products or wastes shall be burned in combustor. [District NSR Rule] Federally Enforceable Through Title V Permit
- 8. A daily record of the quantities and types of fuels burned in the combustor shall be maintained and submitted to the District quarterly. [District NSR Rule and Rule 4352, 6.2] Federally Enforceable Through Title V Permit
- 9. Nitrogen oxide emissions (as NO2) shall not exceed any of the following: 84 ppmvd @ 3% O2 (0.108 lb/MMBtu), 408.8 lb/day, or 67.6 tons/year. The averaging for NOx lb/MMBtu limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rule, Rules 4301, 5.2.2, 4352, 5.1 and 40 CFR 60.41b and 60.44b(d)] Federally Enforceable Through Title V Permit
- 10. Carbon monoxide emissions shall not exceed any of the following: 400 ppmvd @ 3% O2 (0.314 lb/MMBtu) or 233.11 tons/year. The averaging for CO ppm limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rules, District Rule 4352, 5.3 and 40 CFR 60 Subpart Db] Federally Enforceable Through Title V Permit
- 11. Particulate matter (PM10) concentration shall not exceed 0.016 gr/dscf corrected to 12% CO2 as determined by CARB Method 5. [District NSR Rule and Rule 4301, 5.1 and 5.2.3, 40 CFR 60.43b(c)] Federally Enforceable Through Title V Permit

PERMIT UNIT REQUIREMENTS CONTINUE ON NEXT PAGE
These terms and conditions are part of the Facility-wide Permit to Operate.

- 12. Volatile organic compound emissions shall not exceed any of the following: 0.066 lb/MMBtu or 48.8 tons/year. [District NSR Rule] Federally Enforceable Through Title V Permit
- 13. Sulfur oxide emissions (as SO2) shall not exceed any of the following: 0.061 lb/MMBtu or 41.6 tons/year. [District NSR Rule and Rule 4301, 5.2.1 and 4801] Federally Enforceable Through Title V Permit
- 14. Source testing using the following test methods shall be done annually: NOx EPA Method 7E or ARB Method 100, and EPA Method 19, CO EPA Method 10 or ARB Method 100, O2 EPA Method 3 or 3A, or ARB Method 100, Stack Gas Flow Rate (velocity) EPA Method 2, Stack Gas Moisture Content EPA Method 4, and Fuel Heating Value ASTM Method D2015 or E711. [District Rules 1081, 2520, 9.3.2 and 4352, 6.3] Federally Enforceable Through Title V Permit
- 15. The District must be notified 30 days prior to any compliance source test, and a source test plan must be submitted for approval 15 days prior to testing [District Rule 1081] Federally Enforceable Through Title V Permit
- 16. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081] Federally Enforceable Through Title V Permit
- 17. Sierra Power Corporation shall maintain records of emissions and operational data for NOx (ppmv @ 3% O2, lb/MMBtu, lb/day and lb/year), CO (ppmv @ 3% O2 and lb/year), electrical output (kW-hr) recorded on a 24-hour basis, exhaust gas stack flow, CFM), and opacity (percent). [District NSR Rule] Federally Enforceable Through Title V Permit
- 18. NOx, CO, and PM10 emissions shall be measured with annual source testing conducted by an independent testing laboratory using sample collection by an ARB certified testing laboratory and shall be witnessed by District, or witness authorized by the District. [District Rules 1081, 2520, 9.3.2 and 4352, 6.3 and 6.4; 40 CFR 60.46b] Federally Enforceable Through Title V Permit
- 19. Source test emissions for this unit shall be calculated using the arithmetic mean, pursuant to District Rule 1081(Amended December 16, 1993), of three thirty-minute test runs for NOx and CO. This mean shall be multiplied by the appropriate factor. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 20. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 21. NOx and carbon monoxide daily emissions shall be measured by use of CEM data, fuel rate data and daily hours of operation data. A written record of the required compliance demonstrations shall be maintained and made available for District inspection for a period of five years. [District Rule 2520, 9.3.2 and 9.4.2] Federally Enforceable Through Title V Permit
- 22. SOx source testing shall be done annually using EPA method 5 or 8 or a continuous emissions analyzer in accordance with EPA method 6C. [District Rules 1081, 2520, 9.3.2, and 4801] Federally Enforceable Through Title V Permit
- 23. Particulate matter emissions shall not exceed 0.10 lb/MMBtu. [40 CFR 60.43b(c)(1)] Federally Enforceable Through Title V Permit
- 24. Owner or operator shall not cause to be discharged into the atmosphere any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. [40 CFR 60.43b(f)] Federally Enforceable Through Title V Permit
- 25. The particulate matter, and opacity standards shall apply at all times, except during periods of startup, shutdown or malfunction. [40 CFR 60.43b(g), 60.46b(a)] Federally Enforceable Through Title V Permit
- 26. The owner or operator shall install, calibrate, maintain, and operate a continuous monitoring system for measuring the opacity of emissions discharged to the atmosphere and record the output of the system, [40 CFR 60.48b(a)] Federally Enforceable Through Title V Permit
- 27. The continuous emissions monitoring systems shall be operated and data recorded during all periods of operation of the affected facility except for continuous monitoring system breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments. [40 CFR 60.48b(c)] Federally Enforceable Through Title V Permit

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAO 234, TERRA BELLA, CA 3-814-3-6: Sep 21 2010 17 00 PM - SIGNOCOJ

- 28. The procedures under 40 CFR 60.13 shall be followed for installation, evaluation, and operation of the continuous monitoring systems. The span value for a continuous monitoring system for measuring opacity shall be between 60 and 80 percent. [40 CFR 60.48b(e)] Federally Enforceable Through Title V Permit
- 29. The permittee shall record and maintain records of the amount of wood and natural gas fuel combusted each day, and calculate the annual capacity factor individually for wood and natural gas on a 12-month rolling average with a capacity factor calculated at the end of each month. [40 CFR 60.49b (d)] Federally Enforceable Through Title V Permit
- 30. The owner or operator shall submit excess emission reports of all 6-minute periods during which the average opacity exceeds the opacity standards under 40 CFR 60.43b(f) during the reporting period. [40 CFR 60.49b(h)] Federally Enforceable Through Title V Permit
- 31. At the time of each annual source test for PM, the permittee shall establish the acceptable range of primary and secondary current and voltage readings for the electrostatic precipitator. Minimum readings for each parameter shall be established at 15% below the average value measured during the PM source test. Maximum readings for each parameter shall be established at 15% above the average value measured during the PM source test. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 32. During each day of operation, the permittee shall record electrostatic precipitator voltage and current readings and compare the readings with the acceptable range of current and voltage levels established during the most recent annual PM source test. Upon detecting any excursion from the acceptable range of current or voltage readings, the permittee shall investigate the excursion and take corrective action to minimize excessive emissions and prevent recurrence of the excursion as expeditiously as practicable. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 33. Devices used to measure primary and secondary voltage and current shall be maintained in accordance with the manufacturer's specifications. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 34. The permittee shall comply with the compliance assurance monitoring operation and maintenance requirements of 40 CFR part 64.7. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 35. The permittee shall comply with the recordkeeping and reporting requirements of 40 CFR part 64.9. [40 CFR part 64] Federally Enforceable Through Title V Permit
- 36. If the District or EPA determine that a Quality improvement Plan is required under 40 CFR 64.7(d)(2), the permittee shall develop and implement the Quality Improvement Plan in accordance with 40 CFR part 64.8. [40 CFR part 64] Federally Enforceable Through Title V Permit

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-6-3

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

ASH COLLECTION SYSTEM UTILIZING ENCLOSED AUGERS AND WATER MIST SERVING BIOFUEL BOILER (S-834-3)

PERMIT UNIT REQUIREMENTS

- 1. Discharge point of ash system shall be controlled by water spray to prevent visible emissions of 20% opacity or greater. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 3. Enclosure shall be completely inspected annually for evidence of particulate matter leaks and repaired as needed. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234 TERRA BELLA, CA 5434-5-3: 6xp 21 2010 12 00794 - \$QNGCOJ

San Joaquin Valley Air Pollution Control District

PERMIT UNIT: S-834-10-2

EXPIRATION DATE: 02/28/2013

EQUIPMENT DESCRIPTION:

FUEL HANDLING SYSTEM CONSISTING OF TWO SILOS, ONE HOG UNIT, SCREENS, AND CONVEYORS SERVED BY A HUMIDIFIER FOGGER SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Particulate matter emissions from fuel handling system shall be controlled by humidifier-fogger spray system. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Whenever fuel handling system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 5. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234,TERRA BELLA, CA 5434-10-2: Sep 21 2010 12 00PM – SIONSCOJ

Attachment B Source Test Results

SJVUAPCD SOUTHERN

1 1100

San Joaquin Valley Air Pollution Control District Source Test Results

8/20/12 1:53 pm

Company: SIERRA POWER CORPORATION Test Date: 06/08/2012 Pass ⊠ Fail ☐							
Permit#: S-834-3-6	FacilityID: 834	Unit ID: COGE	N				
Witnessed By: HAULM	MAA .	Area Inspector:	GOONR				
Reason For Testing: Annual ⊠ Initia ReTest □ Rep Postponed □	al CGA oTestC AMS	RATA Dist P	=	itationary/RATA⊠ Init Dormant □	QTR: 2		
Test Company: ENVIR	ONMENTAL SERVIC	CES & TES FINIS	ct Number: EST-83	4-060812			
Next Test:		Test (Company Contact:	Mr. Tim Naquin			
Equipment: 9.4 MW BIG	OMASS FIRED BOIL	LER W/ NH3/SCF	R, ESP, CEM, FGR,	MULTICYCLONES	3		
Equipment Type: Boile	:r	Input Rate:	: 171.0 MMBTU	Output Rate: 9.	4 MW		
LoNOx Inci DLN PSG Cyclone TEG	in		FGR 🛭 H2O/Stm Inj 🗌 Rich Burn 🗍	O2 NH3/SCR Lean Bum			
Fuel Data And Operation Fuel Type: BIOMASS	onal Data: F-Factor: 924	40 BTL	J:	Fuel Rate: 10.0	TPH		
Second Fuel:	O2 % Stack:		ck Flow: 42431	Process Rate:	,,		
Comments: ANNUAL COM, RATA			1				
Enforcement Action:	NOV#:						
Report Rec: 07/27/2012	2 Revie	ewed By: LAFOR	REG	Results Sent Da	te:		
Test Results:			•				

est Kesuits:						
Pollutant	Unit	Result	Limit	O2 Correction	Failed	Unit ID
CO	lbs/MMBtu	0.2392	0.312 ?			COGEN
CO	ppm	305.0	400.0	3		COGEN
CO RATA	ppm	8.84	10.0	3		COGEN
Flow RATA	dscfm	2.8	20.0			COGEN
NH3	ppm	4.41	10.0			COGEN
NOX	lbs/MMBtu	T0:0902	0.108			COGEN
NOx	ppm	71.34	84.0	3		COGEN
NOx RATA	ppm	9.08	20.0	3		COGEN
O2 RATA	% Difference	0.54	1.0			COGEN
PM10	gr/dscf@12% CO2	0.015	0.016			COGEN
PM10	lbs/hr	4.41	14.97			COGEN
SO2	lb/MMBtu	0.0397	0.061	ž		COGEN
VOC	lbs/MMBtu	0.0	0.066			COGEN

