PROOF OF PUBLICATION

The BAKERSFIELD CALIFORNIAN RECEIVED ad Number: 10835667

P.O. BOX 440

TBC

PO#: S-1075362

Run Times

BAKERSFIELD, CA 93302

APR 2 1 2008 Class Code SJVAPCD Southern Region

Legal Notices 4/10/2008

Stop Date 4/10/2008

SAN JOAQUIN VALLEY A.P.C.D. 1990 E GETTYSBURG FRED BATES

FRESNO, CA 93726

Billing Lines 20 **Total Cost** \$ 74.60

120.92 Inches

Billing

Start Date

Account 1SAN51

Address

SAN JOAQUIN VALLEY A.P.C.D. 1990 E GETTYSBURGFRED BATES

FRESNO,CA

93726

RECEIVED

APR 1 4 2008

STATE OF CALIFORNIA **COUNTY OF KERN**

ENABER

I AM A CITIZEN OF THE UNITED STATES AND A RESIDENT OF THE COUNTY AFORESAID: I AM OVER THE AGE OF EIGHTEEN YEARS, AND NOT A PARTY TO OR INTERESTED IN THE ABOVE ENTITLED MATTER. I AM THE ASSISTANT PRINCIPAL CLERK OF THE PRINTER OF THE BAKERSFIELD CALIFORNIAN, A NEWSPAPER OF GENERAL CIRCULATION, PRINTED AND PUBLISHED DAILY IN THE CITY OF BAKERSFIELD COUNTY OF KERN.

AND WHICH NEWSPAPER HAS BEEN ADJUDGED A NEWSPAPER OF GENERAL CIRCULATION BY THE SUPERIOR COURT OF THE COUNTY OF KERN, STATE OF CALIFORNIA, UNDER DATE OF FEBRUARY 5, 1952, CASE NUMBER 57610; THAT THE NOTICE, OF WHICH THE ANNEXED IS A PRINTED COPY, HAS BEEN PUBLISHED IN EACH REGULAR AND ENTIRE ISSUE OF SAID NEWSPAPER AND NOT IN ANY SUPPLEMENT THEREOF ON THE FOLLOWING DATES, TO WIT:

ALL IN YEAR 2008

I CERTIFY (OR DECLARE) UNDER PENALTY OF PERJURY THAT THE FOREGOING IS TRUE AND CORRECT.

DATED AT BAKERSFIELD CALIFORNIA

4-10-08

Solicitor I.D.:

0

First Text

NOTICE OF PRELIMINARY DECISIONFOR THE PR

Ad Number 10835667

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Aera Energy LLC for the shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs proposed for banking is 23.654 lb/yr NOx. 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

The analysts of the regulatory basis for these proposed actions, Project #S-1075362, is available for public inspection at the District office at the address below. Written comments on this project must be submitted within 30 days of the publication date of this notice to DAVID WARNER, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLIUTION CONTROL DISTRICT, 2700 'M' STREET SUITE 275, BAKERSFIELD, CA 93301.

April 10, 2008 (10835667)

APR 0 7 2008

Brent Winn Aera Energy LLC PO Box 11164 Bakersfield, CA 93389

Re: Notice of Preliminary Decision - Emission Reduction Credits

Project Number: S-1075362

Dear Mr. Winn:

Enclosed for your review and comment is the District's analysis of Aera Energy LLC's application for Emission Reduction Credits (ERCs) resulting from the shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs proposed for banking is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period, which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Richard Edgehill of Permit Services at (661) 326-6958.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosures

Executive Director/Air Pollution Control Officer

Southern Region

APR 0 7 2008

Gerardo C. Rios (AIR 3) Chief, Permits Office Air Division U.S. E.P.A. - Region IX 75 Hawthorne Street San Francisco, CA 94105

Notice of Preliminary Decision - Emission Reduction Credits Re:

Project Number: S-1075362

Dear Mr. Rios:

Enclosed for your review and comment is the District's analysis of Aera Energy LLC's application for Emission Reduction Credits (ERCs) resulting from the shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs proposed for banking is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period, which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Richard Edgehill of Permit Services at (661) 326-6958.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosure

Executive Director/Air Pollution Control Officer

APR 0 7 2008

Mike Tollstrup, Chief Project Assessment Branch Stationary Source Division California Air Resources Board PO Box 2815 Sacramento, CA 95812-2815

Re: Notice of Preliminary Decision - Emission Reduction Credits

Project Number: S-1075362

Dear Mr. Tollstrup:

Enclosed for your review and comment is the District's analysis of Aera Energy LLC's application for Emission Reduction Credits (ERCs) resulting from the shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs proposed for banking is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

The notice of preliminary decision for this project will be published approximately three days from the date of this letter. Please submit your written comments on this project within the 30-day public comment period, which begins on the date of publication of the public notice.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact Mr. Richard Edgehill of Permit Services at (661) 326-6958.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosure

Executive Director/Air Pollution Control Officer

Bakersfield Californian Bakersfield Californian

NOTICE OF PRELIMINARY DECISION FOR THE PROPOSED ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the San Joaquin Valley Unified Air Pollution Control District solicits public comment on the proposed issuance of Emission Reduction Credits to Aera Energy LLC for the shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs proposed for banking is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

The analysis of the regulatory basis for these proposed actions, Project #S-1075362, is available for public inspection at the District office at the address below. Written comments on this project must be submitted within 30 days of the publication date of this notice to DAVID WARNER, DIRECTOR OF PERMIT SERVICES, SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 2700 'M' STREET SUITE 275, BAKERSFIELD, CA 93301.

APPLICATION REVIEW EMISSION REDUCTION CREDIT BANKING

Facility Name: Aera Energy LLC
Mailing Address: P.O. Box 11164

Bakersfield, CA 93389

Contact Name: Brent Winn, Environmental Engineer

Telephone: (661) 665-4363

Engineer: Richard Edgehill, Air Quality Engineer

Date: March 27, 2008

Lead Engineer: Leonard Scandura, Supv. AQE

Date:

Project Number: S-43, 1075362

ERC Certificate #s: S-2774-1 (VOC), S-2774-2 (NOx), S-2774-3 (CO),

and S-2774-4 (PM10)

Date Received: November 8, 2007 **Date Complete:** December 6, 2007

I. SUMMARY

Aera Energy LLC (Aera) has applied for Emission Reduction Credits (ERCs) for the shutdown of 6 (three 1,100 hp and three 826 hp) lean burn natural gas-fired IC engines driving Section 15 Gas Plant Compressors (S-43-4 through '-9). The Permits to Operate (PTOs) for the IC engines were canceled August 27, 2007. The application for ERCs is timely because it was filed within 180 days following the shut down pursuant to Rule 2301, "Emission Reduction Credit Banking", Section 4.2.3.

The following emission reductions have been found to qualify for banking:

Emission Reductions Qualified for Banking (lbs)						
	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr		
NOx	5817	4899	4757	8181		
PM10	443	368	369	489		
CO	29,596	23125	21911	30866		
VOCs	8176	5745	5185	3973		

Please note that the entire gas plant was shutdown in 2007. An ERC application for the shutdown of one small heater is pending project S43, 1080067.

II. APPLICABLE RULES

Rule 2201 New and Modified Stationary Source Review Rule (September 21, 2006) Rule 2301 Emission Reduction Credit Banking (December 17, 1992)

III. PROJECT LOCATION

The subject 6 IC engines are located at the Lost Hills Section 15 Gas Plant (facility S-43), NE Section 15, T27S, R21E.

IV. METHOD OF GENERATING REDUCTIONS

Aera's sale of the gas plant equipment to Crimson Resource Management was finalized July 19, 2007. The equipment has been shutdown and will be removed from the site. The permits for the IC engines were surrendered August 27, 2007.

The PTOs are included in Attachment I.

V. CALCULATIONS

A. Assumptions

Fuel higher heating value = 1106.3 Btu/scf (Attachment II).

NOx, CO, and PM10 HAE is calculated based on the fuel use (mcf) multiplied times the emissions factors (lb/MMscf).

Emissions Factors

PM10: AP-42 Table 3.2-1 Uncontrolled Emissions Factors for 4-Stroke Lean-Burn Engines (Attachment III)

1106.3 MMBtu/MMscf x (0.00991 lb/MMBtu (condensable) + 0.0000771 lb/MMBtu (filterable)) = $\underline{11.05 \text{ lb/MMscf}}$

NOx, CO, and VOC: The emissions factors used to calculate the HAE for 2002 and 2003 were the source test data for 2002. The emissions factors used to calculate the HAE for 2004 were the source test data for 2004. All of the source test measurements were less than the District Rule 4702 limits of 65 ppmv NOx @ 15% O₂, 2000 ppmv CO @ 15% O₂, and 750 ppmv VOC @ 15% O₂.

Quarterly Allocated Fuel Use for IC Engines

The three pre-compressor engines '-4 through '-6 share one fuel meter and the three refrigeration compressors share another fuel meter. Therefore, allocated fuel use for each IC engine is equal to the total fuel use for either the pre-compressors or the refrigeration compressors multiplied times fraction of total run time (pre-compressors or refrigeration compressors) associated with each engine.

B. Emissions Factors

The source test measurements and emissions factors for NOx, CO, and VOC are listed in the tables below. The source test summaries are included in **Attachment IV**.

NOx ppm @ 15% O ₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
District	65	65	65	65	65	65
Rule 4702	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]
limit						
2002	45.6	46.8	50.7	43.7	34.9	61.8
source test	[184.3]	[189.0]	[204.8]	[176.4]	[141.1]	[249.8]
2004	14.3	15.4	13.6	51.4	21.9	14.2
source test	[56.0]	[60.3]	[53.3]	[207.9]	[88.4]	[57.6]

	CO ppm @ 15% O ₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9	
District	2000	2000	2000	2000	2000	2000	
Rule 4702	[4574]	[4574]	[4574]	[4574]	[4574]	[4574]	
Limit							
2002	270	258.3	217.8	422.8	268.9	286.8	
source test	[663.6]	[635.0]	[535.6]	[1039.5]	[660.9]	[705.0]	
2004	383	340	310	317	181	204	
source test	[913.0]	[811.4]	[740.2]	[780.4]	[447.0]	[503.2]	

VOC ppm @ 15% O ₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
District Rule 4702 Limit	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]
2002 source test	67 [94.0]	36.6 [51.4]	255.5 [358.9]	45.1 [63.3]	38.8 [54.5]	42.8 [60.2]
2004 source test	308.1 [420.0]	303.4 [413.6]	214.1 [291.8]	57.6 [81.0]	68.5 [119.0]	53.8 [75.7]

Emissions monitoring measurements of CO and NOx were examined. A comparision between average portable analyzer readings for CO and NOx and source test

measurements is provided in **Attachment V**. Portable analyzer readings were generally higher (27 of the 36 comparisons) than source test data justifying use of the source test data to calculate HAE.

B. Baseline Period Determination and Data

Pursuant to District Rule 2201, Section 3.8, the baseline period for determining actual historical emissions for banking purposes shall be a period of time equal to either:

- 3.8.1 the two consecutive years of operation immediately prior to the submission date of the Complete Application; or
- 3.8.2 at least two consecutive years within the five years immediately prior to the submission date of the Complete Application if determined by the APCO as more representative of normal source operation; or
- 3.8.3 a shorter period of at least one year if the emissions unit has not been in operation for two years and this represents the full operational history of the emissions unit, including any replacement units; or
- 3.8.4 zero years if an emissions unit has been in operation for less than one year (only for use when calculating AER).

The ERC application was deemed complete on December 6, 2007. The two-year period immediately prior to submission of the complete ERC application (December 2005 - December 2007) is not considered representative of normal operation. In 2004 produced gas from Aera and Chevron was diverted from the gas plant and operations were severely curtailed. After 2004, engines S-43-4 through '-9 were either not operating or were consuming much less than normal quantities of gas.

Section 3.8.2 of Rule 2201 allows for another consecutive two year period if it is representative of normal operation and is within 5 yrs of submission of the complete ERC application i.e. a two-year period beginning after December 2, 2002. The time period from 4th Quarter 2002 through 3rd Quarter 2004 was selected as the baseline period.

Please note that this two year period ends 1 quarter earlier than the baseline period in project 1080067 as the IC engine compressors were shutdown before the hot oil heater. The demand for the compressor engines was significantly reduced in May 2004 when Aera stopped processing their Lost Hills produced gas in the plant. However, Chevron continued to send their Lost Hills gas for processing - until January 2005. The hot oil heater provided heat for the plant processes (for such things as glycol reboiler) and therefore it had to remain in operation until January 2005 when Chevron stopped sending gas to the plant

C. Historical Actual Emissions

Quarterly Fuel Use for IC Engines

Quarterly fuel use for each engine is calculated as the fraction of quarterly operation time associated with each engine multiplied times the quarterly fuel consumption for the engines served by a common fuel meter.

A sample calculation of allocated fuel usage by pre-compressor '-4 in October 2002 follows:

Engine '-4 total operating hours for October 2002 = 350 hrs

Combined pre-compressor ('-4 through '-6) operating hours October 2002 = 1471 hrs

Combined pre-compressor ('-4 through '-6) fuel consumption October 2002 = 8904 mcf

Allocated fuel to engine '-4 = $350/1471 \times 8904 = 2,119 \text{ mcf}$ (October 2002)

The monthly operational hours and calculated quarterly fuel usage by each engine over the baseline period (4th Quarter 2002 through 3rd Quarter 2004) are included in **Attachment VI**.

Calculation of HAE for IC Engines

HAE is the product of quarterly fuel use for each engine (mcf) times the emissions factor in lb/MMscf. Sample calculations for engine S-43-4 for 4th Quarter 2002 and 3rd Quarter 2004 follow:

4th quarter 2002:

NOx: 9312 mcf x 184.3 lb/1000 mcf = 1716 lb NOx CO: 9312 mcf x 663.6 lb/1000 mcf = 6179 lb CO VOC: 9312 mcf x 94 lb/1000 mcf = 875 lb VOC PM10: 9312 mcf x 11.05 lb/1000 mcf = 103 lb PM10

3rd quarter 2004:

NOx: 865 mcf x 56 lb/1000 mcf = 48 lb NOx CO: 865 mcf x 913 lb/1000 mcf = 790 lb CO VOC: 865 mcf x 420 lb/1000 mcf = 363 lb VOC PM10: 865 mcf x 11.05 lb/1000 mcf = 10 lb PM10

The results of the calculations for IC engine '-4 over the baseline period are listed in the table below.

S-4	13-4	Н	AΕ
_	TU-T		~_

Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	CO	PM10
4 th quarter 2002	9312	1716	875	6179	103
1 st quarter 2003	6,330	1167	595	4201	70
2nd quarter 2003	4,373	806	411	2902	48
3 rd quarter 2003	8,549	1576	804	5673	95
4 th quarter 2003	13,397	2469	1259	8890	148
1 st quarter 2004	13,289	744	5581	12,134	147
2nd quarter 2004	5,100	286	2142	4,656	56
3 rd quarter 2004	865	48	363	790	10

The average quarterly HAE is $\frac{1}{2}$ the sum of the two values for each quarter listed in the above table. Calculation of the HAE for 1st quarter NOx is as follows:

$$(1167 + 744)/2 = 955 lb/qtr$$

The results of the additional calculations of HAE for each engine and the combined HAE for all of the engines are included in **Attachment VII** and are summarized in the table below.

Total Average Quarterly HAE

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	6463	5443	5286	9090
PM10	492	409	410	543
CO	32,884	25694	24,346	34,296
VOC	9085	6383	5761	4415

D. Actual Emission Reductions (AER)

Aera has applied for ERC banking credits for the permanent cessation of six IC engines (S-43-4 through '-9). The engines are not being replaced. Therefore, the HAE is equal to the actual emissions reductions (AER).

AER = HAE

AER (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	6463	5443	5286	9090
PM10	492	409	410	543
СО	32,884	25694	24,346	34,296
VOC	9085	6383	5761	4415

E. Air Quality Improvement Deduction (10% of AER)

AQID (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	646	544	529	909
PM10	49	41	41	54
CO	3288	2569	2435	3430
VOC	909	638	576	442

F. Increases in Permitted Emissions (IPE)

No IPE is associated with this project.

G. Bankable Emissions Reductions Credits (AER – AQID)

ERC (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	5817	4899	4757	8181
PM10	443	368	369	489
CO	29,596	23125	21911	30866
VOC	8176	5745	5185 .	3973

VI. COMPLIANCE

To be eligible for banking, emission reduction credits (ERC's) must be verified as being real, surplus, permanent, quantifiable, and enforceable pursuant to District Rules 2201 and 2301. In addition, the application must be submitted within the timelines specified in Rule 2301.

A. Real

Aera has ceased operation of the six subject IC engines. They are currently being dismantled and removed from the site. Therefore, the reductions from S-43 are real.

B. Enforceable

The permits for the IC engines were surrendered August 27, 2007. Therefore, the reductions are enforceable.

C. Quantifiable

The AER's were calculated using District recognized emission factors and actual historical fuel use data. Therefore, the reductions are quantifiable.

D. Permanent

Aera has ceased operation of the six IC engines. The engines will be dismantled and removed from facility S-43. Aera's sale of the six IC engines to Crimson Resource Management was finalized July 19, 2007. However, Crimson Resource Management will not be allowed to operate the engines at any location without first receiving Authorities to Construct subject to the offset requirements of District Rule 2201 New Source Review. Therefore, the reductions are permanent.

E. Surplus

The reductions which qualify for banking are based on emissions which are less than required by District Rule 4702 i.e. 65 ppmv @ 15% O₂ for NOx, 2000 ppmv @ 15% O₂ for CO, and 750 ppm @ 15% O₂ for VOC. Therefore, the reductions are surplus.

F. Timeliness

An application for ERC's was received on November 8, 2007, within 180 days following the shutdown pursuant to Rule 2301, "Emission Reduction Credit Banking", Section 4.2.3. According to District policy 1805 shutdown is the date the permits were surrendered unless the Control Officer determines that:

- (a) the unit has been removed or fallen into an inoperable and unmaintained condition such that startup would require an investment exceeding 50% of the current replacement cost; and
- (b) the owner cannot demonstrate to the satisfaction of the Control Officer that the owner intended to operate again. Evidence of "intent to operate again" may include valid production contracts, orders, other agreements, or any economically based reasons which would require the operation of the emissions unit.

The engines were not removed and had not fallen into inoperable and un-maintained condition such that start-up would require an investment exceeding 50% of the current replacement cost prior to surrendering the PTOs (August 27, 2007). Because the ERC application was filed no later than 180 days after August 27, 2007 (the date the PTO was surrendered), the application is timely.

VII. RECOMMENDATION

After public notice, comments and review, issue ERC Banking Certificates S-2774-1, S-2774-2, S-2774-3, and S-2774-4 to Aera Energy LLC for the following amounts:

ERC Certificate	1 st Qtr (lbs)	2 nd Qtr (lbs)	3 rd Qtr (lbs)	4 th Qtr (lbs)
S-2774-1 (VOC)	8176	5745	5185	3973
S-2774-2 (NOx)	5817	4899	4757	8181
S-2774-3 (CO)	29,596	23,125	21,911	30,866
S-2774-4 (PM10)	443	368	369	489

The draft ERC certificates are included in **Attachment VIII**.

Aera Energy LLC S-43, Project 1075382

ATTACHMENT I PTOs

CONDITIONS FOR PERMIT S-43-4-15

Page 1 of 3 EXPIRATION DATE: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

1,100 BHP PRECOMPRESSION OPERATION #1 INCLUDING SUPERIOR NATURAL GAS FIRED IC ENGINE AND SHARING WITH PERMITS S-43-5 AND '-6 INLET SEPARATORS (V28/V29), COMPRESSOR (C-2C), AIR COOLER (AC-6A), SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

CONDITIONS

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201. 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 53.5 lb/day. [District Rule 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rule]
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-4-15

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results; [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1071]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

2006/038

CONDITIONS FOR PERMIT S-43-4-15

Page 3 of 3

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District. [District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 34. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]

CONDITIONS FOR PERMIT S-43-5-14

Page 1 of 3 **ÅTE:** 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 933

LOCATION:

LOST HILLS GAS PLANT

NE 15, T,27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

1,100 BHP PRECOMPRESSION OPERATION #2 INCLUDING SUPERIOR NATURAL GAS FIRED IC ENGINE AND SHARING WITH PERMITS S-43-4 AND '-6 INLET SEPARATORS (V28/V29), COMPRESSOR (C-2B), AIR COOLER (AC-6A), SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

CONDITIONS

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 53.5 lb/day. [District Rules 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmy @ 15% O2 and 87.1 lb/day. [District NSR Rule]
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-5-14

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 of EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 4801]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 2080]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072, D 3031, D 4084, D 3246 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 2080]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 2080]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 2080]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-5-14

Page 3 of 3

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 34. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 2080]

CONDITIONS FOR PERMIT S-43-6-14

USPE (EXPIRATION Page 1 of 3 E: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

1,100 BHP PRECOMPRESSION OPERATION #3 INCLUDING SUPERIOR NATURAL GAS IC ENGINE AND SHARING WITH PERMIT UNIT S-43-4 AND '-5 INLET SCRUBBERS (V28/V29), COMPRESSOR (C-2A), AIR COOLER (AC-6A), SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

CONDITIONS

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. 3. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling), [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 53.5 lb/day. [District Rules 4701 and 47021
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-6-14

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months: [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results. [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 4801]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 2080]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072, D 3031, D 4084, D 3246 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 2080]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 2080]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 2080]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-6-14

Page 3 of 3

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (1&M) plan submitted to the District Rule 4702
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 34. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 2080]

CONDITIONS FOR PERMIT S-43-7-11

Page 1 of 3 E: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 93

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #4 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED W/ PERMIT UNITS S-43-8 & '-9 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1C), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

CONDITIONS

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- This engine shall not be operated after June 1, 2007 for any reason without an ATC including the Rule 4702 emissions limits and any necessary retrofits needed to comply with the applicable requirements of District Rule 4702. [District Rule 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule]
- 10. Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- 11. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 12. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]
- 13. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 14. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 15. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 16. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 40.2 lb/day. [District Rule 4701]
- 17. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-7-11

Page 2 of 3

- 18. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15%-O2 and 232,6 lb/day [District NSR Rule]
- 19. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 20. Documentation of fuel gas sulfur content shall be submitted to District with source test results [District NSR Rule]
- 21. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 22. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 23. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 25. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 26. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 27. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 28. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 29. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 30. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]

2015/038

CONDITIONS FOR PERMIT S-43-7-11

Page 3 of 3

- 31. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]
- 32. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (1&M) plan submitted to the District Rule 4702]
- 33. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 34. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-8-11

Page 1 of 3 TE: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 933

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 **TOWNSHIP:** 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #5 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED W/ PERMIT UNITS S-43-7 AND '-9 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1B), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

CONDITIONS

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule] 8.
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- 10. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 11. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070, 9.5.2]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 40.2 lb/day. [District Rules 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-8-11

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results, [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

2018/038

CONDITIONS FOR PERMIT S-43-8-11

Page 3 of 3

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-9-11

Page 1 of 3

EXPIRATION DATE: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

AERA ENERGY LLC PO BOX 11164

BAKERSFIELD, CA 9338

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #6 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED WITH PERMIT UNITS S-43-7 AND '-8 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1A), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

CONDITIONS

- 1. {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- 3. When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- 4. Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- 5. During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- 6. Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- 7. Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- 8. Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule]
- 9. Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- 10. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill I treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 11. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 40.2 lb/day. [District Rules 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rule]
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-9-11

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 of EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results. [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmy on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-9-11

Page 3 of 3

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the l&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the l&M plan and must submit an updated l&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the l&M plan shall be recorded in the engine's operating log. For modifications, the revised l&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the l&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

Aera Energy LLC \$-43, Project 1075362

ATTACHMENT II

Laboratory Analysis

Aera Energy LLC IC Engine

Sample Description: Fuel Gas Sampled by: Victor Welliver Project 010-2806A Laboratory ID 052202-02

Date Sampled: May 22, 2002 Date Received: May 22, 2002 Date Reported: May 22, 2002

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %		CHONS Wt.%
Carbon Dioxide	1.844	4.322	Carbon	73.52
Oxygen	0.056	0.096	Hydrogen	22.63
Nitrogen	0,410	0.612	Oxygen	3.24
Carbon Monoxide	0.000	0.000	Nitrogen	0.61
		İ	Sulfur	0.00
Methane	85.517	73.062	H/C	0.308
Ethane	9.442	15,121		
Propane	2,339	5.493		
ſsobutane	0.102	0.317		
N-Butane	0.203	0.627		
Isopentane	0.030	0.115		
N-Pentane	0.027	0.105		
Hexanes	0.028	0.130		
Total(s)	100.000	100.000		

Specific Gravity (Air = 1)	0.6483
Specific Volume (cf/lb)	20 <u>.2</u> 1
Gross Calorific Value, Dry (Btu/cf)	(1106.26)
Gross Calorific Value, Wet (Btu/cf)	1084.02
Gross Calorific Value, Dry (Btu/lb)	22358.40
Net Calorific Value, Dry (Btu/cf)	999.93
Net Calorific Value, Wet (Btu/cf)	979.84
Compressability Factor "Z" @ 60° F, 1 atm	0.9973
EPA F-Factor @ 68° F (DSCF/MMBtu)	8652
El VI a getti (C to) (Poot viningta)	0032

EPA F-Factor @ 60° F (DSCF/MMBtu)

8523

References:

ASTM Methods D1945-96 & D3588-98

Terry M. Rowles, Laboratory Manager

Aera Energy LLC S-43, Project 1075362

ATTACHMENT III

AP-42 Table 3.2-2

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES^a (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhous	se Gases	
NO _x c 90 - 105% Load	4.08 E÷00	В
NO_x^{c} < 90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	Ċ
CO ^c <90% Load	5.57 E-01	В
CO ₂ ^d	1.10 E+02	A
SO ₂ ^e	5.88 E-04	A
TOC	1.47 E+00	Α
Methane ^g	1.25 E+00	C
VOCh	1.18 E-01	C
PM10 (filterable)	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Œ
1,1,2-Trichloroethane ^k	<3.18 E-05	E
1,1-Dichloroethane	<2.36 E-05	Ε
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2.4-Trimethylbenzene	1,43 E-05	C
1,2-Dichloroethane	<2.36 E-05	E
1,2-Dichloropropane	<2.69 E-05	Ε
1,3,5-Trimethylbenzene	3.38 E-05	Ð
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	E
2-Methylnaphthalene ^k	3.32 E-05	C
2,2,4-Trimethylpentane ^k	2.50 E-04	C
Acenaphthenek	1.25 E-06	C,

Aera Energy LLC S-43, Project 1075362

ATTACHMENT IV

Source Test Summaries

のでは、100mmの

· 1988年,198

AEROS ENVIRONMENTAL, INC. Summary Of Results

Aera Energy LLC Lost Hills Gas Plant IC Engine # 1 Project 010-2806 May 22, 2002 Permit No. S-43-4-8

Pollutant	67		ppm@	22/D h = h =	lb/hr	lb/MMBtu	Permit Limits
Pollutant	%	bbm	15% O ₂	gr/Bhp-hr			Limits
		87.4	50.2	0.71	1.2	0.1832	
ΝОх	Į.	69.1	42.2	0.59	1.0	0.1539	0.574.4
		73.0	44.5	0.63	1.0	0.1626	2,67 lb/hr and
Mean		76.5	45.6	0.64	1.1	0.1666	1.10 gr/Bhp-hr
	1	451.8	259,3	2.22	3.6	0.5763	
co		449.7	274.4	2.35	3.9	0.6098	
		452.8	276.3	2.37	3.9	0.6140	
Mean		451.4	270.0	2.31	3.8	0.6000	9.69 gr/Bhp-hr
		106.8	61.3	0.100	0.5	0.0778	
VOC	•	112.3	68.6	0.100	0.6	0.0870	
C_0 - C_6 + as C_5		116.4	71.1	0.100	0.6	0.0902	3.63 lb/hr and
Меап		111.8	67.0	0.100	0.6	0.0850	1.50 gr/Bhp-hr
		As H ₂ S in				S gr/dscf in	
Fuel Sulfur	1	Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0				<0,001	0.3 gr/dscf
	10.62						·
O_2	11.23						
	11.23						
Mean	11.03					· · · · · · · · · · · · · · · · · · ·	
Comments:							
	<u>:</u>						
· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·							
·		~-					
· · · · · · · · · · · · · · · · · · ·			<u>-</u> .		·———		·

Aera Energy LLC Lost Hills Gas Plant IC Engine # 2 Project 010-2806 May 22, 2002 Permit No. S-43-5-8

Pollutant NOx Mean CO Mean	%	ppm 83.3 78.2 84.8 82.1 459.1 447.3 453.8 453.4	15% Q₂ 47.4 44.6 48.3 46.8 261.2 255.0 258.7 258.3	gr/Bhp-hr 0.67 0.63 0.68 0.66 2.24 2.18 2.22	1.1 1.1 1.2 1.1 3.8 3.7	0.1731 0.1628 0.1765 0.1768 0.5806	Limits 2.67 lb/hr and 1.10 gr/Bhp-hr
Mean CO		78.2 84.8 82.1 459.1 447.3 453.8 453.4	44.6 48.3 46.8 261.2 255.0 258.7	0.63 0.68 0.66 2.24 2.18	1.1 1.2 1.1 3.8	0.1628 0.1765 0.1708 0.5806	
Mean CO		84.8 82.1 459.1 447.3 453.8 453.4	48.3 46.8 261.2 255.0 258.7	0.68 0.66 2.24 2.18	1.2 1.1 3.8	0.1765 0.1708 0.5806	
со		82.1 459.1 447.3 453.8 453.4	46.8 261.2 255.0 258.7	0.66 2.24 2.18	1.1 3.8	0.1708 0.5806	
со		459.1 447.3 453.8 453.4	261,2 255,0 258,7	2.24 2.18	3.8	0.5806	1.10 gr/Bhp-hr
		447.3 453.8 453.4	255.0 258.7	2.18		1 i	
		453.8 453.4	258.7	1 1	3.7	1 0 5007	
Меап		453.4	İ	2.22		0.5667	
Меап			2502	1 1	3.8	0.5750	
			258,3	2.21	3.8	0.5741	9.69 gr/Bhp-hr
		64.2	36.6	0.000	0.3	0.0464	
voc		67.7	38.6	0.000	0,3	0.0490	
C3 - C6+ as C4		60.7	34.6	0.000	0.3	0.0440	3.63 lb/hr and
Mean		64.2	36.6	0.000	0.3	0.0465	1.50 gr/Bhp-hr
		As H₂S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0		<u> </u>	··· ··· ···	<0.001	0.3 gr/dscf
	10.53						
O ₂	10.55						
	10.55						
Mean	10,54						
Comments:							
		1					
				_ 			
						· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·				

Aera Energy LLC Lost Hills Gas Plant IC Engine # 3

Project 010-2806 May 21, 2002 Permit No. S-43-6-8

			ppm @				Permit
Pollutant	2/0	ppm	15% O₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		69.9	44.7	0.63	1.2	0.1632	
NOx		80.3	51.2	0.72	1.4	0.1868	
		88.1	56.3	0.79	1,6	0.2054	2.67 lb/hr and
Mean		79.4	50.7	0.71	1.4	0.1851	1.10 gr/8hp-hr
		348.1	222.5	1.91	3.7	0.4946	
CO	}	329.1	209.7	1.80	3.5	0.4661	
		346.5	221.3	1.89	3.8	0.4918	
Mean		341.2	217.8	1.87	3.7	0.4842	9.69 gr/Bhp-hr
		427.2	273.1	0.400	2.6	0.3468	
VOC		316.7	201.8	0.300	1.9	0.2563	
$C_3 - C_6 + as C_1$		456,6	291.5	0,400	2.8	0.3703	3.63 lb/hr and
Mean		400.2	255.5	0.367	2.4	0.3245	1,50 gr/Blip-lir
		As H₂S in				Sigr/dsof in	
Fuel Sulfur		Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0		<u> </u>	···	<0.001	0.3 gr/dscf
•	11.67						
O_2	11.64						
	11.66						
Mean	11.66						
Comments:						_	
					······		
		*********					- Mississippi
,-,							
							,
OLFORNO TO A TO A TO A TO A TO A TO A TO A TO							
						· · · · · · · · · · · · · · · · · · ·	

AEROS ENVIRONMENTAL, INC. Summary Of Results

Aera Energy LLC Lost Hills Gas Plant IC Engine # 4 Project 010-2806 May 22, 2002 Permit No. S-43-7-7

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	ib/hr	lb/MMBtu	Limits
		76,0	43.4	0.61	0.9	0.1583	
NOx		76.4	43.8	0.62	0.9	0.1601	
		76,0	43.9	0.62	0.9	0.1602	2.67 lb/hr and
Mean		76.1	43.7	0.62	0,9	0.1595	1.10 gr/Bhp-hr
		741.4	423.0	3.62	5,3	0.9403	
co		735.1	421.9	3.61	5,3	0.9377	
		733.8	423.6	3.63	5,3	0.9416	
Mean		736.8	422.8	3.62	5,3	0.9399	9.69 gr/Bhp-hr
		67.7	38.6	0.000	0.3	0.0491	
voc		79,3	45.5	0.000	0.3	0.0578	
C ₁ - C ₆ + as C ₁		88.5	51.1	0.000	0.4	0.0649	3.63 lb/hr and
Mean		78.5	45.1	0.000	0.3	0.0573	1.50 gr/8hp-hr
		As H ₂ S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Firel Gas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
~	10.56						
O_2	10.62						
	10.68						
Mean	10.62						·····
Comments:							
							
							
		· · · · · · · · · · · · · · · · · · ·	1800				
		·					
							

Aera Energy LLC Lost Hills Gas Plant IC Engine # 5 Project 010-2806 May 21, 2002 Permit No. S-43-8-7

			ppm @				Permit
Pollutant	1 %	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		61,1	35.1	0.49	8,0	0,1280	
NOx		53,8	36.7	0.52	0.9	0.1340	
		57.3	33.0	0.46	0,8	0.1204	2.67 lb/hr and
Mean		60.7	34.9	0.49	0.8	0.1275	1.10 gr/Bhp-իr
		479,7	275.3	2.36	3.8	0.6119	
CO	1	474.1	272.6	2.33	3.8	0.6060	
		449.4	258.7	2.21	3.7	0.5749	•
Mean		467.7	268.9	2,30	3.8	0.5976	9.69 gr/Bhp-hr
		67.1	38.6	0.000	0.3	0,0489	
VOC		70.8	40.7	0.000	0.3	0,0517	
C3 - C6+ as C1		64.5	37.1	0.000	0.3	0.0472	3.63 lb/hr and
Mean		67.5	38.8	0.000	0.3	0.0493	1.50 gr/Bhp-hr
		As H₂S in		,		S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0		<u> </u>		<0.001	0.3 gr/dscf
0	10.62						
Oz	10.64						
	10.65						
Mean	10.64						· <u></u>
Comments:		_					
			V-1				
		 -					
	·						
		·	·				
							
		·					

Aera Energy LLC Lost Hills Gas Plant IC Engine #6 Project 010-2806 May 21, 2002 Permit No. S-43-9-7

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		108.0	61.2	0.86	1.3	0.2235	
NOx		103.3	58.5	0.82	1.2	0.2138	
		117.2	65.7	0.92	1.4	0.2400	2.67 lb/hr and
Mean		109.5	61.8	0.87	1.3	0,2258	1.10 gr/Bhp-hr
		535.2	303.3	2.60	3.9	0.6742	
CO		483.9	274,3	2.35	3.5	0.6096	
		504.1	282.7	2.42	3.6	0.6284	
Mean		507.7	286.8	2.46	3.7	0.6374	9.69 gr/Bhp - hr
		59.2	33.5	0.000	0.2	0.0426	
VOC		79.5	45.0	0.000	0.3	0.0572	
C_3 - C_6 + as C_1		89.2	50.0	0.000	0.4	0.0635	3.63 lb/hr and
Mean		76.0	42.8	0.000	0,3	0.0544	1.50 gr/Bhp-hr
\ <u>\</u>		As H ₂ S in				5 gr/dsc/ in	
Fuel Sulfur		Fuel Gas		ļ		Fuelgas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
•	10,49						
O_2	10.49	l					
	10.38						
Mean	10.45						
Comments:							
					····		
							•
							
	··	 			**		
							······································

Aera Energy LLC Lost Hills Gas Plant IC Engine 1 Project 010-3922 July 22, 2004 Permit No. S-43-4-9

		 		,	· · · · · · · · · · · · · · · · · · ·	1	
Pollutant	%		ppm @ 15% O ₂	lb/day	 Ib/MMBtu	Ib/MMCF	Permit Limits
Pondiam	70	ppm	 				Littints
NO.	1	20.3	13.8	8.86	0,0505	54.21	75 0.450/ 0
NОх		21.1	14.2	8,98	0.0518	55.64	75 ppm @ 15% O ₂
		22.1	14.9	9.34	0.0542	58.21	and
Mean	·	21.2	14.3	9.06	0.0522	56.02	61.9 lb/day
	ļ	571	389	151,63	0.8641	928.04	
СО		567	381	146.95	0.8473	910.00	463 ppm @ 15% O ₂
		562	378	144.54	0.8389	900.98	and
Mean		567	383	147.71	0.8501	913.01	232.6 lb/day
		483,1	329,2	73.3	0.4178	448.71	
voc		457.9	308.0	57,8	0.3910	419.94	304 ppm @ 15% O ₂
C_3 - C_8 + as C_1		427.1	287.0	62.7	0.3644	39 <u>1.37</u>	and
Mean		456.0	308,1	67.9	0.3911	420.01	87.1 lb/day
]	· · ·		gr/dscf		
		As H₂S in			As H _I S in		
Fuel Sulfur	İ	Fuel Gas			Fuel Gas		
(SOx as SO ₂)		<1.0			<0.0006		013 gr/dscf
	12,24	, ,,					
02	12.13						
	12.12						
Mean	12.16						
Comments:							
							<u></u>
			···-				· · · · · · · · · · · · · · · · · · ·
					·—·		
				<u></u>		<u>.</u>	