SOURCE TEST REVIEW

COMPANY TEST DATE SIERRA POWER

REVIEWED GL

6/8/2012 S-834-3-6

DATE 8/20/2012 REV AA

	S-834-3-6				REV AA					
UNIT ID	BIOMASS BO	OILER COGE	N							
EQUIP DESCRIPTION										
INPUT RATED @				_	INPUT HP					
MEASURED STACK Q	42431				INFOT HE					
FUEL DATA	NAT. GAS	1	NASTE		OIL		SOLID			
BTU/CF				btu/gal			btu/lb			
F-FACTOR				o.a.gai			f-factor	9240		
H2S ppm							lb/hr	1		
RATE MCFD				gal/min			ton/hr	. 10		
MCF/HR			0.00	gai/hr	0		ton/day	240		
INPUT IN MMBTU/HR			0.00	3	0 00		mmbtu/hr	0	~	
THROTTLE							DSCFM	0		
CEM DATA	RAW ppm	@3% O2	@15% 02	lb/hr	Ib/MMBTU	gm/BHp-Hr	lb/MMscf		lbs/day	@19%02
O2 %	1	0.8565	0.2823		-			Ib/MMBTU		0.0909
NOx		0.00	0.00	0.00	0.0000	0.000	0.00	#DIV/0!	0.00	0.0000
СО		0.00	0.00	0.00	0.0000	0.000	0.00	#DIV/0!	0.00	0.0000
SO2		0.00	0.00	0.00	0.0000	0.000	0.00	#DIV/0!	0.00	0.0000
SQ2 BY FUEL				0.00	#DIV/0!					
Q-std CALCULATED	42431	·	WT. F-F	#DIV/0!			FGR % CAL	CULATION (T	emp's or O2)
							Tw		BY Q2	
HYDROCARBONS	RAW ppm	ppm as CH4		lb/hr	lb/hr CH4		Ta		O2w	
VOC METHANE	1196	1196.00		128.53	128.53		Ts		O2s	
ETHANE	2.05	3.83		0.41	0.41		%FRG =	#DIV/0!	%FRG=	100.00
PROPANE	0	0.00		0.00	0.00		DESTRUCT	ION %		
BUTANE	. 0	0 00		0 00	0.00		INLET			
PENTANE	0	0.00		0.00	0 00		OUTLET			
HEXANE	_	0.00		0.00	0 00		% DESTR=	#DIV/0!		
				2.00		gm/bHP-HR			lb/hp-hr	
TOTAL VOC	1198.05	1199.83		128 95	128.95	1.769	#DIV/0!	3094 68		
TOTAL NonMeth/Eth.	0	0.00		0.00	0.00	0.000				
VOC @ 3% & 15%		0.00	0.00			0.000	0.000	0.50	0.0000	
PARTICULATE M-5		0.04004	11-11-	5.074	Ib to set A se	0.0055	11-11-	440.00		0.04.47
Vm (meter vol)	gr/dscf = (45.81	%CO2	1b/hr = 13.77	Vmstd	1b/mmbtu= 43.626	0.0355	lbs/day=	143.30	gr/dscf12%=	0.0147
Vic (vol. of H2O)	236.3	%O2	7,77		0.203			4 1		
Y (meter calib.)	0.9957			Bws		T F	074	21	lb/hr	
Pbar (barom. press)	0.9957	Ср	0.836	Md	30.514	Temp F =	271			
ruar (baroni, press)	20.05	-4-				Tama Da	704			
Da /otack static serves	29.95	dp	0.95	Ms	27.972	Temp R ≡			ton/hr	#50 //O/
	0.15	Ts	798	Q(dscfm)	41198.19	Nozz.dia	18		ton/hr lb/ton	#DIV/0!
Pg (stack static press) H (meter diff. press.)	0.15 1.19	Ts An	798 2.91E-04	Q(dscfm) Iso	41198.19 99.27	Nozz.dia	18	Dry Q-lb/hr=	ton/hr lb/ton 195762.5	#DIV/0!
H (meter diff. press.) Tm (abs. meter temp)	0.15 1.19 554 s	Ts An sample time	798 2.91E-04 72	Q(dscfm) Iso Vs	41198 19 99.27 66.25	Nozz.dia An =	18 1.76714438	Dry Q-lb/hr= Wet Q-lb/hr=	ton/hr lb/ton 195762.5 225204.6	#DIV/0!
H (meter diff. press.)	0.15 1.19	Ts An	798 2.91E-04	Q(dscfm) Iso	41198 19 99.27 66.25 78033	Nozz.dia An =	18 1.76714438 51702	Dry Q-lb/hr= Wet Q-lb/hr= dscmm=	ton/hr b/ton 195762.5 225204.6 1166.7	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft)	0.15 1.19 554 s 19.63	Ts An sample time part. (mg)	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198 19 99.27 66.25 78033	Nozz.dia An = Q wet scfm USE B11, B2	18 1.76714438 51702 7 OR F46 F0	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPM	ton/hr b/ton 195762.5 225204.6 1166.7 CALC. IN E	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4	0.15 1.19 554 s 19.63	Ts An sample time	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs	41198.19 99.27 66.25 78033	Nozz.dia An = Q wet scfm USE B11, B2	18 1.76714438 51702 7 OR F46 F0 lb/mmbtu	Dry Q-lb/hr= Wet Q-lb/hr= dscmm=	ton/hr Ib/ton 195762.5 225204.6 1166.7 // CALC. IN E	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6	0.15 1.19 554 s 19.63 Vsoln	Ts An sample time part. (mg)	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198 19 99.27 66.25 78033 b/dscf #DIV/01	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0!	18 1.76714438 51702 7 OR F46 F0 1b/mmbtu #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr b/ton 195762.5 225204.6 1166.7 / CALC. IN E ppm #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe	0.15 1.19 554 s 19.63 Vsoln 9 5	Ts An sample time part. (mg)	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198.19 99.27 66.25 78033 Ib/dscf #DIV/01 #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0!	1.76714438 51702 7 OR F46 F0 1b/mmbtu #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPM	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter	0.15 1.19 554 s 19.63 Vsoln 9 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0!	1.76714438 51702 27 OR F46 F0 b/mmbtu #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe	0.15 1.19 554 s 19.63 Vsoln 9 5	Ts An sample time part. (mg)	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0!	1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter	0.15 1.19 554 s 19.63 Vsoln 9 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8	Q(dscfm) Iso Vs Q-acfm	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0!	1.76714438 51702 27 OR F46 F0 b/mmbtu #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter	0.15 1.19 554 s 19.63 Vsoln 9 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb	Q(dscfm) Iso Vs Q-acfm	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/01 #DIV/01 #DIV/01 #DIV/01	1.76714438 51702 7 OR F46 F0 	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond.	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb	Q(dscfm) Iso Vs Q-acfm Normality	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0!	1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond.	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb	Q(dscfm) Iso Vs Q-acfm Normality total SO4 @15% O2 0.88	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia	1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 %	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb @3% O2 2 67 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SO4 @15% O2 0.88 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 Ib/MMBTU 0.0000	18 1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/day	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 % CO2 METHANOL	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb 2 67 0.00 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SO4 @15% O2 0.88 0.00 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/MMBTU 0.0000 0.0000	18 1.76714438 51702 27 OR F46 F0 b/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! b/day	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 % CO2 METHANOL FORMALDEHYDE	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 5 5	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb @3% O2 2 67 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SO4 @15% O2 0.88 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 Ib/MMBTU 0.0000	18 1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/day	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 % CO2 METHANOL FORMALDEHYDE Enter Qstd	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 MW 14.2 44.00 32.04 30.03	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb 2 67 0.00 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SO4 @15% O2 0.88 0.00 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/MMBTU 0.0000 0.0000	18 1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/day	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd ENTER ^	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SOZ/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 % CO2 METHANOL FORMALDEHYDE Enter Qstd F-Factor	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 5 MW 14.2 44.00 32.04 30.03	Ts An sample time part. (mg) Va 1 1 RAW ppm	798 2.91E-04 72 47.8 Vt-Vtb 2 67 0.00 0.00 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SQ4 @15% O2 0.88 0.00 0.00 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.00 0.00	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/MMBTU 0.0000 0.0000 0.0000	18 1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/day 0.00 0.00 0.00 0.00	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd ENTER ^	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	
H (meter diff. press.) Tm (abs. meter temp) A (stack area sqft) SO2/SO4 SO2 METHOD 6 SO4 m-8 nozzle/probe filter cond. Other Compounds O2 % CO2 METHANOL FORMALDEHYDE Enter Qstd	0.15 1.19 554 s 19.63 Vsoln 9 5 5 5 MW 14.2 44.00 32.04 30.03	Ts An sample time part. (mg) Va	798 2.91E-04 72 47.8 Vt-Vtb 2 67 0.00 0.00	Q(dscfm) Iso Vs Q-acfm Normality total SQ4 @15% O2 0.88 0.00 0.00 0.00	41198.19 99.27 66.25 78033 Ib/dscf #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Nozz.dia An = Q wet scfm USE B11, B2 Ib/hr #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/MMBTU 0.0000 0.0000	18 1.76714438 51702 27 OR F46 F0 Ib/mmbtu #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ib/day	Dry Q-lb/hr= Wet Q-lb/hr= dscmm= DR LB/HR PPN Vmstd ENTER ^	ton/hr lb/ton 195762.5 225204.6 1166.7 A CALC. IN E ppm #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	

Company: SIERRA POWER CORPORA	TION	Test Date: 06/05/2013	Pass 🛛 Fail 🗌						
Permit#: S-834-3-6 FacilityID: 834 Unit ID: COGEN									
Witnessed By: LAFOREG	Area Inspector:GO	ONR							
Reason For Testing: Annual	S Dist Perfo								
Test Company: ENVIRONMENTAL SER	RVICES & TESFINJECT N	lumber: EST-834-060613							
Next Test: 6/21/2014	Test Con	npany Contact: Mr. James	Taplin						
Equipment: 9.4 MW BIOMASS FIRED B	BOILER W/ NH3/SCR, E	SP, CEM, FGR, MULTICY	CLONES						
Equipment Type: Boiler	Input Rate: 17	1.0 MMBTU Output	Rate: 9.4 MW						
	<u> </u>	GR ⊠ O2 O/Stm Inj ☐ NH3/SC ch Burn ☐ Lean Bu	=						
Fuel Data And Operational Data:									
Fuel Type: BIOMASS F-Factor:	9240 BTU:	Fuel Ra	ate: 10.0 TPH						
Second Fuel: O2 % State	ck: 8.7 Stack f	Flow: 33854 Proces	s Rate:						
COGEN ANNUAL									
Enforcement Action: NOV#:									
Report Rec: 07/30/2013 Reviewed By: LAFOREG Results Sent Date:									
Test Results:									
Pollutant Unit Result	Limit O2 Correct	ion Failed	Unit ID						

Pollutant	Unit	Result	Limit	O2 Correction	Failed	Unit ID
CO	lbs/MMBtu	0.2377	_0.312	i)		COGEN
CO	ppm	303.0	400.0	3		COGEN
CO RATA	ppm	5.02	10.0	3		COGEN
Flow RATA	dscfm	7.75	20.0			COGEN
NH3	ppm	2.25	10.0	15		COGEN
Cara NOx-	ibs/MMBtu	_0.098	0.108	7		COGEN
NOx	ppm	76.03	84.0	3		COGEN
NOx RATA	ppm	17.47	20.0	3		COGEN
O2 RATA	% Difference	0.52	1.0			COGEN
PM10	gr/dscf@12% CO2	0.012	0.016			COGEN
SO2	lb/MMBtu	_0.0019	0.061	,		COGEN
VOC	_ibs/MMBtu	0.0	0.066	h		COGEN

SOURCE TEST REVIEW SIERRA POWER COMPANY REVIEWED BEAR MIN TEST DATE EISAZ013 DATE PERMIT 9-834-7-4 **REV AA** UNIT ID BOKER EQUIP DESCRIPTION NEUT RATED INPUT HP MEASURED STACK Q 33854 FUEL DATA NAT. GAS SOLID WASTE OIL BTUCF btu/lb btw/cal F-FACTOR 9240 f-factor **H25** ppm lb/hr RATE MCFD gal/min ton/hr MCF/HR 0.00 0.00 gal/hr n ton/day INPUT IN MMBTU/HR 0.00 0.00 0.00 mmbtu/hr 0 THROTTLE DSCFM CEM DATA RAW ppm @3% 02 @15% 02 Ib/MMscf Wt. F-F @19%02 lb/hr Ib/MMBTU gm/BHp-Hr lbs/day 02 % 6.93 1 4954 0 4929 0.1587 51.05 NOx 76 34 25 16 12 39 0.0981 0.378 0.00 #DIV/0! 297 26 8.1032 CO 174 260 20 85 76 25 70 0 2036 0.785 #DIV/0! 27.6190 0.00 618.73 502 0.8 1 20 0.39 0.27 0.0021 0.008 0.00 #DIV/0! 6.48 0 1270 **SO2 BY FUEL** 0.00 #DIV/0! FGR % CALCULATION (Temp's or O2) Q-std CALCULATED 33854 WT. F-F #DIV/0! Tw HYDROCARBONS lb/hr CH4 RAW ppm ppm as CH4 lib/his Ta 02w VOC METHANE 1158.00 99 12 99 12 Ts 025 ETHANE 2.31 4 32 0.37 0.37 %FRG = #DIV/01 %FRG= 100.00 PROPANE 0 0.00 0.00 0.00 **DESTRUCTION %** 0 0.00 0.00 0.00 INLET 115.7 PENTANE 0 0.00 0.00 0.00 OUTLET 0.24 HEXARE 0 0 00 0.00 0.00 % DESTR= 29,79 gm/bHP-HR **BANNIBTU** bu/day lb/hp-hr TOTAL YOC 1158 31 1160.32 99 49 99 49 2 986 #DIV/01 2387 81 0.0066 TOTAL NonMeth/Eth. 0 0.00 0.00 0.00 0.000 0.0000 0.00 6.0000 VOC @ 3% E 12% 0.00 PARTICULATE M-S se/decf = 0.01375 Ib/lw = 3.134 **Ib/mmbtu=** 0.0323 Ibs/day= 75.22 0.0120 gr/dacf12%= Vm (meter vol) 54.54 13.8 52.767 %CO2 Vmstd Vic (vol. of H20) 283.4 %02 E.57 Bws 0.202 Wet to Dry= 1 253 Y (meter callb.) 0.8942 Ср 8.812 Md 30.575 Temp F = 294 lb/hr Pbar (barom. press) 29.94 Temp R = dp D 825 Ma 28 037 754 ton/hr Pg (stack static press) 0.11 Ts 1120 25602 47 Nozz dia 0.155 Oldscfmi lb/ton #DIV/O H (meter diff. press.) 6.95 An 3.88E-94 Iso 105 14 An = 0.00013104 Dry Q-lb/hr= 128659.5 Tm (abs. meter temp) 544 sample time 96 Vs 43.90 Wet Q-lb/hr= 145510.2 A (stack area sqft) part. (mg) 51710 23 Q-acfm Q wet som 33328 da cara= 753.3 902/504 Rormality lb/mmbtu Venstd 1010100 SO2 METHOD 6 #IDIV/O #DIVID #DIV/0 POWA 304 m-8 nezzie/probe 5 #DIV/0! #DIV/BI #DIV/0! ENTER ^ SDIVID! filter #DIV/0! #DIV/0! #DIV/0! DIVIGE cond #DIV/0! #DIV/A #DIV/0 #DR//0! total-SO4 JEIV/O #IDDOVIDE MARKIE #DIV/01 IN/MINISTU Other Compounds MW RAW ppm lb/hr lb/day 502 Audit G2 % O 86 0.28 mg/dscm = 692 44 00 0.00 0.00 0.00 0.0000 0.00 171.83 pom = METHANDL 46 05 0 00 0.00 0.00 0 0000 0.00 test ppm = 1 120.00 FORMALDEHYDE 30.63 0.00 0.00 0.00 0.0000 0.00 % accuracy= Enter Catd F-Factor ppm 3%= 6 33258595

Vmstd =

Methanol = 32.04

20 28

ppm =

lb/hr = 2.231437

Mill stheno! = 46.07

Attachment C Fuel Consumption Records

Information for GHG Report for CY 2011

Sierra Power Fuel Consumption for 2009

Outside purchases - Ag and Urban 67.485 BDT SFP Sawmill Chips 15,735 BDT TOTAL 83,220 BDT

Total Steam Produced 616,632,300# 750 degrees@ 600PSI

Electricity Sold SFP 5,368,900 kw

PG&E 47,162,000 kw TOTAL 52,530,990 kw

Steam Sold to SFP 65,722,672 #

Electricty Purchased from SCE 240,071 kw

No natural gas used

2011 S.P.C. Fuel Consumption

	S.F.P.		S.F	P.C.	Total		
Month	B.D.T.	· \$	B.D.T.	\$	B.D.T.	\$	
January	1,056.00	\$ 31,680.00	6,579.35	\$ 197,363.95	7,635.35	\$ 229,043.95	
February	1,245.61	\$ 37,368.30	6,566.20	\$ 193,418.87	7,811.81	\$ 230,787.17	
March	1,288.14	\$ 38,644.20	6,108.07	\$ 181,329.09	7,396.21	\$ 219,973.29	
April	1,359.96	\$ 40,798.80	6,201.83	\$ 181,803.99	7,561.79	\$ 222,602.79	
May	998.73	\$ 29,961.90	2,765.16	\$ 79,029.84	3,763.89	\$ 108,991.74	
June	1,449.29	\$ 43,478.70	6,274.11	\$ 187,858.50	7,723.40	\$ 231,337.20	
July	1,749.77	\$ 52,493.10	5,145.49	\$ 151,222.46	6,895.26	\$ 203,715.56	
August	1,383.62	\$ 27,672.40	3,652.64	\$ 102,921.56	5,036.26	\$ 130,593.96	
September	2,525.44	\$ 50,508.80	5,726.78	\$ 168,075.54	8,252.22	\$ 218,584.34	
October	1,835.12	\$ 36,702.40	6,080.19	\$ 180,817.98	7,915.31	\$ 217,520.38	
November	131.39	\$ 2,627.80	5,635.44	\$ 171,018.88	5,766.83	\$ 173,646.68	
December	712.46	\$ 14,249.20	6,749.44	\$ 207,179.14	7,461.90	\$ 221,428.34	
Totals .	15,735.53	\$ 406,185.60	67,484.70	\$ 2,002,039.80	83,220.23	\$ 2,408,225.40	
	18.91%	16.87%	81.09%	83.13%			

SPC's 2011 SCE Bill

Portion of SPC's bill that was consumed by the sawmill

38,680 kw	-
10,026	quimades
41,218	20,600 kw
42,839	19,300
78,728	64,900
34,796	11,200
27,860	11,700
-	67,400
-	9,600
9,041	4,200
133,123	93,900
63,956	54,000
596,871 kw	356,800 kw
	41,218 42,839 78,728 34,796 27,860 100,492 16,112 9,041 133,123 63,956