Aera Energy LLC Lost Hills Gas Plant IC Engine 2 Project 010-3922 July 22, 2004 Permit No. S-43-5-9

Pollutant	"/₀	ppm	ppm @ 15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Permit Limits
······································		23,3	15.3	9.32	0.0557	59.87	
NOx		23,8	15.5	9.40	0.0566	60.75	75 ppm @ 15% O ₂
		23.7	15.4	9.33	0.0561	60.29	and
Mean		23.6	15.4	9.35	0.0561 ₍	60.30	61.9 lb/day
		.524	344	127.53	0.7631	819.57	
CO		519	338	124.79	0.7508	806,36	463 ppm @ 15% O _z
		522	339	125.02	0.7526	808_29	and
Mean		522	340	125.78	0.7555	811.41	232.6 lb/day
		463.2	303.7	64.4	0.3855	414.02	
voc		462.0	300.8	63.4	0.3820	410.27	304 ppm @ 15% O ₂
C_3 - C_6 + as C_1	{	470.8	305.6	64.4	0.3879	416.60	and
Mean		465.3	303.4	64.1	0.3851	413.63	87.1 lb/day
					gr/dscf		
	1	As H _Z S i n			As H _z S in	-	
Fuel Sulfur	,	Fuel Gas			Fuel Gas	ĺ	
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	11,90						
O ₂	11.84						
	11,81						
Mean	11.85						
Comments:							
	•						
				`			
						·	
		<u></u>	 ,			·	
*			· · · · ·				
							

Aera Energy LLC Lost Hills Gas Plant IC Engine 3 Project 010-3922 July 22, 2004 Permit No. S-43-6-9

		1	ppm @	}	}		Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		21.7	14,1	9.21	0.0515	55.33	
NOx		19.6	12.6	8.08	0.0461	49,53	75 ppm @ 15% C
	{	21.9	14.0	9.05	0.0511	54.93	and
Mean		21.1	13.6	8.78	0.0496	53.26	61.9 lb/day
		481	313	124.31	0.6950	746:43	
CO	}	483	311	121.19	0.6918	742.99	463 ppm @ 15% (
		479	307	120.53	0.6809	731.29	and
Mean		481	310	122.01	0.6892 /	740.24	232.6 lb/day
		345.1	224.5	51.0	0.2849	~_3 05:98	
Va¢		333.0	214.7	47.6	0.2726	292.78	304 ppm @ 15% (
C_0 - C_0 + as C_1		317.2	203.1	45.7	0.2576	276.66	and
Mean		331.8	214.1	48.1	0.2717	291.81	87.1 (b/day
			·		gr/dscf		
		As H ₇ S in			As H _z S in		
Fuel Sulfur	ļ	Fuel Gas			Fuel Gas	ļ	
(SOx as SO₂)		<1.0			<0.0006		0.3 gr/dscf
	11.83						
O ₂	11.75				•		
	11.68						
Mean	11.75				· · · · · · · · · · · · · · · · · · ·		
Comments:							
	-						
							
							
<u> </u>							
					· <u> </u>	<u></u>	··· ·······
				•			
						· 	
	···						

Aera Energy LLC Lost Hills Gas Plant IC Engine #4 Project 010-3824A May 18, 2004 Permit S-43-7-8

			ppm @	-			Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	ib/MMCF	Limits
		92.3	52.0	26.99	0.1898	210.26	
NOx		92.0	52.5	27.39	0.1917	212,41	75 ppm @ 15% O ₂
		86.2	49.7	25.71	0.1814	200,96	and
Mean		90.2	51.4	26.70	0.1876	207.88	46.4 lb/day
		559	315	99.49	0.6996	775.16	
CO		557	318	100.94	0.7065	782.80	463 ppm @ 15% O ₂
		552	318	100.21	0.7070	783.36	and
Меап		556	317	100.21	0.7044	780.44	232.6 lb/day
		98.8	55.7	10.0	0.0706	78.23	
voc		100.7	57.5	10.4	0.0730	80.89	304 ppm @ 15% O ₂
$C_3 - C_6 + as C_1$		103.2	59.5	10.7	0.0756	83.76	and
Mean		100.9	57.6	10.4	0.0731	80.96	65.5 lb/day
					gr/dscf		
		As H₂S in			As H _z S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		t
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	10.42						
O ₂	10.56						
	10,66						
Mean	10.55	·	······································		····		
Comments;							
		·····				<u></u>	
			·		,		
······································							
		 -	<u>-</u>				
						······································	
					 		
							

Aera Energy LLC Lost Hills Gas Plant IC Engine #5 Project 010-3824/ May 19, 200/ Permit S-43-8-8

Pollutant	%	ppm	ppm @ 15% O ₂	lb/day	Ib/MMBtu	lb/MMCF	Permit Limits
Fundan	1				0.0814		Lillits
NOx		37.4	22.3 22.8	11.89 12.32	0.0814	90.19	75 npm @ 150/ O
1402		33.8	20.5	11.02	0.0747	82.76	75 ppm @ 15% O _z and
			1 .		ì		
Mean		36.3	21.9	11.74	0.0798	88.44	46.4 lb/day
20		302	180	58.46	0.4001	443.31	400 0450 0
CO	į	302	182	59.91	0.4054	449.18	463 ppm @ 15% O
	į	301	182	59.74	0.4049	448.63	and
Mean		302	181	59.37	0.4035	447.04	232.6 lb/day
		112.8	67.3	12.5	0.0854	94.63	
VOC		116.7	70.4	13.3	0.0895	99.15	304 ppm @ 15% O ₂
C1 - Ce+ as Ct		112.0	67.8	12,7	0.0860	163.15	and
Mean		113,8	68.5	12.8	0.0870	118.98	65.5 lb/day
	<u> </u>				gr/dscf		
		As M ₂ S in			As H₂S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		·
(SOx as SO ₂)		<1.0	· · · · · · · · · · · · · · · · · · ·		<0.0006		0.3 gr/dscf
	11.00						
O ₂	11.13						
	11.15						
Mean	11.09						
Comments:							
					_		<u> </u>
							
			· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				······································			
							
	. · ·				· 		~ <u>~~</u>
× 	<u> </u>						
							

Aera Energy LLC Lost Hills Gas Plant IC Engine 6 Project 010-3824B June 17, 2004 Permit No. S-43-9-8

			ppm@				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Limits
		24.2	14.5	8.57	0.0531	58.79	
NOx		24.8	14.9	8.82	0.0543	60.19	75 ppm @ 15% O ₂
	}	22.0	13.3	7.70	0.0485	53.78	and
Mean		23.7	14.2	8.36	0.0520	57.59	61.9 lb/day
		334	200	71.99	0.4458	493.95	
CO	}	341	204	73.78	0.4547	503,81	463 ppm @ 15% O
	Ì	344	208	73.28	0.4619	511.79	and
Mean		340	204	73,02	0.4541	503.18	232.6 lb/day
		89.4	53.6	11.0	.0.0682	75.57	
voc		103.0	61.8	12.7	0.0784	86.87	304 ppm @ 15% O ₂
$C_3 - C_6 + as C_1$		76.2	46.0	9.2	0.0584	64:74	and
Mean		89,5	53.8	11.0	0.0683	75.72) 87.1 [b/day
				'	gr/dscf	11.00	
		As H₂S in			As H ₂ S in		
Fuel Sulfur		Fuel Gas		·	Fuel Gas	•	
(SOx as SO ₂)		<1,0			<0.0006		n.3 gr/dscf
_	11.07						
O ₂	11.06						
	11.13						
Mean	11.09		· · · · · · · · · · · · · · · · · · ·				
Comments:						· 	
		-	<u> </u>				
						···	
			~_~				
<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
				· · · · · · · · · · · · · · · · · · ·			
							
د از رواید و در میداده در میداده در میداده در میداده در میداده در میداده در میداده در میداده در میداده در میدا							

Aera Energy LLC S-43, Project 1075362

ATTACHMENT V

Comparison of Average Portable Analyzer (PA) Readings and Source Test (ST) Results

NOx

	2002 PA/ST	2003 PA/ST	2004 PA/ST
S-43-4	62.4/45.6	38.2/45.6	19.3/14.3
S-43-5	62.0/46.8	64.2/46.8	31.9/15.4
S-43-6	30.1/50.7	35.2/50.7	28.6/13.6
S-43-7	47.0/43.7	55.8/43.7	46.0/51.4
S-43-8	42.3/34.9	66.0/34.9	31.8/21.9
S-43-9	35.2/61.8	40.1/61.8	19.0/14.2

CO

	· · · · · · · · · · · · · · · · · · ·		
<u>, , , , <u> , , , -</u> , .</u>	2002 PA/ST	2003 PA	2004 PA/ST
S-43-4	342.1/270	301.7/270	411.4/383
S-43-5	304.8/258.3	284.1/258.3	297.1 /340
S-43-6	262.1/217.8	270.8/217.8	324.4/310
S-43-7	473.3/422.8	428.6/422.8	330.3/317
S-43-8	352.3/268.9	307.8/268.9	203.9/181
S-43-9	284.3/286.8	271.8/286.8	253.9/204

Numbers in bold correspond to lower portable analyzer readings than source test results i.e. 9 out of the 36 values.

Aera Energy LLC S-43, Project 1075362

ATTACHMENT VI Allocated Quarterly Fuel Usage

360 510 707 COMPRESSOR #1 561 678 348 COMPRESSOR #2 560 250 406 COMPRESSOR #3 727 310 36 COMPRESSOR #4 577 401 674 COMPRESSOR #5 148 719 720 COMPRESSOR #6 1471 1438 1461 Subt - precomprs 1452 1430 1430 Subt- Refrig Comprs	CP	- 1	OCL I	1400	Dec	
560 250 406 COMPRESSOR #3 727 310 36 COMPRESSOR #4 577 401 674 COMPRESSOR #5 148 719 720 COMPRESSOR #6 1471 1438 1461 Subt - precomprs		`	350	510	707	COMPRESSOR #1
727 310 36 COMPRESSOR #4 577 401 674 COMPRESSOR #5 148 719 720 COMPRESSOR #6 1471 1438 1461 Subt - precomprs			561	678	348	COMPRESSOR #2
577 401 674 COMPRESSOR #5 148 719 720 COMPRESSOR #6 1471 1438 1461 Subt - precomprs			560	250	406	COMPRESSOR #3
148 719 720 COMPRESSOR #6 1471 1438 1461 Subt - precomprs		•	727	310	36	COMPRESSOR #4
· 1471 1438 1461 Subt - precomprs			577	401	674	COMPRESSOR #5
			148	719	720	COMPRESSOR #6
1452 1430 1430 Subt- Refrig Comprs			1471	1438	1461	Subt - precomprs
		٤,	1452	1430	1430	Subt- Refrig Comprs

Meter Readings(- 2002	Meter	Readings	- 2002
-----------------------	-------	----------	--------

2002 Jan Feb Mar Apr May	Jun Jul	Aug	Sep	Oct	Nov	Dec		1.	7.4
9356		; 1	- 73	8,904	8,315	8,771	104,179 PRE-COMPRESSOR FUEL	-4 -	6
9354			7	7,431	7,235	7,437	74,137 REFRIG.FUEL	.7 -	-1-9
							178,316 m5 cf		

Allocated Fuel Usage Per Engine

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual		
S-43-4		1 7.		·		1	1 "; " <u> </u>	 	. 2	2,119	2,949	4,244	40,227		6
S-43-5	4	1		,						3,396	3,920	2,089	30,024	104,179	MECE
S-43-6	4	·		<u> </u>		- ·			פ ידה	3,390	1,446	2,437	33,928		
S-43-7		i					· -			3721	1568	187	19,676		
S-43-8	٠, .					٠, ٠		1	ا برسي	2953	2029	3505	38,050	74,137	mret
S-43-9			· 1			_				757	3638	3745	16,412		

Allocated Quarterly Fuel Usage Per Engine

2002	4Q
S-43-4	9,312
S-43-5	9,405
S-43-6	7,273
S-43-7 S-43-8	5,476 8 487
1045-0	0,401

_	_	
Compressor	Run	Hours

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738	COMPRESSOR #1
S-43-5	740	536	513	635	698	501	359	321	475	722	720	694	COMPRESSOR #2
S-43-6	539	596	231	391	450	705	762	743	202	40	0	102	COMPRESSOR #3
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194	COMPRESSOR #4
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764	COMPRESSOR #5
S-43-9	739	658	237	137	0	634	590	449	323	316	0	403	COMPRESSOR #6
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534	Subt - precomprs
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361	Subt-Refrig Comprs

Meter Readings - 2003

	9,075		8.840	7,987	8,964	8,469	8,466	8,610	8,192	9,204	9,142	9,111	104,360 PRE-COMPRESSOR FUEL	-7-	-6	
9354	7,869	6,822	7,660	6,741	7,666	7,162	7,161	7,480	7,088	7,944	7,571	7,106	88,270 REFRIG.FUEL	. 7-	1-9	
													192,630 m5<€			

Allocated Fuel Usage Per Engine

<u> </u>	232 538		4,417		2,048	คุดก	2 106	2 402	4 5 44				
S-43-5 4.5	538	3 934	2.052			1	$\{Z, 100\}$	2,403	4,041	4,446	4,568	4,383	32,649
		0,001	3,050	3,932	4,205	3,232	2,037	1,873	2,913;	4,508	4,574	4,122	42,915
S-43-6 3,3	305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	O	606	28,796
S-43-7 20	011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-4 3-8 16	683	0	2659	3376	_ 3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9 41	175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387

104,360 25 5 5

88,270 m5 cf

192,630 mscf

Allocated Quarterly Fuel Usage Per Engine

Allocated	Quarterly Fuel Us	age Per Engine			
2003	1Q	2Q	3Q	4Q	
S-43-4	6,330	4,373	8,549	13,397	
S-43-5 S-43-6	11,521	11,368	6,822	13,204	E
S-43-6	8,364	9,679	9,897	856	192,630 かかくた
S-43-7	9,256	6,882	4,960	7,001	
S-43-8	4,342	10,769	9,920	11,753	
S-43-9	8,753	3,918	6,849	3,867	

Compressor Run Hours

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
S-43-4	695	687	699	495	277	146	137	0	0	
S-43-5	689	695	737	613	433	3	214	12	60	
S-43-6	25	7	0	176	4	661	393	719	644	
S-43-7	524	411	48	319	157	71	3	2	5	
S-43-8	291	369	706	388	543	289	203	465	190	
S-43-9] o	6	0	0	0	317	518	266	511	
	1409	1389	1436	1284	714	810	744	731	704	
	815	786	754	707	700	677	724	733	706	

Meter Readings (2004)

MICICIA	Camin	3 6 2007	<u>') </u>							
9356	8,952	8,843	9,244	8,100	3,366	3,727	4,697	4,666	4,210	
9354	4,683	4,498	4,295	3,832	4,111	4,065	4,477	4,730	4,326	<u>.</u>

Allocated Fuel Usage Per Engine

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	. 0	0	
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359	
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851	
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31	
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1.255	3,001	1.164	
S-43-9	0	34	0	0	0	1,903	3,203	1,716	3,131	

Allocated Quarterly Fuel Usage Per Engine

		9	
2004	1Q	2Q	3Q
S-43-4	13,289	5,100	865
S-43-5	13,547	5,922	1,786
S-43-6	203	4,171	10,922
S-43-7	5,636	3,077	62
S-43-8	7,805	7,027	5,420
S-43-9	34	1,903	8,051

Nov	Dec	
	COMPRI	ESSOR #1
	COMPRI	ESSOR #2
	COMPR	ESSOR #3
	_ COMPR	ESSOR #4
	COMPRI	ESSOR #5
	J COMPRI	ESSOR #6
· .	` Subt - pi	recomprs
		efrig Compre

	118,695	mrcF	_ ,
Nov Dec	Annual		
1_	19,254		E
•	24,552	66,40	16 MSCF
	22,599		
	8,776		mi F
	21,701	52,28	39
	21,812		
	118,695	mr<+	

66,406 PRE-COMPRESSOR FUEL 52,289 REFRIG.FUEL

118,695 Mr CF

Allocated Fuel Usage Per Engine (mcf)

2002	7
5-43-4	_
S-43-5	_
5-43-6	
S-43-7	
S-43-8	
S-43-9	_

			2002
Oct	Nov	Dec	Annual
2,119	2,949	4,244	40,227
3,395	3,920	2,089	30,024
3,390	1,446	2,437	33,928
3721	1568	187	19,676
2953	2029	3505	38,050
757	3638	3745	16,412
			178,316

Allocated Fuel Usage Per Engine (mcf)									2003				
2003) Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
5-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	0	606	28,796
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
\$-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
5-43-9	4175	3350	1228	727	Ö	3191	2805	2297	1746	1763	0	2104	23,387

Allocated Fuel Usage Per Engine (mcf)

2004	yan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0	0
\$-43-5	4,378	4,425	4,744	3,867	2.041	14	1,351	77	359
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851
S-43-6 S-43-7	3,011	2,352	273	1,729	922	426	19	13	31
5-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164
S-43-9	(34	0	0	[0	1,903	3,203	1,716	3,131

	2004
	Annual
)	19,254
ij	24,552
2]	22.599
)	8,776
7	21,701
7	21,812
1	118,695
•	

Aera Energy LLC S-43, Project 1075362

ATTACHMENT VII

HAE Calculations

4th quarter 2002:

NOx: 9312 mcf x 184.3 lb/1000 mcf = 1716.2 lb NOx CO: 9312 mcf x 663.6 lb/1000 mcf = 6179.4 lb CO VOC: 9312 mcf x 94 lb/1000 mcf = 875.3 lb VOC PM10: 9312 mcf x 11.05 lb/1000 mcf = 102.9 lb PM10

1st quarter 2003:

NOx: 6330 mcf x 184.3 lb/1000 mcf = 1166.6 lb NOx CO: 6330 mcf x 663.6 lb/1000 mcf = 4200.6 lb CO VOC: 6330 mcf x 94 lb/1000 mcf = 595.0 lb VOC PM10: 6330 mcf x 11.05 lb/1000 mcf = 69.9 lb PM10

2nd quarter 2003:

NOx: 4373 mcf x 184.3 lb/1000 mcf = 805.9 lb NOx CO: 4373 mcf x 663.6 lb/1000 mcf = 2901.9 lb CO VOC: 4373 mcf x 94 lb/1000 mcf = 411.1 lb VOC PM10: 4373 mcf x 11.05 lb/1000 mcf = 48.3 lb PM10

3rd quarter 2003:

NOx: 8549 mcf x 184.3 lb/1000 mcf = 1575.6 lb NOx CO: 8549 mcf x 663.6 lb/1000 mcf = 5673.1 lb CO VOC: 8549 mcf x 94 lb/1000 mcf = 803.6 lb VOC PM10: 8549 mcf x 11.05 lb/1000 mcf = 94.5 lb PM10

4th quarter 2003:

NOx: 13397 mcf x 184.3 lb/1000 mcf = 2469.0 lb NOx CO: 13397 mcf x 663.6 lb/1000 mcf = 8890.2 lb CO VOC: 13397 mcf x 94 lb/1000 mcf = 1259.3 lb VOC PM10: 13397 mcf x 11.05 lb/1000 mcf = 148.0 lb PM10

1st quarter 2004:

NOx: 13289 mcf x 56 lb/1000 mcf = 744.2 lb NOx CO: 13289 mcf x 913 lb/1000 mcf = 12132.9 lb CO VOC: 13289 mcf x 420 lb/1000 mcf = 5581.4 lb VOC PM10: 13289 mcf x 11.05 lb/1000 mcf = 146.8 lb PM10

2nd quarter 2004:

NOx: 5100 mcf x 56 lb/1000 mcf = 285.6 lb NOx CO: 5100 mcf x 913 lb/1000 mcf = 4656.3 lb CO VOC: 5100 mcf x 420 lb/1000 mcf = 2142.0 lb VOC PM10: 5100 mcf x 11.05 lb/1000 mcf = 56.4 lb PM10

3"d quarter 2004:

NOx: 865 mcf x 56 lb/1000 mcf = 48.4 lb NOx CO: 865 mcf x 913 lb/1000 mcf = 789.7 lb CO VOC: 865 mcf x 420 lb/1000 mcf = 363.3 lb VOC PM10: 865 mcf x 11.05 lb/1000 mcf = 9.6 lb PM10

4th quarter 2002:

NOx: 9405 mcf x 189.0 ib/1000 mcf = 1777.5 lb NOx CO: 9405 mcf x 635.0 lb/1000 mcf = 5972.1 lb CO VOC: 9405 mcf x 51.4 lb/1000 mcf = 483.4 ib VOC PM10: 9405 mcf x 11.05 lb/1000 mcf = 103.9 lb PM10

1st quarter 2003:

NOx: 11521 mcf x 189.0 lb/1000 mcf = 2177.5 lb NOx CO: 11521 mcf x 635.0 lb/1000 mcf = 7315.8 lb CO VOC: 11521 mcf x 51.4 lb/1000 mcf = 592.2 lb VOC PM10: 11521 mcf x 11.05 lb/1000 mcf = 127.3 lb PM10

2nd quarter 2003:

NOx: 11368 mcf x 189.0 lb/1000 mcf = 2148.6 lb NOx CO: 11368 mcf x 635.0 lb/1000 mcf = 7218.7 lb CO VOC: 11368 mcf x 51.4 lb/1000 mcf = 584.3 lb VOC PM10: 11368 mcf x 11.05 lb/1000 mcf = 125.6 lb PM10

3rd quarter 2003:

NOx: 6822 mcf x 189.0 lb/1000 mcf = 1289.4 lb NOx CO: 6822 mcf x 635.0 lb/1000 mcf = 4332.0 lb CO VOC: 6822 mcf x 51.4 lb/1000 mcf = 350.7 lb VOC PM10: 6822 mcf x 11.05 lb/1000 mcf = 75.4 lb PM10

4th quarter 2003:

NOx: 13204 mcf x 189.0 lb/1000 mcf = 2495.6 lb NOx CO: 13204 mcf x 635.0 lb/1000 mcf = 8384.5 lb CO VOC: 13204 mcf x 51.4 lb/1000 mcf = 678.7 lb VOC PM10: 13204 mcf x 11.05 lb/1000 mcf = 145.9 lb PM10

1st quarter 2004:

NOx: $13547 \text{ mcf} \times 60.3 \text{ lb}/1000 \text{ mcf} = 816.9 \text{ lb} \text{ NOx}$ CO: $13547 \text{ mcf} \times 811.4 \text{ lb}/1000 \text{ mcf} = 10922.0 \text{ lb} \text{ CO}$ VOC: $13547 \text{ mcf} \times 413.6 \text{ lb}/1000 \text{ mcf} = 5603.0 \text{ lb} \text{ VOC}$ PM10: $13547 \text{ mcf} \times 11.05 \text{ lb}/1000 \text{ mcf} = 149.7 \text{ lb} \text{ PM10}$

2nd quarter 2004:

NOx: 5922 mcf x 60.3 lb/1000 mcf = 357.1 lb NOx CO: 5922 mcf x 811.4 lb/1000 mcf = 4805.1 lb CO VOC: 5922 mcf x 413.6 lb/1000 mcf = 2449.3 lb VOC PM10: 5922 mcf x 11.05 lb/1000 mcf = 65.4 lb PM10

3rd guarter 2004;

NOx: 1786 mcf x 60.3 lb/1000 mcf = 107.7 lb NOx CO: 1786 mcf x 811.4 lb/1000 mcf = 1449.2 lb CO VOC: 1786 mcf x 413.6 lb/1000 mcf = 738.7 lb VOC PM10: 1786 mcf x 11.05 lb/1000 mcf = 19.7 lb PM10

4th quarter 2002:

NOx: 7273 mcf x 204.8 lb/1000 mcf = 1489.5 lb NOx CO; 7273 mcf x 535.6 lb/1000 mcf = 3895.4 lb CO VOC: 7273 mcf x 358.9 lb/1000 mcf = 2610.3 lb VOC PM10; 7273 mcf x 11.05 lb/1000 mcf = 80.4 lb PM10

1st quarter 2003:

NOx: 8364 mcf x 204.8 lb/1000 mcf = 1712.9 lb NOx CO: 8364 mcf x 535.6 lb/1000 mcf = 4479.8 lb CO VOC: 8364 mcf x 358.9 lb/1000 mcf = 3001.8 lb VOC PM10: 8364 mcf x 11.05 lb/1000 mcf = 92.4 lb PM10

2nd quarter 2003:

NOx: 9679 mcf x 204.8 lb/1000 mcf = 1982.2 lb NOx CO: 9679 mcf x 535.6 lb/1000 mcf = 5184.0 lb CO VOC: 9679 mcf x 358.9 lb/1000 mcf = 3473.8 lb VOC PM10: 9679 mcf x 11.05 lb/1000 mcf = 107.0 lb PM10

3rd quarter 2003:

NOx: 9897 mcf x 204.8 lb/1000 mcf = 2026.9 lb NOx CO: 9897 mcf x 535.6 lb/1000 mcf = 5300.8 lb CO VOC: 9897 mcf x 358.9 lb/1000 mcf = 3552.0 lb VOC PM10: 9897 mcf x 11.05 lb/1000 mcf = 109.4 lb PM10

4th quarter 2003:

NOx: 856 mcf x 204.8 lb/1000 mcf = 175.3 lb NOx CO: 856 mcf x 535.6 lb/1000 mcf = 458.5 lb CO VOC: 856 mcf x 358.9 lb/1000 mcf = 307.2 lb VOC PM10: 856 mcf x 11.05 lb/1000 mcf = 9.5 lb PM10

1st quarter 2004:

NOx: 203 mcf x 53.3 lb/1000 mcf = 10.8 lb NOx CO: 203 mcf x 740.2 lb/1000 mcf = 150.3 lb CO VOC: 203 mcf x 291.8 lb/1000 mcf = 59.2 lb VOC PM10: 203 mcf x 11.05 lb/1000 mcf = 2.2 lb PM10

2nd quarter 2004:

NOx: 4171 mcf x 53.3 lb/1000 mcf = 222.3 lb NOx CO: 4171 mcf x 740.2 lb/1000 mcf = 3087.4 lb CO VOC: 4171 mcf x 291.8 lb/1000 mcf = 1217.0 lb VOC PM10: 4171 mcf x 11.05 lb/1000 mcf = 46.1 lb PM10

3rd quarter 2004:

NOx: 10,922 mcf x 53.3 /b/1000 mcf = 582.1 lb NOx CO: 10,922 mcf x 740.2 lb/1000 mcf = 8084.5 lb CO VOC: 10,922 mcf x 291.8 lb/1000 mcf = 3187.0 lb VOC PM10: 10,922 mcf x 11.05 lb/1000 mcf = 120.7 lb PM10

4th guarter 2002:

NOx: 5476 mcf x 176.4 lb/1000 mcf = 966.0 lb NOx CO: 5476 mcf x 1039.5 lb/1000 mcf = 5692.3 lb CO VOC: 5476 mcf x 63.3 lb/1000 mcf = 346.6 lb VOC PM10: 5476 mcf x 11.05 lb/1000 mcf = 60.5 lb PM10

1st quarter 2003:

NOx: 9256 mcf x 176.4 lb/1000 mcf = 1632.8 lb NOx CO: 9256 mcf x 1039.5 lb/1000 mcf = 9621.6 lb CO VOC: 9256 mcf x 63.3 lb/1000 mcf = 585.9 lb VOC PM10: 9256 mcf x 11.05 lb/1000 mcf = 102.3 lb PM10

2nd quarter 2003:

NOx: 6882 mcf x 176.4 lb/1000 mcf = 1214.0 lb NOx CO: 6882 mcf x 1039.5 lb/1000 mcf = 7153.8 lb CO VOC: 6882 mcf x 63.3 lb/1000 mcf = 435.6 lb VOC PM10: 6882 mcf x 11.05 lb/1000 mcf = 76.0 lb PM10

3rd quarter 2003:

NOx: 4960 mcf x 176.4 lb/1000 mcf = 874.9 lb NOx CO: 4960 mcf x 1039.5 lb/1000 mcf = 5155.9 lb CO VOC: 4960 mcf x 63.3 lb/1000 mcf = 314.0 lb VOC PM10: 4960 mcf x 11.05 lb/1000 mcf = 54.8 lb PM10

4th quarter 2003:

NOx: 7001 mcf x 176.4 lb/1000 mcf = 1235.0 lb NOx CO: 7001 mcf x 1039.5 lb/1000 mcf = 7277.5 lb CO VOC: 7001 mcf x 63.3 lb/1000 mcf = 443.2 lb VOC PM10: 7001 mcf x 11.05 lb/1000 mcf = 77.4 lb PM10

1st guarter 2004:

NOx: 5636 mcf x 207.9 lb/1000 mcf = 1171.7 lb NOx CO: 5636 mcf x 780.4 lb/1000 mcf = 4398.3 lb CO VOC: 5636 mcf x 81.0 lb/1000 mcf = 456.5 lb VOC PM10: 5636 mcf x 11.05 lb/1000 mcf = 62.3 lb PM10

2nd quarter 2004:

NOx: 3077 mcf x 207.9 lb/1000 mcf = 639.7 lb NOx CO: 3077 mcf x 780.4 lb/1000 mcf = 2401.3 lb CO VOC: 3077 mcf x 81.0 lb/1000 mcf = 249.2 lb VOC PM10: 3077 mcf x 11.05 lb/1000 mcf = 34.0 lb PM10

3rd quarter 2004:

NOx: 62 mcf x 207.9 lb/1000 mcf = 12.9 lb NOx: 62 mcf x 780.4 lb/1000 mcf = 48.3 lb CO VOC: 62 mcf x 81.0 lb/1000 mcf = 5.0 lb VOC PM10: 62 mcf x 11.05 lb/1000 mcf = 0.7 lb PM10

4th guarter 2002:

NOx: 8487 mcf x 141.1 lb/1000 mcf = 1197.5 lb NOx CO: 8487 mcf x 660.9 lb/1000 mcf = 5609.0 lb CO VOC: 8487 mcf x 54.5 lb/1000 mcf = 462.5 lb VOC PM10: 8487 mcf x 11.05 lb/1000 mcf = 93.8 lb PM10

1st quarter 2003:

NOx: 4342 mcf x 141.1 lb/1000 mcf = 612.7 lb NOx CO: 4342 mcf x 660.9 lb/1000 mcf = 2869.6 lb CO VOC: 4342 mcf x 54.5 lb/1000 mcf = 236.6 lb VOC PM10: 4342 mcf x 11.05 lb/1000 mcf = 48.0 lb PM10

2nd quarter 2003:

NOx: 10769 mcf x 141.1 lb/1000 mcf = 1519.5 lb NOx CO: 10769 mcf x 660.9 lb/1000 mcf = 7117.2 lb CO VOC: 10769 mcf x 54.5 lb/1000 mcf = 586.9 lb VOC PM10: 10769 mcf x 11.05 lb/1000 mcf = 119.0 lb PM10

3rd quarter 2003:

NOx: 9920 mcf x 141.1 lb/1000 mcf = 1399.7 lb NOx CO: 9920 mcf x 660.9 lb/1000 mcf = 6556.1 lb CO VOC: 9920 mcf x 54.5 lb/1000 mcf = 540.6 lb VOC PM10: 9920 mcf x 11.05 lb/1000 mcf = 109.6 lb PM10

4th guarter 2003:

NOx: 11753 mcf x 141.1 lb/1000 mcf = 1658.3 lb NOx CO: 11753 mcf x 660.9 lb/1000 mcf = 7767.6 lb CO VOC: 11753 mcf x 54.5 lb/1000 mcf = 640.5 lb VOC PM10: 11753 mcf x 11.05 lb/1000 mcf = 129.9 lb PM10

1st quarter 2004:

NOx: 7805 mcf x 88.4 lb/1000 mcf = 690.0 lb NOx CO: 7805 mcf x 447.0 lb/1000 mcf = 3488.4 lb CO VOC: 7805 mcf x 119.0 lb/1000 mcf = 928.8 lb VOC PM10: 7805 mcf x 11.05 lb/1000 mcf = 86.2 lb PM10

2nd quarter 2004:

NOx: 7027 mcf x 88.4 lb/1000 mcf = 621.2 lb NOx CO: 7027 mcf x 447.0 lb/1000 mcf = 3141.1 lb CO VOC: 7027 mcf x 119.0 lb/1000 mcf = 836.2 lb VOC PM10: 7027 mcf x 11.05 lb/1000 mcf = 77.6 lb PM10

3rd quarter 2004:

NOx: 5420 mcf x 88.4 lb/1000 mcf = 479.1 lb NOx CO: 5420 mcf x 447.0 lb/1000 mcf = 2422.7 lb CO VOC: 5420 mcf x 119.0 lb/1000 mcf = 645.0 lb VOC PM10: 5420 mcf x 11.05 lb/1000 mcf = 59.9 lb PM10

4th quarter 2002:

NOx: 8140 mcf x 249.8 lb/1000 mcf = 2033.4 lb NOx CO: 8140 mcf x 705.0 lb/1000 mcf = 5738.7 lb CO VOC: 8140 mcf x 60.2 lb/1000 mcf = 490.0 lb VOC PM10: 8140 mcf x 11.05 lb/1000 mcf = 89.9 lb PM10

1st guarter 2003:

NOx: 8753 mcf x 249.8 lb/1000 mcf = 2186.5 lb NOx CO; 8753 mcf x 705.0 lb/1000 mcf = 6170.9 lb CO VOC: 8753 mcf x 60.2 lb/1000 mcf = 526.9 lb VOC PM10: 8753 mcf x 11.05 lb/1000 mcf = 96,7 lb PM10

2nd quarter 2003:

NOx: 3918 mcf x 249.8 lb/1000 mcf = 978.7 lb NOxCO: 3918 mcf x 705.0 lb/1000 mcf = 2762,2 lb COVOC: 3918 mcf x 60.2 lb/1000 mcf = 235.9 lb VOCPM10: 3918 mcf x 11.05 lb/1000 mcf = 43.3 lb PM10

3rd quarter 2003:

NOx: 6849 mcf x 249.8 lb/1000 mcf = 1710.9 lb NOx CO: 6849 mcf x 705.2 lb/1000 mcf = 4828.5 lb CO VOC: 6849 mcf x 60.2 lb/1000 mcf = 412.3 lb VOC PM10: 6849 mcf x 11.05 lb/1000 mcf = 75.7 lb PM10

4th quarter 2003:

NOx: 3867 mcf x 249.8 lb/1000 mcf = 966.0 lb NOx CO: 3867 mcf x 705.2 lb/1000 mcf = 2727.0 lb CO VOC: 3867 mcf x 60.2 lb/1000 mcf = 232.8 lb VOC PM10: 3867 mcf x 11.05 lb/1000 mcf = 42.7 lb PM10

1st quarter 2004:

NOx: 34 mcf x 57.6 lb/1000 mcf = 2.0 lb NOx CO: 34 mcf x 503.2 lb/1000 mcf = 17.1 lb CO VOC: 34 mcf x 75.7 lb/1000 mcf = 2.6 lb VOC PM10: 34 mcf x 11.05 lb/1000 mcf = 0.4 lb PM10

2nd quarter 2004:

NOx: 1903 mcf x 57.6 lb/1000 mcf = 109.6 lb NOx CO: 1903 mcf x 503.2 lb/1000 mcf = 957.6 lb CO. VOC: 1903 mcf x 75.7 lb/1000 mcf = 144.0 lb VOC PM10: 1903 mcf x 11.05 lb/1000 mcf = 21.0 lb PM10

3rd quarter 2004:

NOx: 8051 mcf x 57.6 lb/1000 mcf = 463.7 lb NOx CO: 8051 mcf x 503.2 lb/1000 mcf = 4051.3 lb CO VOC: 8051 mcf x 75.7 lb/1000 mcf = 609.5 lb VOC PM10: 8051 mcf x 11.05 lb/1000 mcf = 89.0 lb PM10

S-43-4 HAE

3-43-4 FIAL					
Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4 th quarter 2002	9312	1716.2	875.3	6179.4	102.9
1 st quarter 2003	6,330	1166.6	595.0	4200.6	69.9
2nd quarter 2003	4,373	805.9	411.1	2901.9	48.3
3 rd quarter 2003	8,549	1575.6	803.6	5673.1	94.5
4 th quarter 2003	13,397	2469.0	1259.3	8890.2	148.0
1 st quarter 2004	13,289	744.2	5581.4	12,132.9	146.8
2nd quarter 2004	5,100	285.6	2142.0	4,656.3	56.4
3 rd quarter 2004	865	48.4	363.3	789.7	9.6

Average Quarterly HAE '-4

MARIARO GARL	orià rium			
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	955.4	545.8	812.0	2092.6
PM10	108.4	52.4	52.0	125.5
CO	8167.3	3779.1	3231.4	7534.8
VOC	3088.2	1276.6	583.5	1067.3

S-43-5 HAE

3-43-3 HAC					
Quarter	Actual fuel	NOx	voc	CO	PM10
	consumption	(lb/qtr)			
	(mcf)				
4th quarter 2002	9405	1777.5	483.4	5972.1	103.9
1 st quarter 2003	11,521	2177.5	592.2	7315.8	127.3
2nd quarter 2003	11,368	2148.6	584.3	7218.7	125.6
3 rd quarter 2003	6822	1289.4	350.7	4332.0	75.4
4 th quarter 2003	13,204	2495.6	678.7	8384.5	145.9
1 st quarter 2004	13,547	816.9	5603.0	10922.0	149.7
2nd quarter 2004	5,922	357.1	2449.3	4805.1	65.4
3 rd quarter 2004	1786	107.7	738.7	1449.2	19.7