Actual use by Sierra Power

240,071 kw

Data for GHG Calculations for 2012 - Sierra Power Corporation

Fuel Consumed

 Ag
 34,018 BDT

 Urban
 33,055 BDT

 Sawmill Residue
 12,328 BDT

 TOTAL
 79,401 BDT

Sierra Power boiler operates @ 95,000#/hr, 600 psi, 750 degree steam - 656,264,000# of steam generated in 2012

The gross generation for 2012 was 59,014,000 kw

175,931 kw purchased from SCE for start ups etc

SPC sold 49,352,704 kw to PG&E and 5,335,300 to Sierra Forest Products

SPC sold 65,904,554# of steam to Sierra Forest Products's dry kilns to dry lumber

2012 S.P.C. Fuel Consumption

	S.F.	₽.		·· S.F	P.C.	!	u To	otal	
Month	B.D.T.	•	\$	B.D.T.		\$	B.D.T.		\$
lanuary	186.50	\$	3,730.00	6,237.73	\$	181,818.07	6,424.23	\$.	185,548.07
ebruary	862.65	\$	17,253.00	6,061.64	\$	188,151.96	6,924.29	\$	205,404.96
/larch	1,071.56	\$	21,431.20	5,774.76	\$	177,679.02	6,846.32	\$	199,110.22
\pril	890.53	\$ ·	17,810.60	7,446.09	\$	218,886.60	8,336.62	\$	236,697.20
∕lay	200.48	\$	4,009.60	5,154.07	\$	149,766.30	5,354.55	\$	153,775.90
lune	1,000.01	\$	20,000.20	4,889.39	\$	142,794.17	5,889.40	\$	162,794.37
luty	1,014.53	\$	20,290.60	6,080.65	*\$	180,474.86	7,095.18	.\$	200,765.46
August	987.40	\$	19,748.00	6,672.25	\$	193,543.40	7,659.65	\$	213,291.40
September	1,663.91	\$	33,278.20	4,293.99	\$	126,282.54	5,957.90	\$	159,560.74
October	.1,739.89	\$	34,797.80	4,697.17	\$	140,610.44	6,437.06	\$	175,408.24
November	1,823.99	. \$	36,479.80	5,082.75	\$	151,122.62	6,906.74	, \$	187,602.42
December	886.08	\$	17,721.60	4,682.79	\$	141,518.61	5,568.87	\$	159,240.21
l'otals	12,327.53	\$	246,550.60	67,073.28	\$ 1	,992,648.59	79,400.81	\$	2,239,199.19
	15.53%		11.01%	84.47%		88.99%			

Richard Wlison

From:

sfp@sierraforest.net

Sent:

Monday, February 03, 2014 7:13 AM

To: Subject: Richard Wilson Sierra Power's GHG

2013 GHG Data for Sierra Power Corporation

Gross Generation

53,628,000 kw

Net Generation

49,505,008 kw

Electricity Purchased

.235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag

38,676 BDT

Urban

22,674 BDT

Sawmili Chips

13,856 BDT

TOTAL

75,206 BDT

Let me know if you need other data.

Thanks,

Kent

// 2013 J.P.C. Fuel Cornumption

. W .	···	1	• • • •	_	·	
Month	S.F.F B.D.T.	°. \$	S.P B.D.T.	.C. \$	Tot B.D.T.	al \$
January	1,220.54	\$ 24,410.80	6,602.01	\$ 198,583.94	7,822.55	\$ 222,994.74
February	1,123.37	\$ 22,467.40	6,716.81	\$ 203,945.59	7,840.18	\$ 226,412.99
March	713.21	\$ 14,264.20	4,039.83	\$ 123,662.31	4,753.04	\$ 137,926.51
April	1,437.99	\$ 28,759.80	4,883.77	\$ 147,008.13	6,321.76	\$ 175,767.93
May	715.64	\$ 14,312.80	3,069.44	\$ 92,902.15	3,785.08	\$ 107,214.95
June	1,273.39	\$ 25,467.80	5,885.56	\$ 176,805.94	7,158.95	\$ 202,273.74
July	1,170.25	\$ 23,405.00	4,837.66	\$ 145,268.92	6,007.91	\$ 168,673.92
August	1,528.48	\$. 30,569.60	4,733.80	\$ 142,650.51	6,262.28	\$ 173,220.11
September	1;941.44	\$ 38,828.80	4,031.34	\$ 121,950.15	5,972.78	\$ 160,778.95
October	1,167.62	\$ 23,352.40	3,805.72	\$ 112,458.18	4,973.34	\$ 135,810.58
November	1,135.73	\$ 22,714.60	6,753.50	\$ 210,095.30	7,889.23	\$ 232,809.90
December	428.22	\$ 8,564.40	8,145.08	\$ 253,678.00	8,573.30	\$ 262,242.40
Totals	13,855.88	\$ 277,117.60	63,504.52	\$ 1,929,009.12	77,360.40	\$2,206,126.72
	17 91%	12 56%	82 09%	87 44 %		

Richard Wilson

From: Sent:

sfp@sierraforest.net Monday, February 03, 2014 7:13 AM Richard Wilson

T.o: Subject:

Sierra Power's GHG

2013 GHG Data for Sierra Power Corporation

Gross Generation 53,628,000 kw 49,505,008 kw **Net Generation Electricity**. Purchased .235,168 kw

Natural Gas Used

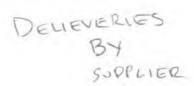
26,074 therms

Gross Steam Steam to Kilns

585,549,000 Pounds 61,912,000 Pounds

Fuel Consumption

Ag €38,676 BDT Urban 22,674 BDT 'Sawmill Chips 13,856 BDT TOTAL . 75,206 BDT


Let me know if you need other data.

Thanks, Kent

Month	Ag	Urban	
Jan	3255.37	3744.48	
Feb	4918.42	2526.66	
Mar	1909.24	1195.55	
Apr	1744.28	1045.55	
May	3995.45	1191.38	
Jun	2791.23	1397.32	
Jul	3034.09	1374.67	
Aug	2560.21	1481.47	
Sep	2619.79	1790.35	
Oct	1715.21	2121.71	
Nov	5069.36	2745.94	
Dec	6675.19	2111.24	
TOTAL	40287.84	22726.32	
2013 Grand Total	63014.16		
2013	Ag	Urban	Chips
Beginning Inventory	13.75	1047.3	
Purchased	40287.84	22726.32	
Ending Inventory	1625.25	1119.6	
Total Used	38676.34	22654 .02	13856
Grand Total	75186.36		

MONTHLY DELIVERIES

	AG BDT		URBAN BDT	
			576.31	DWF
JAN	3255.37	Wilson Ag 3255.37	3168.17	Forwood 3744.48
			400.70	
	4918.42	Wilson Ag	182.72 2343.94	DWF
FEB	4310.42	4918.42	2343.94	Forwood 2526.66
	V 4 M-	4310.42	248.13	DWF
	1909.24	Wilson Ag	947.42	Forwood
MAR	1000.24	1909.24	047.42	1195.55
1012 (1)		1000121	274	DWF
	1744.28	Wilson Ag	771.55	Forwood
APR		1744.28		1045.55
			333.39	DWF
	3995.45	Wilson Ag	857.99	Forwood
MAY		3995.45	1 2	1191.38
		3	777	
	2791.23	Wilson Ag	124.05	DWF
			1273.27	Evergreen
JUN	The Control of the Co	2791.23	100,000,000	1397.32
	3034.09	Wilson Ag	96.31	DWF
	and control	Sales and	1278.36	Evergreen
JUL		3034.09		1374.67
	61.9	Hogans	117.24	DWF
	2498.31	Wilson Ag	408.37	Viramontes
			955.86	Evergreen
AUG		2560.21		1481.47
	2619.79	Wilson Ag	157.72	Viramontes
			41.4	DWF
			1591.23	Evergreen
SEPT		2619.79		1790.35
	1715.21	Wilson Ag	106.02	DWF
			2015.69	Evergreen
OCT		1715.21		2121.71

	25.48	Grosspanis	219,33	Vjemon e s
	17.61	Pacific Coasi	43.98	DWF
	107.80	JT Ac	248263	Evangraan
	606.22	West Coast Sand		
	4912,08	Wilson Ag		
* NOV	675,74	5069,36 JT AG		
	489.17	West Coast Sand	73.36	DWF
	2118.4	Hogans	2037.88	Evergreen
	3391.88	Wilson Ag		•
DEC		6675.19		2

Attachment D Calculation of Monthly Fuel Consumption

	Fuel Purc	hase (BDT)	Percen Consum Mo	ption by	Calculat Consumpt		Calculate Consumption	
	2012	2013	2012	2013	2012	2013	2012	2013
January	6,237.73	6,602.01	9.30%	10.40%	7,384	7,819	99,875	99,555
February	6,061.64	6,716.81	9.04%	10.58%	7,176	7,954	97,056	101,287
March	5,774.76	4,039.83	8.61%	6.36%	6,836	4,784	92,462	60,919
April	7,446.09	4,883.77	11.10%	7.69%	8,815	5,784	119,223	73,645
May	5,154.07	3,069.44	7.68%	4.83%	6,101	3,635	82,524	46,286
June	4,889.39	5,885.56	7.29%	9.27%	5,788	6,970	78,286	88,752
July	6,080.65	4,837.66	9.07%	7.62%	7,198	5,729	97,360	72,950
August	6,672.25	4,733.80	9.95%	7.45%	7,899	5,606	106,833	71,384
September	4,293.99	4,031.34	6.40%	6.35%	5,083	4,774	68,753	60,791
October	4,697.17	3,805.72	7.00%	5.99%	5,560	4,507	75,209	57,389
November	5,082.75	6,753.50	7.58%	10.63%	6,017	7,998	81,382	101,840
December	4,682.79	8,145.08	6.98%	12.83%	5,543	9,646	74,978	122,824
Total	67,073.28	63,504.52	100%	100%	79,401	75,206	1,073,943	957,621

Attachment E Heating Values of Wood Products

Emission Factors for Greenhouse Gas Inventories

Last Modified: 4 April 2014

Red text indicates an update from the 2011 version of this document.

Typically, greenhouse gas emissions are reported in units of carbon dioxide equivalent (CO₂e) Gases are converted to CO₂e by multiplying by their global warming potential (GWP). The emission factors listed in this document have not been converted to CO₂e. To do so, multiply the emissions by the corresponding GWP listed in the table below.

	Gan	100-year GWP
Г	CH,	720
	N ₂ O	298

Table 1 Stationary Combustion Emission Factors

Fuel Type	Heating Value	CO ₂ Factor	CH ₄ Factor	N₂O Factor	GO ₂ Factor	CH ₄ Factor	N ₂ O Factor	Unit
	mmBlu per short	kg CO ₂ per	g CH, per mmBtu	g N₂O per mmBtu	kg CO ₂ per short	g CH ₄ per short	g N ₂ O per short	
	ton	mmBtu			ton	ton	1on	
Coal and Coite								
Anthracite Coal	25 09	103.69	11	1.6	2,602	276	40	short tons
Bituminous Coal	24 93	93 28	11	1.6	2,325	274	40	short tons
Sub-bituminous Coal	17 25	97 17	11	1.6	1,676	190	28	short ton
ignite Coal	14.21	97 72	11	18	1,389	156	23	short tons
Aixed (Commercial Sector)	21 39	94.27	11	1.8	2,016	235	34	short ton
Mixed (Electric Power Sector)	19 73	95 52	11	16	1,885	217	32	short ton
dixed (Industrial Coking)	28.28	93.90	11	1.6	2,468	289	42	short ton
Mixed (Industrial Sector)	22.35	94.67	11	1.6	2,116	246	36	short ton
ool Coke	24 80	113.67	11	1.6	2,819	273	40	short ton
Fossil Fuel-derived Fuels (Solid)	24001	113.07		1.0	2,018	2/3	40	BIRGH TOTAL
Aunicipal Solid Waste	9 95	00.70	20	4.5	000	1 240	40.	
		90.70	32	4.2	902	318	42	ahort ton
Petroleum Coke (Solid)	30.00	102,41	32	4.2	3,072	960	126	ahort ton
Pastics	38.00	75.00	32	4.2	2 850	1,216	160	short ton
108	28 00	85.97	32	4.2	2,407	896	118	ahort ton
Biomass Funis (Solid)								
gncultural Byproducts	8.25	118.17	32	4.2	975	264	35	short ton
Peat	8.00	111.84	32	4.2	895	256	34	short ton
olid Byproducts	10.39	105 51	32	4.2	1,000	332	44	short ton
Vood and Wood Residuals	17.48	93.80	72	3.6	1.640	126	63	short ton
	mmBtu per scf	kg CO, per	g CH, per nun@tu	g N ₂ O per mmBtu	kg CO, per sof	g CH, per scf	g N ₂ O per scf	
		mmBlu						
Natural Gas								
vatural Gas (per scf)	0.001026	53 06	1.0	0.10	0 05444	0.00103	0.00010	scf
Fossil-derived Fuels (Gameous)	0010201	55 50		0.10	2 03444	0 00 103	3 000/10	BUI.
Best Furnace Gas	0.000092	274.32	0.022	0 10	0.00504	0.000002	0.000000	
Coke Oven Gas	0.000082	46.85			0.02524		0.000009	acf
uel Gas			0.48	0.10	0.02808	0.000288	0.000000	Bcf
	0.001388	59 00	3.0	0.60	0.08189	0.004164	0.000833	8cf
ropene Gee	0.002516	61.48	0 022	0.10	0.15463	0.000055	0.000252	scf
Biomasa Fuels (Gesecus)								
andfill Gas	0 000485	52 07	3.2	0.63	0.025254	0.001552	0.000306	scf
Othor Biomass Gases	0.000855	52 07	32	0.63	0.034106	0.002096	0.000413	scf
	mmBlu per gallon	kg CO₂ per	g CH ₄ per men Blu	g N ₁ O per mmBlu	kg CO ₂ per gallon	g CH ₄ per gallon	g N ₂ O per gallon	
		mmBtu						
Petroleum Products								
Asphalt and Road Oil	0 158	75 36	3.0	0.60	11.91	0.47	0.09	gallon
Aviation Gasoline	0 120	69 25	3.0	0.60	8.31	0.36	0.07	gallon
Butana	0 103	647/	3.0	0.60	6.67	031	0.06	gellon
lutylana	0.105	88 72	3.0	0.60	7.22	0.32	0.06	gallon
Crude Oil	0 138	74 54	3.0	0.60	10.29	0.41		
							0.08	gellon
Distillate Fuel Oil No. 1	0 138	73.25	3.0	0.60	10.18	0.42	0.08	gallon
Dietillate Fuel Oil No. 2	0 138	73.98	3.0	0.60	10.21	0.41	0.08	gallon
Distillate Fuel Oil No. 4	0 146	75 04	3.0	0.60	10.98	0.44	0.09	gallon
thane	0.008	59.60	3.0	0.60	4.05	0.20	0.04	gallon
thylene	0.058	65.98	3.0	0.60	3.83	U 1a	0.03	gallon
leavy Gas Oila	0.148	74.92	3.0	0.80	11 09	0.44	0.09	gallon
sobutane	0 099	84 94	3.0	0.80	6.43	0.30	0.06	gallon
sobutylene	0 103	58 86	3.0	0.60	7 09	0.31	0.06	gallon
Grosene	0 135	75.20	3.0	0.60	10 15	0.41	0.08	gallon
(erosene-type Jet Fuel	0 135	72.22	3.0	0.00	9.75	0.41	0.08	gallon
quefied Petroleum Gases (LPG)	0 092	t1 71	3.0	0.80	5.68	0.28	0.06	
ubricanta	0 144	74.27	3.0	0.60	10 69	0.43	0.09	gallon
	\rightarrow							gallon
Motor Gasoline	0.125	70.22	3.0	0.60	8 78	0.38	0.08	gallon
Naphtha (<401 deg F)	0 125	68 02	30	0.60	8 50	0.38	0 OB	gallon
Natural Gasoline	0.110	66.38	30	0.60	/ 36	0.33	0 07	gallon
Other Oil (>401 deg F)	0.139	76.22	3.0	0.60	10.59	0.42	0.08	gallon
Pentanes Plus	0.110	70.02	30	0.60	7 70	0 33	0.07	gallon
Petrochemical Feedatocks	0 125	71 02	30	0.60	8.88	0.30	0.08	gallon
Petroleum Coke	0 143	102.41	3.0	0.60	14.64	0.43	0.09	gallon
Propana	0.091	82 87	3.0	0.80	5.72	0.27	0.05	gallon
Propylene	0.091	65.95	3.0	0.60	6.00	0.27	0.05	gallon
Residual Fuel Oil No. 5	0 140	72.93	30	0.60	10.21	0.42	0.08	gallon
Remdual Fuel Oil No. 6	0 150	75 10	3.0	0.80	11.27	0.45	0.09	
Special Naphtha	0.125	72.34	3.0	0.60	9.04	0.38	0.08	gallon
Stil Gas								gallon
	0.143	86.72	3.0	0.60	9.54	0.43	0.09	gallon
Infiniahed Oila	0 139	74 54	30	0.60	10 36	0 42	0.08	gallon
Jaed Oil	0 138	74.00	3.0	0.60	10.21	Ü 41	0.08	gailon
Biomass Fuels (Liquid)								
Biodissel (100%)	0.128	73.84	1.1	0.11	9.45	0.14	0.01	galion
thanol (100%)	0.084	88.44	11	0.11	5.75	0.09	0.01	gallon
Rendered Animal Fet	0 125	71.08	11	0.11	8.88	0.14	0.01	gellon
/egetable Oil	0 120	81 55	11	0.11	9 79	0.13	0.01	gallon
	mmBtu per galion	kg CO ₂ per	g CH, per mm8tu	g N ₂ O per mmBtu	378	0.13	5.01	Manou
		mmBtu		1				
Steam and Hot Water		Helibtu		1				