Average Quarterly HAE '-5

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	1497.2	1252.9	698.6	2136.6
PM10	138.5	95.5	47.6	124.9
CO	9118.9	6011.9	2890.6	7178.3
VOC	3097.6	1516.8	544.7	581.1

S-43-6 HAE

0-70-0 HAL					_
Quarter	Actual fuel consumption (mcf)	NÖx (lb/qtr)	VOC	co	PM10
4 th quarter 2002	7273	1489.5	2610.3	3895.4	80.4
1 st quarter 2003	8364	1712.9	3001.8	4479.8	92.4
2nd quarter 2003	9679	1982.2	3473.8	5184.0	107.0
3 rd quarter 2003	9897	2026.9	3552.0	5300.8	109.4
4 th quarter 2003	856	175.3	307.2	458.5	9.5
1 st quarter 2004	203	10.8	59.2	150.3	2.2
2nd quarter 2004	4171	222.3	1217.0	3087.4	46.1
3 rd quarter 2004	10,922	582.1	3187.0	8084.5	120.7

Average Quarterly HAE '-6

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	861.9	1102.3	1304.5	832.4
PM10	47.3	76.6	115.1	45.0
CO	2315.1	4135.7	6692.7	2176.8
VOC	1530.5	2345.4	3369.5	1458.8

S-43-7 HAE

0 10 1 111 12					
Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	voc	СО	PM10
4 th quarter 2002	5476	966.0	346.6	5692.3	60.5
1 st quarter 2003	9256	1632.8	585.9	9621.6	102.3
2nd quarter 2003	6882	1214.0	435.6	7153.8	76.0
3 rd quarter 2003	4960	874.9	314.0	5155.9	54.8
4 th quarter 2003	7001	1235.0	443.2	7277.5	77.4
1 st quarter 2004	5636	1171.7	456.5	4398.3	62.3
2nd quarter 2004	3077	639.7	249.2	2401.3	34.0
3 rd quarter 2004	62	12.9	5.0	48.3	0.7

Average Quarterly HAE '-7

Thomaso dance				
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	1402.3	926.9	443.9	1100.5
PM10	82.3	55.0	27.8	69.0
CO	7010.0	4777.6	2602.1	6484.8
VOC	521.2	342.4	159.5	394.9

S-43-8 HAE

3-43-0 1 IAL					
Quarter	Actual fuel	NOx	voc	CO	PM10
	consumption	(lb/qtr)		İ	
	(mcf)				
4 th quarter 2002	8487	1197.5	462.5	5609.0	93.8
1 st quarter 2003	4342	612.7	236.6	2869.6	48.0
2nd quarter 2003	10769	1519.5	586.9	7117.2	119.0
3 rd quarter 2003	9920	1399.7	540.6	6556.1	109.6
4 th quarter 2003	11753	1658.3	640.5	7767.6	129.9
1 st quarter 2004	7805	690.0	928.8	3488.4	86.2
2nd quarter 2004	7027	621.2	836.2	3141.1	77.6
3 rd quarter 2004	5420	479.1	645.0	2422.7	59.9

Average Quarterly HAE '8

Average auun				
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	651.4	1070.4	939.4	1427.9
PM10	67.1	98.3	84.8	111.9
CO	3179.0	5129.2	4489.4	6688.3
VOC	582.7	711.6	592.8	551.5

S-43-9 HAE

Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4 th quarter 2002	8140	2033.4	490.0	5738.7	89.9
1 st quarter 2003	8753	2186.5	526.9	6170.9	96.7
2nd quarter 2003	3918	978.7	235.9	2762.2	43.3
3 rd quarter 2003	6849	1710.9	412.3	4828.5	75.7
4 th quarter 2003	3867	966.0	232.8	2727.0	42.7
1 st quarter 2004	34	2.0	2.6	17.1	0.4
2nd quarter 2004	1903	109.6	144.0	957.6	21.0
3 rd quarter 2004	8051	463.7	609.5	4051.3	89.0

Average Quarterly HAE '9

THO ME OF START CO				
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	1094.3	544.2	1087.3	1499.7
PM10	48.6	31.2	82.4	66.3
CO	3094.0	1859.9	4439.9	4232.9
VOC	264.8	190.0	510,9	361.4

Total Average Quarterly HAE

Pollutant	1 ^{si} Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	6463	5443	5286	9090
PM10	492	409	410	543
CO	32,884	25694	24,346	34,296
VOC	9085	6383	5761	4415

AQID (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr	
NOx	646	544	529	909	
PM10	49	41	41	54	
CO	3288	2569	2435	3430	
VOC	909	638	576	442	

ERC (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr	
NOx	5817	4899	4757	818 1	
PM10	443	368	369	489	
CO	29,596	23125	21911	30866	
VOC	8176	5745	5185	3973	

Aera Energy LLC S-43, Project 1075362

ATTACHMENT VIII

Draft ERC Certificates

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-1

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For VOC Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4		
8,176 lbs	5,745 lbs	5,185 lbs	3,973 lbs		

г '	1 Co	nditions	Attached
1		namons	Allached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, HXecultive Director / APCU

David Warner, Director of Permit Services

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-2

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4		
5,817 lbs	4,899 lbs	4,757 lbs	8,181 lbs		

ſ	Ce	ondition	s Att	tached
---	----	----------	-------	--------

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquín Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredia, Executive Urector APCU

David Warner, Director of Permit Services

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-3

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For CO Reduction In The Amount Of:

Quarter 1			Quarter 4		
29,596 lbs	23,125 lbs	21,911 lbs	30,866 lbs		

r '	י ר	'on	dit	ions	Δtfa	ched
			uit	10113	Alla	CHEU

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadjedia, HXecilitive Director / APCO

David Warner, Director of Permit Services

ALM 31 2005 10.40AAI - EDGSHER

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-4

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4	
443 lbs	368 lbs	369 lbs	489 lbs	

Γ	1	Conditions	Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

<u> Беуеа Баагеанд, Цхесцијуе грјеског г АРСО</u>

David Warner, Director of Permit Services

Application for

NOV 0 8 2007

SJVAPCD Southern Region

[X] EMISSION REDUCTION CREDIT (ERC)

[] CONSOLIDATION OF ERC CERTIFICATES

1.	ERC TO BE ISSUED TO: Aera Energy LLC								Facili (if known)	ity ID: _S43
2.	MAILING ADI	ORESS: Street/P.O. Box:	P.O. Box 111	64						
		City:	Bakersfiel	d			s	tate:CA	Zip Code: _9	93389-1164
3.	LOCATION OF REDUCTION: Street:						TE OF REDU		40.40	
		Lost Hills								
	NE_/4 SECT	CION15 TOWNSHI	P27S	RANGE		_21E				
5.	PERMIT NO(S): S-43-4, S-43-5, S-43	-6 S-43-7, S-	43-8, S-4	3-9			EXISTIN	G ERC NO(S):	
6.	METHOD RES	ULTING IN EMISSION RED	UCTION:							
	ĮXĮ SHUT	DOWN []RETRO	OFIT	[] PR	OCESS (CHANGE	ſ) OTHER		
	DESCRIPTION: Lost Hills Gas Plant was permanently shut down. Equipment was sold to, and is in process of being									
	removed by, Crimson Resources Management.									
									(Use addition	nal sheets if necessary)
7.	REQUESTED	ERCs (In Pounds Per Calenda [ır Quarter):							1
			voc	NO	х	со	PM10	SOx	OTHER	
		1ST QUARTER	6,967.8	4,113	.9	31,013.5	405.3	0.0		
		2ND QUARTER	5,158.7	3,581	.8	24,372.5	337.5	5 0.0		
		3RD QUARTER	4,935.3	3,478	.9	22,874.0	337.1	0.0		
		4TH QUARTER	3,855.7	5,975	.4	30,864.4	623.1	0.0		
8.	SIGNATURE (DE APPLICANT:		· · · - · ·	TYPE	OR PRINT T	TITLE OF A	PPLICANT:		
	4	Scort Wu	M	:	Envi	ironmenta	l Engine	er		
9.	TYPE OR PRI	NT NAME OF APPLICANT:	Brent Win	n			DATI	E:	TELEPHO	
							11/8	3/V/	(661) 66	5-4363
FOR	APCD USE ON	LY:						AER	A EN	itery
				FILING FEE RECEIVED: \$ USC /				-	#41811	16
			DATE PAIL	: PM	11/8	107				
			PROJECT	NO.: <u>S</u> -	107	<u>5362</u> 1	FACILITY I	D.: <u></u> 5-	43_	
	1 to 1 FR 1 A - 11 - 5-43									

Initial ERC App \$450 5-43

NOV 0 8 2007
SJVAPCD
Southern Region

November 8, 2007

San Joaquin Valley APCD 2700 "M" Street, Suite 275 Bakersfield, CA 93301

ATTN: Mr. Thomas E. Goff, P.E.

<u>SUBJECT</u>: Emission Reduction Credits (ERCs) Application Shutdown of Lost Hills Section 15 Gas Plant (S-43)

Attached is an application for banking of emission reduction credits (ERC's) associated with shutdown of the Lost Hills Section 15 Gas Plant (Facility ID S-43). Aera sold the gas plant equipment to Crimson Resource Management (Crimson), effective July 19, 2007. Crimson did not elect to purchase the associated air permits, and Aera surrendered the permits on August 22, 2007. Equipment removal is currently in process and ultimately all of the equipment will be removed from the site, either by Aera or Crimson.

This ERC application focuses on the plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9). Aera plans to follow up with separate ERC applications for the remaining plant equipment.

Should you have any questions or need further information, please contact me at (661) 665-4363.

Sincerely,

Brent Winn

Environmental Engineer - Belridge

Rule 2301 Requirements

4.2 Emissions Reductions Occurring After September 19, 1991						
For emission reductions occurring after September 19, 1991, the following criteria must be met in order to deem such reductions eligible for banking:	<u>Comments</u>					
4.2.2 AERs are calculated in accordance with the calculation procedures of Rule 2201 (New and Modified Stationary Source Review Rule) and comply with the definition of AERs of Rule 2201 (New and Modified Stationary Source Review Rule). Adjustment to emissions reductions for the Community Bank shall be made at the time the reductions are quantified pursuant to Rule 2201 (New and Modified Stationary Source Review Rule).	Rule 2201 Requirements are addressed below.					
4.2.3 An application for ERC has been filed no later than 180 days after the emission reductions occurred.	Aera sold the gas plant equipment to Crimson Resource Management, effective July 19, 2007. This is the date that Aera no longer possessed legal authority to operate the plant equipment. The deadline for submittal of ERC applications is therefore January 14, 2008. To verify that an earlier "de facto" reduction had not occurred, SJVAPCD Inspector Sam Parks inspected the facility on August 16th, 2007 and verified that the plant equipment had not been removed and the plant was still capable of being re-started from "dormant" status.					

Rule 2301 Requirements (continued)

Real: The subject emission reductions are the result of actual physical shutdown and removal of equipment associated with the Lost Hills Gas Plant. Produced gas that had previously been processed in the gas plant was redirected to serve as fuel for field operations. The redirected produced gas displaced fuel that had previously been purchased from outside sources. Therefore, shutdown of the plant did not result in emission increases elsewhere.

4.2.1 The emission reductions are real, surplus, permanent, quantifiable, and enforceable;

<u>Surplus</u>: The compressor engines that are the subject of this application are lean-burn and were subject to a limit of 65 ppm NOx under Rule 4702. The engines demonstrated compliance with this tier of Rule 4702 prior to the Rule's compliance deadlines (June 1, 2005 through June 1, 2007). The engines' permits already included limits that were below the VOC and CO limits specified in Rule 4702.

<u>Permanent</u>: The subject emission reductions are the result of actual physical shutdown and removal of equipment associated with the Lost Hills Gas Plant. The plant was shut down in Aera sold the gas plant equipment to Crimson Resource Management (Crimson), effective July 19, 2007. Crimson did not elect to purchase the associated air permits, and Aera surrendered the permits on August 22, 2007.

Quantifiable: The emission reductions are quantifiable using actual fuel gas records and emission factors derived from actual source tests and EPA-approved documents (AP-42, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources) Quantification of the emissions is presented below and in Attachment 1.

Enforceable: Crimson Resources did not elect to purchase the air permits associated with the gas plant, and Aera surrendered the permits on August 22, 2007. These emission reductions are enforceable by the fact that the permits have been surrendered. The reductions will be further enforceable by an inspection of the plant site after equipment removal is complete.

Rule 2201 Requirements

3.2 Actual Emissions Reduction (AER): the decrease of actual and selected for use as emission offsets or ERC banking. AE	al emissions, compared to the Baseline Period, from an emissions unit R shall meet the following criteria:
3.2.1 Shall be real, enforceable, quantifiable, surplus, and permanent.	These criteria are addressed above under Rule 2301 Requirements.
3.2.2 To be considered surplus, AER shall be in excess, at the to Construct authorizing such reductions is deemed complete	e time the application for an Emission Reduction Credit or an Authority, of any emissions reduction which:
3.2.2.1 Is required or encumbered by any laws, rules, regulations, agreements, orders, or	The shutdown of these engines was not required or precipitated by any laws, rules, regulations, agreements, or orders.
3.2.2.2 Is attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or	These emission reductions are not attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan.
3.2.2.3 Is proposed in the APCO's adopted air quality plan pursuant to the California Clean Air Act.	I.C. engines are identified as a "further study" measure (Standards Review S-COM-6, scheduled for 2012) in the SJVAPCD 8-hour ozone plan, but no specific new emission limits have been considered at present. South Coast AQMD Rule 1110.2, last revised on June 3, 2005, has been incorporated into the SIP and is more stringent than SJVAPCD Rule 4702. Therefore, emission factors are adjusted accordingly in this application.

Rule 2201 Requirements (continued)

4.12 Actual Emissions Reductions (AER) Calculations: Actual Emissions Reductions shall be calculated, on a pollutant-by-pollutant basis, as follows: AER = HAE - PE2	
HAE = Historic Actual Emissions	HAE calculations are presented in Attachment 1.
PE2 = Post-project Potential to Emit	Post-project potential to emit is zero since the subject emission units have have been permanently shut down and permits surrendered.
4.12.1 Prior to banking, AER shall be discounted by 10 percent (10%) for Air Quality Improvement Deduction, and shall comply with all applicable provisions of Rule 2301 (Emission Reduction Credit	The AQI deduction is reflected in the HAE calculations presented in Attachment 1. Rule 2301 requirements are addressed above.
Banking).	Trais 2007 requirements are addressed above.

Following are the AER's after adjusting for SQAQMD Rule 1110.2 and the 10% AQI deduction:

Pounds Per Quarter	VOC	NOx	СО	PM10	SOx
1ST QUARTER	6,967.8	4,113.9	31,013.5	405.3	0.0
2ND QUARTER	5,158.7	3,581.8	24,372.5	337.5	0.0
3RD QUARTER	4,935.3	3,478.9	22,874.0	337.1	0.0
4TH QUARTER	3,855.7	5,975.4	30,864.4	623.1	0.0

ATTACHMENT 1

Calculation of Historical Actual Emissions (HAE)

Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Calculation of Historical Actual Emissions

Background & Methodology

Operation of the Section 15 Gas Plant compressors was ramped down when feed gas from Aera's Lost Hills operations was discontinued in the first week of May, 2004. Chevron discontinued feed to the plant in January, 2005. Therefore, emissions occurring prior to May 2004 are most representative of actual plant operation. July 20, 2002 marks the beginning of the 5-year period prior to July 19, 2007 (date of the actual emission reduction). 2 years of operational data going back to May 2002 would be most representative of normal plant operation, but the months of May and June 2002 are outside of the 5-year window allowed by Rules 2301 and 2201 for establishing representative emissions. Therefore, this analysis presents actual emissions data beginning with the last quarter of 2002.

Compressors S-43-4, S-43-5, and S-43-6 were identified as the "precompressors" and were equipped with one shared fuel meter (# 9356). Compressors S-43-7, S-43-8, and S-43-9 were identified as the "refrigeration compressors" and were also equipped with one shared fuel meter (# 9354). Although the compressors did not have individual dedicated fuel meters, detailed monthly runtime records have been kept which allow an accurate allocation of fuel usage by month and quarter. The fuel volumes, runtimes, and fuel allocations are presented in attached spreadsheet printouts.

Emission factors used in these calculations are identical to those used in annual emission statements submitted to SJVAPCD in the years 2002-2005. NOx, CO, and VOC emission factors are based on actual biennial source tests required by Rule 4702.

Rule 2301 does not allow emissions that are not "surplus" to be included in ERC's. Emission reductions are not considered "surplus" if they are required by a rule that is included in the State Implementation Plan (e.g. SJVAPCD Rule 4702). The gas plant engines demonstrated by source testing that they were already capable of compliance with the new 65 ppm NOx limit prior to adoption of the most recent revisions of Rule 4702.

According to guidance from SJVAPCD Permit Services, the "surplus" criteria also includes consideration of rules adopted by other California air districts that have been incorporated into the SIP. It appears that South Coast AQMD Rule 1110.2 (last revised on June 3, 2005) is the most stringent I.C. engine rule that has been incorporated into the SIP.

Under Rule 1110.2, engines that had previously been designated in a Rule 1110.1 compliance plan to be shut down or electrified can continue to operate in compliance with a limit of 11 ppm NOx. Rule 1110.1 was rescinded on June 3, 2005. For engines that are subject to Rule 1110.2 but were <u>not</u> designated for shutdown or electrification under rescinded Rule 1110.1, the applicable limit is 36 ppm NOx. Therefore, the 11 ppm NOx limit is for a special situation, so the 36 ppm limit is the appropriate emission factor to be considered. 36 ppm NOx is equivalent to 135.26 lb NOx/MMcf - assuming a fuel heat content of 1020 BTU/scf. In the attached analysis, this factor was applied for

Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Calculation of Historical Actual Emissions

operating years when source tests conducted to show compliance with SJVAPCD Rule 4702 reflected values higher than 135.26 lb NOx/MMcf.

The applicable Rule 4702 limit for VOC is 750 ppm. The SCAQMD Rule 1110.2 VOC limit is more stringent at 250 ppm (equivalent to 326.7 lb VOC/MMcf). In the HAE analysis, this factor was substituted for operating years when the SJVAPCD source test results reflected values higher than 326.7 lb VOC/MMcf.

The CO limit is 2000 ppm for both SJVAPCD Rule 4702 and SCAQMD Rule 1110.2. The CO limit in PTO's for the gas plant engines has always been more stringent at 463 ppm, so this factor does not have to be adjusted in the HAE analysis.

PM ₁₀	Average Quarterty Emissions (lbs) Based on 2 most representative years								
Quarterly Emissions (lbs)	1Q 2Q 3Q 4Q								
S-43-4	99.2	47.9	47.6	114.8					
S-43-5	126.7	87.4	43.5	161.8					
S-43-6	43.3	70.0	105.2	77.9					
S-43-7	75.3	50.3	25.4	90.8					
S-43-8	61.4	90.0	77.5	145.2					
S-43-9	44.4	29.4	75.3	101.8					
	450.3	375.0	374.6	692.3					
0 % AQI Reduction	405.3	337.5	337.1	623.					

СО	Average Quarterly Emissions (lbs) Base on 2 most representative years					
Quarterly Emissions (lbs)	10	2Q	3Q	4Q		
5-43-4	8,166.8	3,779.3	3,231.5	7,534.8		
S-43-5	9,153.1	6,011.4	2,890.4	7,177.5		
S-43-6	2,314.9	4,135.2	6,692.1	2,176.3		
S-43-7	7,010.3	4,777.6	2,602.3	6,484.9		
S-43-8	4,720.8	6,517.1	5,559.8	6,688.4		
S-43-9	3,093.6	1,859.8	4,439.4	4,231.7		
	34,459.4	27,080.5	25,415.6	34,293.7		

		_		
After 10 % AQI Reduction	31,013.5	24,372.5	22,874.0	30,864.4

SOx	Average Quarterly Emissions (lbs) Based on 2 most representative years						
Quarterly Emissions (lbs)	1Q 2Q 3Q 4Q						
\$-43-4	0.0	0.0	0.0	0.0			
S-43-5	0.0	0.0	0.0	0.0			
S-43-6	0.0	0.0	0.0	0.0			
S-43-7	0.0	0.0	0.0	0.0			
S-43-8	0.0	0.0	0.0	0.0			
Ş-43-9	0.0	0.0	0.0	0.0			
	0.0	0.0	0.0	0.0			

NOx	Average Quarterly Emissions (lbs) Based on 2 most representative years					
Quarterly Emissions (lbs)	1Q 2Q 3Q 4Q					
S-43-4	800.3	438.6	602.4	1,535.8		
S-43-5	1,187.6	947.4	515.2	1,529.1		
S-43-6	571.1	765.7	960.1	549.7		
S-43-7	1,007.2	673.5	339.7	843.8		
S-43-8	411.9	834.8	753.0	1,368.9		
S-43-9	592.9	592.9 319.8 695		812.0		
	4,571.0	3,979.7	3,865.4	6,639.3		

After 10 % AQI Reduction 4,113.9 3,581.8 3,478.9 5,975.4

voc	Average Quarterly Emissions (Ibs) Ba on 2 most representative years						
	1Q	2Q	3Q	4Q			
S-43-4	2,468.4	1,038.7	543.1	1,067.5			
S-43-5	2,509.0	1,259.6	467.2	581.0			
S-43-6	1,396.1	2,189.7	3,210.2	1,327.8			
S-43-7	521.1	342.4	159.5	394.9			
S-43-8	582.7	711.5	592.8	551.5			
S-43-9	264.8	190.0	511.0	361.5			
	7,742.0	5,731.8	5,483.7	4,284.2			

After 10 % AQI Reduction 6,967.8 5,158.7 4,935.3 3,855.7

Most Representative 2-year Period (within 5 years Prior to Date of Emission Reduction)

Operation of the Section 15 Gas Plant compressors was ramped down when feed gas from Aera's Lost Hills operations was discontinued in the first week of May, 2004. Chevron discontinued feed to the plant in January, 2005. After that, compressors were only operated as needed to distribute unprocessed gas back to the field. Therefore, emissions occurring prior to May 2004 are most representative of normal plant operation.

PM ₁₀	2002	2003			02 2003 2004			
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	94.1	64.0	44.2	86.4	135.4	134.4	51.6	8.7
S-43-5	95.1	116.5	114.9	69.0	133.5	137.0	59.9	18.1
S-43-6	73.5	84.6	97.9	100.1	8.6	2.1	42.2	110.4
S-43-7	55.4	93.6	69.6	50.1	70.8	57.0	31.1	0.6
S-43-8	85.8	43.9	108.9	100.3	118.8	78.9	71.0	54.8
S-43-9	82.3	88.5	39.6	69.2	39.1	0.3	19.2	81.4
	486.2	491.0	475.1	475.1	506.3	409.6	275.0	274.0

CO	2002	2003					2004	
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	6,179.4	4,200.5	2,901.9	5,673.3	8,890.2	12,133.1	4,656.6	789.7
S-43-5	5,971.5	7,314.5	7,217.6	4,331.4	8,383.5	10,991.8	4,805.3	1,449.5
S-43-6	3,894.5	4,479.1	5,183.2	5,299.6	458.2	150.6	3,087.2	8,084.7
S-43-7	5,692.6	9,621.7	7,153.6	5,156.1	7,277.2	4,398.8	2,401.7	48.5
S-43-8	5,609.1	2,869.7	7,117.5	6,556.0	7,767.8	6,571.9	5,916.8	4,563.6
S-43-9	5,737.7	6,169.8	2,761.9	4,827.8	2,725.8	17.3	957.8	4,051.0
	33,084.7	34,655.4	32,335.7	31,844.3	35,502.7	34,263.4	21,825.4	18,986.9

SOx	2002		20	003		2004			
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	
S-43-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

		manage a series					200	
NOx	2002		20	03			2004	
Quarterly Emissions (lbs)	4Q	1Q	29/	3Q	40.	1Q	2Q	3Q
S-43-4	1,715.8	1,166.3	805.8	1,575.3	2,468.5	744.5	285.7	48.5
3-43-5	1,776.7	2,176,3	2,147.4	1,288.7	2,494\3	816.9	357.1	107.7
S-43-6	1,488.7	1,712.2	1,981.3	2,025.8	175.1	10.8	222.1	581.7
S-43-7	966.0	1,632.8	1,213.9	875.0	1,234.9	1,171.7	639.7	12.9
S-43-8	1,196,7	612.2	1,518.5	1,398.7	1,657.2	236.4	212.9	164.2
S-43-9	2,032.5	2,185.6	978.4	1,710.2	965.6	2.0	109.6	463.6
The second second second	9,176.4	9,485.4	8,645.3	8,873.7	8,995.7	2,982.2	1,827.1	1,378.6

VOC	2002		20	03	2004			
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	875.6	595.0	411.1	803.6	1,259.3	5,581.5	2,142.2	363.3
S-43-5	483.2	592.2	584.3	350.7	678.7	5,603.2	2,449.6	738.9
S-43-6	2,609.9	3,002.0	3,473.8	3,551.9	307.1	59.4	1,217.0	3,187.1
S-43-7	346.7	585.9	435.6	314.0	443.1	456.3	249.1	5.0
S-43-8	462.4	236.6	586.9	540.6	640.6	928.7	836.1	644.9
S-43-9	490.2	526.9	235.9	412.3	232.8	2.6	144.1	609.6
	5,268.1	5,538.6	5,727.6	5,973.1	3,561.6	12,631.7	7,038.1	5,548.8

See J. V. S.

check,

	2002	Quarterly			
	1Q	2Q	30_	4Q	Annual Fuel (mcf)
5-43-4	6,825.9	11,176.5	12,912.7	9,312.0	40,227
S-43-5	6,968.1	7,670.9	5,979.6	9,405.4	30,024
S-43-6	12,263.6	7,420.6	6,970,7	7,272.7	33,928
S-43-7	0.0	2,725.6	11,474.2	5,476.3	19,676
S-43-8	9,123.4	8,944.5	11,494.8	8,487.1	38,050
S-43-9	4,135.0	4,136.9	0.0	8,139.7	16,412

PM ₁₀	2002					_
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	69.0	113.0	130.5	94.1	10.11	AP-42
S-43-5	70.4	77.6	60.5	95.1	10.11	AP-42
S-43-6	124.0	75.0	70,5	73.5	10.11	AP-42
S-43-7	0.0	27.6	116.0	55.4	10.11	AP-42
S-43-8	92.2	90.4	116.2	85.8	10.11	AP-42
5-43-9	41.8	41.8	0.0	82.3	10.11	AP-42
	397.5	425.4	493.7	486.2		

CO	2002					_
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	4,529.7	7.416.7	8,568.9	6,179.4	663.6	Source Test 5/21 & 22/2002
S-43-5	4,424.0	4,870.3	3,796,4	5,971.5	634.9	Source Test 5/21 & 22/2002
S-43-6	6,567.2	3,973.7	3,732.8	3,894.5	535.5	Source Test 5/21 & 22/2002
S-43-7	0.0	2,833.2	11,927.4	5,692.6	1039.5	Source Test 5/21 & 22/2002
S-43-8	6,029.7	5,911.4	7,596.9	5,609.1	660.9	Source Test 5/21 & 22/2002
S-43-9	2,914.7	2,916.1	0.0	5,737.7	704.9	Source Test 5/21 & 22/2002
	24,465.3	27,921.5	35,622.5	33,084.7		

Rule 1110.2 Limit (2000 ppm) CO 4574.002 lb/MMcf

SOx	2002				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (ib/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
5-43-5	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
S-43-9	_Q.D	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

NOx	2002	 				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q:	Emission Factor (lb/mmcf)	
S-43-4	923.3	1,511.7	1,746.6	1,259.5	135.3	Rule 1110.2 Limit (36 ppm)
S-43-5	942.5	1,037.6	808.8	1,272.2		Rule 1110.2 Limit (36 ppm)
S-43-6	1,658.8	1,003.7	942.9	983.7	135.3	Rule 1110.2 Limit (36 ppm)
S-43-7	0.0	368.7	1,552.0	740.7	135.3	Rule 1110.2 Limit (36 ppm)
S-43-8	1,234.0	1,209.8	1,554.8	1,148.0	135.3	Rule 1110.2 Limit (36 ppm)
S-43-9	559.3	559.6	0.0	1,101.0	135.3	Rule 1110,2 Limit (36 ppm)
	5,317.9	5,691,1	6,605.0	6,505.0		, ,

Rule 1110.2 Limit (36 ppm) NOx 135.260 lb/MMcf

VOC	2002					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	641.9	1,051.0	1,214.2	875.6	94.0	Source Test 5/21 & 22/2002
S-43-5	358.0	394.1	307.2	483.2	51.4	Source Test 5/21 & 22/2002
S-43-6	4,006.7	2,424.4	2,277.4	2,376.1	326.7	Rule 1110.2 limit (250 ppm)
S-43-7	0.0	172.6	726,5	346.7	63.3	Source Test 5/21 & 22/2002
S-43-8	497.0	487.3	626.2	462,4	54.5	Source Test 5/21 & 22/2002
S-43-9	249.0	249.2	0.0	490.2	60.2	Source Test 5/21 & 22/2002
	5,752.6	4,778.5	5,151.6	5,034.3		-

Rule 1110.2 limit (250 ppm)

Source Test 5/21 & 22/2002 VOC 326,714 lb/MMcf

Source Test 5/21 & 22/2002

Rule 1110.2 limit (250 ppm)

	2003 C	uarterly fu			
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	6,329.8	4,373	8,549	13,397	32,649
S-43-5	11,520.7	11,368	6,822	13,204	42,915
S-43-6	8,364.4	9,679	9,897	856	28,796
S-43-7	9,256.1	6,882	4,960	7,001	28,099
S-43-8	4,342.1	10,769	9,920	11,753	36,785
S-43-9	8,752.8	3,918	6,849	3,867	23,387
					192,630

PM ₁₀	2003					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	64.0	44.2	86.4	135.4	10,11	AP-4
S-43-5	116.5	114.9	69.0	133.5	10.11	AP-4
5-43-6	84.6	97.9	100.1	8.6	10.11	AP-4
S-43-7	93.6	69.6	50.1	70.8	10.11	AP-4
S-43-8	43.9	108.9	100.3	118.8	10.11	AP-4
S-43-9	88.5	39.6	69.2	39.1	10.11	AP-4
[491.0	475.1	475.1	506.3		

CO	2003					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	4,200.5	2,901.9	5,673.3	8,890.2	663.6	Source Test 5/21 & 22/2002
S-43-5	7,314.5	7,217.6	4,331.4	8,383.5	634.9	Source Test 5/21 & 22/2002
S-43-6	4,479.1	5,183.2	5,299.6	458.2	535.5	Source Test 5/21 & 22/2002
S-43-7	9,621.7	7,153.6	5,156.1	7,277.2	1039.5	Source Test 5/21 & 22/2002
S-43-8	2,869.7	7.117.5	6,556.0	7,767.8	660.9	Source Test 5/21 & 22/2002
S-43-9	6,169.8	2,761.9	4,827.8	2,725.8	704.9	Source Test 5/21 & 22/2002
	34,655.4	32,335.7	31,844.3	35,502.7		

Rule 1110.2 Limit (2000 ppm) CO 4574.002 lb/MMcf

SOx	2003				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
5-43-9	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

NOx	2003				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	856.2	591.5	1,156.4	1,812.1	135.0
S-43-5	1,558.3	1,537.6	922.8	1,786,0	135.3
S-43-6	1,131.4	1,309.2	1,338.6	115,7	135.3
S-43-7	1,252.0	930.8	670.9	946.9	135.3
S-43-8	587.3	1,456.7	1,341.8	1,589.8	135.3
S-43-9	1,183.9	530.0	926.4	523.0	135.3
	6,569.0	6,355.8	6,356.8	6,773.5	

Rule 1110.2 Limit (36 ppm) NOx 135.260 lb/MMcf

VOC	2003					
Quarterly Emissions (lbs)	1Q	20	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	595.0	411.1	803.6	1,259.3	94.0	Source Test 5/21 & 22/2002
S-43-5	592.2	584.3	350.7	678.7	51.4	Source Test 5/21 & 22/2002
5-43-6	2,732.8	3,162.3	3,233.4	279.5	326.7	Rule 1110.2 limit (250 ppm)
S-43-7	585.9	435.6	314.0	443.1	63.3	Source Test 5/21 & 22/2002
S-43-8	236.6	586.9	540.6	640.6	54.5	Source Test 5/21 & 22/2002
5-43-9	526.9	235.9	412.3	232.8	60.2	Source Test 5/21 & 22/2002
	5,269.4	5,416.1	5,654.6	3,534.0		_

Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

	2004 C	uarterly fu			
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	13,289	5,100	865	0	19,254
S-43-5	13,547	5,922	1,786	3,297	24,552
S-43-6	203	4,171	10,922	7,304	22,599
S-43-7		3,077	62	0	8,776
S-43-8	7,805	7,027	5,420	1,448	21,701
S-43-9	34	1,903	8,051	11,824	21,812
	_			. Г	118,69

PM ₁₀	2004					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	134.4	51.6	8.7	0.0	10.11	AP-42
S-43-5	137.0	59.9	18.1	33.3	10.11	AP-42
S-43-6	2.1	42.2	110.4	73.8	10.11	AP-42
5-43-7	57.0	31.1	0.6	0.0	10.11	AP-42
S-43-8	78.9	71.0	54.8	14.6	10.11	AP-42
S-43-9	0.3	19.2	81.4	119.5	10.11	AP-42
	409.6	275.0	274.0	241.4		

CO	2004					
Quarterly Emissions (lbs)	1Q	2Q	30	4Q	Emission Factor (lb/mmcf)	
S-43-4	12,133.1	4,656.6	789.7	0.0	913.01	Source Test 7/22/2004
S-43-5	10,991.8	4,805.3	1,449.5	2,675.5	811.41	Source Test 7/22/2004
\$-43-6	150.6	3,087.2	8,084.7	5,406.5	740.24	Source Test 7/22/2004
S-43-7	4,398.8	2,401.7	48.5	0.0	780.44	Source Test 5/18/2004
S-43-8	6.571.9	5,916.8	4,563.6	1,219.3	841.98	Source Test 5/19/2004
S-43-9	17.3	957.8	4,051.0	5,949.6	503.18	Source Test 6/17/2004
	34,263.4	21,825.4	18,986.9	15,250.8		

Rule 1110.2 Limit (2000 ppm) CO 4574.002 lb/MMcf

SOx	2004				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
S-43-9	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	

NOx	2004				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
5-43-4	744.5	285.7	48.5	0.0	5€
S-43-5	816.9	357.1	107.7	198.8	60
S-43-6	10.8	222.1	581.7	389.0	53
S-43-7	762.4	416.2	8.4	0.0	135
S-43-8	236.4	212.9	164.2	43.9	30
S-43-9	2.0	109.6	463.6	680,9	57
	2,572.9	1,603.7	1,374.1	1,312.6	

(lb/mmcf)

56.0 Source Test 7/22/2004
60.3 Source Test 7/22/2004
53.3 Source Test 7/22/2004
135.3 Rule 1110.2 Limit (36 ppm)
30.3 Source Test 5/19/2004
57.6 Source Test 6/17/2004

Rule 1110.2 Limit (36 ppm) NOx 135.260 lb/MMcf

VOC	2004					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	4,341.7	1,666.3	282.6	0.0	326.7	Rule 1110.2 limit (250 ppm)
S-43-5	4,425.8	1,934.9	583.6	1,077.3	326.7	Rule 1110.2 limit (250 ppm)
S-43-6	59.4	1,217.0	3,187.1	2,131.3	291.8	Source Test 7/22/2004
S-43-7	456.3	249.1	5.0	0.0	81.0	Source Test 5/18/2004
S-43-8	928.7	836.1	644.9	172.3	119.0	Source Test 5/19/2004
S-43-9	2.6	144.1	609.6	895.3	75.7	Source Test 6/17/2004
	10,214.5	6,047.6	5,312.8	4,276.2		

Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

	2005 C	uarterly fu			
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	0	0)	0,	0)	0
S-43-5	7,034	6,331	6,175	5,357	24,897
S-43-4 S-43-5 S-43-6	1,606	2,772	2,661	111	7,150
S-43-7	0	0	0	0	0
S-43-8	1,854	0	0	0	1,854
S-43-9	0	0	0	0	0
					33.901

PM ₁₀	2005					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	10.11	AP-42
S-43-5	71.1	64.0	62.4	54.2	10.11	AP-42
S-43-6	16.2	28.0	26.9	1.1	10.11	AP-42
S-43-7	0.0	0.0	0.0	0.0	10.11	AP-42
S-43-8	18.7	0.0	0.0	0.0	10.11	AP-42
S-43-9	0.0	0.0	0.0	0.0	10.11	AP-42
	106.1	92.0	89.3	55.3		

CO	2005					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	913.01	Source Test 7/22/2004
S-43-5	5,707.6	5,136.9	5,010.4	4,346.7	811.41	Source Test 7/22/2004
S-43-6	1,188.7	2,052.1	1,969.8	82.2	740.24	Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	780.44	Source Test 5/18/2004
S-43-8	1,561.0	0.0	0.0	0.0	841.98	Source Test 5/19/2004
S-43-9	0.0	0.0	0.0	0.0	503.18	Source Test 6/17/2004
	8.457.3	7.189.0	6.980.2	4,428.9		

Rule 1110.2 Limit (2000 ppm) CO 4574,002 lb/MMcf

SOx	2005				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
S-43-9	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

NOx	2005					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
5-43-4	0.0	0.0	0.0	0.0	56.0	Source Test 7/22/2004
S-43-5	424.2	381.7	372.4	323.0	60.3	Source Test 7/22/2004
S-43-6	85.5	147.6	141.7	5.9	53.3	Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	135.3	Rule 1110.2 Limit (36 ppm)
S-43-8	56.2	0.0	0.0	0.0	30.3	Source Test 5/19/2004
S-43-9	0,0	0.0	0.0	0.0	57.6	Source Test 6/17/2004
	565.8	529.4	514.1	328.9		

Rule 1110.2 Limit (36 ppm) NOx 135.260 lb/MMcf

VOC	2005					
Quarterly Emissions (Ibs)	10	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	326.7	Rule 1110.2 limit (250 ppm)
S-43-5	2,298.2	2,068.4	2,017.5	1,750.2	326.7	Rule 1110.2 limit (250 ppm)
S-43-6	468.6	808.9	776.5	32.4	291.8	Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	81.0	Source Test 5/18/2004
S-43-8	220.6	0.0	0.0	0.0	119.0	Source Test 5/19/2004
S-43-9	0.0	0.0	0.0	0.0	75.7	Source Test 6/17/2004
	2,987.4	2,877.3	2,794.0	1,782.6		_

Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

Compressor Run Hours

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	3	8	496	365	0	0	0	0	1	403	533	307	COMPRESSOR #1
S-43-5	739	671	744	645	736	501	743	724	706	517	516	418	COMPRESSOR #2
S-43-6	729	625	248	424	708	487	739	739	698	571	358	694	COMPRESSOR #3
S-43-7	478	524	315	428	305	433	457	526	45	33	15	2	COMPRESSOR #4
S-43-8] 0	0	0	5	470	487	673	733	383	407	680	231	COMPRESSOR #5
S-43-9	299	194	475	300	157	0	.0	_ 2	372	328	1_	486	COMPRESSOR #6
	1471	1304	1488	1434	1444	988	1482	1463	1405	1491	1407	1419	Subt - precomprs
	777	718	790	733	932	920	1130	1261	800	768	696	719	Subt- Refrig Compre

Fuel Meter Readings (mcf)

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu <u>al</u>	
9356	10,386	9,582	8,934	9,254	0,570	6,294	9,107	9,308	8,744	9,300	8,854	9,037	107,774	PLANT PRE-COMPRESSOR FUEL
9354	4,348	3,934	4,228	4,666		4,948	6,173	7,057	4,706	4,552	4,162	4,263	58,141	PLANT REFRIG.FUEL
<u> </u>													165,915	

Allocated Fuel Usage Per Engine (mcf)

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep		Oct	Nov	Dec	Annual
5-43-4	21	59	2,978	2,355	0	0	0	0		- 6	2,514	3,354	1,955	13,24
S-43-5	5,218	4,931	4,467	4,162	4,575	3,192	4,566	4,606		4,394	3,225	3,247	2,662	49,24
S-43-6	5,147	4,593	1,489	2,736	4,401	3,102	4,541	4,702		4,344	3,562	2,253	4,420	45,28
S-43-7	2675	2871	1686	2724	1670	2329	2497	2944	ic in the	265	196	90	12	19,95
S-43-8	0	0	0	32	2574	2619	3676	4102		2253	2412	4066	1370	23,10
S-43 - 9	1673	1063	2542	1910	860	0	0	11		2188	1944	6	2881	15,07
														165,918

2001	1Q	
S-43-4	3,058	
S-43-5	14,615	
S-43-6	11,229	
S-43-7	7,232	
S-43-8	0	
S-43-9	5,278	

Γ	2Q
	2,355
Г	11,929
	10,239
	6,724
	5,225
	2,770

3Q
6
13,566
13,587
5,705
10,032
2,200

4Q
7,823
9,134
10,234
297
7,848
4,831

Compressor Run Hours

2002	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
\$-43-4	26	373	723	545	586	719	690	739	703	350	510	707	COMPRESSOR #1
S-43- 5	711	351	63	415	430	425	101	633	267	561	678	348	COMPRESSOR #2
S-43-6	731	608	657	475	464	290	582	89	466	560	250	406	COMPRESSOR #3
S-43-7] 0	0	0	0	154	327	679	732	685	727	310	36	COMPRESSOR #4
S-43-8	693	312	399	398	526	646	663	737	700	577	401	674	COMPRESSOR #5
S-43-9	46	227	334	321	365	39	0	0	0	148	719	720	COMPRESSOR #6
	1468	1332	1443	1435	1480	1434	1373	1461	1436	1471	1438	1461	Subt - precomprs
	739	539	733	719	1045	1012	1342	1469	1385	1452	1430	1430	Subt- Refrig Comprs

Fuel Meter Readings (mcf)

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
9356	9,146	8,188	8,724	8,687	8,893	8,688	8,556	8,621	8,686	8,904	8,315	8,771	104,179 PRE-COMPRESSOR FUEL
9354	4,479	4,176	4,603	4,185	5,859	5,763	7,402	8,034	7,533	7,431	7,235	7,437	74,137 REFRIG.FUEL
													178,316

Allocated Fuel Usage Per Engine (mcf)

2002	Jan	Feb	Маг	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	162	2,293	4,371	3,299	3,521	4,356	4,300	4,361	4,252	2,119	2,949	4,244	40,227
S-43-5	4,430	2,158	381	2,512	2,584	2,575	629	3,735	1,615	3,396	3,920	2,089	30,024
S-43-6	4,554	3,737	3,972	2,875	2,788	1,757	3,627	525	2,819	3,390	1,446	2,437	33,928
S-43-7	0	0	0	0	863	1862	3745	4003	3726	3721	1568	187	19,676
S-43-8	4201	2417	2506	2317	2949	3679	3657	4031	3807	2953	2029	3505	38,050
S-43-9	279	1759	2097	1868	2046	222	0	- 0	0	757	3638	3745	16,412

2002	1Q	2Q	3Q	4Q
S-43-4	6,826	11,177	12,913	9,312
S-43-5	6,968	7,671	5,980	9,405
S-43-6	12,264	7,421	6,971	7,273
S-43-7	0	2,726	11,474	5,476
S-43-8	9,123	8,944	11,495	8,487
S-43-9	4,135	4,137	0	8,140

Compressor Run Hours

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738	COMPRESSOR #1
S-43-5	740	636	513	635	698	501	359	321	475	722	720	694	COMPRESSOR #2
S-43-6	539	596	231	391	450	705	762	743	202	40	Ó	102	COMPRESSOR #3
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194	COMPRESSOR #4
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764	COMPRESSOR #5
S-43-9	739	658	237	137	0	634	590	449	323	316	0	403	COMPRESSOR #6
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534	Subt - precomprs
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361	Subt- Refrig Comprs

Fuel Meter Readings (mcf)

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
9356	9,075	8,300	8,840	7,987	8,964	8,469	8,466	8,610	8,192	9,204	9,142	9,111	104,360 PRE-COMPRESSOR FUEL
9354	7,869	6,822	7,660	6,741	7,666	7,162	7,161	7,480	7,088	7,944	7,571	7,106	88,270 REFRIG.FUEL

192,630

Allocated Fuel Usage Per Engine (mcf)

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	0	606	28,796
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387
													192,630

		ago i oi engino (inoi)			
2003	1Q	2Q	3Q	4Q	
5-43-4	6,330	4,373	8,549	13,397	
S-43-5	11,521	11,368	6,822	13,204	
S-43-6	8,364	9,679	9,897	856	192,630
S-43-7	9,256	6,882	4,960	7,001	
5-43-8	4,342	10,769	9,920	11,753	
S-43-9	8,753	3,918	6,849	3,867	

Compressor Run Hours

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	695	687	699	495	277	146	137	0	0	0	0	. 0	COMPRESSOR #1
S-43-5	689	695	737	613	433	3	214	12	60	. 5	227	.536	COMPRESSOR #2
S-43-6	25	7	0	176	4	661	393	719	644	737	415	207	COMPRESSOR #3
S-43-7	524	411	48	319	157	71	3	2	5	0	. 0	0	COMPRESSOR #4
S-43-8	291	369	706	388	543	289	203	465	190	2	106	131	COMPRESSOR #5
S-43-9	0	6	0	0	0	317	518	266	511	721	616	603	COMPRESSOR #6
	1409	1389	1436	1284	714	810	744	731	704	742	642	743	Subt - precomprs
	. 815	786	754	707	700	677	724	733	706	723	722	734	Subt- Refrig Comprs

Fuel Meter Readings (mcf)

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	<u> </u>
9356	8,952	8,843	9,244	8,100	3,366	3,727	4,697	4,666	4,210	4,505	3,07	4 3,022	66,406 PRE-COMPRESSOR FUEL
9354	4,683	4,498	4,295	3,832	4,111	4,065	4,477	4,730	4,326	4,419	4,55	4 4,299	52,289 REFRIG.FUEL
	•												118,695

Allocated Fuel Usage Per Engine (mcf)

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0	0	0	0	0	19,254
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359	30	1,087	2,180	24,552
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851	4,475	1,987	842	22,599
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31	0	0	0	8,776
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164	12	669	767	21,701
S-43-9	0	34	O	0	0	1,903	3,203	1,716	3,131	4,407	3,885	3,532	21,812
												. •	118,695

Allocated C	guarterly ruel os	age rei Engine (inci	1,7		
2004	1Q	2Q	3Q	4Q	
S-43-4	13,289	5,100	865	.0	
S-43-5	13,547	5,922	1,786	3,297	
S-43-6	203	4,171	10,922	7,304	118,695
S-43-7	5,636	3,077	62	0	
S-43-8	7,805	7,027	5,420	1,448	
S-43-9	34	1,903	8,051	11,824	

Compressor Run Hours

2005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	0	0	0	0	0	0	0	0	: 0	0	0		0 COMPRESSOR #1
S-43-5	752	648	360	349	538	613	544	683	311	700	702	!	0 COMPRESSOR #2
S-43-6] 1	2	383	364	216	71	.197	12	423	. 23	6		0 COMPRESSOR #3
S-43-7	0	0	0	0	0	0	0	0	- 0	. 0	. 0	1 . *	0 COMPRESSOR #4
S-43-8	314	0	0	0	0	0	0	0	0	0	0	1	0 COMPRESSOR #5
S-43-9] 0	0	0	0	0	0	0	0	0	0	Ç.		0 COMPRESSOR #6
	753	650	743	713	754	684	741	695	734	723	708		0 Subt - precomprs
	314	0	0	0	0	0	0	0	0	.0	0		0 Subt- Refrig Comprs

Fuel Meter Readings (mcf)

1	2005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ī	9356	2,912	2,636	3,092	3,126	3,043	2,934	2,962	2,704	3,170	2,772	2,696	41	32,088 PRE-COMPRESSOR FUEL
ſ	9354	1,854	0	0	0	0	0	0	0	0		0	0	1,854 REFRIG.FUEL

Allocated Fuel Usage Per Engine (mcf)

2005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	0	0	Ō	0	Ò	ō	0	0	0	0	. 0	0	
\$-43-5	2,908	2,628	1,498	1,530	2,171	2,629	2,175	2,657	1,343	2,684	2,673	l o[24,897
S-43-6	4	8	1,594	1,596	872	305	787	47	1,827	88	23		7,150
S-43-7	0	0	0	0	0	0	0	0	0	0	0	0	(
S-43-8	1854	0	0	0	Ō	O	0	0	0	0	0	0	1,854
S-43-9	0	0	0	0	0	0	0	0	0	0	0	. 0	
													33,901

Wildcared 2	tuarterry ruer of	sage rei Liigilie (iiici)			
2005	1Q	2Q	3Q	4Q	
S-43-4	0	0	0	0	
S-43-5	7,034	6,331	6,175	5,357	
S-43-6	1,606	2,772	2,661	111	33,901
S-43-7	0	0	0	0	
S-43-8	1,854	0	0	0	
S-43-9	0	0	0	0	

EXCEPT - PULE 1110.2

- or non-road engine and is not a motor vehicle as defined in Section 415 of the California Vehicle Code.
- (13) TIER 2 AND TIER 3 DIESEL ENGINES mean engines certified by CARB to meet Tier 2 or Tier 3 emission standards in accordance with Title 13, Chapter 9, Article 4 of the CCR.
- (14) VOLATILE ORGANIC COMPOUND (VOC) is as defined in Rule 102.

(d) Requirements

- (1) Stationary Engine Emission Limits:
 - (A) Operators of stationary engines with an amended Rule 1110.1 Emission Control Plan submitted by July 1, 1991, or an Approved Emission Control Plan, designating the permanent removal of engines or the replacement of engines with electric motors, in accordance with subparagraph (d)(1)(B), shall do so by December 31, 1999, or not operate the engines on or after December 31, 1999 in a manner that exceeds the emission concentration limits listed in Table I:

TABLE I ALTERNATIVE TO ELECTRIFICATION CONCENTRATION LIMITS								
NO_x	VOC	CO						
(ppm) ¹	(ppm) ^{1, 2}	(ppm) ¹						
11	30	70						

- Corrected to 15% oxygen on a dry basis and averaged over 15 minutes.
- ² Measured as carbon.
- (B) The operator of any other stationary engine subject to this rule shall
 - (i) Remove such engine permanently from service or replace the engine with an electric motor, or
 - (ii) Not operate the engine in a manner that exceeds the emission concentration limits listed in TABLE II.

EXCERPT- RULE 1110.2

TABLE II								
CONCENTRATION LIMITS								
NO _x	VOC	СО						
(ppm) ¹	(ppm) ^{1, 2}	(ppm) ¹						
36	250	2000						

- Corrected to 15% oxygen on a dry basis and averaged over 15 minutes.
- Measured as carbon.
- (C) Notwithstanding the provisions in subparagraph (d)(1)(B), the operator of any stationary engine described in Table III shall not operate the engine in a manner that exceeds an emission concentration of 2000 ppm by volume of CO corrected to 15 percent oxygen on a dry basis and averaged over 15 minutes, or the emission concentration limits for VOC as carbon or NOx specified by the following formula:

CONCENTRATION LIMIT FORMULA								
Concentration Limit	=	Reference Limit	х	<u>EFF</u>				
				25%				

Where:

Concentration Limit = the allowable NO_x, or VOC emission limit (ppm by volume) corrected to 15 percent oxygen on a dry basis, and averaged over 15 consecutive minutes.

Reference Limit

the NO_x or VOC emission limit (ppm by volume) corrected to 15 percent oxygen on a dry basis. The reference limits for various bhp ratings (continuous rating by the manufacturer) are listed in TABLE IV.

Richard Edgehill

From:

Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent:

Friday, November 16, 2007 9:49 AM

To:

Richard Edgehill

Subject:

S-43 Compressor Engines ERC Application

Quarterly uel_Emiss factors -.

app supplemental info.doc

Run Times and Qtrly Fuel Alloc...

HAE Calc Narrative.doc Page 6 from CAQMD R1110-2.tif.

Cover letter - engines.doc

Richard:

Here are the electronic files for the S-43 compressor engines ERC application.

Thanks, Brent Winn Aera Energy LLC

Environmental Engineer - Belridge

Office: 661-665-4363 Pager: 661-747-8963 Cell: 661-747-8963 Home: 661-587-5181

FAX: 661-665-7437 E-Mail: btwinn@aeraenergy.com

November 8, 2007

San Joaquin Valley APCD 2700 "M" Street, Suite 275 Bakersfield, CA 93301

ATTN: Mr. Thomas E. Goff, P.E.

SUBJECT: Emission Reduction Credits (ERCs) Application

Shutdown of Lost Hills Section 15 Gas Plant (S-43)

Attached is an application for banking of emission reduction credits (ERC's) associated with shutdown of the Lost Hills Section 15 Gas Plant (Facility ID S-43). Aera sold the gas plant equipment to Crimson Resource Management (Crimson), effective July 19, 2007. Crimson did not elect to purchase the associated air permits, and Aera surrendered the permits on August 22, 2007. Equipment removal is currently in process and ultimately all of the equipment will be removed from the site, either by Aera or Crimson.

This ERC application focuses on the plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9). Aera plans to follow up with separate ERC applications for the remaining plant equipment.

Should you have any questions or need further information, please contact me at (661) 665-4363.

Sincerely,

Brent Winn Environmental Engineer - Belridge

PM ₁₀	Average Quarterly Emissions (lbs) Based on 2 most representative years						
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q			
S-43-4	99.2	47.9	47.6	114.8			
S-43-5	126.7	87.4	43.5	161.8			
S-43-6	43.3	70.0	105.2	77.9			
S-43-7	75.3	50.3	25.4	90.8			
S-43-8	61.4	90.0	77.5	145.2			
S-43-9	44.4	29.4	75.3	101.8			
	450.3	375.0	374.6	692.3			

After 10 % AQI Reduction 405.3 337.5 337.1 623.1

СО	Average Quarterly Emissions (ibs) Based on 2 most representative years					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q		
S-43-4	8,166.8	3,779.3	3,231.5	7,534.8		
S-43-5	9,153.1	6,011.4	2,890.4	7,177.5		
S-43-6	2,314.9	4,135.2	6,692.1	2,176.3		
S-43-7	7,010.3	4,777.6	2,602.3	6,484.9		
S-43-8	4,720.8	6,517.1	5,559.8	6,688.4		
S-43-9	3,093.6	1,859.8	4,439.4	4,231.7		
	34,459.4	27,080.5	25,415.6	34,293.7		

After 10 % AQI Reduction 31,013.5 24,372.5 22,874.0 30,864.4

SOx	Average Quarterly Emissions (lbs on 2 most representative yea						
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q			
S-43-4	0.0	0.0	0.0	0.0			
S-43-5	0.0	0.0	0.0	0.0			
S-43-6	0.0	0.0	0.0	0.0			
S-43-7	0.0	0.0	0.0	0.0			
S-43-8	0.0	0.0	0.0	0.0			
S-43-9	0.0	0.0	0.0	0.0			
	0.0	0.0	0.0	0.0			

NOx	Average Quarterly Emissions (lbs) Based on 2 most representative years						
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q			
S-43-4	800.3	438.6	602.4	1,535,8			
S-43-5	1,187.6	947.4	515.2	1,529.1			
S-43-6	571.1	765.7	960.1	549.7			
S-43-7	1,007.2	673.5	339.7	843.8			
S-43-8	411.9	834.8	753.0	1,368.9			
S-43-9	592.9	319.8	695.0	812.0			
	4,571,0	3,979.7	3,865.4	6,639.3			

After 10 % AQI Reduction 4,113.9 3,581.8 3,478.9 5,975.4

VOC	Average Quarterly Emissions (lbs) Based on 2 most representative years							
	1Q	2Q	3 Q	4Q				
S-43-4	2,468.4	1,038.7	543.1	1,067.5				
S-43-5	2,509.0	1,259.6	467.2	581.0				
S-43-6	1,396.1	2,189.7	3,210.2	1,327.8				
S-43-7	521.1	342.4	159.5	394.9				
S-43-8	582.7	711.5	592,8	551.5				
S-43-9	264.8	190.0	511.0	361.5				
	7,742.0	5,731.8	5,483.7	4,284.2				

After 10 % AQI Reduction 6,967.8 5,158.7 4,935.3 3,855.7

Summary in Application Format/Sequence

Pounds Per Quarter	voc	NOx	со	PM10	SOx
1ST QUARTER	6,967.8	4,113.9	31,013.5	405.3	0.0
2ND QUARTER	5,158.7	3,581.8	24,372.5	337.5	0.0
3RD QUARTER	4,935.3	3,478.9	22,874.0	337.1	0.0
4TH QUARTER	3,855.7	5,975.4	30,864.4	623.1	0.0

PM ₁₀	2002	2003				2004		
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	94.1	64.0	44.2	86.4	135.4	134.4	51.6	8.7
S-43-5	95.1	116.5	114.9	69.0	133.5	137.0	59.9	18.1
S-43-6	73.5	84.6	97.9	100.1	8.6	2.1	42.2	110.4
S-43-7	55.4	93.6	69.6	50.1	70.8	57.0	31.1	0.6
S-43-8	85.8	43.9	108.9	100.3	118.8	78.9	71.0	54.8
S-43-9	82.3	88.5	39.6	69.2	39.1	0.3	19.2	81,4
	486.2	491.0	475.1	475.1	506.3	409.6	2 7 5.0	274.0

co	2002	2003				2004		
Quarterly								
Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1 Q	2Q	3Q
S-43-4	6,179.4	4,200.5	2,901.9	5,673.3	8,890.2	12,133.1	4,656.6	789.7
S-43-5	5,971.5	7,314.5	7,217.6	4,331.4	8,383.5	10,991.8	4,805.3	1,449.5
S-43-6	3,894.5	4,479.1	5,183.2	5,299.6	458.2	150.6	3,087.2	8,084.7
S-43-7	5,692.6	9,621.7	7,153.6	5,156.1	7,277.2	4,398.8	2,401.7	48.5
S-43-8	5,609.1	2,869.7	7,117.5	6,556.0	7,767.8	6,571.9	5,916.8	4,563.6
S-43-9	5,737.7	6,169.8	2,761.9	4,827.8	2,725.8	17.3	957.8	4,051.0
	33,084.7	34,655.4	32,335.7	31,844.3	35,502.7	34,263.4	21,825.4	18,986.9

SOx	2002		2003				2004			
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q		
S-43-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S-43-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S-43-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S-43-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S-43-8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
S-43-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

NOx	2002	2003			2004			
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	1,259.5	856.2	591.5	1,156.4	1,812.1	744.5	285.7	48.5
S-43-5	1,272.2	1,558.3	1,537,6	922.8	1,786.0	816.9	357.1	107.7
S-43-6	983.7	1,131.4	1,309.2	1,338.6	115.7	10.8	222.1	581.7
S-43-7	740.7	1,252.0	930.8	670.9	946.9	762.4	416.2	8.4
S-43-8	1,148.0	587.3	1,456.7	1,341.8	1,589.8	236.4	212.9	164.2
S-43-9	1,101.0	1,183.9	530.0	926.4	523.0	2.0	109.6	463.6
7	9,176.4	9,485.4	8,645.3	8,873.7	8,995.7	2,982.2	1,827.1	1,378.6

VOC	2002	2003				2004		
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	875.6	595.0	411.1	803.6	1,259.3	4,341.7	1,666.3	282.6
S-43-5	483.2	592.2	584.3	350.7	678.7	4,425.8	1,934.9	583.6
S-43-6	2,376.1	2,732.8	3,162.3	3,233.4	279.5	59.4	1,217.0	3,187.1
S-43-7	346.7	585.9	435.6	314.0	443.1	456.3	249.1	5.0
S-43-8	462.4	236.6	586.9	540.6	640.6	928.7	836.1	644.9
S-43-9	490.2	526.9	235.9	412.3	232.8	2.6	144.1	609.6
	5,268.1	5,538.6	5,727.6	5,973.1	3,561.6	12,631.7	7,038.1	5,548.8

Most representative 2-year period (within 5 years preceding date of Emission Reduction)

Operation of the Section 15 Gas Plant compressors was ramped down when feed gas from Aera's Lost Hills operations was discontinued in the first week of May, 2004. Chevron discontinued feed to the plant in January, 2005. After that, compressors were only operated as needed to distribute unprocessed gas back to the field. Therefore, emissions occurring prior to May 2004 are most representative of normal plant operation.

PM ₁₀	2002		2003			2004		
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	94.1	64.0	44.2	86.4	135.4	134.4	51.6	8.7
S-43-5	95.1	116.5	114.9	69.0	133.5	137.0	59.9	18.1
S-43-6	73.5	84.6	97.9	100.1	8.6	2.1	42.2	110.4
S-43-7	55.4	93.6	69.6	50.1	70.8	57.0	31.1	0.6
S-43-8	85.8	43.9	108.9	100.3	118.8	78.9	71.0	54.8
S-43-9	82.3	88.5	39.6	69.2	39.1	0.3	19.2	81.4
	486.2	491.0	475.1	475.1	506.3	409.6	275.0	274.0

CO	2002	2003				2004		
Quarterly								
Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q)	3Q
S-43-4	6,179.4	4,200.5	2,901.9	5,673.3	8,890.2	12,133.1	4,656.6	789.7
S-43-5	5,971.5	7,314.5	7,217.6	4,331.4	8,383.5	10,991.8	4,805.3	1,449.5
S-43-6	3,894.5	4,479.1	5,183.2	5,299.6	458.2	150.6	3,087.2	8,084.7
S-43-7	5,692.6	9,621.7	7,153.6	5,156.1	7,277.2	4,398.8	2,401.7	48.5
S-43-8	5,609.1	2,869.7	7,117.5	6,556.0	7,767.8	6,571.9	5,916.8	4,563.6
S-43-9	5,737.7	6,169.8	2,761.9	4,827.8	2,725.8	17.3	957.8	4,051.0
	33,084.7	34,655.4	32,335.7	31,844.3	35,502.7	34,263.4	21,825.4	18,986.9

SOx	2002		2003				2004		
Quarterly									
Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	. 3Q	
S-43-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
S-43-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

NOx	2002		200	03			2004	
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	1,259.5	856.2	591.5	1,156.4	1,812.1	744.5	285.7	48.5
S-43-5	1,272.2	1,558.3	1,537.6	922.8	1,786.0	816.9	357.1	107.7
S-43-6	983.7	1,131.4	1,309.2	1,338.6	115.7	10.8	222.1	581.7
S-43-7	740.7	1,252.0	930.8	670.9	946.9	762.4	416.2	8.4
S-43-8	1,148.0	587.3	1,456.7	1,341.8	1,589.8	236.4	212.9	164.2
S-43-9	1,101.0	1,183.9	530.0	926.4	523.0	2.0	109.6	463.6
	9,176.4	9,485.4	8,645.3	8,873.7	8,995.7	2,982.2	1,827.1	1,378.6

VOC	2002		200	03			2004	
Quarterly Emissions (lbs)	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
S-43-4	875.6	595.0	411.1	803.6	1,259.3	4,341.7	1,666.3	282.6
S-43-5	483.2	592.2	584.3	350.7	678.7	4,425.8	1,934.9	
S-43-6	2,376.1	2,732.8	3,162.3	3,233.4	279.5	59.4	1,217.0	
S-43-7	346.7	585.9	435.6	314.0	443.1	456.3	249.1	5.0
S-43-8	462.4	236.6	586.9	540.6	640.6	928.7	836.1	644.9
S-43-9	490.2	526.9	235.9	412.3	232.8	2.6	144.1	609.6
	5,268.1	5,538.6	5,727.6	5,973.1	3,561.6	12,631.7	7,038.1	5,548.8

Fr projector de la la

	SELECTION #
COAL (ANTHRACITE)	0
COAL (BITUMINOUS)	1 1
COAL (LIGNITE)	2
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	3
GAS (NATURAL)	4
GAS (PROPANE)	5
GAS (BUTANE)	6
WOOD	7
WOOD BARK	8
MUNICIPAL SOLID WASTE	9

STANDARD 02 CORRECTION FOR EXTERNAL COMBUSTION IS 3%						
Type of fuel (use table above) 4 GAS						
O2 correction (i.e., 3%)	15 %					
Enter concentrations						
NOx	36 ppmv					
co	2000 ppmv					
VOC (as methane)	250 ppmv					

CALCULATED EQUIVALENT LB/MMBTU VALUES						
NOx	0.1326 LB/MMBTU					
co	4.4843 LB/MMBTU					
VOC (as methane)	0.3203 LB/MMBTU					

pV = R*T	
pressure (p)	1 atm
universal gas constant (R*)	0.7302 atm-scf/lbmole-oR
temperature (oF)	60 oF
calculated	
molar specific volume (V)	379.5 scf/lbmole
Molecular weights	
NOx	46 lb/lb-mole
co	28 lb/lb-mole
VOC (as methane)	16 lb/lb-mole

F FACTORS FROM EPA METHOD 19		
COAL (ANTHRACITE)	10100 DSCF/MMBTU	COAL
COAL (BITUMINOUS)	9780 DSCF/MMBTU	COAL
COAL (LIGNITE)	9860 DSCF/MMBTU	COAL
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	9160 DSCF/MMBTU	OIL
GAS (NATURAL)	8710 DSCF/MMBTU	GAS

GAS (PROPANE)	8710 DSCF/MMBTU	GAS
GAS (BUTANE)	8710 DSCF/MMBTU	GAS
WOOD	9240 DSCF/MMBTU	WOOD
WOOD BARK	9600 DSCF/MMBTU	WOOD BARK
MUNICIPAL SOLID WASTE	9570 DSCF/MMBTU	SOLID WASTE
F FACTOR USED IN CALCULATIONS	8710 DSCF/MMBTU	GAS

Fuel

1020 MMBTU/MMSCF 0.00098039 MMSCF/MMBTU

NOx	
CO	
VOC (as	methane)

135.260 lb/MMcf 4574.002 lb/Mcf 326.714 lb/Mcf

Rule 2301 Requirements

4.2 Emissions Reductions Occurring After September 19, 1991		
For emission reductions occurring after September 19, 1991, the following criteria must be met in order to deem such reductions eligible for banking:	<u>Comments</u>	
4.2.2 AERs are calculated in accordance with the calculation procedures of Rule 2201 (New and Modified Stationary Source Review Rule) and comply with the definition of AERs of Rule 2201 (New and Modified Stationary Source Review Rule). Adjustment to emissions reductions for the Community Bank shall be made at the time the reductions are quantified pursuant to Rule 2201 (New and Modified Stationary Source Review Rule).	Rule 2201 Requirements are addressed below.	
4.2.3 An application for ERC has been filed no later than 180 days after the emission reductions occurred.	Aera sold the gas plant equipment to Crimson Resource Management, effective July 19, 2007. This is the date that Aera no longer possessed legal authority to operate the plant equipment. The deadline for submittal of ERC applications is therefore January 14, 2008. To verify that an earlier "de facto" reduction had not occurred, SJVAPCD Inspector Sam Parks inspected the facility on August 16th, 2007 and verified that the plant equipment had not been removed and the plant was still capable of being re-started from "dormant" status.	

Rule 2301 Requirements (continued)

Real: The subject emission reductions are the result of actual physical shutdown and removal of equipment associated with the Lost Hills Gas Plant. Produced gas that had previously been processed in the gas plant was

redirected to serve as fuel for field operations. The redirected produced gas displaced fuel that had previously been purchased from outside sources. Therefore, shutdown of the plant did not result in emission increases elsewhere.
Surplus: The compressor engines that are the subject of this application are lean-burn and were subject to a limit
of 65 ppm NOx under Rule 4702. The engines demonstrated compliance with this tier of Rule 4702 prior to the
Rule's compliance deadlines (June 1, 2005 through June 1, 2007). The engines' permits already included limits
that were below the VOC and CO limits specified in Rule 4702.

4.2.1 The emission reductions are real, surplus. permanent, quantifiable, and enforceable:

Permanent: The subject emission reductions are the result of actual physical shutdown and removal of equipment associated with the Lost Hills Gas Plant. The plant was shut down in Aera sold the gas plant equipment to Crimson Resource Management (Crimson), effective July 19, 2007. Crimson did not elect to purchase the associated air permits, and Aera surrendered the permits on August 22, 2007.

subject to a limit

Quantifiable: The emission reductions are quantifiable using actual fuel gas records and emission factors derived from actual source tests and EPA-approved documents (AP-42, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources) Quantification of the emissions is presented below and in Attachment 1.

Enforceable: Crimson Resources did not elect to purchase the air permits associated with the gas plant, and Aera surrendered the permits on August 22, 2007. These emission reductions are enforceable by the fact that the permits have been surrendered. The reductions will be further enforceable by an inspection of the plant site after equipment removal is complete.

Emission Reduction Credit Application – I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Supplemental Application Information

Rule 2201 Requirements

and selected for use as emission offsets or ERC banking. AE	R shall meet the following criteria:						
3.2.1 Shall be real, enforceable, quantifiable, surplus, and permanent.	These criteria are addressed above under Rule 2301 Requirements.						
3.2.2 To be considered surplus, AER shall be in excess, at the to Construct authorizing such reductions is deemed complete	e time the application for an Emission Reduction Credit or an Authority , of any emissions reduction which:						
3.2.2.1 Is required or encumbered by any laws, rules, regulations, agreements, orders, or	The shutdown of these engines was not required or precipitated by any laws, rules, regulations, agreements, or orders.						
3.2.2.2 Is attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan, or	These emission reductions are not attributed to a control measure noticed for workshop, or proposed or contained in a State Implementation Plan.						
3.2.2.3 Is proposed in the APCO's adopted air quality plan pursuant to the California Clean Air Act.	I.C. engines are identified as a "further study" measure (Standards Review S-COM-6, scheduled for 2012) in the SJVAPCD 8-hour ozone plan, but no specific new emission limits have been considered at present. South Coast AQMD Rule 1110.2, last revised on June 3, 2005, has been incorporated into the SIP and is more stringent than SJVAPCD Rule 4702. Therefore, emission factors are adjusted accordingly in this application.						

Emission Reduction Credit Application – I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Supplemental Application Information

Rule 2201 Requirements (continued)

4.12 Actual Emissions Reductions (AER) Calculations: Actual Emissions Reductions shall be calculated, on a pollutant-by-pollutant basis, as follows:	
AER = HAE - PE2	
HAE = Historic Actual Emissions	HAE calculations are presented in Attachment 1.
PE2 = Post-project Potential to Emit	Post-project potential to emit is zero since the subject emission units have have been permanently shut down and permits surrendered.
4.12.1 Prior to banking, AER shall be discounted by 10 percent (10%) for Air Quality Improvement Deduction, and shall comply with all	The AQI deduction is reflected in the HAE calculations presented in Attachment 1.
applicable provisions of Rule 2301 (Emission Reduction Credit Banking).	Rule 2301 requirements are addressed above.