Soutzessous. Squid and biomassa fuels. Federal Register (2009) EPA. 40 CFR Parts 86. 87. 89 et al. Mandatory Reporting of Greenhouse Gases. Final Rule, 300c106, 281 pp. Tables C-1 and C-2 at FR pp. 56409-56410. Revised emission factors for selected fuels. Federal Register (2010) EPA. 40 CFR Part 98, Mandatory Reporting of Greenhouse Gases, Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases, printing Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases (Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases (Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases (Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases (Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions to the Greenhouse Gases (Final Rule, 170cc10, 81 pp. With Amendments from Memo: Table of Final 2013 Revisions from Purchases/Sales of Electricity and Sleam. Assumption 80% boler afficiency and full type assumed natural gas. Factors are per mm8tu of steam or hot water purchased.

http://www.aps.gov/ghg/eporting/documenta/pdf/2013/documenta/memo-2013-technical-revisions.pdf http://www.aps.gov/shc/eporting/eporters/subpart/c.html

Attachment F Draft Emission Reduction Credit Certificates

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
22,809 lbs	20,168 lbs	19,717 lbs	21,221 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
54,424 lbs	47,737 lbs	46,597 lbs	50,405 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
7,619 lbs	6,656 lbs	6,491 lbs	7,040 lbs

[] Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Southern Regional Office • 34946 Flyover Court • Bakersfield, CA 93308

Emission Reduction Credit Certificate

S-4585-5

ISSUED TO:

SIERRA POWER CORPORATION

ISSUED DATE:

<DRAFT>

LOCATION OF

9000 ROAD 234

REDUCTION:

TERRA BELLA, CA

For SOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
5,028 lbs	4,439 lbs	4,338 lbs	4,674 lbs

Conditions Attached

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of cogeneration with biomass-fired boiler (S-834-3) and associated fuel handling and solid handling equipment (S-834-1, -6, and -10)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/APCO

Homero Ramirez

From:

Gunnar D. Tornstrom < GunnarT@wziinc.com>

Sent:

Tuesday, January 20, 2015 11:11 AM

To:

Homero Ramirez

Subject:

RE: Sierra Power S-834

Attachments:

2013 data.pdf; Fuel Consumption 2013.pdf; Fuel Consumption 2012.pdf; Fuel

consumption 2011.pdf

Good Afternoon Homero,

Attached you will find month to month reports of fuel consumption as well as the GHG data (email numbers). These numbers differ because the month to month reports do not have the ending inventory of fuel (inventory purchased but not used) removed as shown on page two in the 2013 data.pdf. This is the source data you were looking for to back up the GHG data.

Example: In the *Fuel consumption 2013.pdf* the difference in the highlighted numbers (77,360.40 and 75,206 BDT) is the amount of unused inventory, which is why the 75,206 number was used.

If you have any questions let me know, thanks,

Gunnar D. Tornstrom

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Friday, January 16, 2015 11:05 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Thank you. I work on the project under the assumption that those numbers will be documented.

Also, do you have the assumptions/calculations for the fugitive emissions?

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Friday, January 16, 2015 10:49 AM

To: Homero Ramirez

Subject: RE: Sierra Power S-834

Homero,

I found the Sierra Power's Fuel consumption per year per month. Which I believe is what you were looking for. As soon as I have all the years, I will send you the information, sorry about the confusion,

Gunnar

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Wednesday, January 07, 2015 7:45 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Gunnar,

Thank you for the source data. Do you have more substantial documentation than just the emails? I was hoping for some more documentation to include in the evaluation.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Monday, January 05, 2015 2:01 PM

To: Homero Ramirez

Subject: FW: Sierra Power S-834

From: Richard Wilson

Sent: Monday, January 05, 2015 1:58 PM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Here is the source data: These are the summary data sheets for each year that were used to report GHGs to CARB under AB32 (these numbers have all been 3rd party verified). The confusion may lie in the fact that some of the fuel categorized as "wood waste" is sawmill chips coming from Sierra Forest Products, not from an outside supplier.

From: Gunnar D. Tornstrom

Sent: Monday, January 05, 2015 1:30 PM

To: Richard Wilson

Subject: FW: Sierra Power S-834

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Monday, January 05, 2015 11:03 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Good morning Gunnar.

I was working on the evaluation, and I noticed that some of the fuel usage numbers used in the application do not seem to match some of the fuel consumption records provided. The calculation in the application have fuel use information for ag and wood waste, but I can't match them to records provided. Do you have the records for the numbers specified in the evaluation?

If you have any questions, please let me know.

Thank you.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

www.healthyairliving.com

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Monday, January 05, 2015 9:48 AM

To: Homero Ramirez

Subject: RE: Sierra Power S-834

Good morning Homero,

May I have an update on the status of the ERC for Sierra Power S-834.

Thank you,

Gunnar Tornstrom WZI Inc.

1717 28th St.
Bakersfield, CA 93301
Office: (661) 326-1112
Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.orq]

Sent: Wednesday, November 19, 2014 8:47 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Gunnar,

I will be working on all those projects in the next few days. They have not been completed yet.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Wednesday, November 19, 2014 8:41 AM

To: Homero Ramirez

Subject: Sierra Power S-834

Homero,

Sierra power applied for Emission Reduction Credit (ERC) and it was deemed approved, all that was needed was the cancellations and transfer of ownership. Sierra Power would like the credits before the end of the year so any update would be greatly appreciated. The three items are:

- Permit cancellation
- Cancel of Title V permit
- Transfer of ownership

Please let me know the status of the ERC and the cancellations / transfer, thank you very much,

Bakersfield, CA 93301 Office: (661) 326-1112 Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

Richard Wilson

From: Sent

To: Subject: sfp@sierraforest.net Monday, February 03, 2014 7:13 AM Richard Wilson

Sierra Power's GHG

2013 GHG Data for Sierra Power Corporation

Gross Generation 53,628,000 kw **Net Generation** 49,505,008 kw **Electricity Purchased** .235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag

- 38,676 BDT

Urban

22,674 BDT

'Sawmili Chips

13,856 BDT

TOTAL .

75,206 BDT

Let me know if you need other data.

Thanks, Kent

Month	Ag	Urban	
Jan	3255.37	3744.48	
Feb	4918.42	2526.66	
Mar	1909.24	1195.55	
Apr	1744.28	1045.55	
May	3995.45	1191.38	
Jun	2791.23	1397.32	
Jul	3034.09	1374.67	
Aug	2560.21	1481.47	
Sep	2619.79	1790.35	
Oct	1715.21	2121.71	
Nov	5069.36	2745.94	
Dec	6675.19	2111.24	
TOTAL	40287.84	22726.32	
2013 Grand Total	63014.16		
2013 Beginning Inventory	Ag 13.75	Urban Chips	s ·
Purchased Ending Inventory	40287.84 1625.25	22726.32 1119.6	

38676.34

75186.36

22654.02

13856

Total Used

Grand Total

	AG BDT		URBAN BDT	
JAN	3255.37	Wilson Ag 3255.37	576.31 3168.17	DWF Forwood 3744.48
FEB	4918.42	Wilson Ag 4918.42	182.72 2343.94	DWF Forwood 2526.66
MAR	1909.24	Wilson Ag 1909.24	248.13 947.42	DWF Forwood 1195.55
	1744.28	Wilson Ag	274 771.55	DWF Forwood
APR	·	1744.28	333.39	1045.55 DWF
MAY	3995.45	Wilson Ag 3995.45	857.99	Forwood 1191.38
	2791.23	Wilson Ag	124.05 1273.27	DWF Evergreen
JUN		2791.23		1397.32
	3034.09	Wijson Ag	96.31 1278.36	DWF Evergreen
JUL		3034.09		1374.67
· :	61.9 2498.3°1	Hogans Wilson Ag	117.24 408.37 955.86	DWF Viramontes Evergreen
AUG	. *.	2560.21		1481.47
	2619.79	Wilson Ag	157.72 41.4 1591.23	Viramontes DWF Evergreen
SEPT		2619.79		1790.35
	1715.21	Wilson Ag	106.02 2015.69	DWF Evergreen
OCT		1715.21		2121.71

DELIEVERIES BY CHOPKIED

, Mov	25.46 17.51 107.99 605.22 4912.08	Grossosols Pacific Coast Jij Ag West Coast Sand Wilson Ag 5069.35	219,33 43,98 2432,63	Viramonies IDWF Evergreen
	675.74	JT AG		
	489.17	West Coast Sand	73.36	DWF
	2118.4	Hogans	2037.88	Evergreen
	3391.88	Wilson Ag		
DEC	The electrician is	6675.19	1 . 1	2111.24
TOTALS		40287.84		22726.32
	2013 Tota	1	63014.16	

Dr. a

Richard Wilson

From:

sfp@sierraforest.net

Sent:

Monday, February 03, 2014 7:13 AM Richard Wilson

To:

Subject:

Sierra Power's GHG

2013 GHG Data for Sierra Power Corporation

Gross Generation

53,628,000 kw

Net Generation

49,505,008 kw

Electricity Purchased

235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag

38,676 BDT

Urban

.22,674 BDT

Sawmill Chips

13,856 BDT

TOTAL

75,206 BDT

Let me know if you need other data.

Thanks,

Kent

// 2013 J.P.C. Fuel Cormumption

. U -	S.F.P	. 1	S.P.C.	!	Tota	1
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	 \$
January	1,220.54	\$ 24,410.80	6,602.01	\$ 198,583.94	7,822.55	\$ 222,994.74
February	1,123.37	\$ 22,467.40	6,716.81	\$ 203,945.59	7,840.18	\$ 226,412.99
March _.	713.21	\$ 14,264.20	4,039.83	\$ 123,662.31	4,753.04	\$ 137,926.51
April	1,437.99	\$ 28,759.80	4,883.77	\$ 147,008.13	6,321.76	\$ 175,767.93
Мау	715.64	\$ 14,312.80	3,069.44	\$ 92,902.15	3,785.08	\$ 107,214.95
June	1,273.39	\$ 25,467.80	5,885. 5 6	\$ 176,805.94	7,158.95	\$ 202,273.74
July	1,170.25	\$ 23,405.00	4,837.66	\$ 145,268.92	6,007.91	\$ 168,673.92
August	1,528.48	\$. 30,569.60	4,733.80	\$ 142,650.51	6,262.28	\$ 173,220.11
September	1;941.44	\$ 38,828.80	4,031.34	\$ 121,950.15	5,972.78	\$ 160,778.95
October .	1,167.62	\$ 23,352.40	3,805.72	\$ 112,458.18	4,973.34	\$ 135,810.58
November	1,135.73	\$ 22,714.60	6,753.50	\$ 210,095.30	7,889.23	\$ 232,809.90
December	428.22	\$ 8,564.40	8,145.08	\$ 253,678.00	8,573.30	\$ 262,242.40
Totals	13,855.88	\$ 277,117.60	63,504.52	\$ 1,929,009.12	77,380:40	\$ 2,206,126.72
	17.91%	12.56%	82.09%	87.44%	,	

63,505 (other records say

Data for GHG Calculations for 2012 - Sierra Power Corporation

Fuel Consumed

Ag	34,018 BDT
Urban	33,055 BDT
Sawmill Residue	12,328 BDT
TOTAL	79,401 BDT

Sierra Power boiler operates @ 95,000#/hr, 600 psi, 750 degree steam - 656,264,000# of steam generated in 2012

The gross generation for 2012 was 59,014,000 kw

175,931 kw purchased from SCE for start ups etc

SPC sold 49,352,704 kw to PG&E and 5,335,300 to Sierra Forest Products

SPC sold 65,904,554# of steam to Sierra Forest Products's dry kilns to dry lumber