Emission Reduction Credit Application – I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Supplemental Application Information

Following are the AER's after adjusting for SQAQMD Rule 1110.2 and the 10% AQI deduction:

Pounds Per	voc	NOx	CO	PM10	SOx
Quarter					
1ST					
QUARTER	6,967.8	4,113.9	31,013.5	405.3	0.0
2ND					İ
QUARTER	5,158.7	3,581.8	24,372.5	337.5	0.0
3RD					
QUARTER	4,935.3	3,478.9	22,874.0	337. <u>1</u>	0.0
4TH					
QUARTER	3,855.7	5,975.4	30,864.4	623.1	0.0

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application

I. C. Engine Compressors S-43-4 through S-43-9

7/19/2007 1825 7/20/2002

Compressor Run Hours

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S-43-4	3	8	496	365	0	0	0	0	1	403	533	307 COMPRESSOR #1
S-43-5	739	671	744	645	736	501	743	724	706	517	516	418 COMPRESSOR #2
S-43-6	729	625	248	424	708	487	739	739	698	571	358	694 COMPRESSOR #3
S-43-7	478	524	315	428	305	433	457	526	45	33	15	2 COMPRESSOR #4
S-43-8	0	0	0	5	470	487	673	733	383	407	680	231 COMPRESSOR #5
S-43-9	299	194	475	300	157	0	0	2	372	328	1	486 COMPRESSOR #6
	1471	1304	1488	1434	1444	988	1482	1463	1405	1491	1407	1419 Subt - precomprs
	777	718	790	733	932	920	1130	1261	800	768	696	719 Subt- Refrig Compre

Fuel Meter Readings (mcf)

2001	Jan	Feb	Mar	Аpr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
9356	10,386	9,582	8,934	9,254	8,975	6,294	9,107	9,308	8,744	9,300	8,854	9,037	107,774 PLANT PRE-COMPRESSOR FUEL
9354	4,348	3,934	4,228	4,666	5,104	4,948	6,173	7,057	4,706	4,552		4,263	
		- ""											165,915

Allocated Fuel Usage Per Engine (mcf)

2001	Jan	Feb	Mar	Арг	May	Jun .	Jul	Aug	Sep	Oct	Nov	Dec	Annual
\$-43-4	21	59	2,978	2,355	0	0	0	. 0	6	2,514	3,354	1,955	13,242
S-43-5	5,218	4,931	4,467	4,162	4,575	3,192	4,566	4,606	4,394	3,225	3,247	2,662	49,243
S-43-6	5,147	4,593	1,489	2,736	4,401	3,102	4,541	4,702	4,344	3,562	2,253	4,420	45,288
S-43-7	2675	2871	1686	2724	1670	2329	2497	2944	265	196	90	12	19,958
S-43-8	0	0	0	32	2574	2619	3676	4102	2253	2412	4066	1370	23,104
S-43-9	1673	1063	2542	1910	860	0	0	11	2188	1944	6	2881	15,079
													165,915

Allocated Quarterly Fuel Usage Per Engine (mcf)

2001		1Q
S-43-4		3,058
S-43-5		14,615
S-43-6		11,229
S-43-7		7,232
S-43-8		0
S-43-9	1	5,278

f)		
	2Q	
	2,355	
	11,929	l
	10,239	
	6,724	
L	5,225	
	2,770	l

3Q	
. 6	1
13,566	l
13,587	
5,705	1
10,032	l
2,200	Ì
	-

40
4Q
7,823
9,134
10,234
297
7,848
4,831

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

Compressor Run Hours

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]
S-43-4	26	373	723	545	586	719	690	739	703	350	510	707	COMPRESSOR #1
S-43-5	711	351	63	415	430	425	101	633	267	561	678	348	COMPRESSOR #2
S-43-6	731	608	657	475	464	290	582	89	466	560	250	406	COMPRESSOR #3
S-43-7	0	0	0	0	154	327	679	732	685	727	310	36	COMPRESSOR #4
5-43-8	693	312	399	398	526	646	663	737	700	577	401	674	COMPRESSOR #5
S-43-9	46	227	334	321	365	39	0	0	0	148	719	720	COMPRESSOR #6
	1468	1332	1443	1435	1480	1434	1373	1461	1436	1471	1438	1461	Subt - precomprs
	739	539	733	719	1045	1012	1342	1469	1385	1452	1430	1430	Subt- Refrig Comprs

Fuel Meter Readings (mcf)

1	Jan	Feb	Маг	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
9356	9,146	8,188	8,724	8,687	8,893	8,688	8,556	8,621	8,686	8,904	8,315	8,771	104,179 PRE-COMPRESSOR FUEL
9354	4,479	4,176	4,603	4,185	5,859	5,763	7,402	8,034	7,533	7,431	7,235	7,437	74,137 REFRIG.FUEL
											_		178 316

Allocated Fuel Usage Per Engine (mcf)

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4			4,371	3,299	3,521	4,356	4,300	4,361	4,252	2,119	2,949	4,244	40,227
S-43-5	4,430	2,158	381	2,512	2,584	2,575	629	3,735	1,615	3,396	3,920	2,089	30,024
S-43-6		3,737	3,972	2,875	2,788	1,757	3,627	525	2,819	3,390	1,446	2,437	33,928
S-43-7	<u> </u>	0	0	0	863	1862	3745	4003	3726	3721	1568	187	19,676
S-43-8	4201	2417	2506	2317	2949	3679	3657	4031	3807	2953	2029	3505	38,050
S-43-9	279	1759	2097	1868	2046	222	0	0	0	757	3638	3745	16,412

Allocated Quarterly Fuel Usage Per Engine (mcf)

		5 + 1 + 2		
2002	1Q	2Q	3Q	4Q
S-43-4	6,826	11 <u>,</u> 177	12,913	9,312
S-43-5	6,968	7,671	5,980	9,405
S-43-6	12,264	7,421	6,971	7,273
S-43-7	0	2,726	11,474	5,476
S-43-8	9,123	8,944	11,495	8,487
S-43-9	4,135	4,137	0	8,140

FAC ID DEV PR 2002 43 4 40.331 43 5 30.126 33.723 20.354 43 6 43 43 8 37.506 43 16.277 178.317

ОК

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

Compressor Run Hours

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738	COMPRESSOR #1
S-43-5	740	636	513	635	698	501	359	321	475	722	. 720	694	COMPRESSOR #2
S-43-6	539	596	231	391	450	705	762	743	202	40	0	102	COMPRESSOR #3
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194	COMPRESSOR #4
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764	COMPRESSOR #5
S-43-9	739	658	237	137	0	634	590	449	323	316	0	403	COMPRESSOR #6
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534	Subt - precomprs
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361	Subt. Refrie Comore

Fuel Meter Readings (mcf)

2003	Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
9356	9,075	8,300	8,840	7,987	8,964	8,469				9,204	9,142	9,111	104,360 PRE-COMPRESSOR FUEL
9354	7,869	6,822	7,660	6,741	7,666	7,162	7,161	7,480	7,088	7,944	7,571	7,106	88,270 REFRIG.FUEL
													192,630

Allocated Fuel Usage Per Engine (mcf)

2003	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nav	Dec	Annual
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	. 0	606	28,796
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-43-8	1683	. 0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387
													192,630

Allocated Quarterly Fuel Usage Per Engine (mcf)

2003	1Q	2Q	3Q	4Q	
S-43-4	6,330	4,373	8,549	13,397	
S-43-5	11,521	11,368	6,822	13,204	
S-43-6	8,364	9,679	9,897	856	192,630
S-43-7	9,256	6,882	4,960	7,001	
S-43-8	4,342	10,769	9,920	11,753	
S-43-9	8,753	3,918	6,849	3,867	

	FAC_ID	DEV	PR 2003	PR 2004	PR 2005	PR 2006	UNITS
	43	4	38.07	32.40	0.00	0.00	MILLION CUBIC FEET
	43	5	49.66	43.54	24.15		MILLION CUBIC FEET
	43	6	33.71	45.41	6.50	0.00	MILLION CUBIC FEET
	43	7	20.78	11.49	0.00	0.00	MILLION CUBIC FEET
	43	8	27.27	27.47	1.86		MILLION CUBIC FEET
ı	43	9	17.46	26.54	0.00	0.00	MILLION CUBIC FEET

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

Compressor Run Hours

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]
5-43-4	695	687	699	495	277	146	137	0	0	0	0	0	COMPRESSOR #1
S-43-5	689	695	737	613	433	3	214	12	60	5	227	536	COMPRESSOR #2
S-43-6	25	7	0	176	4	661	393	719	644	737	415	207	COMPRESSOR #3
5-43-7	524	411	48	319	157	71	3	2	5	0	0	0	COMPRESSOR #4
5-43-8	291	369	706	388	543	289	203	465	190	2	106	131	COMPRESSOR #5
5-43-9	0	6	a	0	0	317	518	266	511	721	616	603	COMPRESSOR #6
	1409	1389	1436	1284	714	810	744	731	704	742	642	743	Subt - precomprs
	815	786	754	707	700	677	724	733	706	723	722	734	Subt- Refrig Comprs

Fuel Meter Readings (mcf)

I	2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
ſ	9356	8,952	8,843	9,244	8,100	3,366			4,666	4,210	4,505	3,074	3,022	66,406 PRE-COMPRESSOR FUEL
ı	9354	4,683	4,498	4,295	3,832	4,111	4,065	4,477	4,730	4,326	4,419	4,554	4,299	52,289 REFRIG.FUEL

Allocated Fuel Usage Per Engine (mcf)

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	Annual
5-43-4	4,416	4,374	4,500	3,123	1,306	672	865	Û	0	0	0	0	19,254
5-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359	30	1,087	2,180	24,552
5-43-6	159	45	О	1,110	19	3,041	2,461	4,589	3.851	4,475	1,987	842	22,599
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31	0	0	0	8,776
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164	12	669	767	21,701
5-43-9	0	34	0	O	O	1,903	3,203	1,716	3,131	4,407	3,885	3,532	21,812
													118,695

Allocated Quarterly Fuel Usage Per Engine (mcf)

2004	1Q	2Q	3Q	4Q	
5-43-4	13,289	5,100	865	0	
5-43-5	13,547	5,922	1,786	3,297	
S-43-6	203	4,171	10,922	7,304	118,695
S-43-7	5,636	3,077	62	0	
S-43-8	7,805	7,027	5.420	1,448	
S-43-9	34	1,903	8,051	11,824	

FAC_ID	DEV	PR 2004	PR 2005	PR 2006 .	UNITS	i
43	4_	32.40	0.00			UBIC FEET
43	5	43.64	24.15	0.00	MILLION	UBIC FEET
		1			[ì
43	6	45.41	6.50	0.00	MILLION O	UBIC FEET
43	7	11.49	0.00	0.00	MILLION C	UBIC FEET
43	8	27.47	1.86	0.00	MILLION	UBIC FEET
43	9	26.54	0.00	0.00	MILLION C	UBIC FEET
		186.95	32.51			•

Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Calculation of Historical Actual Emissions

Background & Methodology

Operation of the Section 15 Gas Plant compressors was ramped down when feed gas from Aera's Lost Hills operations was discontinued in the first week of May, 2004. Chevron discontinued feed to the plant in January, 2005. Therefore, emissions occurring prior to May 2004 are most representative of actual plant operation. July 20, 2002 marks the beginning of the 5-year period prior to July 19, 2007 (date of the actual emission reduction). 2 years of operational data going back to May 2002 would be most representative of normal plant operation, but the months of May and June 2002 are outside of the 5-year window allowed by Rules 2301 and 2201 for establishing representative emissions. Therefore, this analysis presents actual emissions data beginning with the last quarter of 2002.

Compressors S-43-4, S-43-5, and S-43-6 were identified as the "precompressors" and were equipped with one shared fuel meter (# 9356). Compressors S-43-7, S-43-8, and S-43-9 were identified as the "refrigeration compressors" and were also equipped with one shared fuel meter (# 9354). Although the compressors did not have individual dedicated fuel meters, detailed monthly runtime records have been kept which allow an accurate allocation of fuel usage by month and quarter. The fuel volumes, runtimes, and fuel allocations are presented in attached spreadsheet printouts.

Emission factors used in these calculations are identical to those used in annual emission statements submitted to SJVAPCD in the years 2002-2005. NOx, CO, and VOC emission factors are based on actual biennial source tests required by Rule 4702.

Rule 2301 does not allow emissions that are not "surplus" to be included in ERC's. Emission reductions are not considered "surplus" if they are required by a rule that is included in the State Implementation Plan (e.g. SJVAPCD Rule 4702). The gas plant engines demonstrated by source testing that they were already capable of compliance with the new 65 ppm NOx limit prior to adoption of the most recent revisions of Rule 4702.

According to guidance from SJVAPCD Permit Services, the "surplus" criteria also includes consideration of rules adopted by other California air districts that have been incorporated into the SIP. It appears that South Coast AQMD Rule 1110.2 (last revised on June 3, 2005) is the most stringent I.C. engine rule that has been incorporated into the SIP.

Under Rule 1110.2, engines that had previously been designated in a Rule 1110.1 compliance plan to be shut down or electrified can continue to operate in compliance with a limit of 11 ppm NOx. Rule 1110.1 was rescinded on June 3, 2005. For engines that are subject to Rule 1110.2 but were <u>not</u> designated for shutdown or electrification under rescinded Rule 1110.1, the applicable limit is 36 ppm NOx. Therefore, the 11 ppm NOx limit is for a special situation, so the 36 ppm limit is the appropriate emission factor to be considered. 36 ppm NOx is equivalent to 135.26 lb NOx/MMcf - assuming a fuel heat content of 1020 BTU/scf. In the attached analysis, this factor was applied for

Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9 Lost Hills Section 15 Gas Plant Calculation of Historical Actual Emissions

operating years when source tests conducted to show compliance with SJVAPCD Rule 4702 reflected values higher than 135.26 lb NOx/MMcf.

The applicable Rule 4702 limit for VOC is 750 ppm. The SCAQMD Rule 1110.2 VOC limit is more stringent at 250 ppm (equivalent to 326.7 lb VOC/MMcf). In the HAE analysis, this factor was substituted for operating years when the SJVAPCD source test results reflected values higher than 326.7 lb VOC/MMcf.

The CO limit is 2000 ppm for both SJVAPCD Rule 4702 and SCAQMD Rule 1110.2. The CO limit in PTO's for the gas plant engines has always been more stringent at 463 ppm, so this factor does not have to be adjusted in the HAE analysis.

TABLE III				
STATIONARY ENGINES DESCRIPTION				
For electric power generation				
Fired by landfill gas				
Fired by sewage digester gas				
Used to drive a water supply or conveyance pump				
except for aeration facilities				
Fired by oil field-produced gas				
For integral engine-compressor applications operating				
less than 4000 hours per calendar year				
Fired by liquefied petroleum gas (LPG)				

TABLE IV					
REFERENCE LIMITS, ppm					
Bhp Rating NO _x VOC					
500 and greater	36	250			
Greater Than 50 and Less	45	250			
Than 500					

And,

EFF = the demonstrated percent efficiency at full load when averaged over 15 consecutive minutes of the engine only without consideration of any downstream energy recovery from the actual heat rate, in Btu/kW-hr, corrected to the HHV (higher heating value) of the fuel; or the manufacturer's continuous rated percent efficiency (manufacturer's rated efficiency) of the engine after correction from LHV (lower heating value) to the HHV of the fuel, whichever efficiency is higher. The value of EFF shall not be less than 25 percent. Engines with lower efficiencies will be assigned a 25-percent efficiency for this calculation.

EFF = 3413 x 100%

Actual Heat Rate at HHV of Fuel (Btu/kW-hr)

APPLICATION REVIEW EMISSION REDUCTION CREDIT BANKING

Facility Name:

Aera Energy LLC

Mailing Address:

P.O. Box 11164

Bakersfield, CA 93389

Contact Name:

Brent Winn, Environmental Engineer

Telephone:

(661) 665-4363

Engineer:

Richard Edgehill, Air Quality Engineer

Date:

March 27, 2008

Lead Engineer:

Leonard Scandura, Supv. AQE

Date:

4300

Project Number:

S-43, 1075362

ERC Certificate #s:

S-2774-1 (VOC), S-2774-2 (NOx), S-2774-3 (CO),

and S-2774-4 (PM10)

Date Received:

November 8, 2007

Date Complete:

December 6, 2007

I. SUMMARY

Aera Energy LLC (Aera) has applied for Emission Reduction Credits (ERCs) for the shutdown of 6 (three 1,100 hp and three 826 hp) lean burn natural gas-fired IC engines driving Section 15 Gas Plant Compressors (S-43-4 through '-9). The Permits to Operate (PTOs) for the IC engines were canceled August 27, 2007. The application for ERCs is timely because it was filed within 180 days following the shut down pursuant to Rule 2301, "Emission Reduction Credit Banking", Section 4.2.3.

The following emission reductions have been found to qualify for banking:

Emission Reductions Qualified for Banking (lbs)						
	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr		
NOx	5817	4899	4757	8181		
PM10	443	368	369	489		
СО	29,596	23125	21911	30866		
VOCs	8176	5745	5185	3973		

Please note that the entire gas plant was shutdown in 2007. An ERC application for the shutdown of one small heater is pending project \$43, 1080067.

II. APPLICABLE RULES

Rule 2201 New and Modified Stationary Source Review Rule (September 21, 2006)

Rule 2301 Emission Reduction Credit Banking (December 17, 1992)

III. PROJECT LOCATION

The subject 6 IC engines are located at the Lost Hills Section 15 Gas Plant (facility S-43), NE Section 15, T27S, R21E.

IV. METHOD OF GENERATING REDUCTIONS

Aera's sale of the gas plant equipment to Crimson Resource Management was finalized July 19, 2007. The equipment has been shutdown and will be removed from the site. The permits for the IC engines were surrendered August 27, 2007.

The PTOs are included in Attachment I.

V. CALCULATIONS

A. Assumptions

Fuel higher heating value = 1106.3 Btu/scf (Attachment II).

NOx, CO, and PM10 HAE is calculated based on the fuel use (mcf) multiplied times the emissions factors (lb/MMscf).

Emissions Factors

PM10: AP-42 Table 3.2-1 Uncontrolled Emissions Factors for 4-Stroke Lean-Burn Engines (Attachment III)

1106.3 MMBtu/MMscf x (0.00991 lb/MMBtu (condensable) + 0.0000771 lb/MMBtu (filterable)) = 11.05 lb/MMscf

NOx, CO, and VOC: The emissions factors used to calculate the HAE for 2002 and 2003 were the source test data for 2002. The emissions factors used to calculate the HAE for 2004 were the source test data for 2004. All of the source test measurements were less than the District Rule 4702 limits of 65 ppmv NOx @ 15% O₂, 2000 ppmv CO @ 15% O₂, and 750 ppmv VOC @ 15% O₂.

Quarterly Allocated Fuel Use for IC Engines

The three pre-compressor engines '-4 through '-6 share one fuel meter and the three refrigeration compressors share another fuel meter. Therefore, allocated fuel use for each IC engine is equal to the total fuel use for either the pre-compressors or the refrigeration compressors multiplied times fraction of total run time (pre-compressors or refrigeration compressors) associated with each engine.

B. Emissions Factors

The source test measurements and emissions factors for NOx, CO, and VOC are listed in the tables below. The source test summaries are included in **Attachment IV**.

NOx ppm @ 15% O₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
District	65	65	65	65	65	65
Rule 4702 limit	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]
2002	45.6	46.8	50.7	43.7	34.9	61.8
source test	[184.3]	[189.0]	[204.8]	[176.4]	[141.1]	[249.8]
2004	14.3	15.4	13.6	51.4	21.9	14.2
source test	[56.0]	[60.3]	[53.3]	[207.9]	[88.4]	[57.6]

CO ppm @ 15% O ₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
District	2000	2000	2000	2000	2000	2000
Rule 4702	[4574]	[4574]	[4574]	[4574]	[4574]	[4574]
Limit	1		-		-	-
2002	270	258.3	217.8	422.8	268.9	286.8
source test	[663.6]	[635.0]	[535.6]	[1039.5]	[660.9]	[705.0]
2004	383	340	310	317	181	204
source test	[913.0]	[811.4]	[740.2]	[780.4]	[447.0]	[503.2]

VOC ppm @ 15% O ₂ [lb/MMscf]						
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
District Rule 4702 Limit	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]
2002 source test	67 [94.0]	36.6 [51.4]	255.5 [358.9]	45.1 [63.3]	38.8 [54.5]	42.8 [60.2]
2004 source test	308.1 [420.0]	303.4 [413.6]	214.1 [291.8]	57.6 [81.0]	68.5 [119.0]	53.8 [75.7]

Emissions monitoring measurements of CO and NOx were examined. A comparision between average portable analyzer readings for CO and NOx and source test

measurements is provided in **Attachment V**. Portable analyzer readings were generally higher (27 of the 36 comparisons) than source test data justifying use of the source test data to calculate HAE.

B. Baseline Period Determination and Data

Pursuant to District Rule 2201, Section 3.8, the baseline period for determining actual historical emissions for banking purposes shall be a period of time equal to either:

- 3.8.1 the two consecutive years of operation immediately prior to the submission date of the Complete Application; or
- 3.8.2 at least two consecutive years within the five years immediately prior to the submission date of the Complete Application if determined by the APCO as more representative of normal source operation; or
- 3.8.3 a shorter period of at least one year if the emissions unit has not been in operation for two years and this represents the full operational history of the emissions unit, including any replacement units; or
- 3.8.4 zero years if an emissions unit has been in operation for less than one year (only for use when calculating AER).

The ERC application was deemed complete on December 6, 2007. The two-year period immediately prior to submission of the complete ERC application (December 2005 - December 2007) is not considered representative of normal operation. In 2004 produced gas from Aera and Chevron was diverted from the gas plant and operations were severely curtailed. After 2004, engines S-43-4 through '-9 were either not operating or were consuming much less than normal quantities of gas.

Section 3.8.2 of Rule 2201 allows for another consecutive two year period if it is representative of normal operation and is within 5 yrs of submission of the complete ERC application i.e. a two-year period beginning after December 2, 2002. The time period from 4th Quarter 2002 through 3rd Quarter 2004 was selected as the baseline period.

Please note that this two year period ends 1 quarter earlier than the baseline period in project 1080067 as the IC engine compressors were shutdown before the hot oil heater. The demand for the compressor engines was significantly reduced in May 2004 when Aera stopped processing their Lost Hills produced gas in the plant. However, Chevron continued to send their Lost Hills gas for processing - until January 2005. The hot oil heater provided heat for the plant processes (for such things as glycol reboiler) and therefore it had to remain in operation until January 2005 when Chevron stopped sending gas to the plant

C. Historical Actual Emissions

Quarterly Fuel Use for IC Engines

Quarterly fuel use for each engine is calculated as the fraction of quarterly operation time associated with each engine multiplied times the quarterly fuel consumption for the engines served by a common fuel meter.

A sample calculation of allocated fuel usage by pre-compressor '-4 in October 2002 follows:

Engine '-4 total operating hours for October 2002 = 350 hrs

Combined pre-compressor ('-4 through '-6) operating hours October 2002 = 1471 hrs

Combined pre-compressor ('-4 through '-6) fuel consumption October 2002 = 8904 mcf

Allocated fuel to engine '-4 = $350/1471 \times 8904 = 2.119 \text{ mcf (October 2002)}$

The monthly operational hours and calculated quarterly fuel usage by each engine over the baseline period (4th Quarter 2002 through 3rd Quarter 2004) are included in **Attachment VI**.

Calculation of HAE for IC Engines

HAE is the product of quarterly fuel use for each engine (mcf) times the emissions factor in lb/MMscf. Sample calculations for engine S-43-4 for 4th Quarter 2002 and 3rd Quarter 2004 follow:

4th quarter 2002:

NOx: 9312 mcf x 184.3 lb/1000 mcf = 1716 lb NOx CO: 9312 mcf x 663.6 lb/1000 mcf = 6179 lb CO VOC: 9312 mcf x 94 lb/1000 mcf = 875 lb VOC PM10: 9312 mcf x 11.05 lb/1000 mcf = 103 lb PM10

3rd quarter 2004:

NOx: 865 mcf x 56 lb/1000 mcf = 48 lb NOx CO: 865 mcf x 913 lb/1000 mcf = 790 lb CO VOC: 865 mcf x 420 lb/1000 mcf = 363 lb VOC PM10: 865 mcf x 11.05 lb/1000 mcf = 10 lb PM10

The results of the calculations for IC engine '-4 over the baseline period are listed in the table below.

S-43-4 HAE

Quarter	Actual fuel	NOx	VOC	CO	PM10
	consumption	(lb/qtr)			
	(mcf)				
4 th quarter 2002	9312	1716	875	6179	103
1st quarter 2003	6,330	1167	595	4201	70
2nd quarter 2003	4,373	806	411	2902	48
3 rd quarter 2003	8,549	1576	804	5673	95
4 th quarter 2003	13,397	2469	1259	8890	148
1 st quarter 2004	13,289	744	5581	12,134	147
2nd quarter 2004	5,100	286	2142	4,656	56
3 rd quarter 2004	865	48	363	790	10

The average quarterly HAE is ½ the sum of the two values for each quarter listed in the above table. Calculation of the HAE for 1st quarter NOx is as follows:

$$(1167 + 744)/2 = 955 lb/qtr$$

The results of the additional calculations of HAE for each engine and the combined HAE for all of the engines are included in **Attachment VII** and are summarized in the table below.

Total Average Quarterly HAE

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr			
NOx	6463	5443	5286	9090			
PM10	492	409	410	543			
CO	32,884	25694	24,346	34,296			
VOC	9085	6383	5761	4415			

D. Actual Emission Reductions (AER)

Aera has applied for ERC banking credits for the permanent cessation of six IC engines (S-43-4 through '-9). The engines are not being replaced. Therefore, the HAE is equal to the actual emissions reductions (AER).

AER = HAE

AER (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	6463	5443	5286	9090
PM10	492	409	410	543
CO	32,884	25694	24,346	34,296
VOC	9085	6383	5761	4415

E. Air Quality Improvement Deduction (10% of AER)

AQID (Ibs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	646	544	529	909
PM10	49	41	41	54
CO	3288	2569	2435	3430
VOC	909	638	576	442

F. Increases in Permitted Emissions (IPE)

No IPE is associated with this project.

G. Bankable Emissions Reductions Credits (AER – AQID)

ERC (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	5817	4899	4757	8181
PM10	443	368	369	489
CO	29,596	23125	21911	30866
VOC	8176	5745	5185	3973

VI. COMPLIANCE

To be eligible for banking, emission reduction credits (ERC's) must be verified as being real, surplus, permanent, quantifiable, and enforceable pursuant to District Rules 2201 and 2301. In addition, the application must be submitted within the timelines specified in Rule 2301.

A. Real

Aera has ceased operation of the six subject IC engines. They are currently being dismantled and removed from the site. Therefore, the reductions from S-43 are real.

B. Enforceable

The permits for the IC engines were surrendered August 27, 2007. Therefore, the reductions are enforceable.

C. Quantifiable

The AER's were calculated using District recognized emission factors and actual historical fuel use data. Therefore, the reductions are quantifiable.

D. Permanent

Aera has ceased operation of the six IC engines. The engines will be dismantled and removed from facility S-43. Aera's sale of the six IC engines to Crimson Resource Management was finalized July 19, 2007. However, Crimson Resource Management will not be allowed to operate the engines at any location without first receiving Authorities to Construct subject to the offset requirements of District Rule 2201 New Source Review. Therefore, the reductions are permanent.

E. Surplus

The reductions which qualify for banking are based on emissions which are less than required by District Rule 4702 i.e. 65 ppmv @ 15% O_2 for NOx, 2000 ppmv @ 15% O_2 for CO, and 750 ppm @ 15% O_2 for VOC. Therefore, the reductions are surplus.

F. Timeliness

An application for ERC's was received on November 8, 2007, within 180 days following the shutdown pursuant to Rule 2301, "Emission Reduction Credit Banking", Section 4.2.3. According to District policy 1805 shutdown is the date the permits were surrendered unless the Control Officer determines that:

- (a) the unit has been removed or fallen into an inoperable and unmaintained condition such that startup would require an investment exceeding 50% of the current replacement cost; and
- (b) the owner cannot demonstrate to the satisfaction of the Control Officer that the owner intended to operate again. Evidence of "intent to operate again" may include valid production contracts, orders, other agreements, or any economically based reasons which would require the operation of the emissions unit.

The engines were not removed and had not fallen into inoperable and un-maintained condition such that start-up would require an investment exceeding 50% of the current replacement cost prior to surrendering the PTOs (August 27, 2007). Because the ERC application was filed no later than 180 days after August 27, 2007 (the date the PTO was surrendered), the application is timely.

VII. RECOMMENDATION

After public notice, comments and review, issue ERC Banking Certificates S-2774-1, S-2774-2, S-2774-3, and S-2774-4 to Aera Energy LLC for the following amounts:

ERC Certificate	1 st Qtr (lbs)	2 nd Qtr (lbs)	3 rd Qtr (lbs)	4 th Qtr (lbs)
S-2774-1 (VOC)	8176	5745	5185	3973
S-2774-2 (NOx)	5817	4899	4757	8181
S-2774-3 (CO)	29,596	23,125	21,911	30,866
S-2774-4 (PM10)	443	368	369	489

The draft ERC certificates are included in Attachment VIII.

ATTACHMENT I PTOs

Page 1 of 3 <u>||RA/NION||DATE:</u> 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164 BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 278 RANGE: 21E

EQUIPMENT DESCRIPTION:

1,100 BHP PRECOMPRESSION OPERATION #1 INCLUDING SUPERIOR NATURAL GAS FIRED IC ENGINE AND SHARING WITH PERMITS S-43-5 AND '-6 INLET SEPARATORS (V28/V29), COMPRESSOR (C-2C), AIR COOLER (AC-6A), SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active 2. emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements, [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule] 8.
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit 9. S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling), [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr, [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 53.5 lb/day. [District Rule 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 of EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to With some test results, [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1071]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 34. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 278 RANGE: 21E

EQUIPMENT DESCRIPTION:

1,100 BHP PRECOMPRESSION OPERATION #2 INCLUDING SUPERIOR NATURAL GAS FIRED IC ENGINE AND SHARING WITH PERMITS S-43-4 AND '-6 INLET SEPARATORS (V28/V29), COMPRESSOR (C-2B), AIR COOLER (AC-6A), SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. 3. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months, [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 53.5 lb/day. [District Rules 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

CONDITIONS FOR PERMIT S-43-5-14

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test nesults, [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes, [Rule 4801]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 2080]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072, D 3031, D 4084, D 3246 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 2080]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 2080]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 2080]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District. [District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 34. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 2080]

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 9338

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

1.100 BHP PRECOMPRESSION OPERATION #3 INCLUDING SUPERIOR NATURAL GAS IC ENGINE AND SHARING WITH PERMIT UNIT S-43-4 AND '-5 INLET SCRUBBERS (V28/V29), COMPRESSOR (C-2A), AIR COOLER (AC-6A). SCRUBBER (V-30A) AND MISCELLANEOUS VALVES AND FLANGES

- 1. {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 47021
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 10. Distance piece vents shall be inspected and any packing leaks repaired in accordance with Rules 4403, as applicable. [District Rule 4403]
- 11. Pre-compressors with packing leaks shall be shut down within 72 hours and packing leaks repaired prior to re-starting. [District Rule 2201]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmy @ 15% O2 and 53.5 lb/day. [District Rules 4701 and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 4801]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 2080]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072, D 3031, D 4084, D 3246 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 2080]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 2080]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 2080]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

CONDITIONS FOR PERMIT S-43-6-14

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and think submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]
- 34. All compressors associated with this permit unit shall be reciprocating compressors in wet gas service only. In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction step in the process. [40 CFR 60.482-3(b), 60.633(f), 60.482-3(a), and 60.632(f)]
- 35. Records shall be kept of leaks from distance piece vents and compliance with required repair timelines pursuant to Rules 4403, as applicable. [District Rule 4403]
- 36. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 2080]

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164

BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 27S RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #4 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED W/ PERMIT UNITS S-43-8 & '-9 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1C), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

- {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 1.
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit, [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201, 4701, and 47021
- This engine shall not be operated after June 1, 2007 for any reason without an ATC including the Rule 4702 emissions limits and any necessary retrofits needed to comply with the applicable requirements of District Rule 4702. [District Rule 47021
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule] 9.
- 10. Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- 11. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 12. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]
- 13. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 14. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 15. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 16. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 40.2 lb/day. [District Rule 4701]
- 17. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rule

- 18. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232,6 lb/day. [District/NSR Rule]
- 19. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 20. Documentation of fuel gas sulfur content shall be submitted to District with source test results [District NSR Rule]
- 21. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 22. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 23. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 25. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 26. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 27. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 28. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 29. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 30. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]

- 31. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]
- 32. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702
- 33. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 34. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

Page 1 of 3

E: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164 BAKERSFIELD, CA 93389

LOCATION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 278 RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #5 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED W/ PERMIT UNITS S-43-7 AND '-9 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1B), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

- 1. {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. 3. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit, [District Rules 2201, 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule] 8.
- 9. Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule]
- 10. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 11. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070, 9.5.2]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmv @ 15% O2 and 40.2 lb/day. [District Rules 4701 and 47021
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rulel
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmv @ 15% O2 and 232.6 lb/day. [District NSR Rule]

Page 2 of 3

- 18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 or EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]
- 19. Documentation of fuel gas sulfur content shall be submitted to District With source test results [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District. [District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

E: 08/31/2009

LEGAL OWNER OR OPERATOR: AERA ENERGY LLC

MAILING ADDRESS:

PO BOX 11164 BAKERSFIELD, CA 93389

LOCATION: LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

SECTION: NE15 TOWNSHIP: 278 RANGE: 21E

EQUIPMENT DESCRIPTION:

825 BHP REFRIGERATION COMPRESSION UNIT #6 INCLUDING NATURAL GAS FIRED IC ENGINE AND SHARED WITH PERMIT UNITS S-43-7 AND '-8 SUCTION SCRUBBER (V-6), ECONOMIZER (V-7), SURGE TANK (V-9), COMPRESSOR (C-1A), OIL TRAP (V-10) & CONDENSERS (AC-1A, AC-1B, AC-1C)

- 1. {118} No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102]
- 2. Upon 7 days written notice to the District this engine may be designated as a dormant emission unit or an active emission unit. [District Rule 1070]
- When designated as a dormant emissions unit fuel supply line shall be physically disconnected from the emission unit. [District Rule 2080]
- Source testing is required within 60 days of recommencing operation if a source test has not been performed within the past 24 months. [District Rules 2201, 4701, and 4702]
- During non operation of this unit the permittee shall not be required to perform source testing, fuel sulfur content certification, and monitoring requirements. [District Rules 2201, 4701, and 4702]
- Permittee shall maintain accurate records of the time and duration of non operation of this unit. [District Rules 2201. 4701, and 4702]
- Operation shall include lube oil head tank (V-26) and I.C. engine fuel scrubber (V-4) shared between permit unit #'s S-43-4, '-5, '-6, '-7, '-8, and '-9. [District NSR Rule]
- Compressor distance piece shall be vented to the vapor recovery system listed on PTO# S-43-3. [District NSR Rule] 8.
- Fuel gas sulfur content shall not exceed 0.3 gr/dscf as H2S. [District NSR Rule] 9.
- 10. Condensate from compressor scrubbers and inlet separators shall be piped to low-pressure condensate vessel of permit S-43-1 or to any tank at the Lost Hill 1 treating facility served by vapor collection and control system S-1548-120. [District NSR Rule]
- 11. Records of inspections, repairs and maintenance of fugitive VOC sources shall be kept and made readily available for District inspection. [District Rule 1070]
- 12. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling), [District Rule 1081, 3.0]
- 13. PM-10 emission rate shall not exceed 0.10 lb/hr. [District NSR Rule]
- 14. SO2 emission rate shall not exceed 0.01 lb/hr. [District NSR Rule]
- 15. Oxides of nitrogen (as NO2) emission rate shall not exceed 65 ppmy @ 15% O2 and 40.2 lb/day. [District Rules 4701] and 4702]
- 16. Volatile organic compounds (VOC's) emission rate shall not exceed 304 ppmv @ 15% O2 and 87.1 lb/day. [District NSR Rule]
- 17. Carbon monoxide (CO) emission rate shall not exceed 463 ppmy @ 15% O2 and 232.6 lb/day. [District NSR Rule]

Page 2 of 3

18. District-witnessed source testing for NOx and CO emission rates shall be conducted using CARB Method 100, and District-witnessed source testing for VOC emission rates shall be conducted using EPA Method 25 of EPA Method 18, referenced as methane, not less than once every 24 months. [District NSR Rule]

- 19. Documentation of fuel gas sulfur content shall be submitted to District with source test results; [District NSR Rule]
- 20. Sulfur compound emissions shall not exceed 0.2% by volume, 2000 ppmv, on a dry basis averaged over 15 consecutive minutes. [Rule 404 (Madera), 406 (Fresno) and 407 (6 remaining counties in the San Joaquin Valley)]
- 21. Particulate emissions shall not exceed at the point of discharge, 0.1 gr/dscf. [District Rule 4201; Rule 402 (Madera) and 404 (all 7 remaining counties in the San Joaquin Valley)]
- 22. If the IC engine is fired on certified natural gas, then maintain on file copies of all natural gas bills or suppliers certification of sulfur content. [District Rule 1070]
- 23. If the engine is not fired on certified natural gas, then the sulfur content of the gas shall be determined using ASTM D 1072-80, D 3031-81, D 4084-82, D 3246-81 or grab sample analysis by GC-FPD/TCD performed in the laboratory. [District Rule 1070]
- 24. If the engine is not fired on certified natural gas, the sulfur content of each fuel source shall be tested weekly except that if compliance with the fuel sulfur content limit has been demonstrated for 8 consecutive weeks for a fuel source, then the testing frequency shall be quarterly. If a test shows noncompliance with the sulfur content requirement, the source must return to weekly testing until eight consecutive weeks show compliance. [District Rule 1070]
- 25. The operator of an internal combustion (IC) engine shall maintain all records of required monitoring data and support information for inspection at any time for a period of five years. [District Rule 1070]
- 26. The permittee shall monitor and record the stack concentration of NOx, CO, and O2 at least once every calendar quarter (in which a source test is not performed) using a portable emission monitor that meets District specifications. Monitoring shall be performed not less than once every month for 12 months if 2 consecutive deviations are observed during quarterly monitoring. Monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month if on a monthly monitoring schedule, or within the last quarter if on a quarterly monitoring schedule. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 4701 and 4702]
- 27. {2993} If either the NOx or CO concentrations corrected to 15% O2, as measured by the portable analyzer, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the portable analyzer readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of the performing the notification and testing required by this condition. [District Rules 4701 and 4702]
- 28. {2994} All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 4701 and 4702]
- 29. {2995} The permittee shall maintain records of: (1) the date and time of NOx, CO, and O2 measurements, (2) the O2 concentration in percent and the measured NOx and CO concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (5) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 4701 and 4702]
- 30. The permittee shall install and operate a nonresettable fuel meter and a nonresettable elapsed operating time meter. In lieu of installing a nonresettable fuel meter, the owner or operator may use an alternate device, method, or technique in determining monthly fuel consumption provided that the alternative is approved by the APCO. [District Rule 4702]

- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Maintenance (I&M) plan submitted to the District Rule 4702]
- 32. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO no later than 14 days after the change for approval. The date and time of the change to the &M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 33. The permittee shall maintain an engine operating log to demonstrate compliance. The engine operating log shall include, on a monthly basis, the following information: total hours of operation, type and quantity (cubic feet of gas or gallons of liquid) of fuel used, maintenance or modifications performed, monitoring data, compliance source test results, and any other information necessary to demonstrate compliance. [District Rule 4702]

ATTACHMENT II

Laboratory Analysis

Aera Energy LLC IC Engine

Sample Description: Fuel Gas Sampled by: Victor Welliver

Project 010-2806A Laboratory ID 052202-02

Date Sampled: May 22, 2002 Date Received: May 22, 2002 Date Reported: May 22, 2002

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %		CHONS WL%
Carbon Dioxide	1.844	4.322	Carbon	73,52
Oxygen	0.056	0.096	Hydrogen	22.63
Nitrogen	0.410	0.612	Oxygen	3.24
Carbon Monoxide	0.000	0.000	Nitrogen	0.61
			Sulfur	0.00
Methane	85.517	73.062	H/C	0.308
Ethane	9,442	15.121		
Propane	2.339	5,493		
isobutane	0.102	0.317		
N-Butane	0.203	0.627		
Isopentane	0.030	0,115		
N-Pentane	0.027	0.105		
Hexanes	0.028	0.130		
Total(s)	100.000	100.000		

Specific Gravity (Air = 1) Specific Volume (cf/lb) Gross Calorific Value, Dry (Btu/cf) Gross Calorific Value, Wet (Btu/cf) Gross Calorific Value, Dry (Btu/lb) Net Calorific Value, Dry (Btu/cf) Net Calorific Value, Wet (Btu/cf)	0.6483 20.21 1106.26 1084.02 22358.40 999.93 979.84
Compressability Factor "Z" @ 60° F, 1 atm	0.9973
EPA F-Factor @ 68° F (DSCF/MMBtu) EPA F-Factor @ 60° F (DSCF/MMBtu)	8652 8523

References:

ASTM Methods D1945-96 & D3588-98

Terry M. Rowles, Laboratory Manager

ATTACHMENT III

AP-42 Table 3.2-2

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES^a (SCC 2-02-002-54)

	Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
	Criteria Pollutants and Greenhouse	: Gases	
	NO _x c 90 - 105% Load	4.08 E+00	В
	NO _x < 90% Load	8.47 E-01	В
	CO ^c 90 - 105% Load	3.17 E-01	C
	CO ^c <90% Load	5.57 E-01	В
	CO ₂ ^d	1.10 E+02	A
	SO ₂ ^e	5.88 E-04	A
	TOC ^f	1.47 E+00	A
	Methane ^g	1.25 E+00	С
	VOC^h	1.18 E-01	С
,	PM10 (filterable) ⁱ	7.71 E-05	D
	PM2.5 (filterable) ⁱ	7.71 E-05	D
,	PM Condensable	9.91 E-03	D
	Trace Organic Compounds		
	I,1,2,2-Tetrachloroethanek	<4.00 E-05	E
	1,1,2-Trichloroethane ^k	<3.18 E-05	E
	1,1-Dichloroethane	<2.36 E-05	E
	1,2,3-Trimethylbenzene	2.30 E-05	D
	1,2,4-Trimethylbenzene	1.43 E-05	С
	1,2-Dichloroethane	<2.36 E-05	E
	1,2-Dichloropropane	<2.69 E-05	E
	1,3,5-Trimethylbenzene	3.38 E-05	D
	1,3-Butadiene ^k	2.67E-04	D
	1,3-Dichloropropene ^k	<2.64 E-05	E
	2-Methylnaphthalene ^k	3.32 E-05	С
	2,2,4-Trimethylpentane ^k	2.50 E-04	. C
ļ	Acenaphthene ^k	1.25 E-06	C

ATTACHMENT IV

Source Test Summaries

Aera Energy LLC Lost Hills Gas Plant IC Engine # 1 Project 010-2806 May 22, 2002 Permit No. S-43-4-8

Pollutant	%	ppm	ppm @ 15% O₂	gr/Bhp-hr	ib/hr	lb/MMBtu	Permît Limits
		87.4	50.2	0.71	1.2	0.1832	
NOx	į	69.1	42.2	0,59	1.0	0,1539	
		73.0	44.5	0.63	1.0	0.1626	2.67 lb/hr and
Mean		76,5	45.6	0.64	1.1	0,1666	1.10 gr/Bhp-hr
-		451.8	259.3	2.22	3.6	0.5763	
CO		449.7	274.4	2.35	3.9	0.6098	
		452.8	276.3	2.37	3.9	0.6140	
Mean	<u></u>	451.4	270.0	2.31	3.8	0.6000	9.69 gr/Bhp-hr
		106.8	61.3	0.100	0.5	0.0778	
VOC		112.3	68.6	0.100	0.6	0.0870	
C3 - C6+ as C1		116.4	71.1	0.100	0.6	0.0902	3.63 lb/hr and
Mean		111.8	67.0	0,100	0.6	0.0850	1.50 gr/Bhp-hr
		As H₂S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0		<u> </u>		<0.001	0.3 gr/dscf
_	10.62						
O ₂	11.23						
	11.23						
Mean	11.03				,		
Comments:							
				<u> </u>			
							
							<u> </u>
7.80	<u></u>						

Aera Energy LLC Lost Hills Gas Plant IC Engine # 2 Project 010-2806 May 22, 2002 Permit No. S-43-5-8

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp•hr	lb/hr	lb/MMBtu	Limits
		83.3	47.4	0.67	1.1	0.1731	
NOx		78.2	44,6	0.63	1.1	0.1628	
	į į	84.8	48.3	0.68	1.2	0.1765	2.67 lb/hr and
Mean		82.1	46.8	0.66	1.1	0.1708	1.10 gr/Bhp-hr
		459.1	261.2	2.24	3.8	0.5806	
co		447.3	255.0	2.18	3.7	0.5667	
	1	453.8	258.7	2.22	3.8	0.5750	
Меап		453.4	258.3	2.21	3.8	0.5741	9.69 gr/Bhp-hr
		64.2	36.6	0.000	0.3	0.0464	-
VOC]	67.7	38.6	0.000	0.3	0.0490	
C_3 - C_6 + as C_1		60.7	3 4,6	0.000	0.3	0.0440	3.63 lb/hr and
Mean		64.2	36.6	0.000	0,3	0.0465	1.50 gr/Bhp-hr
		As H₂S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuei Gas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
_	10,53						
O ₂	10.55						
	10.55						
Mean	10,54						
Comments:							
				<u></u>			
	·						
· · · · · · · · · · · · · · · · · · ·			······································				
							

Aera Energy LLC Lost Hills Gas Plant IC Engine # 3

Project 010-2806 May 21, 2002 Permit No. S-43-6-8

Pollutant	%	ppm	ppm @ 15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Permit Limits
ronatan	/0	69.9	44.7	0.63	1.2	0.1632	Limits
NOx		80.3	51.2	0.63	1.4	0.1632	
NOX	 	88.1	56.3	0.72	1.4	0.1008	2.67 lb/hr and
				1		İ	
Mean		79.4	50.7	0.71	1,4	0.1851	1.10 gr/Bhp-hr
0.0		348.1	222,5	1.91	3.7	0.4946	
CO		329.1	209.7	1.80	3.5	0.4661	
		346.5	221.3	1.89.	3.8	0.4918	
Mean		341.2	217.8	1.87	3.7	0.4842	9,69 gr/Bhp-hr
		427.2	273.1	0.400	2.6	0.3468	
VOC		316.7	201.8	0.300	1.9	0.2563	
$C_3 \cdot C_6 + as C_1$		456.6	291.5	0.400	2.8	0.3703	3.63 lb/hr and
Mean		400.2	255.5	0.367	2.4	0.3245	1.50 gr/Bhp-hr
Fuel Sulfur		As H₂S in Fuel Gas				S gr/dscf in Fuel Gas	
(SOx as \$O ₂)		<1.0				<0.001	0.3 gr/dscf
· ·	11.67						
O ₂	11.64						
	11.66						
Mean	11.66						
Comments:							
-							
					<u></u>		
	<u>.</u> .			· · -—-			
	••••						
							
	· · · · · · · · · · · · · · · · · · ·						

Aera Energy LLC Lost Hills Gas Plant IC Engine # 4 Project 010-2806 May 22, 2002 Permit No. S-43-7-7

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		76.0	43.4	0.61	0.9	0.1583	
NOx		76.4	43.8	0.62	0.9	0.1601	
		76,0	43.9	0.62	0.9	0,1602	2.67 lb/hr and
Меал		76.1	43.7	0.62	0.9	0.1595	1.10 gr/Bhp-hr
		741.4	423.0	3.62	5.3	0.9403	
co		735.1	421.9	3.61	5.3	0.9377	
		733.8	423.6	3.63	5.3	0.9416	
Mean_		736.8	422.8	3.62	5,3	0.9399	9.69 gr/Bhp-hr
		67.7	38,6	0.000	0.3	0.0491	
VOC		79.3	45.5	0.000	0.3	0.0578	
$C_3 \cdot C_6 + as C_1$		88.5	51.1	0.000	0.4	0.0649	3.63 lb/hr and
Mean		78.5	45.1	0.000	0.3	0.0573	1.50 g r /Bhp-hr
Fuel Sulfur		As H₂S in F⊔el Gas				S gr/dscf in Fuel Gas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
O_2	10.56 10.62				<u> </u>		
	10.68						
Mean	10,62	!					
Comments:				· · · · · · · · · · · · · · · · · · ·		,	
					<u>,</u>		
				<u> </u>			
	<u> </u>						

Aera Energy LLC Lost Hills Gas Plant IC Engine # 5 Project 010-2806 May 21, 2002 Permit No. S-43-8-7

Pollutant	%	ppm	ррт @ 15% О ₂	gr/8hp-hr	lb/hr	lb/MMBtu	Permit Limits
		61.1	35.1	0.49	0.8	0.1280	
NOx	l	63.8	36.7	0.52	0.9	0.1340	
		57.3	33.0	0.46	0.8	0.1204	2.67 lb/hr and
Mean		60.7	34.9	0.49	8.0	0.1275	1,10 gr/Bhp-hr
		479.7	275.3	2.36	3.8	0.6119	
CO		474.1	272,6	2.33	3.8	0.6060	
		449.4	258.7	2.21	3.7	0.5749	
Mean		467.7	268.9	2.30	3.8	0.5976	9.69 gr/Bhp-hr
		67.1	38.6	0.000	0.3	0.0489	
VOC		70.8	40.7	0,000	0.3	0.0517	
C ₃ - C ₆ + as C ₁		64.5	37.1	0,000	0.3	0.0472	3,63 lb/hr and
Mean		67.5	38.8	0.000	0.3	0.0493	1.50 gr/Bhp-hr
Fuel Sulfur		As H ₂ S in Fuel Gas				S gr/dscf in Fuel Gas	**************************************
(SOx as SO ₂)		<1.0		}		<0.001	0.3 gr/dscf
O ₂	10.62 10.64 10.65						
Mean	10.64						
Comments:							
					···	·	· · · · · · · · · · · · · · · · · · ·

Aera Energy LLC Lost Hills Gas Plant IC Engine #6 Project 010-2806 May 21, 2002 Permit No. S-43-9-7

Pollutant	%	ppm	ppm @ 15% O₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Permit Limīts
		108.0	61.2	0.86	1.3	0.2235	
NOx		103.3	58.5	0.82	1.2	0.2138	
		117.2	65.7	0.92	1.4	0.2400	2,67 lb/hr and
Mean		109.5	61.8	0.87	1.3	0.2258	1.10 gr/Bhp-hr
		535.2	303.3	2.60	3.9	0.6742	
CO		483.9	274.3	2.35	3.5	0.6096	
		504.1	282.7	2.42	3.6	0.6284	
Mean		507.7	286.8	2.46	3.7	0.6374	9.69 gr/Bhp-hr
		59.2	33.5	0.000	0.2	0.0426	
VOC		79.5	45.0	0.000	0.3	0.0572	
C_3 - C_6 + as C_1		89.2	50.0	0.000	0.4	0.0635	3.63 lb/hr and
Mean		76.0	42.8	0,000	0,3	0.0544	1.50 gr/Bhp-hr
	· · ·	As H₂S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel gas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
_	10.49						
O _z	10.49						
	10.38						
Mean	10.45						
Comments:							
	···						
				-			
	····	· · · · · · · · · · · · · · · · · · ·			 -		
			,				

Aera Energy LLC Lost Hills Gas Plant IC Engine 1

Project 010-3922 July 22, 2004 Permit No. S-43-4-9

			ppm @				Permit
Pollutant	%	mgq	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		20.3	13.8	8.86	0.0505	54.21	
NOx		21.1	14.2	8.98	0.0518	55.64	75 ppm @ 15% O ₂
		22.1	14.9	9.34	0.0542	58.21	and
Mean		21.2	14,3	9.06	0.0522	56.02	61.9 lb/day
		571	389	151. 6 3	0.8641	928.04	
CO		567	381	146.95	0.8473	910.00	463 ppm @ 15% O ₂
		562	378	144.54	0.8389	900.98	and
Mean		567	383	147.71	0.8501	913.01	232.6 lb/day
		483.1	329.2	73,3	0.4178	448.71	
voc		457.9	308.0	67.8	0.3910	419.94	304 ppm @ 15% O ₂
C ₃ - C ₆ + as C ₁		427.1	287.0	62.7	0.3644	391.37	and
Mean		456,0	308.1	67.9	0.3911	420.01	87.1 lb/day
					gr/dscf		
		As H ₂ S in			As H ₂ S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	12.24						
02	12.13						
	12.12						
Mean	12.16						
Comments:							
	•						
	······································		Terror.				
							
				<u> </u>			
							- ··· · · · · · · · · · · · · · · · · ·
			•				

Aera Energy LLC Lost Hills Gas Plant IC Engine 2 Project 010-3922 July 22, 2004 Permit No. S-43-5-9

	<u> </u>		ppm @	1	<u> </u>		Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
, 	1	23.3	15,3	9.32	0,0557	59.87	
NOx		23.8	15.5	9.40	0.0566	60.75	75 ppm @ 15% O ₂
	1	23.7	15,4	9.33	0.0561	60.29	and
Mean		23.6	15.4	9.35	0.0561	60,30	61.9 lb/day
		524	344	127.53	0.7631	819.57	
CO		519	338	124.79	0.7508	806,36	463 ppm @ 15% O ₂
	ļ	522	339	125,02	0,7526	808.29	and
Mean		522	340	125.78	0.7555	811.41	232.6 lb/day
		463.2	303.7	64.4	0.3855	414.02	
AOC		462.0	300.8	63.4	0.3820	410.27	304 ppm @ 15% O ₂
C_3 - C_6 + as C_1		470.8	305.6	64.4	0.3879	416,60	and
Mean		465.3	303.4	64.1	0.3851	413.63	87.1 lb/day
			į		gr/dscf		
		As H₂S in			As H₂S in		
Fuel Sulfur]	Fuel Gas			Fuel Gas		
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	11,90						
O ₂	11.84						
	11.81	1					
Mean	11.85						
Comments:			_				
							
		~ -	·····				
·			 				
							-

AEROS ENVIRONMENTAL, INC.

Summary Of Results

Aera Energy LLC Lost Hills Gas Plant IC Engine 3 Project 010-3922 July 22, 2004 Permit No. S-43-6-9

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Limits
		21.7	14.1	9.21	0.0515	55.33	
NOx		19.6	12.6	8.08	0.0461	49.53	75 ppm @ 15% O ₂
		21.9	14.0	9.05	0.0511	54.93	and
Mean		21.1	13.6	8.78	0.0496	53.26	61.9 lb/day
	T	481	313	124.31	0.6950	746:43	
CO		483	311	121.19	0.6918	742.99	463 ppm @ 15% O
		479	307	120.53	0.6809	731.29	and
Mean		481	310	122.01	0.6892	740.24	232.6 lb/day
		345.1	224.5	51.0	0.2849	- 3 95.98	
VOC		333.0	214.7	47.6	0.2726	292.78	304 ppm @ 15% O ₂
C ₃ - C ₆ + as C ₁		317.2	203.1	45.7	0.2576	276.66	and
Mean	i	331.8	214.1	48.1	0.2717	291.81	87.1 lb/day
					gr/dscf		
		As H₂S in:			As H₂S ìn		
Fuel Sulfur		Fuel Gas		i	Fuel Gas		
(SOx as SO ₂)	ļ	<1.0			<0.0006		0.3 gr/dscf
	11.83						
O ₂	11.75				•		
	11,68						
Mean	11.75						
Comments:							_
							
					·		
	····						
				·			
				, , , , , , , , , , , , , , , , , , , 			
							
							9-1

Aera Energy LLC Lost Hills Gas Plant IC Engine #4 Project 010-3824A May 18, 2004 Permit S-43-7-8

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Limits
	İ	92.3	52.0	26.99	0.1898	210.26	
NOx		92.0	52.5	27.39	0.1917	212.41	75 ppm @ 15% O ₂
		86.2	49.7	25.71	0.1814	200.96	and
Mean	<u> </u>	90,2	51.4	26.70	0.1876	207.88	46.4 lb/day
		559	315	99.49	0,6996	775.16	
CO		557	318	100.94	0.7065	782,80	463 ppm @ 15% O ₂
		552	318	100.21	0.7070	783,36	and
Mean		556	317	100.21	0.7044	780.44	232.6 lb/day
		98.8	55.7	10.0	0.0706	78.23	
VOC		100.7	57.5	10.4	0.0730	80.89	304 ppm @ 15% O ₂
C_3 - C_6 + as C_4	ļ	103.2	59.5	10.7	0.0756	83.76	and
Mean		100.9	57.6	10.4	0.0731	80.96	65.5 lb/day
					gr/dscf		
		As H ₂ S in			As H₂S in		
Fuel Sulfur		Fuel Gas	I		Fuel Gas	,	
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	10.42						
O2	10.56						
	10.66						
Mean	10.55						
Comments:							
	•						
							
							
			<u>,</u>			·	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·				

Aera Energy LLC Lost Hills Gas Plant IC Engine #5 Project 010-3824/ May 19, 2004 Permit S-43-8-8

			ppm @				Permit
Pollutant	%	_ppm	15% O ₂	lb/day	ib/MMBtu	lb/MMCF	Limits
	}	37.4	22.3	11.89	0.0814	90.19	
NOx		37.8	22.8	12,32	0.0834	92.37	75 ppm @ 15% O ₂
		33.8	20.5	11.02	0.0747	82.76	and
Mean		36.3	21.9	11.74	0.0798	ككشير 88.44	46.4 lb/day
		302	180	58.46	0.4001	443.31	
co		302	182	59.91	0.4054	449.18	463 ppm @ 15% O ₂
		301	182	59.74	0.4049	448,63	and
Mean		302	181	59.37	0.4035	447.04	232.6 lb/day
	1	112.8	67.3	12,5	0.0854	94.63	
voc		116.7	70.4	13.3	0.0895	99.15	304 ppm @ 15% O ₂
$C_3 - C_6 + as C_7$		112.0	67.8	12.7	0.0860	163.15	and
Mean		113.8	68.5	12,8	0.0870	118.98	65.5 lb/day
					gr/dscf		
		As H ₂ S in	!		As H ₂ S in		
Fuel Sulfur	1	Fuel Gas		}	Fuel Gas		
(SOx as SO ₂)		<1.0	<u> </u>		<0.0006		0.3 gr/dscf
	11.00						
O_2	11.13					-	
	11.15						
Mean	11.09						
Comments:							
	•						
							
	·						
						-1 	
				,			_
	·		,, <u> </u>				
	**************************************		· · · · · · · · · · · · · · · · · · ·				

Aera Energy LLC Lost Hills Gas Plant IC Engine 6 Project 010-3824B June 17, 2004 Permit No. S-43-9-8

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Limits
		24.2	14.5	8.57	0.0531	58.79	
NOx		24.8	14,9	8.82	0.0543	60.19	75 ppm @ 15% O ₂
Ì		22.0	13.3	7.70	0.0485	53.78	and
Mean		23.7	14.2	8.36	0.0520	57.59	61.9 lb/day
		334	200	71.99	0.4458	493.95	
co		341	204	73.78	0.4547	503.81	463 ppm @ 15% O ₂
		344	208	73.28	0.4619	511.79	and
Mean		340	204	73.02	0.4541	503.18	} 232.6 lb/day
		89.4	53,6	11.0	0.0682	75.57	
Voc		103.0	61.8	12.7	0.0784	86.87	304 ppm @ 15% O ₂
C ₃ - C ₆ + as C ₁	ļ	76,2	46,0	9.2	0.0584	64-7-1	and
Mean		89.5	53.8	11.0	0.0683	75.72	87.1 lb/day
					gr/dscf	-194-t-1	
		As H ₂ S in			As H₂S in		
Fuel Sulfur		Fuel Gas		-	Fuel Gas		
(SOx as SO ₂)		<1.0		·	<0.0006		0.3 gr/dscf
_	11.07						
O ₂	11.06						
	11.13						Ì
Mean	11.09						
Comments:							
			 _	······································			
							
				<u> –</u>	· · · · · · · · · · · · · · · · · · ·		
<u> </u>							
	····	<u> </u>		<u> </u>		 _	
:							

ATTACHMENT V

Comparison of Average Portable Analyzer (PA) Readings and Source Test (ST) Results

NOx

107			
· · · · · · · · · · · · · · · · · · ·	2002 PA/ST	2003 PA/ST	2004 PA/ST
S-43-4	62.4/45.6	38.2/45.6	19.3/14.3
S-43-5	62.0/46.8	64.2/46.8	31.9/15.4
S-43-6	30.1/50.7	35.2/50.7	28.6/13.6
S-43-7	47.0/43.7	55.8/43.7	46.0/51.4
S-43-8	42.3/34.9	66.0/34.9	31.8/21.9
S-43-9	35.2/61.8	40.1/61.8	19.0/14.2

CO

	2002 PA/ST	2003 PA	2004 PA/ST
S-43-4	342.1/270	301.7/270	411.4/383
S-43-5	304.8/258.3	284.1/258.3	297.1/340
S-43-6	262.1/217.8	270.8/217.8	324.4/310
S-43-7	473.3/422.8	428.6/422.8	330.3/317
S-43-8	352.3/268.9	307.8/268.9	203.9/181
S-43-9	284.3/286.8	271.8/286.8	253.9/204

Numbers in bold correspond to lower portable analyzer readings than source test results i.e. 9 out of the 36 values.

ATTACHMENT VI

Allocated Quarterly Fuel Usage

FOAF !	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
-43-4					F)		350	510	707	COMPRESSOR #1		
-43-5		•							-	⁻ 561	678	348	COMPRESSOR #2		
-43-6				•				• -		560	250	406	COMPRESSOR #3		
-43-7						-	-)		727	310	36	COMPRESSOR #4		
43-8			-		-					577	401	674	COMPRESSOR #5		
43-9						. _				148	719	720	COMPRESSOR #6		
								٠ ٣٠		1471	1438	1461	Subt - precomprs		
										· 1452	1430	1430	Subt- Refrig Comprs		
			_												
eter R	eadin	gs (- 20	02)												
002	Jan	Feb-	-Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]		,
356		· 1	+	3		1	1	,	1		. 1	8,771	104 179 PPE COL	MPRESSOR FUEL	-4
	_												104.1781FRE-009		
1354 I	4	.1	1—		- √- -	· ^[· ·	-	(1 -				<u> </u>		17
354	4, ,	1 -	_		L	1	· · · ·	<u> </u>	<u> </u>	7,431		7,437	74,137 REFRIG.	.FUEL	4.7
	ad Fu		a Par F	.l Ingine	<u> </u>	1			(-				<u> </u>	.FUEL	47
locate		el Usaç	ge Per E			lun	1111)	Son	7,431	7,235	7,437	74,137 REFRIG. 178,316 m5c-	.FUEL	4.7
locat			ge Per E		May	Jun	Jul	Aug	Sep	7,431 Oct	7,235 Nov	7,437 Dec	74,137 REFRIG. 178,316 M 5 c-	.FUEL	1.7
locate 2002 43-4		el Usaç				Jun	Jul			7,431 Oct	7,235 Nov 2,949	7,437 Dec 4,244	74,137 REFRIG. 178,316 24 5 6 -	FUEL (4.7 W
2002 43-4 43-5	Jan	el Usaç				Jun	Jul	.1 ···: ···	-I -I	7,431 Oct 2,2,119 3,396	7,235 Nov 2,949 3,920	7,437 Dec 4,244 2,089	74,137 REFRIG. 178,316 M 5 C- Annual 40,227 30,024	.FUEL	* 7
locate 2002 43-4 43-5 43-6	Jan	el Usaç				Jun	Jul	.1 ···: ···	-I -I	7,431 Oct 2,119 3,396 9 3,396	Nov 2,949 3,920 1,446	7,437 Dec 4,244 2,089 2,437	74,137 REFRIG. 178,316	.FUEL <i>(</i> 104,179	
10cate 1002 43-4 43-5 43-6 43-7	Jan	el Usaç				Jun	Jul	.1 ···: ···	-I -I	7,431 Oct 2 2,119 3,396 9 3,396 3,721	7,235 Nov 2,949 3,920 1,446 1568	7,437 Dec 4,244 2,089 2,437 187	74,137 REFRIG. 178,316 M 5 C- Annual 40,227 30,024 33,928 19,676	.FUEL <i>(</i> 104,179	
llocate 2002 43-4	Jan	el Usaç				Jun	Jul		-I -I	7,431 Oct 2,119 3,396 9 3,396	7,235 Nov 2,949 3,920 1,446 1568 2029	7,437 Dec 4,244 2,089 2,437 187 3505	74,137 REFRIG. 178,316 M 5 C- Annual 40,227 30,024 33,928 19,676 38,050	FUEL (

2002		1	- 1	4Q
S-43-4	' 1		7	9,312
S-43-5			٠ - جن	9,405
S-43-6		•		7,273
S-43-7			1	5,476
S-43-8				8,487
S-43-9	<u></u>		·	8,140

Compressor	Run	Hours
COMPLESSOR	rxun	110013

2003	Jan	Feb	Mar	Apr	May	Jun	Jui	Aug	Sep	Oct	Nov	Dec	
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738	COMPRESSOR #1
S-43-5	740	636	513	635	698	501	359	321	475	722	720	694	COMPRESSOR #2
S-43-6	539	596	231	391	450	705	762	743	202	40	0	102	COMPRESSOR #3
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194	COMPRESSOR #4
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764	COMPRESSOR #5
\$-43-9	739	658	237	137	0	634	590	449	323	316	0	403	COMPRESSOR #6
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534	Subt - precomprs
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361	Subt- Refrig Comprs

Meter Readings (- 2003)

motor readmigor zoos			
9356 9,075 8,300 8,840	7,987 8,964 8,469 8,466 8,610 8,192 9,204	9,142 9,111 104,360 PRE-COMPRESSOR FUEL	1-9-1-6
0054 7 000 0 000 7 000		7 F74 7 400	
9354 7,869 6,822 7,660	6,741 7,666 7,162 7,161 7,480 7,088 7,944	7,571 7,106 88,270 REFRIG.FUEL	1,7-1-9

192,630 m5<€

Allocated Fuel Usage Per Engine

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	O'	606	28,796
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387
													400.000

104,360

88 270 ms cf

192,630 mscf

Allocated Quarterly Fuel Usage Per Engine

Moout	ca additionly i	uci osage i ci Englin	•	
2003	1Q	2Q	3Q	4Q
S-43-4	6,330	4,373	8,549	13,397
S-43-5	11,521	11,368	6,822	13,204
S-43-6	8,364	9,679	9,897	856
\$-43-7	9,256	6,882	4,960	7,001
S-43-8	4,342	10,769	9,920	11,753
S-43-9	8,753	3,918	6,849	3,867
	· —			

192,630 mrcf

Compressor Run Hours

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
S-43-4	695	687	699	495	277	146	137	0	0	
S-43-5	689	695	737	613	433	3	214	12	60	
S-43-6	25	7	0	176	4	661	393	719	644	
S-43-7	524	411	48	319	157	71	3	2	5	
S-43-8	291	369	706	388	543	289	203	465	190	
S-43-9	0	6	0	0	0	317	518	266	511	
	1409	1389	1436	1284	714	810	744	731	704	
	815	786	754	707	700	677	724	733	706	

Meter Readings (2004)

9	356	8,952	8,843	9,244	8,100	3,366	3,727	4,697	4,666	4,210	
9	354	4,683	4,498	4,295	3,832	4,111	4,065	4,477	4,730	4,326	Ŀ.

Allocated Fuel Usage Per Engine

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep -	Oct
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0	0	
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359	
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851	[· -
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31	
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164	_
S-43-9	0	34	0	0	0	1,903	3,203	1,716	3,131	

Allocated Quarterly Fuel Usage Per Engine

2004	1Q	2Q	3Q
S-43-4	13,289	5,100	865
S-43-5	13,547	5,922	1,786
S-43-6	203	4,171	10,922
S-43-7	5,636	3,077	62
S-43-8	7,805	7,027	5,420
S-43-9	34	1,903	8,051

```
Nov
      Dec
            COMPRESSOR #1
            COMPRESSOR #2
           ' COMPRESSOR #3
           COMPRESSOR #4
            COMPRESSOR #5
           J COMPRESSOR #6
            Subt - precomprs
           1 Subt- Refrig Comprs
                       66,406 PRE-COMPRESSOR FUEL
                             REFRIG.FUEL
                       52,289
                      118,695 mscF
Nov
      Dec
                  Annual
                       19,254
                                               66,406
                       24,552
                       22,599
                        8,776
                                               52,289
                       21,701
                       21.812
                      118,695
```

118,695 MTCF

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

Allecated	Fuel Usage I	Per Engine (mcf)
2002)	
S-43-4		
S-43-5		
S-43-6		
S-43-7		
S-43-8		
S-43-9		

			2002
Oct	Nov	Dec	Annual
2,119	2,949	4,244	40,227
3,396	3,920	2,089	30,024
3,390	1,446	2,437	33,928
3721	1568	187	19,676
2953	2029	3505	38,050
757	. 3638	3745	16,412
			178,316

Allocated Fuel Usage Per Engine (mcf)									2003				
2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	0	606	28,796
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387
					<u>' </u>								192,630

2004	y an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0	C
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164
S-43-9	D	34	0	0	0	1,903	3,203	1,716	3,131

1	2004
٦	Annual
)	19,254
)	24,552
2	22,599
)	8,776
7	21,701
2	21,812
	118,695

ATTACHMENT VII

HAE Calculations

4th quarter 2002:

NOx: 9312 mcf x 184.3 lb/1000 mcf = 1716.2 lb NOx CO: 9312 mcf x 663.6 lb/1000 mcf = 6179.4 lb CO VOC: 9312 mcf x 94 lb/1000 mcf = 875.3 lb VOC PM10: 9312 mcf x 11.05 lb/1000 mcf = 102.9 lb PM10

1st quarter 2003:

NOx: 6330 mcf x 184.3 lb/1000 mcf = 1166.6 lb NOx CO: 6330 mcf x 663.6 lb/1000 mcf = 4200.6 lb CO VOC: 6330 mcf x 94 lb/1000 mcf = 595.0 lb VOC PM10: 6330 mcf x 11.05 lb/1000 mcf = 69.9 lb PM10

2nd quarter 2003:

NOx: 4373 mcf x 184.3 lb/1000 mcf = 805.9 lb NOx CO: 4373 mcf x 663.6 lb/1000 mcf = 2901.9 lb CO VOC: 4373 mcf x 94 lb/1000 mcf = 411.1 lb VOC PM10: 4373 mcf x 11.05 lb/1000 mcf = 48.3 lb PM10

3rd quarter 2003:

NOx: 8549 mcf x 184.3 lb/1000 mcf = 1575.6 lb NOx CO: 8549 mcf x 663.6 lb/1000 mcf = 5673.1 lb CO VOC: 8549 mcf x 94 lb/1000 mcf = 803.6 lb VOC PM10: 8549 mcf x 11.05 lb/1000 mcf = 94.5 lb PM10

4th quarter 2003:

NOx: 13397 mcf x 184.3 lb/1000 mcf = 2469.0 lb NOx CO: 13397 mcf x 663.6 lb/1000 mcf = 8890.2 lb CO VOC: 13397 mcf x 94 lb/1000 mcf = 1259.3 lb VOC PM10: 13397 mcf x 11.05 lb/1000 mcf = 148.0 lb PM10

1st quarter 2004:

NOx: 13289 mcf x 56 lb/1000 mcf = 744.2 lb NOx CO: 13289 mcf x 913 lb/1000 mcf = 12132.9 lb CO VOC: 13289 mcf x 420 lb/1000 mcf = 5581.4 lb VOC PM10: 13289 mcf x 11.05 lb/1000 mcf = 146.8 lb PM10

2nd quarter 2004:

NOx: 5100 mcf x 56 lb/1000 mcf = 285.6 lb NOx CO: 5100 mcf x 913 lb/1000 mcf = 4656.3 lb CO VOC: 5100 mcf x 420 lb/1000 mcf = 2142.0 lb VOC PM10: 5100 mcf x 11.05 lb/1000 mcf = 56.4 lb PM10

3rd quarter 2004:

NOx: 865 mcf x 56 lb/1000 mcf = 48.4 lb NOx CO: 865 mcf x 913 lb/1000 mcf = 789.7 lb CO VOC: 865 mcf x 420 lb/1000 mcf = 363.3 lb VOC PM10: 865 mcf x 11.05 lb/1000 mcf = 9.6 lb PM10

4th quarter 2002:

NOx: 9405 mcf x 189.0 lb/1000 mcf = 1777.5 lb NOx CO: 9405 mcf x 635.0 lb/1000 mcf = 5972.1 lb CO VOC: 9405 mcf x 51.4 lb/1000 mcf = 483.4 lb VOC PM10: 9405 mcf x 11.05 lb/1000 mcf = 103.9 lb PM10

1st quarter 2003:

NOx: 11521 mcf x 189.0 lb/1000 mcf = 2177.5 lb NOx CO: 11521 mcf x 635.0 lb/1000 mcf = 7315.8 lb CO VOC: 11521 mcf x 51.4 lb/1000 mcf = 592.2 lb VOC PM10: 11521 mcf x 11.05 lb/1000 mcf = 127.3 lb PM10

2nd quarter 2003:

NOx: 11368 mcf x 189.0 lb/1000 mcf = 2148.6 lb NOx CO: 11368 mcf x 635.0 lb/1000 mcf = 7218.7 lb CO VOC: 11368 mcf x 51.4 lb/1000 mcf = 584.3 lb VOC PM10: 11368 mcf x 11.05 lb/1000 mcf = 125.6 lb PM10

3rd quarter 2003:

NOx: 6822 mcf x 189.0 lb/1000 mcf = 1289.4 lb NOx CO: 6822 mcf x 635.0 lb/1000 mcf = 4332.0 lb CO VOC: 6822 mcf x 51.4 lb/1000 mcf = 350.7 lb VOC PM10: 6822 mcf x 11.05 lb/1000 mcf = 75.4 lb PM10

4th quarter 2003:

NOx: 13204 mcf x 189.0 lb/1000 mcf = 2495.6 lb NOx CO: 13204 mcf x 635.0 lb/1000 mcf = 8384.5 lb CO VOC: 13204 mcf x 51.4 lb/1000 mcf = 678.7 lb VOC PM10: 13204 mcf x 11.05 lb/1000 mcf = 145.9 lb PM10

1st quarter 2004:

NOx: 13547 mcf x 60.3 lb/1000 mcf = 816.9 lb NOx CO: 13547 mcf x 811.4 lb/1000 mcf = 10922.0 lb CO VOC: 13547 mcf x 413.6 lb/1000 mcf = 5603.0 lb VOC PM10: 13547 mcf x 11.05 lb/1000 mcf = 149.7 lb PM10

2nd quarter 2004:

NOx: 5922 mcf x 60.3 lb/1000 mcf = 357.1 lb NOx CO: 5922 mcf x 811.4 lb/1000 mcf = 4805.1 lb CO VOC: 5922 mcf x 413.6 lb/1000 mcf = 2449.3 lb VOC PM10: 5922 mcf x 11.05 lb/1000 mcf = 65.4 lb PM10

3rd quarter 2004:

NOx: 1786 mcf x 60.3 lb/1000 mcf = 107.7 lb NOx CO: 1786 mcf x 811.4 lb/1000 mcf = 1449.2 lb CO VOC: 1786 mcf x 413.6 lb/1000 mcf = 738.7 lb VOC PM10: 1786 mcf x 11.05 lb/1000 mcf = 19.7 lb PM10

4th quarter 2002:

NOx: 7273 mcf x 204.8 lb/1000 mcf = 1489.5 lb NOx CO: 7273 mcf x 535.6 lb/1000 mcf = 3895.4 lb CO VOC: 7273 mcf x 358.9 lb/1000 mcf = 2610.3 lb VOC PM10: 7273 mcf x 11.05 lb/1000 mcf = 80.4 lb PM10

1st guarter 2003:

NOx: 8364 mcf x 204.8 lb/1000 mcf = 1712.9 lb NOx CO: 8364 mcf x 535.6 lb/1000 mcf = 4479.8 lb CO VOC: 8364 mcf x 358.9 lb/1000 mcf = 3001.8 lb VOC PM10: 8364 mcf x 11.05 lb/1000 mcf = 92.4 lb PM10

2nd quarter 2003:

NOx: 9679 mcf x 204.8 lb/1000 mcf = 1982.2 lb NOx CO: 9679 mcf x 535.6 lb/1000 mcf = 5184.0 lb CO VOC: 9679 mcf x 358.9 lb/1000 mcf = 3473.8 lb VOC PM10: 9679 mcf x 11.05 lb/1000 mcf = 107.0 lb PM10

3rd quarter 2003:

NOx: 9897 mcf x 204.8 lb/1000 mcf = 2026.9 lb NOx CO: 9897 mcf x 535.6 lb/1000 mcf = 5300.8 lb CO VOC: 9897 mcf x 358.9 lb/1000 mcf = 3552.0 lb VOC PM10: 9897 mcf x 11.05 lb/1000 mcf = 109.4 lb PM10

4th quarter 2003:

NOx: 856 mcf x 204.8 lb/1000 mcf = 175.3 lb NOx CO: 856 mcf x 535.6 lb/1000 mcf = 458.5 lb CO VOC: 856 mcf x 358.9 lb/1000 mcf = 307.2 lb VOC PM10: 856 mcf x 11.05 lb/1000 mcf = 9.5 lb PM10

1st guarter 2004:

NOx: 203 mcf x 53.3 lb/1000 mcf = 10.8 lb NOx CO: 203 mcf x 740.2 lb/1000 mcf = 150.3 lb CO VOC: 203 mcf x 291.8 lb/1000 mcf = 59.2 lb VOC PM10: 203 mcf x 11.05 lb/1000 mcf = 2.2 lb PM10

2nd quarter 2004:

NOx: 4171 mcf x 53.3 lb/1000 mcf = 222.3 lb NOx CO: 4171 mcf x 740.2 lb/1000 mcf = 3087.4 lb CO VOC: 4171 mcf x 291.8 lb/1000 mcf = 1217.0 lb VOC PM10: 4171 mcf x 11.05 lb/1000 mcf = 46.1 lb PM10

3rd quarter 2004:

NOx: 10,922 mcf x 53.3 lb/1000 mcf = 582.1 lb NOx CO: 10,922 mcf x 740.2 lb/1000 mcf = 8084.5 lb CO VOC: 10,922 mcf x 291.8 lb/1000 mcf = 3187.0 lb VOC PM10: 10,922 mcf x 11.05 lb/1000 mcf = 120.7 lb PM10

4th quarter 2002:

NOx: 5476 mcf x 176.4 lb/1000 mcf = 966.0 lb NOx CO: 5476 mcf x 1039.5 lb/1000 mcf = 5692.3 lb CO VOC: 5476 mcf x 63.3 lb/1000 mcf = 346.6 lb VOC PM10: 5476 mcf x 11.05 lb/1000 mcf = 60.5 lb PM10

1st guarter 2003:

NOx: 9256 mcf x 176.4 lb/1000 mcf = 1632.8 lb NOx CO: 9256 mcf x 1039.5 lb/1000 mcf = 9621.6 lb CO VOC: 9256 mcf x 63.3 lb/1000 mcf = 585.9 lb VOC PM10: 9256 mcf x 11.05 lb/1000 mcf = 102.3 lb PM10