2012 S.P.C. Fuel Consumption

	S.F.	₽		- S.P	C	1	To	tal	
Month	B.D.T.	•	\$	B.D.T.	.0.	\$	B.D.T.	· Car	\$
lanuary	186.50	\$	3,730.00	6,237.73	\$	181,818.07	6,424.23	\$	185,548.07
February	862.65	\$	17,253.00	6,061.64	\$	188,151.96	6,924.29	\$	205,404.96
√larch	1,071.56	\$	21,431.20	5,774.76	\$	177,679.02	6,846.32	\$	199,110.22
\pril	890.53	\$ ·	17,810.60	7,446.09	\$	218,886.60	8,336.62	\$	236,697.20
⁄lay	200.48	\$	4,009.60	5,154.07	\$	149,766.30	5,354.55	\$	153,775.90
June	1,000.01	\$	20,000.20	4,889.39	\$	142,794.17	5,889.40	\$	162,794.37
luly	1,014.53	\$	20,290.60	6,080.65	\$	180,474.86	7,095.18	.\$	200,765.46
∖ ugust	987.40	\$	19,748.00	6,672.25	\$	193,543.40	7,659.65	\$	213,291.40
September	1,663.91	\$	33,278.20	4,293.99	\$	126,282.54	5,957.90	\$	159,560.74
October	1,739.89	\$	34,797.80	4,697.17	\$	140,610.44	6,437.06	\$	175,408.24
Vovember	1,823.99	. \$	36,479.80	5,082.75	\$	151,122.62	6,906.74	\$	187,602.42
December	886.08	\$	17,721.60	4,682.79	\$	141,518.61	5,568.87	\$	159,240.21
Fotals	12,327.53	\$	246,550.60	67,073.28	\$	1,992,648.59	79,400.81	\$2	2,239,199.19
•	15.53%		11.01%	84.47%		88.99%			•

67,073 V = Ag + Urban

Information for GHG Report for CY 2011

Outside purchases - Ag and Urban 67.485 BDT SFP Sawmill Chips 15,735 BDT TOTAL 83,220 BDT

Total Steam Produced 616,632,300# 750 degrees@ 600PSI

Electricity Sold SFP 5,368,900 kw PG&E 47,162,000 kw

TOTAL 52,530,990 kw

Steam Sold to SFP 65,722,672 #

Electricty Purchased from SCE 240,071 kw

No natural gas used

2011 S.P.C. Fuel Consumption

	S.F.	P.	S.F	P.C.	Tota	al
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	\$
January	1,056.00	\$ 31,680.00	6,579.35	\$ 197,363.95	7,635.35	\$ 229,043.95
February	1,245.61	\$ 37,368.30	6,566.20	\$ 193,418.87	7,811.81	\$ 230,787.17
March	1,288.14	\$ 38,644.20	6,108.07	\$ 181,329.09	7,396.21	\$ 219,973.29
April	1,359.96	\$ 40,798.80	6,201.83	\$ 181,803.99	7,561.79	\$ 222,602.79
May	998.73	\$ 29,961.90	2,765.16	\$ 79,029.84	3,763.89	\$ 108,991.74
June	1,449.29	\$ 43,478.70	6,274.11	\$ 187,858.50	7,723.40	\$ 231,337.20
July	1,749.77	\$ 52,493.10	5,145.49	\$ 151,222.46	6,895.26	\$ 203,715.56
August	1,383.62	\$ 27,672.40	3,652.64	\$ 102,921.56	5,036.26	\$ 130,593.96
September	2,525.44	\$ 50,508.80	5,726.78	\$ 168,075.54	8,252.22	\$ 218,584.34
October	1,835.12	\$ 36,702.40	6,080.19	\$ 180,817.98	7,915.31	\$ 217,520.38
November	131.39	\$ 2,627.80	5,635.44	\$ 171,018.88	5,766.83	\$ 173,646.68
December	712.46	\$ 14,249.20	6,749.44	\$ 207,179.14	7,461.90	\$ 221,428.34
Totals .	15,735.53	\$ 406,185.60	67,484.70	\$ 2,002,039.80	83,220.23	\$ 2,408,225.40
	18.91%	16.87%	81.09%	83.13%		

SPC's 2011 SCE Bill

Portion of SPC's bill that was consumed by the sawmill

January 2011	38,680 kw	
February	10,026	
March	41,218	20,600 kw
April	42,839	19,300
May	78,728	64,900
June	34,796	11,200
July	27,860	11,700
August	100,492	67,400
September	16,112	9,600
October	9,041	4,200
November	133,123	93,900
December	63,956	54,000
TOTAL	596,871 kw	356,800 kw

Actual use by Sierra Power

240,071 kw

Homero Ramirez

From:

Gunnar D. Tornstrom < GunnarT@wziinc.com>

Sent:

Friday, January 16, 2015 4:06 PM

To:

Homero Ramirez

Subject:

RE: Sierra Power S-834

Homero,

WZI is going to have to do a revision on the Fugitive emissions section.

I will send you the month to month per year regarding the consumption as soon as I get them, thanks

Gunnar Tornstrom

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Friday, January 16, 2015 11:05 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Thank you. I work on the project under the assumption that those numbers will be documented.

Also, do you have the assumptions/calculations for the fugitive emissions?

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Friday, January 16, 2015 10:49 AM

To: Homero Ramirez

Subject: RE: Sierra Power S-834

Homero,

I found the Sierra Power's Fuel consumption per year per month. Which I believe is what you were looking for. As soon as I have all the years, I will send you the information, sorry about the confusion,

Gunnar

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.orq]

Sent: Wednesday, January 07, 2015 7:45 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Gunnar,

Thank you for the source data. Do you have more substantial documentation than just the emails? I was hoping for some more documentation to include in the evaluation.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616

Homero Ramirez

From:

Gunnar D. Tornstrom < GunnarT@wziinc.com>

Sent:

Friday, January 16, 2015 10:09 AM

To:

Homero Ramirez Richard Wilson

Cc: Subject:

RE: Sierra Power S-834

Attachments:

SP CARB 2013 GHG Report.pdf

Homero,

Attached is the GHG summary report. Will this be enough documentation?

Thanks,

Gunnar Tornstrom

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Wednesday, January 07, 2015 7:45 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Gunnar,

Thank you for the source data. Do you have more substantial documentation than just the emails? I was hoping for some more documentation to include in the evaluation.

Homero Ramirez
San Joaquin Valley Air Pollution Control District
34946 Flyover Court
Bakersfield, CA 93308
Tel. (661) 392-5616
Fax (661) 392-5585

www.healthyairliving.com

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Monday, January 05, 2015 2:01 PM

To: Homero Ramirez

Subject: FW: Sierra Power S-834

From: Richard Wilson

Sent: Monday, January 05, 2015 1:58 PM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

1

Here is the source data: These are the summary data sheets for each year that were used to report GHGs to CARB under AB32 (these numbers have all been 3rd party verified). The confusion may lie in the fact that some of the fuel categorized as "wood waste" is sawmill chips coming from Sierra Forest Products, not from an outside supplier.

From: Gunnar D. Tornstrom

Sent: Monday, January 05, 2015 1:30 PM

To: Richard Wilson

Subject: FW: Sierra Power S-834

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Monday, January 05, 2015 11:03 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Good morning Gunnar.

I was working on the evaluation, and I noticed that some of the fuel usage numbers used in the application do not seem to match some of the fuel consumption records provided. The calculation in the application have fuel use information for ag and wood waste, but I can't match them to records provided. Do you have the records for the numbers specified in the evaluation?

If you have any questions, please let me know.

Thank you.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

www.healthyairliving.com

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Monday, January 05, 2015 9:48 AM

To: Homero Ramirez

Subject: RE: Sierra Power S-834

Good morning Homero,

May I have an update on the status of the ERC for Sierra Power S-834.

Thank you,

Bakersfield, CA 93301 Office: (661) 326-1112 Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Wednesday, November 19, 2014 8:47 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-B34

Gunnar,

I will be working on all those projects in the next few days. They have not been completed yet.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

www.healthyairliving.com

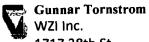
Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Wednesday, November 19, 2014 8:41 AM

To: Homero Ramirez

Subject: Sierra Power S-834


Homero,

1

Sierra power applied for Emission Reduction Credit (ERC) and it was deemed approved, all that was needed was the cancellations and transfer of ownership. Sierra Power would like the credits before the end of the year so any update would be greatly appreciated. The three items are:

- Permit cancellation
- Cancel of Title V permit
- Transfer of ownership

Please let me know the status of the ERC and the cancellations / transfer, thank you very much,

1717 28th St.

Bakersfield, CA 93301 Office: (661) 326-1112 Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

4

Facility Name:

Sierra Power Corporation, 93270

Facility ARB ID:

101178

Facility Reporting Year:

2013

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Representatives

Designated Representative:

Kent Duysen

Facility Location

Physical Address:

9000 Road 234

City:

Terra Bella

State / Province:

CA

ZIP / Postal Code:

93270

Country:

Latitude:

35.95377

Longitude:

-119.04702

County:

TULARE

Air Basin:

SAN JOAQUIN VALLEY

District:

SAN JOAQUIN VALLEY UNIFIED APCD

Mailing Address:

9000 Road 234, P.O. Box 10060

City:

Terra Bella

State / Province:

CA

ZIP / Postal Code:

93270

Country:

Payment Information (required if subject to AB 32 Cost of Implementation Fee Regulation)

Responsible Party for Payment:

Responsible Party Email:

Responsible Party Phone:

Billing Address:

City:

State / Province:

ZIP / Postal Code:

Country:

Owners / Operators

GHG Ouantity

CO2 equivalent emissions (excluding

2,116.9914 Metric Tons

biogenic) from subpart C - AA:

CO2 equivalent quantity from

0 Metric Tons

supplier categories, including biogenic (subparts MM - PP):

Exempt Biogenic CO2 emissions from subpart C - AA:

106,594 Metric Tons

CO2 equivalent emissions from

0 Metric Tons

electric power entities:

Covered CO2 equivalent emissions:

De Minimis CO2 equivalent

0 Metric Tons

2,117 Metric Tons

emissions:

Maximum allowable De Minimis

emissions:

3,261.3 Metric Tons

General Facility Reporting Information

NAICS Codes

Primary:

321113 (Sawmills)

Second Primary:

Additional:

U.S. Parent Companies

Parent Company Name:

Sierra Power Corporation

Address:

9000 Rd. 234, Terra Bella, CA 93270

Percentage of Ownership Interest:

100%

GHG Report Start Date:

2013-01-01

GHG Report End Date:

2013-12-31

Explanation of any calculation methodology changes during the

reporting year:

EPA e-GGRT Facility IDs

532997

Full or Abbreviated GHG Report:

Full

Company or Entity qualifies for Small

No

Business Status:

Confidential Data and Other

Comments:

Electricity Purchases/Acquisitions for Reporting Facilities (95104(d))

Electricity Provider's Name:

Southern California Edison (SCE)

Provider's ARB ID:

3005

Purchases/Acquisitions (MWh):

235.17

Natural Gas Purchases/Acquisitions for Reporting Facilities [95115(k), 95103(a)(1)]

Natural Gas Provider Name:

Southern California Gas Company (SCG)

Provider's ARB ID:

5002

Customer Number:

06691815002

Purchases/Acquisitions (MMBtu):

2.607

Disposition of Generated Thermal Energy For Other Users

From Non-Cogeneration/Bigeneration Units [95104(d)(4)]

Increases and Decreases in Facility Emissions [95104(f)]:

Have facility emissions increased or decreased more than five percent in

No

relation to the previous data year?

Note: This section is not subject to the third-party verification requirements

Electricity Generation

Facility has the capacity to generate

electricity:

CEC ID (if applicable):

10036

Yes

EIA ID (if applicable):

50068

FERC QFID (if applicable):

33R007

CAISO ID (if applicable):

N/A

Total Facility Nameplate Generating

9.4 MW

Capacity:

Facility Type:

Independently operated cogeneration facility co-located with the thermal host

Facility's Energy Disposition:

Grid-dedicated facility

Disposition of Generated Electricity [95112(a)(4)]

Generated Electricity for Grid

Disposition [95112(a)(4)(A)] Unit, System Or Group Name

Cogen 1

Retail Provider/Marketer Name

Pacific Gas and Electric Company (PG&E)

Electricity Provided or Sold (MWh)

44,323

Generated Electricity for Other Users

Disposition [95112(a)(4)(B)]

Unit, System Or Group Name

Cogen 1

End-User Name

Sierra Forest Products

ARB ID

NAICS

Electricity Provided or Sold (MWh)

5,182

Generated electricity used for other on-site industrial processes that are not in support of or a part of the power generation system:

Reported emissions include emissions

Yes

from a cogeneration/bigeneration

unit:

Disposition of Generated Thermal Energy For Other Users

From Cogeneration/Bigeneration Units [95112(a)(5)(A)]

Name Of System Or Units:

Coaen 1

End-User Name:

Sierra Forest Products

ARB ID:

NAICS:

Thermal Energy Provided or Sold

73,013

(MMBtu):

Energy Product Provided:

0 MMBtu

Parasitic Steam Use: Generated thermal energy used for supporting power production (excluding steam

used directly for generating electricity) [95112(a)(5)(B)]:

0 MMBtu

Generated thermal energy for onsite industrial applications not related to electricity generation

[95112(a)(5)(C)]:

Description of the excluded data and an estimated magnitude of the excluded product(s) using best available methods [95103(I)]:

Subpart C: General Stationary Fuel Combustion

Gas Information Details

Gas Name	Gas Quantity (Metric Tons)
Methane	32.0813
Nitrous Oxide	4.2106
Carbon Dioxide	138
Exempt Biogenic Carbon dioxide	106,594

Total Covered CO2e Emissions:

2,117 (Metric Tons)

Emissions shown above that are claimed as De Minimis (CO2e):

0 Metric Tons

Unit Details

Unit Name:

Backup Boiler

Configuration Type:

Single Unit Using Tiers 1, 2, or 3

Unit Type:

OB (Boiler, other)

Unit Description:

Natural gas backup boiler

Individual Unit Details

Maximum Rated Heat Input

32 mmBtu/hr

Capacity:

Electricity Generation Unit Information

Does this configuration have the

No

capacity to generate electricity?

Emission Details: Configuration-Level Summary (User entered values)

Total exempt annual biogenic CO2

mass emissions (must equal the sum of calculated annual exempt biogenic

CO2) (metric tons):

Annual CO2 emissions from sorbent

0

(metric tons):

Fuel-Specific Emissions Information

Fuel:

Natural Gas (Weighted U.S. Average) - Natural Gas

Calculation Methodology: Tier 1 (Equation C-1a, natural gas billing in therms)

Methodology Start Date: 2013-01-01

Methodology End Date: 2013-12-31

Fuel Emission Details

Total CO2 emissions: 138.2443 Metric Tons

Total CH4 emissions: 0.0026 Metric Tons

Total N2O emissions: 0.0003 Metric Tons

Total CH4 emissions CO2e: 0.0548 Metric Tons

Total N2O emissions CO2e: 0.0808 Metric Tons

Equation Inputs

Annual Natural Gas Usage:

Fuel Specific CO2 Emissions Factor: Fuel Specific CH4 Emissions Factor:

Fuel Specific N2O Emissions Factor:

Annual Volume of Fuel Combusted:

26,074 therms

53.02 kg CO2/MMBtu 0.001 kg CH4/MMBtu

0.0001 kg N2O/MMBtu

2,543,194 scf

Unit Name:

Configuration Type:

Unit Type:

Unit Description:

Individual Unit Details

Maximum Rated Heat Input

Capacity:

Cogen 1

Single Unit Using Tiers 1, 2, or 3

OFB (Fluidized bed, other) Biomass Cogeneration unit

171.2 mmBtu/hr

Electricity Generation Unit Information

Does this configuration have the capacity to generate electricity?