2nd guarter 2003:

NOx: 6882 mcf x 176.4 lb/1000 mcf = 1214.0 lb NOx CO: 6882 mcf x 1039.5 lb/1000 mcf = 7153.8 lb CO VOC: 6882 mcf x 63.3 lb/1000 mcf = 435.6 lb VOC PM10: 6882 mcf x 11.05 lb/1000 mcf = 76.0 lb PM10

3rd quarter 2003:

NOx: 4960 mcf x 176.4 lb/1000 mcf = 874.9 lb NOx CO: 4960 mcf x 1039.5 lb/1000 mcf = 5155.9 lb CO VOC: 4960 mcf x 63.3 lb/1000 mcf = 314.0 lb VOC PM10: 4960 mcf x 11.05 lb/1000 mcf = 54.8 lb PM10

4th guarter 2003:

NOx: 7001 mcf x 176.4 lb/1000 mcf = 1235.0 lb NOx CO: 7001 mcf x 1039.5 lb/1000 mcf = 7277.5 lb CO VOC: 7001 mcf x 63.3 lb/1000 mcf = 443.2 lb VOC PM10: 7001 mcf x 11.05 lb/1000 mcf = 77.4 lb PM10

1st guarter 2004:

NOx: 5636 mcf x 207.9 lb/1000 mcf = 1171.7 lb NOx CO: 5636 mcf x 780.4 lb/1000 mcf = 4398.3 lb CO VOC: 5636 mcf x 81.0 lb/1000 mcf = 456.5 lb VOC PM10: 5636 mcf x 11.05 lb/1000 mcf = 62.3 lb PM10

2nd quarter 2004:

NOx: $3077 \text{ mcf } \times 207.9 \text{ lb}/1000 \text{ mcf} = 639.7 \text{ lb NOx}$ CO: $3077 \text{ mcf } \times 780.4 \text{ lb}/1000 \text{ mcf} = 2401.3 \text{ lb CO}$ VOC: $3077 \text{ mcf } \times 81.0 \text{ lb}/1000 \text{ mcf} = 249.2 \text{ lb VOC}$ PM10: $3077 \text{ mcf } \times 11.05 \text{ lb}/1000 \text{ mcf} = 34.0 \text{ lb PM10}$

3rd quarter 2004:

NOx: 62 mcf x 207.9 lb/1000 mcf = 12.9 lb NOx CO: 62 mcf x 780.4 lb/1000 mcf = 48.3 lb CO VOC: 62 mcf x 81.0 lb/1000 mcf = 5.0 lb VOC PM10: 62 mcf x 11.05 lb/1000 mcf = 0.7 lb PM10

4th quarter 2002:

NOx: 8487 mcf x 141.1 lb/1000 mcf = 1197.5 lb NOx CO: 8487 mcf x 660.9 lb/1000 mcf = 5609.0 lb CO VOC: 8487 mcf x 54.5 lb/1000 mcf = 462.5 lb VOC PM10: 8487 mcf x 11.05 lb/1000 mcf = 93.8 lb PM10

1st quarter 2003:

NOx: 4342 mcf x 141.1 lb/1000 mcf = 612.7 lb NOx CO: 4342 mcf x 660.9 lb/1000 mcf = 2869.6 lb CO VOC: 4342 mcf x 54.5 lb/1000 mcf = 236.6 lb VOC PM10: 4342 mcf x 11.05 lb/1000 mcf = 48.0 lb PM10

2nd quarter 2003:

NOx: 10769 mcf x 141.1 lb/1000 mcf = 1519.5 lb NOx CO: 10769 mcf x 660.9 lb/1000 mcf = 7117.2 lb CO VOC: 10769 mcf x 54.5 lb/1000 mcf = 586.9 lb VOC PM10: 10769 mcf x 11.05 lb/1000 mcf = 119.0 lb PM10

3rd quarter 2003:

NOx: 9920 mcf x 141.1 lb/1000 mcf = 1399.7 lb NOx CO: 9920 mcf x 660.9 lb/1000 mcf = 6556.1 lb CO VOC: 9920 mcf x 54.5 lb/1000 mcf = 540.6 lb VOC PM10: 9920 mcf x 11.05 lb/1000 mcf = 109.6 lb PM10

4th quarter 2003:

NOx: 11753 mcf x 141.1 lb/1000 mcf = 1658.3 lb NOx CO: 11753 mcf x 660.9 lb/1000 mcf = 7767.6 lb CO VOC: 11753 mcf x 54.5 lb/1000 mcf = 640.5 lb VOC PM10: 11753 mcf x 11.05 lb/1000 mcf = 129.9 lb PM10

1st quarter 2004:

NOx: 7805 mcf x 88.4 lb/1000 mcf = 690.0 lb NOx CO: 7805 mcf x 447.0 lb/1000 mcf = 3488.4 lb CO VOC: 7805 mcf x 119.0 lb/1000 mcf = 928.8 lb VOC PM10: 7805 mcf x 11.05 lb/1000 mcf = 86.2 lb PM10

2nd quarter 2004:

NOx: 7027 mcf x 88.4 lb/1000 mcf = 621.2 lb NOx CO: 7027 mcf x 447.0 lb/1000 mcf = 3141.1 lb CO VOC: 7027 mcf x 119.0 lb/1000 mcf = 836.2 lb VOC PM10: 7027 mcf x 11.05 lb/1000 mcf = 77.6 lb PM10

3rd quarter 2004:

NOx: 5420 mcf x 88.4 lb/1000 mcf = 479.1 lb NOx CO: 5420 mcf x 447.0 lb/1000 mcf = 2422.7 lb CO VOC: 5420 mcf x 119.0 lb/1000 mcf = 645.0 lb VOC PM10: 5420 mcf x 11.05 lb/1000 mcf = 59.9 lb PM10

4th quarter 2002:

NOx: 8140 mcf x 249.8 lb/1000 mcf = 2033.4 lb NOx CO: 8140 mcf x 705.0 lb/1000 mcf = 5738.7 lb CO VOC: 8140 mcf x 60.2 lb/1000 mcf = 490.0 lb VOC PM10: 8140 mcf x 11.05 lb/1000 mcf = 89.9 lb PM10

1st quarter 2003:

NOx: 8753 mcf x 249.8 lb/1000 mcf = 2186.5 lb NOx CO: 8753 mcf x 705.0 lb/1000 mcf = 6170.9 lb CO VOC: 8753 mcf x 60.2 lb/1000 mcf = 526.9 lb VOC PM10: 8753 mcf x 11.05 lb/1000 mcf = 96.7 lb PM10

2nd quarter 2003:

NOx: 3918 mcf x 249.8 lb/1000 mcf = 978.7 lb NOxCO: 3918 mcf x 705.0 lb/1000 mcf = 2762,2 lb COVOC: 3918 mcf x 60.2 lb/1000 mcf = 235.9 lb VOCPM10: 3918 mcf x 11.05 lb/1000 mcf = 43.3 lb PM10

3rd quarter 2003:

NOx: 6849 mcf x 249.8 lb/1000 mcf = 1710.9 lb NOx CO: 6849 mcf x 705.2 lb/1000 mcf = 4828.5 lb CO VOC: 6849 mcf x 60.2 lb/1000 mcf = 412.3 lb VOC PM10: 6849 mcf x 11.05 lb/1000 mcf = 75.7 lb PM10

4th quarter 2003:

NOx: 3867 mcf x 249.8 lb/1000 mcf = 966.0 lb NOx CO: 3867 mcf x 705.2 lb/1000 mcf = 2727.0 lb CO VOC: 3867 mcf x 60.2 lb/1000 mcf = 232.8 lb VOC PM10: 3867 mcf x 11.05 lb/1000 mcf = 42.7 lb PM10

1st quarter 2004:

NOx: 34 mcf x 57.6 lb/1000 mcf = 2.0 lb NOx CO: 34 mcf x 503.2 lb/1000 mcf = 17.1 lb CO VOC: 34 mcf x 75.7 lb/1000 mcf = 2.6 lb VOC PM10: 34 mcf x 11.05 lb/1000 mcf = 0.4 lb PM10

2nd quarter 2004:

NOx: 1903 mcf x 57.6 lb/1000 mcf = 109.6 lb NOx CO: 1903 mcf x 503.2 lb/1000 mcf = 957.6 lb CO VOC: 1903 mcf x 75.7 lb/1000 mcf = 144.0 lb VOC PM10: 1903 mcf x 11.05 lb/1000 mcf = 21.0 lb PM10

3rd quarter 2004:

NOx: 8051 mcf x 57.6 lb/1000 mcf = 463.7 lb NOx CO: 8051 mcf x 503.2 lb/1000 mcf = 4051.3 lb CO VOC: 8051 mcf x 75.7 lb/1000 mcf = 609.5 lb VOC PM10: 8051 mcf x 11.05 lb/1000 mcf = 89.0 lb PM10

S-43-4 HAE

5 15 1 112 till		T	T		
Quarter	Actual fuel	NOx	VOC	CO	PM10
	consumption	(lb/qtr)			
	(mcf)	(4)			
15	 				
4 th quarter 2002	9312	1716.2	875.3	6179.4	102.9
1 st quarter 2003	6,330	1166.6	595.0	4200.6	69.9
2nd quarter 2003	4,373	805.9	411.1	2901.9	48.3
3 rd quarter 2003	8,549	1575.6	803.6	5673.1	94.5
4 th quarter 2003	13,397	2469.0	1259.3	8890.2	148.0
1 st quarter 2004	13,289	744.2	5581.4	12,132.9	146.8
2nd quarter 2004	5,100	285.6	2142.0	4,656.3	56.4
3 rd quarter 2004	865	48.4	363.3	789.7	9.6

Average Quarterly HAE '-4

7.11.11.11.11.11.11.11.11.11.11.11.11.11									
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr					
NOx	955.4	545.8	812.0	2092.6					
PM10	108.4	52.4	52.0	125.5					
СО	8167.3	3779.1	3231.4	7534.8					
VOC	3088.2	1276.6	583.5	1067.3					

S-43-5 HAE

Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4 th quarter 2002	9405	1777.5	483.4	5972.1	103.9
1 st quarter 2003	11,521	2177.5	592.2	7315.8	127.3
2nd quarter 2003	11,368	2148.6	584.3	7218.7	125.6
3 rd quarter 2003	6822	1289.4	350.7	4332.0	75.4
4 th quarter 2003	13,204	2495.6	678.7	8384.5	145.9
1 st quarter 2004	13,547	816.9	5603.0	10922.0	149.7
2nd quarter 2004	5,922	357.1	2449.3	4805.1	65.4
3 rd quarter 2004	1786	107.7	738.7	1449.2	19.7

Average Quarterly HAE '-5

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	1497.2	1252.9	698.6	2136.6
PM10	138.5	95.5	47.6	124.9
CO	9118.9	6011.9	2890.6	7178.3
VOC	3097.6	1516.8	544.7	581.1

S-43-6 HAE

J-43-0 TIAL					
Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4 th quarter 2002	7273	1489.5	2610.3	3895.4	80.4
1 st quarter 2003	8364	1712.9	3001.8	4479.8	92.4
2nd quarter 2003	9679	1982.2	3473.8	5184.0	107.0
3 rd quarter 2003	9897	2026.9	3552.0	5300.8	109.4
4 th quarter 2003	856	175.3	307.2	458.5	9.5
1 st quarter 2004	203	10.8	59.2	150.3	2.2
2nd quarter 2004	4171	222.3	1217.0	3087.4	46.1
3 rd quarter 2004	10,922	582.1	3187.0	8084.5	120.7

Average Quarterly HAE '-6

, ,, o, a, a, a, a, a, a, a, a, a, a, a, a, a,	··· · · · · · · · · · · · · · · · · ·			
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	861.9	1102.3	1304.5	832.4
PM10	47.3	76.6	115.1	45.0
CO	2315.1	4135.7	6692.7	2176.8
VOC	1530.5	2345.4	3369.5	1458.8

S-43-7 HAE

3 <u>-43-7 FIAC</u>					
Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	CO	PM10
4 th quarter 2002	5476	966.0	346.6	5692.3	60.5
1 st quarter 2003	9256	1632.8	585.9	9621.6	102.3
2nd quarter 2003	6882	1214.0	435.6	7153.8	76.0
3 rd quarter 2003	4960	874.9	314.0	5155.9	54.8
4 th quarter 2003	7001	1235.0	443.2	7277.5	77.4
1 st quarter 2004	5636	1171.7	456.5	4398.3	62.3
2nd quarter 2004	3077	639.7	249.2	2401.3	34.0
3 rd quarter 2004	62	12.9	5.0	48.3	0.7

Average Quarterly HAE '-7

	· · · · · ·			
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	1402.3	926.9	443.9	1100.5
PM10	82.3	55.0	27.8	69.0
CO	7010.0	4777.6	2602.1	6484.8
VOC	521.2	342.4	159.5	394.9

S-43-8 HAE

Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4 th quarter 2002	8487	1197.5	462.5	5609.0	93.8
1 st quarter 2003	4342	612.7	236.6	2869.6	48.0
2nd quarter 2003	10769	1519.5	586.9	7117.2	119.0
3 rd quarter 2003	9920	1399.7	540.6	6556.1	109.6
4 th quarter 2003	11753	1658.3	640.5	7767.6	129.9
1 st quarter 2004	7805	690.0	928.8	3488.4	86.2
2nd quarter 2004	7027	621.2	836.2	3141.1	77.6
3 rd quarter 2004	5420	479.1	645.0	2422.7	59.9

Average Quarterly HAE '8

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr
NOx	651.4	1070.4	939.4	1427.9
PM10	67.1	98.3	84.8	111.9
CO	3179.0	5129.2	4489.4	6688.3
VOC	582.7	711.6	592.8	551.5

S-43-9 HAE

O 70 0 11/1L					
Quarter	Actual fuel consumption (mcf)	NOx (lb/qtr)	VOC	СО	PM10
4th quarter 2002	8140	2033.4	490.0	5738.7	89.9
1 st quarter 2003	8753	2186.5	526.9	6170.9	96.7
2nd quarter 2003	3918	978.7	235.9	2762.2	43.3
3 rd quarter 2003	6849	1710.9	412.3	4828.5	75.7
4 th quarter 2003	3867	966.0	232.8	2727.0	42.7
1st quarter 2004	34	2.0	2.6	17.1	0.4
2nd quarter 2004	1903	109.6	144.0	957.6	21.0
3 rd quarter 2004	8051	463.7	609.5	4051.3	89.0

Average Quarterly HAE '9

Arciago adultorij time o						
Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr		
NOx	1094.3	544.2	1087.3	1499.7		
PM10	48.6	31.2	82.4	66.3		
CO	3094.0	1859.9	4439.9	4232.9		
VOC	264.8	190.0	510.9	361.4		

Total Average Quarterly HAE

Pollutant	1 st Qtr	2 nd Qtr	3rd Qtr	4 th Qtr		
NOx	6463	5443	5286	9090		
PM10	492	409	410	543		
СО	32,884	25694	24,346	34,296		
VOC	9085	6383	5761	4415		

AQID (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	646	544	529	909
PM10	49	41	41	54
CO	3288	2569	2435	3430
VOC	909	638	576	442

ERC (lbs/Qtr)	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr
NOx	5817	4899	4757	8181
PM10	443	368	369	489
CO	29,596	23125	21911	30866
VOC	8176	5745	5185	3973

ATTACHMENT VIII

Draft ERC Certificates

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-1

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For VOC Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
8,176 lbs	5,745 lbs	5,185 lbs	3,973 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director/ APCO

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-2

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
5,817 lbs	4,899 lbs	4,757 lbs	8,181 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director? APCO

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-3

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
29,596 lbs	23,125 lbs	21,911 lbs	30,866 lbs

[] Conditions Attached

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, HXRCUINE Director/ APCO

Southern Regional Office • 2700 M Street, Suite 275 • Bakersfield, CA 93301-2370

Emission Reduction Credit Certificate S-2774-4

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

<DRAFT>

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
443 lbs	368 lbs	369 lbs	489 lbs

Г	1	Conditions	Attached
L	Т	Conditions	Attacheu

Method Of Reduction

- [] Shutdown of Entire Stationary Source
- [X] Shutdown of Emissions Units
- [] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

From:

Richard Edgehill

Sent:

Thursday, March 27, 2008 9:01 AM

To:

Subject:

'BTwinn@aeraenergy.com' attached HAE calculations project S43,1075362

Brent-I rechecked the calculations I sent to you yesterday and recalculated PM10 HAE based on 1106.3 Btu/scf (lab value).

The ERCs will be calculated based on the attached HAE for the engines

S43, 1076362.doc

From: Winn BT (Brent) at Aera [BTWinn@aeraenergy.com]

Sent: Tuesday, April 01, 2008 2:00 PM

To: Richard Edgehill

Subject: RE: ERC banking projects S43, 1080067 and 1075362

Richard:

The demand for the compressor engines was significantly reduced in May 2004 when Aera stopped processing their Lost Hills produced gas in the plant. However, Chevron continued to send their Lost Hills gas for processing - until January 2005. The hot oil heater provided heat for the plant processes (for such things as glycol reboiler) and therefore it had to remain in operation until January 2005 when Chevron stopped sending gas to the plant. As you can see from the data, the fuel burned in the hot oil heater did not change significantly after May 2004, but the engines' fuel usage did. Therefore, the quarters prior to May 2004 are more representative of the actual historical operation of the compressors.

There is no technical reason why emissions from the hot oil heater prior to May 2004 would be more representative of actual historical operation, therefore the two calendar years prior to actual shutdown of the heater were selected.

Thanks....

-B. Winn

----Original Message-----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Tuesday, April 01, 2008 11:53 AM

To: Winn BT (Brent) at Aera

Subject: ERC banking projects S43, 1080067 and 1075362

Brent: The baseline period selected for the hot oil heater (project 1080067) is February 2003 through January 2005 (includes 4th quarter 2004) and for the compressors (project 1075362) is October 2002 September 2004 (does not include 4th quarter 2004). I need to address why there is a difference in baseline period for the EE. Did the hot oil heater operate longer than the IC engine-driven compressors. Clearly 4th qtr 2004 fuel usage for the hot oil heater had not "tapered off" but compressor operation was considered to be "not representative of normal operation" in 4th quarter 2004 i.e. terminal downtime had begun. Apparently shut down of all of the gas plant equipment did not occur simultaneously - please elaborate on why the oil heater operated longer than the compressors i.e. into 4th qtr 2004.

Thanks

From: Winn BT (Brent) at Aera [BTWinn@aeraenergy.com]

Sent: Tuesday, March 25, 2008 4:11 PM

To: Richard Edgehill

Subject: RE: ERC project S43, 1075362

Richard:

I checked the factors in the table you sent against Aera's source test records and they look accurate.

As far as hhv of fuel, in the ERC application I used the lb/mmscf factors that were used in Aera's annual emission statements in an attempt to make the ERC calcs consistent with reported data. For year 2002, Aera's emission statement used a hhv of 1106 btu/scf in calculation of the emission factors. In the calculations, the lb/mmbtu results from the source tests were multiplied by the hhv as follows (for example S-43-4):

1106 mmbtu/mmscf (0.1666 lb NOx/mmbtu) = 184.26 lb NOx/mmscf.

The calculations in the source test report for 2002 used hhv of 1106 btu/scf and "F" factor of 8652 dscf/mmbtu. When I plug those values into the attached spreadsheet along with the (15% O2) corrected ppm values reported in the source tests, I get lb/mmscf factors that are very close to those listed in Aera's annual emission statement, but not exact. At this point I assume there is just a slight difference between my spreadsheet and that used by the source testing company (Aeros). The numbers do seem to corroborate unless you are looking for an exact match. If you still have a concern, please clarify.

Thanks....

-B. Winn

----Original Message----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Tuesday, March 25, 2008 7:57 AM

To: Winn BT (Brent) at Aera

Subject: RE: ERC project S43, 1075362

OK - Brent attached is the table of emissions factors I have worked with - note that the 2002 and 2004 source test measurements are surplus of Rule 4702 and so HAE should be based on these - please confirm that the source test emissions factors are consistent with your calculation i.e. with the correct actual hhv of fuel. Thanks

----Original Message-----

From: Winn BT (Brent) at Aera [mailto:BTWinn@aeraenergy.com]

Sent: Tuesday, March 25, 2008 7:42 AM

To: Richard Edgehill

Subject: RE: ERC project S43, 1075362

I may not be able to get to this until next week. Will that be OK?

-B. Winn

----Original Message----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Friday, March 21, 2008 11:32 AM

To: Winn BT (Brent) at Aera

Subject: ERC project S43, 1075362

Brent: We have decided to determine surplus emissions based on the Rule 4702 requirements of 65 ppmv NOx @ 15% O2 and 750 ppmv VOC @ 15% O2 i.e. with no reference to SCAQMD Rule 1110.2. Therefore it appears that all HAE calculations for NOx and VOC should now be based on the source test results as they are all less than the 4702 NOx and VOC limits (65 ppmv and 750 ppmv). Please revise your calculations submitted with the application (received by the District 11-8-07) accordingly.

By the way I did notice that 2002 and 2003 HAE NOx emissions in the summary table entitled "Aera energy Lost Hills 15 gas plant - Emissions reduction credit application - I.C. engine compressors S-43-43-4 through S-43-9 -- Most representative 2 - year period"--- are not identical with the numbers in the tables following the summary table (the tables with NOx emissions calculated for 2002, 2003, and 2004 i.e. each years results orinted on one page - whereas all the other pollutants have the same HAE results in the summary table as listed on the following pages. Please correct.

This change should result in more ERCs thus worth the effort to revise.

Thanks

	SELECTION #
COAL (ANTHRACITE)	0
COAL (BITUMINOUS)	1
COAL (LIGNITE)	2
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	3
GAS (NATURAL)	4
GAS (PROPANE)	5
GAS (BUTANE)	6
WOOD	7
WOOD BARK	8
MUNICIPAL SOLID WASTE	9

STANDARD 02 CORRECTION FOR EXTERNAL COMBUSTION IS 3%					
Type of fuel (use table above) 4 GAS					
O2 correction (i.e., 3%)	15 %				
Enter concentrations					
NOx	61.8 ppmv				
co	286.8 ppmv				
VOC (as methane)	42.8 ppmv				

CALCULATED EQUIVALENT LB/MMBTU VALUES				
NOx	0.2261 LB/MMBTU			
co	0.6388 LB/MMBTU			
VOC (as methane)	0.0545 LB/MMBTU			

pV = R*T	
pressure (p)	1 atm
universal gas constant (R*)	0.7302 atm-scf/lbmole-oR
temperature (oF)	68 o F
calculated	
molar specific volume (V)	385.3 scf/lbmole
Molecular weights	
NOx	46 lb/lb-mole
CO	28 lb/lb-mole
VOC (as methane)	16 lb/lb-mole

F FACTORS FROM EPA METHOD 19		
COAL (ANTHRACITE)	10100 DSCF/MMBTU	COAL
COAL (BITUMINOUS)	9780 DSCF/MMBTU	COAL
COAL (LIGNITE)	9860 DSCF/MMBTU	COAL
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	9160 DSCF/MMBTU	OIL
GAS (NATURAL)	8652 DSCF/MMBTU	GAS
GAS (PROPANE)	8710 DSCF/MMBTU	GAS
GAS (BUTANE)	8710 DSCF/MMBTU	GAS
WOOD	9240 DSCF/MMBTU	WOOD
WOOD BARK	9600 DSCF/MMBTU	WOOD BARK
MUNICIPAL SOLID WASTE	9570 DSCF/MMBTU	SOLID WASTE
F FACTOR USED IN CALCULATIONS	8652 DSCF/MMBTU	GAŞ

	S-43-4	S-43-5	9-43-6	5-43-7	S-43-8	S-43-9
2002	45.6	46.8	50.7	43.7	34.9	61.8
	270	258.3	217.8	422.8	268.9	286.8
	67	36.6	255.5	45 1	38.8	42.8

1106	1106	1106	1106	1106	1106	MMBTU/MMSCF
0.0009042	0.0009042	0.0009042	0.0009042	0.0009042	0.0009042	MMscf/MMBTU
184.54	189.39	205.18	176.85	141.24	250.10	lb NOx /mmscf
665.09	636.27	536.51	1041.49	662.39	706.48	lb CO/mmscf
94.31	51.52	359.64	63.48	54.62	60.25	lb VOC/mmscf

	SELECTION #
COAL (ANTHRACITE)	0
COAL (BITUMINOUS)	1
COAL (LIGNITE)	2
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	3
GAS (NATURAL)	4
GAS (PROPANE)	5
GAS (BUTANE)	6
WOOD	7
WOOD BARK	8
MUNICIPAL SOLID WASTE	9

STANDARD 02 CORRECTION FOR EXTERNAL COMBUSTION IS 3%				
Type of fuel (use table above) 4 GAS				
O2 correction (i.e., 3%) 15 %				
Enter LB/MMBTU emission factor				
NOX 0.167 LB/MMBTU				
CO 0.600 LB/MMBTU				
VOC (as methane) 0.085 LB/MMBTU				

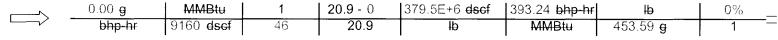
CALCULATED EQUIVALENT CONCENTRATIONS				
NOx	45.53 ppmv			
CO	269.39 ppmv			
VOC (as methane) 66.79 ppmv				

pV = R*T	
pressure (p)	1 atm
universal gas constant (R*)	0.7302 atm-scf/lbmole-oR
temperature (oF)	60 oF
calculated molar specific volume (V)	379.5 scf/lbmole
Molecular weights	
NOx	46 lb/lb-mole
co	28 lb/lb-mole
VOC (as methane)	16 lb/lb-mole

E ELOTOBO EBOLLEGA METUOS 40 O OO E		
F FACTORS FROM EPA METHOD 19 @ 68 F		
COAL (ANTHRACITE)	10100 DSCF/MMBTU	COAL
COAL (BITUMINOUS)	9780 DSCF/MMBTU	COAL
COAL (LIGNITE)	9860 DSCF/MMBTU	COAL
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	9160 DSCF/MMBTU	OIL
GAS (NATURAL)	8652 DSCF/MMBTU	GAS
GAS (PROPANE)	8710 DSCF/MMBTU	GAS
GAS (BUTANE)	8710 DSCF/MMBTU	GAS
WOOD	9240 DSCF/MMBTU	WOOD
WOOD BARK	9600 DSCF/MMBTU	WOOD BARK
MUNICIPAL SOLID WASTE	9570 DSCF/MMBTU	SOLID WASTE
F FACTOR USED IN CALCULATIONS	8652 DSCF/MMBTU	GAS

Grams/Brake Horsepower - Hour ----> Parts Per Million Volume g/Bhp-hr ----> ppmv

Variables:					
	Engine Size:	0	hp		
	NOx:	0	g/bhp-hr		
	CO:	0	g/bhp-hr		
	VOC:	0	g/bhp-hr		
	O2 level:	0	%		
	Fuel Type	0			
	F-factor:	9160	dscf/MMBtu		
	Engine Efficiency:	0	% (Assumed)		
	OIL (CRUDE, RE	SIDUAL, OR [DISTILLATE)		
	GAS (NATURAL)				
	GAS (PROPANE)				
	GAS (BUTANE)				


Conversion #1	379.5E+6	dscf/lb
Conversion #2	A CONTRACTOR OF THE PROPERTY O	bhp-hr/MMBtu
Conversion #3	453,59	g/lb
MW(NOx):	46	as NO2
MW(CO):	28	
MW(voc):	116	as CH4
O ₂ Correction:	1.000	
Pressure (p)		atm
Temp (oF)	60	oF

Formula:

g	1	1	(20.9 - O ₂ %)	Conversion #1	Conversion #2	1	Engine Eff
bhp-hr	F-factor	MWpollutant	20.9	1	1	Conversion #3	1

Given:

for NOx:

= 0.000 PPM

for CO:

_	0.00 g	MMBtu	1	20.9 - 0	379.5E+6 dscf	393.24 bhp-hr	lb	0%	_
_	bhp-hr	9160 dscf	28	20.9	₩	MMBtu	453.59 g	1	

= 0.000 PPM

for VOC:

 0.00 g	MMBtu	1	20.9 - 0	379.5E+6 dscf	393.24 bhp-hr	lb	0%	
bhp-hr	9160 dscf	16	20.9	lb	MMBtu	453.59 g	1	
	1		. 0.000	DDM				

Parts Per Million Volume --> Grams/Brake Horsepower - Hour ppmv --> g/Bhp-hr

Given:

Variables:					
	Engine Size:	800	hp		
	NOx:	5	ppmv		
	CO:	70	ppmv		
	VOC:	30	ppmv		
	O2 level:	15	%		
	Fuel Type	1			
	F-factor:	8710	dscf/MMBtu		
	Engine Efficiency:	30	% (Assumed)		
	OIL (CRUDE, RE	ESIDUAL, OR	DISTILLATE)		
	GAS (NATURAL)				
	GAS (PROPANE	GAS (PROPANE)			
	GAS (BUTANE)		_		

Conversion #1	379.5E+6	
Conversion #2		bhp-hr/MMBtu
Conversion #3	453,59	
MW(NOx):	46	as NO ₂
MW _(CO) :	28	
MW _(VOC) :	16	as CH4
O ₂ Correction:	3.542	
Pressure (p)		atm
Temp (°F)	60	°F

Formula:

Ī	ppmv	F-factor	MWpollutant	20.9	1	1	Conversion #3	1
	1	1	1	$(20.9 - O_2\%)$	Conversion #1	Conversion #2	1	Engine Eff.

for NO_x:

5 ppmv	8710 dscf	46	20.9	l b	MMBtu	453.59 g	1	_
1	MMBtu	1	20.9 - 15	379.5E+6 dscf	393.24 bhp-hr	lb	30%	

day

for CO:

70 ppmv	8710 dscf	28	20.9	<u> </u> b	MMBtu	453.59 g	1 _	
1	MMBtu	1	20.9 - 15	379.5E+6 dcsf	393.24 bhp-hr	lb	30%	

$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 lbs/day
---	-----------

for VOC:

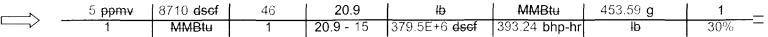
	30 ppmv	8710 dscf	16	20.9	l b	MMBtu	453.59 g	1	
/	1	MMBtu	1	20.9 - 15	379.5E+6 dscf	393.24 bhp-hr	lb	30%	
		ı							_

$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Parts Per Million Volume --> Grams/Brake Horsepower - Hour

ppmv --> g/Bhp-hr

Variables:						
<u> </u>	Engine Size:	800	hp			
	NOx:	5	ppmv			
	CO:	70	ppmv			
	VOC:	30	ppmv			
	O2 level:	15	%			
	Fuel Type	1				
	F-factor:	8710	dscf/MMBtu			
	Engine Efficiency:	30	% (Assumed)			
	OIL (CRUDE, RE	SIDUAL, OR	DISTILLATE)	0		
	GAS (NATURAL)					
	GAS (PROPANE)		2		
	GAS (BUTANE)			3		


Conversion #1	379.5 E +6	
Conversion #2		bhp-hr/MMBtu
Conversion #3		
MW(NOx):	4.6	as NO2
MW _(CO) :	28	
MW _(VOC) :	16	as CH4
O ₂ Correction:	3.542	
Pressure (p)		atm
Temp (°F)	60	°F

Formula:

1	ppmv	F-factor	MW _{pollutant}	20.9	1	1	Conversion #3	1
	1	1	1	$(20.9 - O_2\%)$	Conversion #1	Conversion #2	1	Engine Eff.

Given:

for NOx:

=	0.0	071	g/bhp-hr	56.7 g/hr	0.125 lbs/hr	2.998 lbs/day

for CO:

70 ppmv	8710 dscf	28	20.9	l b	MMBtu	453.59 g	1	_
 1	MMBtu	1	20.9 - 15	379.5E+6 dcsf	393.24 bhp-hr	łb	30%	

=	0.603	g/bhp-hr	483 g/hr	1.065 lbs/hr	25.55 lbs/day	

for VOC:

 30 ppmv	8710 dscf	16	20.9	l b	MMBtu	453.59 g	1	
 1	MMBtu	1	20.9 - 15	379.5E+6 dscf	393.24 bhp-hr	łb	30%	

	=	0.148	g/bhp-hr	118 g/hr	0.261 lbs/hr	6.257 lbs/day
--	---	-------	----------	----------	--------------	---------------

Fuel burning equipment		100,000 B	tu/therm			updated 1.
AP-42 Natural gas emiss	sion facto	rs, 1000 B	tu/cf			
>100 MMBtu/hr	1.4-1	1.4-2	1.4-2	1.4-1	1.4-2	_
uncontrolled	NOx	VOC	SOx	CO	PIVI ₁₀]
lb/MMcf	190	5.5	0.6	84	7.6	
lb/MMBtu [0.19	0.006	0.001	0.08	0.008]
lo-NOx	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	140	5.5	0.6	84	7.6]
lb/MMBtu	0.14	0.006	0.001	0.08	0.008]
lo-NOx w/ FGR	NOx	VOC	SOx	CO	PM ₁₀]
lb/MMcf	100	5.5	0.6	84	7.6	1
lb/MMBtu	0.10	0.006	0.001	0.08	0.008]
AD 42 National and aming	-: ft -	4000 B	4			_
AP-42 Natural gas emiss <100 MMBtu/hr	1.4-1	1.4-2	1.4-2	1.4-1	1.4-1	
uncontrolled	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	100	5.5	0.6	84	7.6	
lb/MMBtu	0.10	0.006	0.001	0.08	0.008]
lo-NOx	NOx	VOC	SOx	CO	PM ₁₀]
_ lb/MMcf	50	5.5	0.6	84	7.6	1
lb/MMBtu	0.05	0.006	0.001	0.08	0.008]
lo-NOx w/ FGR	NOx	VOC	SOx	CO	PM ₁₀]
lb/MMcf	32	5.5	0.6	84	7.6	1
lb/MMBtu	0.032	0.006	0.001	0.08	0.008	

B. Emissions Factors

The source test measurements and emissions factors for NOx, CO, and VOC are listed in the tables below. The source test summaries are included in **Attachment IV**.

·		NOx p	pm @ 15% O	₂ [lb/MMscf]	-	
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
Rule 4702	65	65	65	65	65	65
	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]	[244.3]
2002	45.6	46.8	50.7	43.7	34.9	61.8
source test	[184.3]	[189.0]	[204.8]	[176.4]	[141.1]	[249.8]
2004	14.3	15.4	13.6	51.4	21.9	14.2
source test	[56.0]	[60.3]	[53.3]	[207.9]	[88.4]	[57.6]

CO ppm @ 15% O ₂ [lb/MMscf]											
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9					
District	2000	2000	2000	2000	2000	2000					
Rule 4702	[4574]	[4574]	[4574]	[4574]	[4574]	[4574]					
Limit											
2002	270	258.3	217.8	422.8	268.9	286.8					
source test	[663.6]	[635.0]	[535.6]	[1039.5]	[660.9]	[705.0]					
2004	383	340	310	317	181	204					
source test	[913.0]	[811.4]	[740.2]	[780.4]	[447.0]	[503.2]					

		VOC p	pm @ 15% O	2 [lb/MMscf]		
	S-43-4	S-43-5	S-43-6	S-43-7	S-43-8	S-43-9
Rule 4702	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]	750 [980.1]
2002 source test	67 [94.0]	36.6 [51.4]	255.5 [358.9]	45.1 [63.3]	38.8 [54.5]	42.8 [60.2]
2004 source test	308.1 [420.0]	303.4 [413.6]	214.1 [291.8]	57.6 [81.0]	68.5 [119.0]	53.8 [75.7]

115 to 2 5 TECK

67 Fig 8652 MON 1101

0544 × 1106

From: Richard Edgehill

Sent: Wednesday, January 09, 2008 9:41 AM

To: 'Winn BT (Brent) at Aera'

Subject: RE: Corrections to previous years' Aera Energy emission inventories

Thanks Brent. Please provide the heating value used to convert from lb/MMBtu to lb/MMscf for the source test results for 2002. If possible please revise the 2002 source test table to include lb/MMscf. This will save time i.e. I can include your emailed 12-6-07 table of quarterly baseline emissions in the evaluation with a sample calculation showing how the numbers were obtained. Thanks

----Original Message----

From: Winn BT (Brent) at Aera [mailto:btwinn@aeraenergy.com]

Sent: Wednesday, January 09, 2008 7:04 AM

To: Richard Edgehill

Subject: FW: Corrections to previous years' Aera Energy emission inventories

Richard:

In response to part of your most recent voice mail message, attached are the corrections sent to SJVAPCD's emission inventory group by Aera's Peggy Shue.

-B, Winn

----Original Message----

From: Shue PA (Peggy) at Aera

Sent: Tuesday, January 08, 2008 2:21 PM

To: 'Leland Villalvazo' **Cc:** Brant Botill

Subject: RE: Corrections to previous years' Aera Energy emission inventories

Hi, Leland and Brant - I'm attaching an excel spreadsheet with two tabs - one for corrections to the S-43 inventories and one for corrections to the C-1121 inventories. Please let me know if you have any questions concerning this information. Thanks so much,

Peggy Shue Lead EHS Advisor, Air Aera Energy LLC (661) 665-5689

----Original Message-----

From: Leland Villalvazo [mailto:leland.villalvazo@valleyair.org]

Sent: Monday, January 07, 2008 12:08 PM

To: Shue PA (Peggy) at Aera

Cc: Brant Botili

Subject: RE: Corrections to previous years' Aera Energy emission inventories

Peggy,

Please forward the corrected information to me and we will go back and correct each year.

Info Needed:

Unit ID

New Fuel Usage

EF

Emissions for each Criteria Pollutant (This will allow us to double check the reported emissions)

The District will then resubmit the data to ARB.