Is this configuration a Part 75 unit?

Nameplate Generating Capacity:

Prime Mover Technology:

Type of Thermal Energy Generation:

95112(b)(2): Gross Generation:

95112(b)(2): Net Generation:

95112(b)(3): Total Thermal Output (for Cogeneration or Bigeneration):

95112(b)(8): Other Steam Used for

Electricity Generation:

95112(b)(8): Input Steam to the

Steam Turbine (for bottoming cycle

cogeneration units only)

95112(b)(8): Output of the Heat

Recovery Steam Generator (for

bottoming cycle cogeneration units

only)

95112(e): Geothermal Steam

Utilized:

95112(f): Stationary Hydrogen Fuel

Cell: Fuel Type and Provider (if not

reported elsewhere)

Additional Comments and

Information

Yes

No

9.4 MW

Boiler with Steam Turbine

Cogeneration Topping Cycle

53,628 MWh

49,505 MWh

572,058 MMBtu

0 MMBtu

747,055 MMBtu

0 MMBtu

0 MMBtu

Emission Details: Configuration-Level Summary (User entered values)

Total exempt annual biogenic CO2

mass emissions (must equal the sum of calculated annual exempt biogenic

CO2) (metric tons):

Annual CO2 emissions from sorbent

(metric tons):

Fuel:

106,594.3

0

Fuel-Specific Emissions Information

Calculation Methodology:

Tier 2 (Equation C-2c, steam generation)

Urban Waste - Biomass-Derived Fuels - Solid

2013-01-01

2013-12-31

Methodology Start Date: Methodology End Date:

Frequency of HHV determinations:

Fuel Emission Details

Total CO2 emissions: 45,673.7872 Metric Tons

Total CH4 emissions: 15.5817 Metric Tons

Total N2O emissions: 2.0451 Metric Tons

Total CH4 emissions CO2e: 327.2152 Metric Tons

Total N2O emissions CO2e: 633.9794 Metric Tons

Equation Inputs

Mass of steam generated by MSW or 284,420,192 Pounds

solid fuel combustion:

Ratio of the boiler's max rated heat 0.0017 mmBtu/lb steam

input capacity to its design rated

steam output capacity:

Fuel Specific CO2 Emissions Factor: 93.8 kg CO2/MMBtu

Fuel Specific CH4 Emissions Factor: 0.032 kg CH4/MMBtu

Fuel Specific N2O Emissions Factor: 0.0042 kg N2O/MMBtu

Annual Mass or Volume of Fuel 36,530 short tons

Combusted:

<u>HHV Substitute Data Information</u> - Identify each month for which the monthly HHV value is calculated using one or more substitute data values.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Fuel:

Agricultural Waste - Biomass-Derived Fuels - Solid

Calculation Methodology: Tier 2 (Equation C-2c, steam generation)

Methodology Start Date: 2013-01-01 Methodology End Date: 2013-12-31

Frequency of HHV determinations:

Fuel Emission Details

Total CO2 emissions: 60,920.4778 Metric Tons

Total CH4 emissions: 16.497 Metric Tons
Total N2O emissions: 2.1652 Metric Tons
Total CH4 emissions CO2e: 346.4379 Metric Tons

Total N2O emissions CO2e: 671.2233 Metric Tons

Equation Inputs

Mass of steam generated by MSW or 301,128,808 Pounds

solid fuel combustion:

Ratio of the boiler's max rated heat 0.0017 mmBtu/lb steam

input capacity to its design rated

steam output capacity:

Fuel Specific CO2 Emissions Factor: 118.17 kg CO2/MMBtu

Fuel Specific CH4 Emissions Factor: 0.032 kg CH4/MMBtu
Fuel Specific N2O Emissions Factor: 0.0042 kg N2O/MMBtu

Annual Mass or Volume of Fuel 38,676 short tons

Combusted:

HHV Substitute Data Information - Identify each month for which the monthly HHV value is calculated using one or more substitute data values.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
I												

Time And Date Report Generated: 03/27/2014 15:34

Homero Ramirez

From:

Gunnar D. Tornstrom < GunnarT@wziinc.com>

Sent:

Monday, January 05, 2015 2:01 PM

To:

Homero Ramirez

Subject:

FW: Sierra Power S-834

Attachments:

20120319_143314.pdf; Data for GHG Calculations for 2012 to WZI.doc; SP 2013 GHG

Data.pdf

From: Richard Wilson

Sent: Monday, January 05, 2015 1:58 PM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Here is the source data: These are the summary data sheets for each year that were used to report GHGs to CARB under AB32 (these numbers have all been 3rd party verified). The confusion may lie in the fact that some of the fuel categorized as "wood waste" is sawmill chips coming from Sierra Forest Products, not from an outside supplier.

From: Gunnar D. Tornstrom

Sent: Monday, January 05, 2015 1:30 PM

To: Richard Wilson

Subject: FW: Sierra Power S-834

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.orq]

Sent: Monday, January 05, 2015 11:03 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Good morning Gunnar.

I was working on the evaluation, and I noticed that some of the fuel usage numbers used in the application do not seem to match some of the fuel consumption records provided. The calculation in the application have fuel use information for ag and wood waste, but I can't match them to records provided. Do you have the records for the numbers specified in the evaluation?

If you have any questions, please let me know.

Thank you.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Monday, January 05, 2015 9:48 AM

To: Homero Ramirez

Subject: RE: Sierra Power S-834

Good morning Homero,

May I have an update on the status of the ERC for Sierra Power S-834.

Thank you,

Gunnar Tornstrom WZI Inc.

1717 28th St.

Bakersfield, CA 93301 Office: (661) 326-1112 Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Wednesday, November 19, 2014 8:47 AM

To: Gunnar D. Tornstrom

Subject: RE: Sierra Power S-834

Gunnar,

I will be working on all those projects in the next few days. They have not been completed yet.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

HEALTHY AND LIVING

Make one change for clean air!

From: Gunnar D. Tornstrom [mailto:GunnarT@wziinc.com]

Sent: Wednesday, November 19, 2014 8:41 AM

To: Homero Ramirez

Subject: Sierra Power S-834

Homero,

Sierra power applied for Emission Reduction Credit (ERC) and it was deemed approved, all that was needed was the cancellations and transfer of ownership. Sierra Power would like the credits before the end of the year so any update would be greatly appreciated. The three items are:

- Permit cancellation
- Cancel of Title V permit
- Transfer of ownership

Please let me know the status of the ERC and the cancellations / transfer, thank you very much,

Gunnar Tornstrom WZI Inc. 1717 28th St.

Bakersfield, CA 93301 Office: (661) 326-1112 Fax: (661) 326-0191

E-mail: gunnart@wziinc.com

Information for GHG Report for CY 2011

Sierra Power Fuel Consumption for 201	2011
---------------------------------------	------

Outside purchases - Ag and Urban

SFP Sawmill Chips

TOTAL

65,887 BDT

- 65,887

15,535 BDT

81,422 BDT

- 15,535

Total Steam Produced 750 degrees@ 600PSI

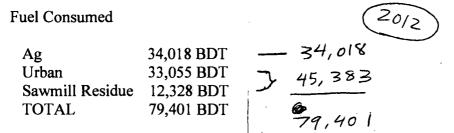
616,632,300#

wood waste

Electricity Sold

SFP 5,368,900 kw PG&E 47,162,000 kw TOTAL 52,230,900 kw

Steam Sold to SFP


65,722,672 #

Electricty Purchased from SCE

240,071 kw

No natural gas used

Data for GHG Calculations for 2012 - Sierra Power Corporation

Sierra Power boiler operates @ 95,000#/hr, 600 psi, 750 degree steam - 656,264,000# of steam generated in 2012

The gross generation for 2012 was 59,014,000 kw

175,931 kw purchased from SCE for start ups etc

SPC sold 49,352,704 kw to PG&E and 5,335,300 to Sierra Forest Products

SPC sold 65,904,554# of steam to Sierra Forest Products's dry kilns to dry lumber

Richard Wilson

From:

sfp@sierraforest.net

Sent:

Monday, February 03, 2014 7:13 AM

To:

Richard Wilson

Subject:

Sierra Power's GHG

2013 GHG Data for Sierra Power Corporation

Gross Generation

53,628,000 kw

Net Generation

49,505,008 kw

Electricity Purchased

235,168 kw

Natural Gas Used

26,074 therms

Gross Steam

585,549,000 Pounds

Steam to Kilns

61,912,000 Pounds

Fuel Consumption

Ag

38,676 BDT

22,674 BDT

Urban Sawmill Chips

13,856 BDT

TOTAL

75,206 BDT

- 38,676 ²⁰¹³
36,530
75,206

Let me know if you need other data.

Thanks,

Kent

Homero Ramirez

From:

Richard Wilson < Rwilson@wziinc.com>

Sent:

Wednesday, April 02, 2014 4:37 PM

To:

Homero Ramirez

Subject:

RE: Sierra Power Permit Mod

Attachments:

Scanned from a Xerox multifunction device001.pdf; 20140402_163515.pdf

0

Here are the fuel records and an expedite request.

From: Homero Ramirez [mailto:Homero.Ramirez@valleyair.org]

Sent: Wednesday, April 02, 2014 11:12 AM

To: Richard Wilson

Subject: RE: Sierra Power Permit Mod

Rich,

I checked the file for Sierra Power Corporation's ATC application, and it did not include a request for Expedited/Reimbursable Overtime Processing. If the applicant wishes to change it to that type of processing, we need a letter from the applicant that includes an economic justification.

If you have any questions, please let me know.

Thank you.

Homero Ramirez San Joaquin Valley Air Pollution Control District 34946 Flyover Court Bakersfield, CA 93308 Tel. (661) 392-5616 Fax (661) 392-5585

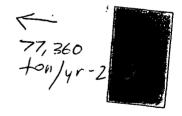
Make one change for clean air!

From: Richard Wilson [mailto:Rwilson@wziinc.com]

Sent: Monday, March 31, 2014 9:02 AM

To: Homero Ramirez

Subject: RE: Sierra Power Permit Mod


Homero,

Has this permit been assigned for processing yet?

Also, I had another application I need to know the status on. It is an emergency generator for a new location of Brighthouse Networks, on Mosasco St. in Bakersfield. Thanks,

	S.F.	P.	S.P.	C.	Tot	al
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	\$
January	186.50	s —	6,237.73	\$	6,424.23	\$
February	862.65	\$	6,061.64	\$	6,924.29	\$
March	1,071.56	\$	5,774.76	\$	6,846.32	\$
April	890.53	\$	7,446.09	\$	8,336.62	\$
May	200.48	\$	5,154.07	s —	5,354.55	\$
June	1,000.01	\$	4,889.39	\$	5,889.40	\$
July	1,014.53	\$	6,080.65	\$	7,095.18	\$
August	987.40	\$	6,672.25	\$	7,659.65	\$
September	1,663.91	\$	4,293.99	\$	5,957.90	\$
October	1,739.89	\$	4,697.17	\$	6,437.06	\$
November	1,823.99	\$	5,082.75	\$	6,906.74	\$
December	886.08	\$	4,682.79	\$	5,568.87	\$
Totals	12,327.53	\$	67,073.28	\$	79,400.81	*
	15.53%	11.01%	84.47%	88.99%	, •	

	S.F.	P.	S.P.C).	Tot	al
Month	B.D.T.	\$	B.D.T.	\$.	B.D.T.	\$
January	1,220.54	\$	6,602.01	\$,	7,822.55	\$
February	1,123.37	\$	6,716.81	\$	7,840.18	\$
March	713.21	\$	4,039.83	\$ 1	4,753.04	\$
April	1,437.99	\$	4,883.77	\$	6,321. 76	\$*********
Мау	715.64	\$	3,069.44	\$	3,785.08	\$ _*
June	1,273.39	\$	5,885.56	\$	7,158.95	\$
July	1,170.25	\$	4,837.66	\$	6,007.91	\$
August	1,528.48	\$	4,733.80	\$	6,262.28	\$ 4
September	1,941.44	\$	4,031.34	\$	5,972.78	\$
October	1,167.62	\$	3,805.72	\$	4,973.34	\$
November	1,135.73	\$	6,753.50	\$	7,889.23	\$
December	428.22	\$	8,145.08	\$	8,573.30	\$
Totals	13,855.88	\$	63,504.52	\$ 1	77,360.40	\$
	17.91%	12.56%	82.09%	87.44%		

	S.F.F	·.	S.P.C).	Tota	1
Month	B.D.T.	\$	B.D.T.	\$	B.D.T.	\$
January	186.50	\$	6,237.73	\$	6,424.23	\$ (4)
February	862.65	\$ 4	6,061.64	\$	6,924.29	\$
March	1,071.56	\$	5,774.76	\$	6,846.32	\$
April	890.53	\$	7,446.09	\$	8,336.62	\$
May	200.48	\$	5,154.07	\$	5,354.55	\$ 444
June	1,000.01	\$	4,889.39	\$	5,889.40	\$
July	1,014.53	\$	6,080.65	\$	7,095.18	\$
August	987.40	\$	6,672.25	\$	7,659.65	\$
September	1,663.91	\$	4,293.99	\$	5,957.90	\$
October	1,739.89	\$	4,697.17	\$	6,437.06	\$
November	1,823.99	\$	5,082.75	\$	6,906.74	\$
December	886.08	\$	4,682.79	\$	5,568.87	\$
Totals	12,327.53	\$	67,073.28	\$	79,400.81	\$

79,400. ton/yr-2012

15.53%

	S.F.	P.	S.I	P.C.	To	tal
Month	B.D.T.	\$	B.D.T.	. \$.	B.D.T.	\$,
January	1,220.54	\$	6,602.01	\$	7,822.55	\$ 4
February	1,123.37	\$	6,716.81	\$	7,840.18	\$
March	713.21	\$	4,039.83	\$	4,753.04	\$
April	1,437.99	\$	4,883.77	\$	6,321.76	\$*******
May	715.64	\$	3,069.44	\$	3,785.08	\$.
June	1,273.39	\$	5,885.56	\$ 4	7,158.95	\$
July	1,170.25	\$	4,837.66	\$	6,007.91	\$
August	1,528.48	\$	4,733.80	\$.	6,262.28	\$
September	1,941.44	\$	4,031.34	\$	5,972.78	\$
October	1,167.62	\$	3,805.72	\$	4,973.34	\$
November	1,135.73	\$	6,753.50	\$	7,889.23	\$
December	428.22	\$	8,145.08	\$	8,573.30	\$
Totals	13,855.88	\$	63,504.52	\$ 1	77,360.40	\$
	17.91%	12.56%	82.09%	87.44%		

APR 0 3 2014

Kent Düysen Sierra Power Corporation P O Box 10060 Terra Bella, CA 93270-0060

Re: **Notice of Receipt of Complete Application**

> Facility Number: S-834 **Project Number: S-1141060**

Dear Mr. Duysen:

The San Joaquin Valley Air Pollution Control District (District) has received your application for the banking of Emission Reduction Credits for the shutdown of a 9.4 MW cogeneration unit and associated equipment, at 9000 Road 234 in Terra Bella. Based on our preliminary review, the application appears to be complete. This means that your application contains sufficient information to proceed with our analysis. However, during processing of your application, the District may request additional information to clarify, correct, or otherwise supplement, the information on file.

Your project triggers public notice and must therefore be public noticed for a 30-day period at the conclusion of our analysis, prior to the issuance of the Emission Reduction Credit certificates.

We will begin processing your application as soon as possible. In general, complete applications are processed on a first-come first-served basis.

It is estimated that the project analysis process will take 30 hours, and you will be charged at the weighted hourly labor rate in accordance with District Rule 3010. This estimate includes the following major processing steps: Determining Completeness (5 hours), Engineering Evaluation (20 hours), Permit Preparation (5 hours). The current weighted labor rate is \$106.00 per hour, but please note that this fee is revised annually to reflect actual costs and therefore may change. No payment is due at this time; an invoice will be sent to you upon completion of this project.

> Seyed Sadredin **Executive Director/Air Pollution Control Officer**

Northern Region 4800 Enterprise Way Modesto, CA 95356-8718 Tel: (209) 557-6400 FAX: (209) 557-6475

Central Region (Main Office) 1990 E. Gettysburg Avenue Fresno, CA 93726-0244 Tel: (559) 230-6000 FAX: (559) 230-6061

Southern Region 34946 Flyover Court Bakersfield, CA 93308-9725 Tel: 661-392-5500 FAX: 661-392-5585 Mr. Duysen Page 2

If you have any questions, please contact Mr. Leonard Scandura at (661) 392-5500.

Sincerely,

David Warner

Director of Permit Services

Leonard Scandura, P.E. Permit Services Manager

DW:har

RECEIVED

San Joaquin Valley Air Pollution Control District **Application for**

MAR - 4 2014

[X] EMISSION REDUCTION CREDIT (ERC)

DATE STAMP

[] CONSOLIDATION OF ERC CERTIFICATES

SJVAPCD Southern Region

1. ERC TO BE ISSUED TO:	ERC TO BE ISSUED TO: Sierra Power Facility ID: S - 834 (if known)								
2. MAILING ADDRESS: Str	eet/P.O. Box:P	.O. Box 10060							
	City:T	erra Bella	·······························	State:	CAZip Code:	_93270			
3. LOCATION OF REDUCT				4	. DATE OF REDUCT	ION:			
City:Terra									
/4 SECTION		IP R	ANGE						
5. PERMIT NO(S): S-{	34-3	EX	ISTING ERC NO(S):						
6. METHOD RESULTING I	N EMISSION REI	DUCTION:	· · ·						
[X SHUTDOWN	[]RETR	OFT	[] PROCESS CHANG	GE	[] OTHER				
S-934-1-3: Fuel Screening	and Handling Sy	ystem Served by a	Humidifier Fogger	/Spray Syst	em				
S-834-6-3: Ash Collection S S-834-10-2: Fuel Handling Spray System	System Utilizing	Enclosed Augers		rving Biofue	•	a Humidifier Fogger (Use additional sheets if necessary)			
7. REQUESTED ERCs: (In p	ounds per calenda	r quarter except CO	₂ e)	· · · · · · · · · · · · · · · · · ·					
·	VOC	NOx	l co l	PM ₁₀	SOx	Other			
1 st Qtr	6.46	10.78	29.06	2.07	5.96	n/a			
2 nd Qtr	6.46	10.78	29.06	2.07	5.96	n/a			
3 rd Qtr	6.46	10.78	29.06	2,07	5.96	n/a			
4 th Qtr	6.46	10.78 metric ton/yr	29.06	2.07	5.96	n/a			
8. SIGNATURE OF APPLIC	ANT:		TYPE OR P		OF APPLICANT: ral Manager				
9. TYPE OR PRINT NAME Kent Duy			DATE:	PHONI CELL I FAX #: E-MAI	PHONE #:				
FOR APCD USE ONLY:									

Northern Regional Office * 4800 Enterprise Way * Modesto, California 95356-8718 * (209) 557-6400 * FAX (209) 557-6475 Central Regional Office * 1990 East Gettysburg Avenue * Fresno, California 93726-0244 * (559) 230-5900 * FAX (559) 230-6061 Southern Regional Office * 34946 Flyover Court * Bakersfield, California 93308 * (661) 392-5500 * FAX (661) 392-5585 Revised August 2013

NEW ERC 5-834 8-114660

ERC APPLICATION EVALUATION

Company Name:

Sierra Power Corporation

Date: February 13, 2014

Mailing Address:

PO Box 10060

Terra Bella, CA 93270

Contact Person:

Richard Wilson - Consultant WZI. Inc.

Telephone:

(661) 326-1112

Engineer:

Application #

Date Application Received:

Date Deemed Complete:

I. Summary:

Sierra Power Corporation (Sierra Power) would like to submit an Emissions Reduction Credit application for the removal of a 9.4 MW Congeneration system that resulted in the removal of all of the following pieces of permitted equipment from operation, as well as cancellation of the following permits:

S-834-1-3: Fuel Screening and Handling System Served by a Humidifier Fogger/Spray System

S-834-3-6: 9.4 MW Cogeneration System with 171.2 MMBTU/hr Staged Air Biomass-Fired Boiler with Fired Heat Recovery Steam Generator with Peabody Low-NOx Natural Gas-Fired Burners, Ammonia Injection System, Multiclones, Low Temperature SCR Exhausting to Electrostatic Precipitator, and Flue Gas Recirculation

S-834-6-3: Ash Collection System Utilizing Enclosed Augers and Water Mist Serving Biofuel Boiler (S-834-3)

S-834-10-2: Fuel Handling System Consisting of Two Silos, One Hog Unit, Screens, and Conveyors Served by a Humidifier Fogger Spray System

II. Applicable Rules:

Rule 2301 Emission Reduction Credit Banking (1/19/2012)

Rule 3060 Emission Reduction Credit Banking Fee (1/17/2008)

III. Location of Reduction:

The emission reductions will occur at the facility located at 9000 Road 234 Terra Bella, CA, 93270

IV. Method of Generating Reductions:

The emission reductions are achieved by the permanent shutdown of permit units S-834-1-3, S-834-3-6, S-834-6-3 and S-834-10-2.

V. Calculations

A. Assumptions and Emission Factors:

The 9.4 MW Cogeneration unit with 171.2 MMBTU/HR staged air biomass-fired boiler permitted in S-834-3-6 operates 365 days a year, 24 hours a day.

The Zern Natural Gas Boiler permitted in S-834-7-6 operates approximately 82 hours a year (in accordance with the 30,000,000,000 btu maximum annual heat input.

Hours of Operation: Based on SJVAPCD Issued Permits

Emission Factors for 9.4 MW Cogeneration unit with 171.2 MMBTU/HR staged air biomass-fired boiler permitted in S-834-3-6:

Pollutants	actual	Emission Factors (lb/mmbtu)			
NOx	0,098	0.108 🗸			
PM	0.012	0.021			
CO	0.237	7 0.314 🗸			
VOC	0.0	0.666	-	0.066	
SOx	0.001	9 0.061			VOC is
					0.066 lb/mmblu in PTo cond.
					in PTO cond.
					#21

B. <u>Baseline Period determination and Data:</u>

The reductions below were calculated based the average actual hours of operations from the baseline period which was determined as the latest three consecutive years (2011-2013).

C. <u>Historical Actual Emissions:</u>

HAE was calculated as the average annual emissions for the baseline period.

D. Actual Emission Reductions:

The actual emissions reductions from the cancellation of permits S-834-1-3, S-834-3-6, S-834-6-3 and S-834-10-2:

S-834-3-6 (9.4 MW Cogeneration unit with 171.2 MMBTU/HR staged air biomass-fired boiler)

Pollutants	MMBTU/HR	Emissions (lbs/year)	Emissions (tons/year)	Emissions (tons/qtr)
NOx	0.108	95,113.57	47.56	11.89
PM	0.021	18,494.304	9.25	2.3125
CO	0.314	276,533.89	138.27	34.5675
VOC	0.066	58,124.96	29.06	7.265
SOx	0.061	53,721.55	26.86	7.215

S-834-1-3Fuel Screening and Handling System Served by a Humidifier Fogger/Spray System, S-834-6-3 (Ash Collection System Utilizing Enclosed Augers and Water Mist Serving Biofuel Boiler) and S-834-10-2 (Fuel Handling System Consisting of Two Silos, One Hog Unit, Screens, and Conveyors Served by a Humidifier Fogger Spray System:

	Emissions	Emissions	Emissions
Pollutants	(lbs/year)	(tons/year)	(tons/qtr)
PM10	3,3393.34	1.70	0.425

permitted = 82 hr/yr?

Increase of emissions from unit S-834-7-6 (Zern Natural Gas Fired Boiler) to be discounted from overall (above) reductions (previously submitted as ATC application):

Pollutants	MMBTU/HR	Emissions (lbs/year)	Emissions (tons/year)	Emissions (tons/qtr)
NOx	0.036	2,0005.2	1.00	0.25
PM	0.00285	3,505.2	1.75	0.4375
CO	0.014	18,276.9	9.14	2.285
VOC	0.073	751.1	0.38	0.095
SOx	0.003	704.5	0.35	0.0875

Remaining Emissions Available for ERC's (All Emissions Reductions minus emissions increases for unit S-834-7):

Pollutants	Emissions (lbs/year)	Emissions (tons/year)	Emissions (tons/qtr)
NOx	93,108.37	46.55	11.6375
PM	18,382.44	9.19	2.2975
СО	258,256.99	129.13	32.2825
VOC	57,373.86	28.69	14,343.465
SOx	53,017.05	26.51	6.6275

E. Community Bank Allowance:

Community Bank Allowance was calculated as 10% of AER.

Total Community Bank Allowance Shutdown of Cogeneration, Fuel and Ash Handling Units, LESS the Increase in Emissions Generated by Unit S-834-7

Pollutants	Emissions (lbs/year)	Emissions (tons/year)	Emissions (tons/qtr)
NOx	9,310.84	4.655	1,16
PM	1,838.244	0.919	0,23
CO	25,825.699	12.91	3.2275
VOC	5,737.386	2.87	0.7175
SOx	5,301.705	2.65	0.66

F. Increase in Permitted Emissions:

No IPE is associated with this project.

PM10 18,494.3 +3,339 -<u>3505.2</u> 18,328

B. Bankable Emissions Reductions Credits:

Bankable Emission Reductions Credits were calculated by subtracting the community Bank Allowance from the Actual Emission Reductions

Total Bankable Emissions Reduction Credits for Cogen, Fuel and Ash handling equipment Shut Down

Pollutants	Emissions (lbs/year)	Emissions (tons/year)	Emissions (tons/qtr)
NOx	83,797.53	41.9	10.78
PM	16,544.196	8.27	2.07
CO	232,431.29	116.22	29.06
VOC	51,636.47	25.82	6.46
SOx	47,715.35	23.86	5.96

VI. Compliance Review

A. Real:

Emissions from the removal of the Cogeneration unit and all associated equipment generate the above quantified emissions. Therefore, the reductions are real.

B. <u>Enforceable:</u>

All equipment is operated in accordance with district permits. Enforceability is satisfied by surrendering the permits to operate for the above mentioned equipment associated with the cogeneration operation. Therefore, the reductions are enforceable.

C. Quantifiable:

As discussed in Section V, the reductions were calculated using the permitted emission factors and fuel records from baseline period. Therefore the reductions are quantifiable.

D. Permanent:

There is no foreseeable condition that would require returning the 9.4 MW cogeneration unit and associated equipment back to service. In addition, the site is a permitted stationary source that may not add emitting units without permits. Therefore, the reductions are permanent.

E. Surplus:

The emissions reductions quantified in this application were not made pursuant to any current or future rule, regulation, or policy. Therefore, the reductions are surplus.

F. <u>Timeless</u>

The date of reduction occurred: January 23, 2014

The date of application filed: February 2014

VII. Recommendation

Issue an ERC for the annual tons reduction of all pollutants listed above for the shutdown of the existing units.

VIII. Billing Fees

An emission Reduction Credit Certificate Application Fee of \$759.00 is included.

ATTACHMENT 1

Detailed ERC Emissions Calculations

X = 238,928 mugh

Sierra Power ERC Calculations

Permit Emissions Factors (lb/MMBTU)

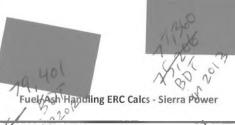
NOx	SOx	CO	voc /	PM10
0.108	0.061	0.314	0,060	0.021

Year/Type	Fuel Use (BDT)	MMBTU/BDT*	NOx(lbs)	SOx(ļ	bs)	CO(lbs)	VOC(lbs)	PM10(lbs)
2013 AG	38,676	8.25	34460.3	19	463.7	100190.2	21059.1	6700.6
2013 Wood Waste	36,530	15.38	60677.8	34	271.7	176415.1	37080.9	11798.5
2013 Total	75,206		95138.1	5 3	735.4	276605.2	58140.0	18499.1
2012 Ag	34,018	8.25	30310.0	[17	119.6	88123.6	18522.8	5893.6
2012 Wood Waste	45,383	15.38	25383.0)/42	577.4	219169.0	46067.4	14657.8
2012 Total	79,401		105693.0	/ 59	697.0	307292.7	64590.2	20551.4
2011 Ag	65,887	8.25	58705.3	33	157.6	170680.3	35875.5	11414.9
2011 Wood Waste	15,535) 15.38	25804.3) 14	574.6	75023.5	15769.3	5017.5
2011 Total	81,42	2	84509.6	47	732.3	245703.8	51644.7	16432.4

	NOx				PM10
2011-2013 Average (lbs/yr)	95113.566	\$3721.551	276533.885	58124.957	18494.304
2011-2013 Average (tons/yr)	47.56	26.86	138.27	29.06	9.25

Contemporaneous reductions for S-834-7

	NOx	SOx	СО	VOC	PM10
lbs/yr	2005.2	704.5	18276.9	751.1	3505.2
tons/yr	1.00	0.35	9.14	0.38	1.75


Reductions for fuel and ash handling equipment shutdown

	PM10
lbs/yr	3393.34
tons/yr	1.70

Remaining Emissions Available for ERCs

	NOx	SOx	СО	VOC	PM10
lbs/yr	93108.366	53017.051	258256.985	57373.857	18382.44
tons/yr	46.55	26.51	129.13	28.69	9.19

 $[\]hbox{\tt *http://www.epa.gov/climateleadership/documents/emission-factors.pdf}$

	1	Fuel Usage	V	1
2011 Tons		2012 Tons	2013 Tons	2011-2013 TonsAvg.
	81422.00	79401.00	75206.00	78676.33

Fugitive Emission Factor	0.014 lbs/ton

Served by a Humidifier Fogger/Spray System)		Uncontrolled	Controlled	
	Average Tons/yr	Lbs/yr	Lbs/yr	
1. Trommel Screen	78676.33	1101.47	308.41123	
2. Hopper	78676.33	1101.47	308.41123	
3. Conveyor	78676.33	1101.47	308.41123	
4. Conveyor	78676.33	1101.47	308.41123	
5. Conveyor	78676.33	1101.47	308.41123	
6. Conveyor	78676.33	1101.47	308.41123	
7. Conveyor	78676.33	1101.47	308.41123	
otal pounds per year		7710.28	2158.88	

Ash Handling Activities (S-834-6-3 Ash Collection System Utilizing Enclosed Augers and Water Mist Serving Biofuel Boiler S-834-3) Uncontrolled Controlled					
	Average Tons/yr	Lbs/yr	Lbs/yr		
1. Ash discharge point	3933.82	55.07	0.8261015		
	Total pounds per year	55.07	0.83		

Fuel Handling System (S-834-10-	Handling System (S-834-10-2 Fuel Handling System Consisiting of Two		Controlled
	Average Tons/yr	Lbs/yr	Lbs/yr
1. Silo	78676.33	1101.468667	308.4112267
2. Silo	78676.33	1101.468667	308.4112267
3. Hog Unit	78676.33	1101.468667	308.4112267
4. Conveyor	78676.33	1101.468667	308.4112267
	Total pounds per year	4405.87	1233.64

Fogger/Wind screen control factor Water Spray control factor 72% 98.5%

ATTACHMENT 2

Current Permits

PERMIT UNIT: S-834-1-3

EXPIRATION DATE: 02/28/2015

EQUIPMENT DESCRIPTION:

FUEL SCREENING AND HANDLING SYSTEM SERVED BY A HUMIDIFIER FOGGER/SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Fuel screening system shall consist of a Trommel screen, hopper, five (5) conveyors, and a humidifier-fogger/spray system to control emissions. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions from fuel receiving shall be controlled by humidifier-fogger system and wind dust screen. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Whenever fuel receiving system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, screens, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 5. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.3.2, 9.4.2] Federally Enforceable Through Title V Permit
- 8. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234,TERRA BELLA, CA \$-814-1-3; Dec 2 2013 308PM - RAMIREZH

PERMIT UNIT: S-834-3-6 EXPIRATION DATE: 02/28/2015

EQUIPMENT DESCRIPTION:

9.4 MW COGENERATION SYSTEM WITH 171.2 MMBTU/HR STAGED AIR BIOMASS-FIRED BOILER WITH FIRED HEAT RECOVERY STEAM GENERATOR WITH PEABODY LOW-NOX NATURAL GAS-FIRED BURNERS, AMMONIA INJECTION SYSTEM, MULTICLONES, LOW TEMPERATURE SCR EXHAUSTING TO ELECTROSTATIC PRECIPITATOR. AND FLUE GAS RECIRCULATION

PERMIT UNIT REQUIREMENTS

- 1. Boiler and heat recovery steam generator exhausts shall vent through multiclones, low temperature SCR, and electrostatic precipitator (ESP) before being discharged to atmosphere. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. ESP shall be equipped with automatic rapping system, induced draft exhaust fan, and 72' high by 61" diameter exhaust stack. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. ESP rapping frequency and duration shall be pre-programmed and identical for each location and only one rapping position shall be energized at any one time. [District NSR Rule] Federally Enforceable Through Title V Permit
- 4. Exhaust stack shall be equipped with continuous emissions monitors (CEM) for NOx, CO, oxygen, opacity, and volumetric flowrate of exhaust. [District NSR Rule and Rule 4352, 5.5] Federally Enforceable Through Title V Permit
- 5. Continuous emission monitoring system shall be operated, maintained, and calibrated pursuant to the requirements of 40 CFR 60.7 (c) and 60.13. CEMs must also satisfy the Performance Specifications of 40 CFR 60 Appendix B and the Relative Accuracy Test Audit of Appendix F. [District Rules 1080 and Rule 4352, 5.5] Federally Enforceable Through Title V Permit
- 6. Only wood fuels shall be burned in the boiler. [District Rules 2201 and 4102] Federally Enforceable Through Title V Permit
- 7. Wood means any organic material not derived from fossil fuels, such as agricultural crop residue, orchard prunings and removals, stone fruit pits, nut shells, cotton gin trash, cotton stalks, vineyard prunings, cull logs, eucalyptus logs, bark, lawn clippings, yard and garden clippings, leaves, silvicultural residue, tree and brush prunings, wood and wood chips, and wood waste. [District Rules 2201 and 4102] Federally Enforceable Through Title V Permit
- Wood waste includes clean, chipped wood products, plywood, wood products manufacturing materials, construction and demolition wood materials, and wood pallets, crates and boxes. [District Rules 2201 and 4102] Federally Enforceable Through Title V Permit
- Contamination of the wood fuel, as delivered to the boiler shall not exceed 1% by weight total of the following
 materials: metals, plastics, paper, painted wood, particle board, wood treated with preservatives, and roofing materials.
 None of the contaminants allowed by this condition shall contain asbestos. [District Rule]
- 10. Compliance with biomass fuel contamination limit shall be demonstrated annually by sorting a District approved 5 ton representative sample of biomass fuel. [District Rule 4102]
- 11. Data collected during sorting of 5 ton sample of biomass fuel shall be in pounds of plastic per ton of biomass. Official test results and field data shall be submitted within 30 days after collection. [District Rule 4102]

Facility Name: SIERRA POWER CORPORATION
Location: 9000 ROAD 234,TERRA BELLA, CA
\$834.34:0ec 2 2013 308PM - RAMIREZH

- 12. A daily record of the quantities and types of fuels burned in the combustor shall be maintained and submitted to the District quarterly. [District NSR Rule and Rule 4352, 6.2] Federally Enforceable Through Title V Permit
- 13. Start-up is defined as the period beginning with the boilers initial fuel firing until the unit meets the ppmv emission limits in this permit. Shutdown is defined as the period beginning with the initiation of the boiler shutdown sequence and ending with cessation of operation of the engine. [District Rule 2201] Federally Enforceable Through Title V Permit
- 14. The duration of each shut down shall not exceed twelve (12) hours. [District Rule 4352] Federally Enforceable Through Title V Permit
- 15. The duration of each start-up shall not exceed 96 hours. If curing of the refractory is required after a modification to the unit is made, the duration of start-up shall not exceed 192 hours. [District Rule 4352] Federally Enforceable Through Title V Permit
- 16. During each startup and shutdown, the SCR emission control systems shall be in operation and emissions shall be minimized insofar as is technologically feasible. SCR emissions control system shall be operated in accordance with manufacturer recommendations. [District Rules 2201] Federally Enforceable Through Title V Permit
- 17. Except during startup and shutdown, nitrogen oxide emissions (as NO2) shall not exceed 84 ppmvd @ 3% O2 (0.108 lb/MMBtu). The averaging for NOx lb/MMBtu limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rule, Rules 4301, 5.2.2, 4352, 5.1 and 40 CFR 60.41b and 60.44b(d)] Federally Enforceable Through Title V Permit
- 18. Emissions of NOx shall not exceed 510.2 lb NOx/day nor 135,200 lb NOx/year. [District Rule 2201] Federally Enforceable Through Title V Permit
- 19. Carbon monoxide emissions shall not exceed any of the following: 400 ppmvd @ 3% O2 (0.314 lb/MMBtu) or 233.11 tons/year. The averaging for CO ppm limit shall be a 24-hr period between 12:00 am midnight to the following midnight. [District NSR Rules, District Rule 4352, 5.3 and 40 CFR 60 Subpart Db] Federally Enforceable Through Title V Permit
- 20. Particulate matter (PM10) concentration shall not exceed 0.016 gr/dscf corrected to 12% CO2 as determined by CARB Method 5. [District NSR Rule and Rule 4301, 5.1 and 5.2.3] Federally Enforceable Through Title V Permit
- 21. Volatile organic compound emissions shall not exceed any of the following: 0.066 lb/MMBtu or 48.8 tons/year. [District NSR Rule] Federally Enforceable Through Title V Permit
- 22. Sulfur oxide emissions (as SO2) shall not exceed any of the following: 0.061 lb/MMBtu or 41.6 tons/year. [District NSR Rule and Rule 4301, 5.2.1 and 4801] Federally Enforceable Through Title V Permit
- 23. Source testing using the following test methods shall be done annually: NOx EPA Method 7E or ARB Method 100, and EPA Method 19, CO EPA Method 10 or ARB Method 100, O2 EPA Method 3 or 3A, or ARB Method 100, Stack Gas Flow Rate (velocity) EPA Method 2, Stack Gas Moisture Content EPA Method 4, and Fuel Heating Value ASTM Method D2015 or E711. [District Rules 1081, 2520, 9.3.2 and 4352, 6.3] Federally Enforceable Through Title V Permit
- 24. The District must be notified 30 days prior to any compliance source test, and a source test plan must be submitted for approval 15 days prior to testing. [District Rule 1081 and Tulare County Rule 108.1] Federally Enforceable Through Title V Permit
- 25. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081 and Tulare County Rule 108.1] Federally Enforceable Through Title V Permit
- 26. Sierra Power Corporation shall maintain records of emissions and operational data for NOx (ppmv @ 3% O2, lb/MMBtu, lb/day and lb/year), CO (ppmv @ 3% O2 and lb/year), electrical output (kW-hr) recorded on a 24-hour basis, exhaust gas stack flow, CFM), and opacity (percent). [District NSR Rule] Federally Enforceable Through Title V Permit
- 27. Ammonia (NH3) emissions shall not exceed 10 ppmvd @ 15% O2 based on the arithmetic average of three (3) 30-consecutive-minute test runs. [District Rule 2201]

- 28. NOx, CO, and NH3 emissions rates shall be measured (source tested) at startup and not less than once every 12 months thereafter. [District Rules 1081 and 4702]
- 29. NOx and CO emissions shall be measured with annual source testing conducted by an independent testing laboratory using sample collection by an ARB certified testing laboratory and shall be witnessed by District, or witness authorized by the District. [District Rules 1081, 7.2, Rule 2520, 9.3.2 and 4352, 6.3 and 6.4 and Tulare County Rule 108.1] Federally Enforceable Through Title V Permit
- 30. Source test emissions for this unit shall be calculated using the arithmetic mean, pursuant to District Rule 1081(Amended December 16, 1993), of three thirty-minute test runs for NOx and CO. This mean shall be multiplied by the appropriate factor. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 31. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP⁰.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P⁰.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 32. NOx and carbon monoxide daily emissions shall be measured by use of CEM data, fuel rate data and daily hours of operation data. A written record of the required compliance demonstrations shall be maintained and made available for District inspection for a period of five years. [District Rule 2520, 9.3.2 and 9.4.2] Federally Enforceable Through Title V Permit
- 33. SOx source testing shall be done annually using EPA method 5 or 8 or a continuous emissions analyzer in accordance with EPA method 6C. [District Rules 1081, 2520, 9.3.2, 9.4.2 and 4801 and Tulare County Rule 108.1] Federally Enforceable Through Title V Permit

PERMIT UNIT: S-834-6-3

EXPIRATION DATE: 02/28/2015

EQUIPMENT DESCRIPTION:

ASH COLLECTION SYSTEM UTILIZING ENCLOSED AUGERS AND WATER MIST SERVING BIOFUEL BOILER (S-834-3)

PERMIT UNIT REQUIREMENTS

- 1. Discharge point of ash system shall be controlled by water spray to prevent visible emissions of 20% opacity or greater. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59xP^0.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P^0.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 3. Enclosure shall be completely inspected annually for evidence of particulate matter leaks and repaired as needed. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions, where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION Location: 9000 ROAD 234,TERRA BELLA, CA 9-934-9-3: Dec 2 2013 308PM - RAMIREZH

PERMIT UNIT: S-834-10-2

EXPIRATION DATE: 02/28/2015

EQUIPMENT DESCRIPTION:

FUEL HANDLING SYSTEM CONSISTING OF TWO SILOS, ONE HOG UNIT, SCREENS, AND CONVEYORS SERVED BY A HUMIDIFIER FOGGER SPRAY SYSTEM

PERMIT UNIT REQUIREMENTS

- 1. Particulate matter emissions from fuel handling system shall be controlled by humidifier-fogger spray system. [District NSR Rule] Federally Enforceable Through Title V Permit
- 2. Whenever fuel handling system is in operation, humidifier-fogger spray system shall be operated as necessary to maintain the moisture content of the biofuel at 20% or greater and shall be used to cover all exposed drop off points, conveyors & other emissions points. [District NSR Rule] Federally Enforceable Through Title V Permit
- 3. Particulate matter emissions shall not exceed the hourly rate as calculated in District Rule 4202 using the equation E = 3.59 x P⁰.62 if P is less than or equal to 30 tons per hour, or E = 17.31 x P⁰.16 if P is greater than 30 tons per hour. [District Rule 4202] Federally Enforceable Through Title V Permit
- 4. Visible emissions shall be inspected quarterly under material and environmental conditions where high emissions are expected. If any visible emissions are observed, corrective action shall be taken. If visible emissions cannot be corrected within 48 hours, a visible emissions test using EPA Method 9 shall be conducted. The results of inspection shall be kept in a record and shall be made available to the District upon request. [District Rule 1070 and Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit
- 5. Records of types of fuel materials handled on a daily basis shall be maintained, retained on the premises for at least five years, and provided to the District upon request. [District Rules 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 6. Permittee shall maintain weekly records of the moisture content of the fuel. Such records shall be kept at the facility and made available for District inspection upon request for a period of 5 years. [District Rule 1070 and 2520, 9.4.2] Federally Enforceable Through Title V Permit
- 7. Fuel moisture content shall be checked daily, from representative fuel samples using method ASTM E871. [District Rule 2520, 9.3.2] Federally Enforceable Through Title V Permit

These terms and conditions are part of the Facility-wide Permit to Operate.

Facility Name: SIERRA POWER CORPORATION
Location: 9000 ROAD 234,TERRA BELLA, CA
8-834-10-2: Dec 2 2013 3:08PM - RAMIREZH

PROJECT ROUTING FORM

FACILITY NAME:	Sierra Power Corporation					
FACILITY ID:	S-834 PROJECT NUMBER: S-1141060					
PERMIT #'s:	Emission Reduction Credit certificate 5-					
DATE RECEIVED:	March 4, 2014					
PRELIMINARY REVIEW		ENGR	DATE	SUPR	DATE	
A. Application Deemed In	ncomplete					
Second Information	Letter					
B. Application Deemed C	Complete	HAR	4/3/14	A	4-3-14	
C. Application Pending D)enial					
D. Application Denied						
					<u> </u>	
ENGINEERING	EVALUATION			INITIAL	DATE	
E. Engineering Evaluatio	•					
Project triggering Federal Major Modification: [] Yes AND Information entered into database (AirNet) [] No (not Fed MMod)			HAR	6/23/15		
District is Lead Agency for CEQA purposes AND the project GHG emissions increase exceeds 230 metric tons/year: [] Yes AND Information Entered in database (AirNet) [] Not Required					1/13/15	
F. Supervising Engineer Approval			SPL	7/9/15		
G. Compliance Division Approval [] Not Required					1	
H. Applicant's Review of [] 3-day Review [] 10-day Review [] No Review Re	!	truct Completed				
I. Permit Services Regional Manager Approval			CE	7/16/15		
DIRECTOR RE\	/IEW [] Not Requir	red		INITIAL	DATE	
J. Preliminary Approval t	o Director					
K. Final Approval to Dire	ctor					