Leland

From: Shue PA (Peggy) at Aera [mailto:pashue@aeraenergy.com].

Sent: Monday, January 07, 2008 11:00 AM

To: Leland Villalvazo

Subject: Corrections to previous years' Aera Energy emission inventories

Hi, Leland - I'm hoping you can provide me with some direction. We have found errors in the fuel use quantities on which some previous years' Aera Energy emission inventories were based and would like to know how to correct the inventories with the District.

In particular, the fuel use reported was in error for four heater treaters in the C-1121 inventory for 2006 and the six engines in the S-43 inventories for 2001 through 2004.

Please let me know if you would like us to provide you with corrected inventories for any or all of these cases and in what form you would like us to provide that correction.

Thanks for your help!

Peggy Shue Lead EHS Advisor, Air Aera Energy LLC (661) 665-5689

Aera Energy LLC Lost Hills Gas Plant IC Engines

	2001		Ē	mission Fa	ctor, lb/MM	cf		Emissions, tons/year					
	Corrected												
i	Fuel Use,							Ì			ļ	j	
Unit ID	MMcf	NOx	TOC	VOC_	SOx	co	PM10	NOx_	TOC	voc	SOx	co	₽M10
S-43-4	13.242	224.53	409.29	28.65	0.00	1019.90	10.11	1.49	2.71	0.19	0.00	6.75	0.07
S-43-5	49.243	236.75	1037.29	72.61	0.00	682. <u>50</u>	10.11	5.83	25.54	1.79	0.00	16.80	0.25
S-43-6	45.288	148.02	10651.43	745.60	0.00	888.45	10.11	3.35	241.19	16.88	0.00	20.12	0.23
S-43-7	19.958	158.43	2286.71	160.07	0.00	1031.33	10.11	1.58	22.82	1.60	0.00	10.29	0.10
S-43-8	23.104	175.09	1555.57	108.89	0.00	721.13	10.11	2.02	17.97	1.26	0.00	8.33	0.12
S-43-9	15.079	124,64	2704.57	189.32	0.00	580.17	10.11	0.94	20.39	1.43	0.00	4.37	0.08

	2002		E	mission Fa	ctor, lb/MMe	cf		Emissions, tons/year					
	Corrected Fuel Use,			· · · · · · · · · · · · · · · · · · ·							· -		
Unit ID	MMcf	NOx	TOC	VOC	SOx	CO	PM10	NOx	TOC	VOC	SOx	CO	PM10
S-43-4	40.227	184.26	1258.34	100.67	0.00	663.60	10.11	3.71	25.31	2.02	0.00	13.35	0.20
S-43-5	30.024	188.90	63.90	5.11	0.00	634.90	10.11	2.84	0.96	0.08	0.00	9.53	0.15
S-43-6	33.928	204.70	4485.07	358.81	0.00	535.50	10.11	3.47	76.08	6.09	0.00	9.08	0.17
S-43-7	19.676	176.40	798.37	63.87	0.00	1,039.50	10.11	1.74	7.85	0.63	0.00	10.23	0.10
S-43-8	38.05	141.00	679.89	54.39	0.00	660.90	10.11	2.68	12.93	1.03	0.00	12.57	0.19
S-43-9	16.412	249.70	752.60	60.21	0.00	704.90	10.11	2.05	6.18	0.49	0.00	5.78	0.08

	2003		E	mission Fa	ctor, I <u>b/MM</u>	of		Emissions, tons/year					
	Corrected Fuel Use,				<u>-</u> -								
Unit ID	MMcf	NOx	TOC	voc	SOx	co	PM10	NOx	TOC	voc	SOx	co	PM10
S-43-4	32.65	184.26	1740.00	94.00	0.00	663.60	10.11	3.01	28.40	1.53	0.00	10.83	0.17
S-43-5	42.92	188.90	1238.00	51.40	0.00	634.90	10.11	4.05	26.56	1.10	0.00	13.62	0.22
S-43-6	28.80	204.70	5187.00	358.90	0.00	535.50	10.11	2.95	74.68	5.17	0.00	7.71	0.15
S-43-7	28.10	176.40	1708.00	63.30	0.00	1039.50	10.11	2.48	24.00	0.89	0.00	14.60	0.14
S-43-8	36.79	141.00	1364.00	54.50	0.00	660.90	10.11	2.59	25.09	1.00	0.00	12.16	0.19
S-43-9	23.39	249.70	1379.00	60.20	0.00	704.90	10.11	2.92	16.13	0.70	0.00	8.24	0.12

	2004			mission Fac	ctor, lb/MMc	:f		Emissions, tons/year					
	Corrected Fuel Use,								-				."
Unit ID	MMcf	NOx	TOC	VOC	SOx	co	PM10	NOx	TOC _	VOC	SOx	CO	PM10
S-43-4	19.25	56.02	1740.00	420.01	0.00	913.01	10.11	0.54	16.75	4.04	0.00	8.79	0.10
S-43-5	24.55	60.30	1238.00	413.63	0.00	811.41	10.11	0.74	15.20	5.08	0.00	9.96	0.12
S-43-6	22.60	53.26	5187.00	291.81	_0.00	740.24	10.11	0.60	58.61	3.30	0.00	8.36	0.11
S-43-7	8.78	207.88	1708.00	80.96	0.00	780.44	10.11	0.91	7.49	0.36	0.00	3.42	0.04
S-43-8	21.70	30.29	1364.00	118.98	0.00	841.98	10.11	0.33	14.80	1.29	0.00	9.14	0.11
S-43-9	21.81	57.59	1379.00	75.72	0.00	503.18	10.11	0.63	15.04	0.83	0.00	5.49	0.11

From: Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent: Wednesday, December 19, 2007 10:31 AM

To: Richard Edgehill

Subject: FW: ERC application S43, 1075362

Here is the previous E-mail I sent....

Thanks....

-B. Winn

----Original Message-----

From: Winn BT (Brent) at Aera

Sent: Tuesday, December 11, 2007 9:51 AM

To: 'Richard Edgehill'

Subject: RE: ERC application S43, 1075362

Richard:

Attached are documents providing basis for the emission factors used in 2004-2005 for the subject engines. Unlike the year 2002 source tests, the results were reported directly in terms of "pounds per MMcf", so there was no need to convert from lb/MMBTU to lb/MMcf. The PM10 factor, if based on the heating values in the fuel tests, would actually be higher than the factor originally proposed in the ERC application. They would be in the range of 10.43 to 10.98 lb/MMcf as compared to 10.11 lb/MMcf.

In reviewing the source tests, I noticed an error in the NOx and CO factors used for engine S-43-8.

The NOx factor in the original ERC application was 30.3 lb/MMCF but the source test shows 88.44 lb/MMcf.

The CO factor in the original ERC application was 841.98 lb/MMCF but the source test shows 447.04 lb/MMcf.

A spreadsheet with revised historical emission estimates (based on these corrected factors) is also attached.

-B. Winn

From: Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent: Wednesday, December 19, 2007 10:01 AM

To: Richard Edgehill

Subject: RE: ERC application \$43, 1075362

The items that I e-mailed on Tuesday 12/11/2007 weren't sufficient? Are you saying that the numbers presented in the source test summaries won't work for your analysis?

-B. Winn

----Original Message----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Wednesday, December 19, 2007 9:25 AM

To: Winn BT (Brent) at Aera

Subject: FW: ERC application S43, 1075362

Brent: The 2004 calculations were useful for the evaluation. Please also provide similar calculations for 2004 (as per your underlined statement below). Thanks again.

----Original Message-----From: Richard Edgehill

Sent: Thursday, December 06, 2007 3:14 PM

To: 'Winn BT (Brent) at Aera'

Subject: RE: ERC application S43, 1075362

Thanks Please submit the similar 2004 calcs if they can easily be obtained from these sample calculations.

Aera Energy LLC Lost Hills Gas Plant IC Engine 1

Project 010-3922 July 22, 2004 Permit No. S-43-4-9

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		20.3	13.8	8.86	0.0505	54.21	
NOx		21,1	14.2	8.98	0.0518	55.64	75 ppm @ 15% O ₂
		22.1	14.9	9.34	0,0542	58.21	and
Mean		21.2	14.3	9,06	0.0522	56.02	61.9 lb/day
		571	389	151,63	0.8641	928.04	
CO		567	381	146.95	0.8473	910.00	463 ppm @ 15% O
		562	378	144.54	0.8389	900.98	and
Mean		567	383	147.71	0.8501	913.01	232.6 lb/day
		483.1	329.2	73,3	0.4178	448.71	
VOC		457.9	308.0	67.8	0.3910	419.94	304 ppm @ 15% O ₂
C3 - C6+ as C1		427.1	287.0	62.7	0.3644	391.37	and
Mean		456.0	308.1	67.9	0.3911	420.01	87.1 lb/day
					gr/dscf	The state of the s	
		As H₂S in			As H ₂ S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		
(\$Ox as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	12.24						
O_2	12.13						
	12.12						
Mean	12.16						
Comments:							
		 					
					<u></u>		
				<u>-</u> ,			
							
					v-		
						والمرازات والمرازي	

AEROS ENVIRONMENTAL, INC.

Summary Of Results

Aera Energy LLC Lost Hills Gas Plant IC Engine 2 Project 010-3922 July 22, 2004 Permit No. S-43-5-9

· · · · · · · · · · · · · · · · · · ·			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		23.3	15.3	9.32	0.0557	59.87	
NOx	}	23.8	15 .5	9.40	0.0566	60.75	75 ppm @ 15% O ₂
		23.7	15.4	9.33	0.0561	60.29	and
Mean		23,6	15.4	9,35	0.0561	60,30	61.9 lb/day
	,	524	344	127.53	0.7631	819.57	
co		519	338	124.79	0.7508	806,36	463 ppm @ 15% O ₂
	}	522	339	125.02	0.7526	808.29	and
Mean		522	340	125.78	0.7555	811.41) 232.6 lb/day
		463.2	303.7	64.4	0.3855	414.02	
VOC		462.0	300.8	63.4	0.3820	410.27	304 ppm @ 15% O ₂
C ₃ - C ₆ + as C ₁	į	470.8	305.6	64.4	0,3879	416,60	and
Mean		465.3	303.4	64.1	سسر0.3851	413.63	87.1 lb/day
					gr/dscf		
		As H₂S in			As H₂S in	-	
Fuel Sulfur		Fuel Gas			Fuel Gas	Ì	'
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	11,90						
O ₂	11.84						
	11.81						
Mean	11.85						
Comments:							
		******	······				
			· · · · · · · · · · · · · · · · · · ·				
·							
							
			·				
	···						71 (1744 F. 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				7			

AEROS ENVIRONMENTAL, INC.

Summary Of Results

Aera Energy LLC Lost Hills Gas Plant IC Engine 3 Project 010-3922 July 22, 2004 Permit No. S-43-6-9

	T		ppm @			1	Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	Ib/MMCF	Limits
		21.7	14.1	9,21	0.0515	55.33	
NOx	}	19.6	12.6	8.08	0.0461	49.53	75 ppm @ 15% O ₂
		21.9	14.0	9.05	0.0511	54.93	and
Mean		21.1	13.6	8.78	0.0496	53.26	61.9 lb/day
		481	313	124.31	0.6950	746:43	
CO		483	311	121,19	0.6918	742.99	463 ppm @ 15% O ₂
		479	307	120.53	0.6809	731.29	and
Mean		481	310	122.01	0.6892	740.24	232.6 lb/day
		345.1	224.5	51.0	0.2849	305:98	
VOC	1	333.0	214.7	47.6	0.2726	292.78	304 ppm @ 15% O ₂
C3 - C6+ as C1		317.2	203.1	45.7	0.2576	276.66	and
Mean		331.8	214.1	48.1	0.2717	291.81	87.1 lb/day
					gr/dscf		
		As H₂S in			As H₂S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		
(SOx as SO₂)		<1.0			<0.0006		0.3 gr/dscf
_	11.83	1					
O_2	11.75				•		
	11,68						
Mean	11.75						
Comments:			_				
			 				
					,		
				<u>,,</u>			
							**··

Aera Energy LLC Lost Hills Gas Plant IC Engine #4 Project 010-3824A May 18, 2004 Permit S-43-7-8

Pollutant	%	ppm	ppm @ 15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Permit Limits
		92.3	52.0	26,99	0.1898	210.26	
NOx	ľ	92.0	52.5	27.39	0.1917	212,41	75 ppm @ 15% O ₂
		86.2	49.7	25.71	0.1814	200.96	and
Mean	}	90.2	51.4	26.70	0.1876	207.88	46.4 lb/day
		559	315	99.49	0.6996	775.16	
CO		557	318	100.94	0.7065	782.80	463 ppm @ 15% O₂
		552	318	100.21	0,7070	783.36	and
Mean		556	317	100.21	0.7044	780.44	232.6 lb/day
		98.8	55.7	10.0	0,0706	78.23	
VOC		100.7	57.5	10.4	0.0730	80.89	304 ppm @ 15% O ₂
$C_3 \cdot C_6 + as C_1$		103.2	59.5	10.7	0.0756	83.76	and
Mean		100.9	57.6	10.4	0.0731	80.96	65.5 lb/day
					gr/dscf		
		As H₂S in			As H₂S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		
(SOx as SO ₂)		<1.0			<0.0006		0,3 gr/dscf
	10.42						
O ₂	10.56						
	10.66						
Mean	10.55						
Comments:							
						- <u> </u>	
					_ 		<u></u>
71,5							
	• • • • • • • • • • • • • • • • • • • •		·				
				· · · · · · · · · · · · · · · · · · ·			
	****						· · · · · · · · · · · · · · · · · · ·

Aera Energy LLC Lost Hills Gas Plant IC Engine #5 Project 010-3824/ May 19, 2004 Permit S-43-8-8

			ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		37.4	22.3	11.89	0.0814	90.19	
NOx	1	37.8	22.8	12.32	0.0834	92.37	75 ppm @ 15% O ₂
		33.8	20.5	11.02	0.0747	82.76	and
Mean		36.3	21.9	11.74	0.0798	كلشيم 88.44	46.4 lb/day
		302	180	58.46	0.4001	443.31	
co		302	182	59.91	0.4054	449.18	463 ppm @ 15% O ₂
	}	301	182	59.74	0.4049	448.63	and
Mean		302	181	59.37	0.4035	447.04	232,6 lb/day
		112.8	67.3	12.5	0.0854	94,63	
VOC		116.7	70.4	13.3	0.0895	99,15	304 ppm @ 15% O ₂
C_3 - $C_{\mathcal{G}}$ + as C_1		112.0	67.8	12.7	0.0860	163,15	and
Mean	<u> </u>	113.8	68.5	12.8	0.0870	118,98	65,5 lb/day
	İ				gr/dscf		
		As H ₂ S in			As H _z S in		
Fuel Sulfur	}	คืบe) Gas			Fuel Gas		
(SOx as SO ₂)	ļ	<1.0			<0.0006		0.3 gr/dscf
_	11.00						
O ₂	11,13						
	11.15						
Mean	11.09		 		······		
Comments:					· · · · · · · · · · · · · · · · · · ·		
<u>, , , , , , , , , , , , , , , , , , , </u>							
		<u></u>			74		
					 		
······							· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·			
						······································	

Aera Energy LLC Lost Hills Gas Plant IC Engine 6 Project 010-3824B June 17, 2004 Permit No. S-43-9-8

		<u> </u>	ppm @				Permit
Pollutant	%	ppm	15% O ₂	lb/day	lb/MMBtu	lb/MMCF	Limits
		24.2	14.5	8.57	0.0531	58.79	
NOx	ļ	24.8	14.9	8,82	0.0543	60.19	75 ppm @ 15% O ₂
	ļ	22.0	13.3	7.70	0.0485	53.78	and
Mean		23.7	14,2	8,36	0.0520	57.59	61.9 lb/day
		334	200	71.99	0.4458	493.95	
co	į	341	204	73.78	0.4547	503.81	463 ppm @ 15% O ₂
		344	208	73.28	0,4619	511.79	and
Mean	1	340	204	73.02	0,4541	503.18	232.6 lb/day
***		89.4	53.6	11.0	0.0682	75.57	
VOC		103.0	61.8	12.7	0.0784	86.87	304 ppm @ 15% O ₂
C3 - C6+ as C1	[76.2	46.0	9.2	0.0584	64:74	and
Mean		89.5	53.8	11.0	0,0683	75.72	87.1 lb/day
					gr/dscf		
		As H₂S in			As H₂S in		
Fuel Sulfur		Fuel Gas			Fuel Gas		
(SOx as SO ₂)		<1.0			<0.0006		0.3 gr/dscf
	11.07						
O_2	11.06						
	11.13						
Mean	11.09			· · · · · · · · · · · · · · · · · · ·	**************************************		
Comments:							
		_					
				**	······································		
······································					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		,, ,					
							
				···			
						······································	

Aera Energy LLC Various IC Engines

Project 010-3824 Laboratory ID 040149-11

Sample Description: Fuel Gas Sampled by: Dave Noble

Date Sampled: May 18, 2004 Date Received: May 19, 2004 Date Reported: May 19, 2004

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %		CHONS Wt.%
Oxygen	0.084	0.142	Carbon	73.42
Nitrogen	0.288	0.427	Hydrogen	22.51
Carbon Dioxide	2.065	4.811	Oxygen	3.64
Carbon Monoxide	0.000	0.000	Nitrogen	0.43
Hydrogen Sulfide	0.000	0.000	Sulfur	0.00
Methane	85,325	72.449	H/C	0.307
Ethane	9.221	14.675		
Propane	2.519	5.880		
Isobutane	0.154	0.474	H2S ppmv	H₂S gr/100 SCF*
N-Butane	0.253	0.780	ND < 1	ND < 0.06
isopentane	0.036	0.138		
N-Pentane	0.029	0.111	TRS ppmv	TRS gr/100 SCF*
Hexanes	0.025	0.115	ND < 1	ND < 0.06
Total(s)	100.000	100.000	* Reported as S	ulfur

Specific Gravity (Air = 1)	0.6524
Specific Volume (cf/lb)	20.09
Gross Calorific Value, Dry (Btu/cf)	1108,47
Gross Calorific Value, Wet (Btu/cf)	1086.16
Gross Calorific Value, Dry (Btu/lb)	22264.99
Net Calorific Value, Dry (Btu/cf)	1002.04
Net Calorific Value, Wet (Btu/cf)	981.87
Compressability Factor "Z" @ 60° F, 1 atm	0.9973
EPA F-Factor @ 68° F (DSCF/MMBtu)	8653
EPA F-Factor @ 60° F (DSCF/MMBtu)	8523

References:

ASTM Methods D1945-96, D3588-98 & D6228-98 Double GC, TCD, FPD

TRS = Total Reduced Sulfur as H₂S

Terry M. Rowles, Laboratory Manager

Aera Energy LLC IC Engine 6

Project 010-3824 Laboratory ID 040186-05

Sample Description: Fuel Gas Sampled by: Victor Welliver

Date Sampled: June 17, 2004 Date Received: June 17, 2004 Date Reported: June 17, 2004

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %		CHONS Wt.%
Oxygen	0.046	0:077	Carbon	73.32
Nitrogen	0.314	0.464	Hydrogen	22.45
Carbon Dioxide	2.180	5.068	Oxygen	3.76
Carbon Monoxide	0.000	0.000	Nitrogen	0.46
Hydrogen Sulfide	0.000	0.000	Sulfur	0.00
Methane	85.038	72.071	H/C	0,306
Ethane	9.490	15.074		
Propane	2.467	5.747		
Isobutane	0.144	0.442	H2S ppmv	H₂S gr/100 SCF*
N-Butane	0.247	0.758	ND < 1	ND < 0.06
Isopentane	0.033	0.126		
N-Pentane	0.026	0.100	TRS ppmv	TRS gr/100 SCF*
Hexanes	0,016	0.072	ND < 1	ND < 0.06
Total(s)	100.000	100,000	* Reported as Su	alfur

Specific Gravity (Air = 1)	0,6536
Specific Volume (cf/lb)	20.05
Gross Calorific Value, Dry (Btu/cf)	1107.79
Gross Calorific Value, Wet (Btu/cf)	1085.49
Gross Calorific Value, Dry (Btu/lb)	22210.00
Net Calorific Value, Dry (Btu/cf)	1001.44
Net Calorific Value, Wet (Btu/cf)	981.28
Compressability Factor "Z" @ 60° F, 1 atm	0.9973

EPA F-Factor @ 68° F (DSCF/MMBtu)
EPA F-Factor @ 60° F (DSCF/MMBtu)

References:

ASTM Methods D1945-96, D3588-98 & D6228-98 Double GC, TCD, FPD

TRS = Total Reduced Sulfur as H2S

Terry M. Rowies, Laboratory Manager

8656

8526

Aera Energy LLC IC Engine

Project 010-3922 Laboratory ID 040230-11

Sample Description: Natural Gas Sampled by: Victor Welliver

Date Sampled: July 22, 2004 Date Received: July 23, 2004 Date Reported: July 23, 2004

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %	C	HONS Wt.%
Oxygen	0.508	0.867	Carbon	71.31
Nitrogen	1.810	2.706	Hydrogen	22.10
Carbon Dioxide	1.764	4.145	Oxygen	3.88
Carbon Monoxide	0.000	0.000	Nitrogen	2.71
Hydrogen Sulfide	0.000	0.000	Sulfur	(2.71)
		1		The state of the s
Methane	85.304	73.055	H/C	0.310
Ethane	8.272	13.278		
Propane	1.891	4.452		
Isobutane	0.129	0.401	H2S ppmv	H₂S gr/100 SCF*
N-Butane	0.214	0.663	ND < 1	ND < 0.06
Isopentane	0.051	0,196	The state of the s	
N-Pentane	0.036	0.138	IRS-ppmy	TRS gr/100 SCF*
Hexanes	0.021	0.098	ND < 1 ')	ND < 0.06
Total(s)	100.000	100.000	* Reported as Sulfu	r

Specific Gravity (Air = 1)	0.6468
Specific Volume (cf/lb)	20.26
Gross Calorific Value, Dry (Btu/cf)	1073.97
Gross Calorific Value, Wet (Btu/cf)	1052.53
Gross Calorific Value, Dry (Btu/lb)	21758.08
Net Calorific Value, Dry (Btu/cf)	970.39
Net Calorific Value, Wet (Btu/cf)	951.02
Compressability Factor "Z" @ 60° F, 1 atm	0.9974
EPA F-Factor @ 68° F (DSCF/MMBtu)	8647
EPA F-Factor @ 60° F (DSCF/MMBtu)	8518

References:

ASTM Methods D1945-96, D3588-98 & D6228-98 Double GC, TCD, FPD

TRS = Total Reduced Sulfur as H₂S

Teny M. Rowles, Laboratory Manager

Volume Flow Rate DSCFM by Fuel Rate and Fuel F-factor (Fd)

Reference:

EPA Code of Federal Regulations, Title 40, Part 60 Appendix A, Method 19.

The exhaust gas volume flow rate (DSCFM) is calculated based on the fuel flow rate (MMBtu/hr) and the Fuel F-factor (Fd, DSCF/MMBtu) corrected to the stack gas oxygen content (% $\rm O_2$ vd).

Symbol Identification

DSCFM = Exhaust gas dry standard cubic feet per minute

Fd = Fuel F-factor, DSCF/MMBtu

CFH = Fuel Flow Rate, cubic feet per hour @ 60°F or 68°F

GPH = Fuel Flow Rate, gallons per hour @ 60°F or 68°F

GCV = Fuel gross calorific value, Btu/lb

Calculations

1.
$$DSCFM = \frac{MMBtu}{hr} \times Fd \times \frac{20.9}{(20.9 - \%O_2)} \times \frac{1 hr}{60 \text{ min}}$$

2.
$$\frac{\textit{MMBtu}}{\textit{hr}}$$
, gaseous fuels = CFH $\times \frac{\textit{MMBtu}}{\textit{CF}}$
 $\frac{\textit{MMBtu}}{\textit{hr}}$, liquid fuels = GPH $\times \frac{\textit{MMBtu}}{\textit{gal}}$

3.
$$Fd = \frac{DSCF \text{ exhaust } gas}{MMRtu}$$
 @ 29.92"Hg & 68°F

based on fuel elemental analysis and gross calorific value

$$Fd = \frac{10^{6} (3.64 (\%H) + 1.53 (\%C) + 0.57 (\%S) + 0.14 (\%N) - 0.46 (\%O))}{GCV}$$

4.
$$Fd @ 60°F = Fd @ 68°F \times \frac{520°R}{528°R}$$

			Emission Factor Source								Emission F	actor Used.	Ib/MMcf or Ib/M	gal			
FAC ID	DEV	LEASE	PRO DES	PM10	co	SOx	NOx	VOC	Test Date	Btu/cf	PM10	co	SOx	NOx	VOC	FROG	TOC
	Г			9.91 E-03	I		1		5/22/2002 Sox	1020						1	
				Ro/MMARStu		1	1		7/22/04 CO,			\$					
43	4	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.3-2	913.01	i i	d 56.02	420.01	NOx, VOC		10.11	913.0	0	56.0	420.01	0.06	6610.
	Π'''			9.91 E-03					5/22/2002 Sax,	1020							
				th MMBtu	l	1	ı		7/22/04 CO.		1						1
43	5	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2	811.41	l	60.30	413.63			10.11	811.1	a	60.3	413.63	0.07	5709.9
				9.91 8-00					5/21/2002 Sax,	1020							
			i .	ib MMBtu	ł				7/22/04 CO, Nax.		l				!		
43_	6	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2	740.24	4	53.26	291.81			10.11	740.24	a	53.3	291.81	0.06	5044.1
	1		T	9.91 6.03	1				5/22/2002 Sox,	1020	1	1			T		
	1	1		ib/MM8tu	l				5/18/04 CO, Nox.		ľ	1			l	ŀ	
43	7	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2	780,44	4 .	207.88	80.96	VOC		10.11	780.4	0	207.9	80.96	0.05	1658.5
	1 —		<u> </u>	9.91 €-03		I			5/21/2002 Sox,	1020							
	ì			lb/MM8tu			1		5/19/04 CO, Nax,								
43	8	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2	447.04	4 '	d 88.44	118.98	VOC		10.11	842.0	a	30.3	118.98	0.07	1759.2
		-		9.91 6-03			1		5/21/2002 Sax,	1020	_	ſ					1
				B:MMBtu		İ	1		6/17/04 CO, Nox.								1
43	۱ ۵	Section 15 Cas Plant	IC ENGINE NATIGAS	Table 3.2-2	503 18	4	d 57.50	75.72	voc	l .	10.11	503 18		87 E	75.72	0.05	12817

black - source test blue - AP-42

value used in annual emission statements ==>>
AP-42 Factor==>>
Conversion ==>> 10.11 Ib/MMCTU

10.11 Ib/MMCTU

CO lb/MMcf emission factors were calculated directly in source test summaries

VOC lb/MMcf emission factors were calcula directly in source test summaries

highest test value = => 1108.47 MMBTU/MMcf
AP-42 Factor==>> 9918:03 lb/MMBTU
10.98 lb/MMCF

xwest test value = => 1052.53 MMBTU/MMcf AP-42 Factor==>> 9915-03 lb/MMBTU Conversion ==>> 10.43 lb/MMCF

Aera Energy - Lost Hills Section 15 Gas Plant Emission Reduction Credit Application - I. C. Engine Compressors S-43-4 through S-43-9

PM ₁₀	Average Qu on 2 m		ilssions (lb entative ye	
Quarterly Emissions (lbs)	10	2Q	3Q	40
S-43-4	99.2	47.9	47.6	114,8
S-43-5	126.7	87.4	43.5	114.3
S-43-6	43.3	70.0	105.2	41.1
S-43-7	75.3	50.3	25.4	63,1
S-43-8	61.4	90.0	77.5	102.3
S-43-9	44.4	29.4	75.3	60.7
	450,3	375.0	374.6	496,3

After 10 % AQI Reduction	405.3	337.5	337.1	446.6

СО	Average Quarterly Emissions (lbs) Based on 2 most representative years							
Quarterly Emissions (lbs)	10	2Q	3Q	40				
5-43-4	8,166.8	3,779.3	3,231.5	7,534.8				
S-43-5	9,153.1	6,011.4	2,890.4	7,177.5				
S-43-6	2,314.9	4,135.2	6,692.1	2,176.3				
S-43-7	7,010.3	4,777.6	2,602.3	6,484.9				
S-43-8	3,179.5	5,129.5	4,489.5	6,688.4				
S-43-9	3,093.6	1,859.8	4,439,4	4,231.7				
	32,918.1	25,692.8	24,345.3	34,293.7				

After 10 % AQI Reduction 29,626.3 23,123.6 21,910.8 30,864.4

SOx	Average Quarterly Emissions (lbs) Base on 2 most representative years							
Quarterly Emissions (lbs)	10	2Q	3Q	40				
5-43-4	0.0	0.0	0.0	0.0				
5-43-5	0.0	0.0	0.0	0.0				
S-43-6	0.0	0.0	0.0	0.0				
5-43-7	0.0	0.0	0.0	0.0				
5-43-8	0.0	0.0	0.0	0.0				
5-43-9	0.0	0.0	0.0	0.0				
	0.0	0.0	0.0	0.0				

NOx	Average Quarterly Emissions (lbs) Based on 2 most representative years							
Quarterly Emissions (Ibs)	10	2Q	3Q	4Q				
5-43-4	800.3	438.6	602.4	1,535.8				
5-43-5	1,187.6	947.4	515.2	1,529,1				
5-43-6	571.1	765.7	960,1	549.7				
5-43-7	1.007.2	673.5	339.7	843.8				
5-43-8	638.8	1.039.1	910.61	1.368.9				
5-43-9	592.9	319.8	695.0	812.0				
	4,797.9	4,184.0	4.023.0	6,639,3				

After 10 % AQI Reduction 4,315.1 3,765.6 3,620.7 5,975.4

voc		Average Quarterly Emissions (lbs) Based on 2 most representative years						
	10	2Q	3Q	4Q				
\$-43-4	2,468.4	1,038.7	543.1	1,067.5				
5-43-5	2,509.0	1.259.6	467.2	581.0				
5-43-6	1.396.1	2.189.7	3.210.2	1,327.8				
S-43-7	521.1	342.4	159.5	394.9				
S-43-8	582.7	711.5	592.8	551.5				
5-43-9	264.8	190.0	511.0	361.5				
	7,742.0	5,731.8	5.483.7	4.284.2				

After 10 % AQI Reduction 6.967.8 5,158.7 4,935.3 3,855.7

Summary in Application Format/Sequence

Pounds Per Quarter	voc	NOx	со	PM10	SOx
1ST QUARTER	6,967.8	4,318.1	29,626.3	405.3	0.0
2ND QUARTER	5,158.7	3,765.6	23,123.6	337.5	0.0
3RD QUARTER	4,935.3	3,620.7	21,910.8	337,1	0.0
4TH QUARTER	3,855.7	5,975.4	30,864.4	446.6	0.0

PM ₁₀	2002		200	3	-		2004	
Quarterly Emissions (lbs)	40	10	2Q	3Q	40	†Q	2Q	30
S-43-4	94.1	64.0	44.2	86.4	135.4	134.4	51.6	8
S-43-5	95.1	116.5	114.9	69.0	133.5	137.0	59.9	18.
5-43-6	73.5	84.6	97.9	100.1	8.6	2.1	42.2	110.4
5-43-7	55.4	93.6	69.6	50.1	70.8	57.0	31.1	0.6
5-43-8	85.8	43.9	108.9	100.3	118.8	78.9	71.0	54.8
5-43-9	82.3	88.5	39.6	69.2	39.1	0.3	19.2	81.4
	486.2	491 D	475.1	475.1	506.3	409.6	275.0	274

CO	2002		20	03		2004			
Quarterly Emissions (lbs)	4 Q	1Q	2Q	3Q	40	19	2Q	3Q	
5-43-4	6,179.4	4,200.5	2,901.9	5,673.3	8,890.2	12,133.1	4,656.6	789.7	
S-43-5	5,971.5	7,314.5	7,217.6	4,331.4	8,383.5	10,991.8	4,805.3		
\$-43-6	3,894.5	4,479.1	5,183.2	5,299.6	458.2	150.6	3,087.2		
\$-43-7	5,692.6	9,621.7	7,153.6	5,156.1	7,277.2	4.398.8	2,401.7	48.	
\$-43-8	5,609.1	2,869.7	7,117.5	6,556.0	7,767.8	3489.29	3141,455	2423.0	
\$-43-9	5,737.7	6,169.8	2,761.9	4,827.8	2,725.8	17.3	957.8	4.051.0	
	33,084.7	34,655.4	32,335,7	31,844.3	35,502.7	31.180.8	19,050.0	16.846	

SOx	2002		20	103			2004	
Quarterly Emissions (lbs)	40	10	20	3Q	40	10	2Q	30
5-43-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5-43-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

NOx	2002		20	2004				
Quarterly Emissions (lbs)	40	10	2Q	3Q	40	10	20	3Q
5-43-4	1,259.5	856.2	591.5	1,156.4	1,812.1	744.5	285.7	48.5
S-43-5	1,272.2	1,558.3	1,537.6	922.8	1,786.0	816.9	357.1	107.
S-43-6	983.7	1,131.4	1,309.2	1,338.6	115,7	10.8	222.1	581.
S-43-7	740.7	1,252.0	930.8	670.9	946.9	762.4	416.2	8.4
\$-43-8	1,148.0	587.3	1,456.7	1,341.8	1,589.8	690.3	621.5	479.4
S-43-9	1,101.0	1,183.9	530.0	926.4	523.0	2.0	109.6	463.6
	6,505.0	6,569.0	6,355.8	6,356,8	6,773,5	3.026.8	2,012.3	1,689.

VOC Quarterly Emissions (lbs)	2002 4Q	2003				2004		
		10	2Q	3Q	40	1Q	2Q	3Q
5-43-4	875.6	595.0	411.1	803.6	1,259.3	4,341.7	1,666.3	282.6
5-43-5	483.2	592.2	584.3	350.7	678.7	4,425.8	1,934.9	583,6
S-43-6	2,376.1	2,732.8	3,162.3	3,233.4	279.5	59.4	1,217,0	3,187,1
S-43-7	346.7	585.9	435.6	314.0	443.1	456.3	249.1	5.0
S-43-8	462.4	236.6	586.9	540.6	640.6	928.7	836,1	644.9
S-43-9	490.2	526.9	235.9	412.3	232.8	2.6	144.1	609.6
	5.034.3	5.269 4	5.416 1	5 654 6	3 534 0	10 214 5	6.047.6	5 312 8

DEC 0 6 2007

Brent Winn Aera Energy LLC PO Box 11164 Bakersfield, CA 93389

Re:

Notice of Receipt of Complete Application

Project Number: S-1075362

Dear Mr. Winn:

The District has received your application for Emission Reduction Credits (ERCs) from the shutdown of precompressor and refrigeration compressor IC engines (S-43-4 through S-43-9) at the Lost Hills Gas Plant, NE 15, T27S, R21E, Lost Hills. Based on our preliminary review, the application appears to be complete. This means that your application contains sufficient information to proceed with our analysis. However, during processing of your application, the District may request additional information to clarify, correct, or otherwise supplement, the information on file.

Please note that your project will be public noticed for a 30-day period at the conclusion of our analysis. It is estimated that the project analysis will take 60 hours, and you will be charged at the weighted hourly labor rate in accordance with District Rule 3010. The current weighted labor rate is \$86.00 per hour, but please note that this fee is revised annually to reflect actual costs and therefore may change. No payment is due at this time; an invoice will be sent to you upon completion of the public notice process.

We will begin processing your application as soon as possible. In general, complete applications are processed on a first-come first-served basis.

If you have any questions, please contact Mr. Thomas Goff at (661) 326-6900.

Sincerely.

David Warner

Director of Permit Services

Permit Services Manager

DW:rue

Seyed Sadredin

Executive Director/Air Pollution Control Officer

Southern Region

From:

Richard Edgehill

Sent:

Wednesday, December 19, 2007 2:03 PM 'Winn BT (Brent) at Aera'

To:

Subject:

ERC application S43, 1075362

Brent: What is the source of the higher heating value used in the source test summaries to convert from lb/MMbtu to lb/MMscf i.e. 0.0522 lb/MMBtu to 56.02 lb/MMscf (NOx for engine '-9 2004) - the lab value of ~1108 Btu/scf doesnt work on the conversion. Is this value used for both the 2002 and 2004 source test results? Thanks

From:

Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent:

Thursday, December 06, 2007 2:59 PM

To:

Richard Edgehill

Subject: RE: ERC application S43, 1075362

Richard:

Attached is an excel file that was used to document the emission factors used in the 2002 Annual Emission Statement for S-43. I added some sample calcs for PM10, NOx and CO emission factors at the bottom of the first tab. The second tab shows how the VOC emission factors were derived from the source test results (which are also attached along with GC analysis and "F" Factor calculation methodology). The heating value (BTU/scf) employed varies slightly but does not make a significant difference in the outcome. I did notice that, for the PM10 factor, the "theoretical" value of 1020 MMBTU/scf results in a lower emission factor than the 1106 BTU/scf that was determined by GC analysis in conjunction with the source test (10.11 lb/mmcf vs. 10.96 lb/mmcf).

If you need it, I can produce similar analysis/documentation for the 2004 source tests.

-B. Winn

Aera Energy LLC Lost Hills Gas Plant IC Engine # 1 Project 010-2806 May 22, 2002 Permit No. S-43-4-8

D 11 /	24		ppm @	//21	H. O	II. of All IPs.	Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	ib/hr	lb/MMBtu	Limits
		87.4	50.2	0.71	1.2	0.1832	
NOx		69.1	42.2	0,59	1.0	0.1539	0.07 17-11
		73.0	44.5	0.63	1.0	0.1626	2.67 lb/hr and
Mean		76.5	45.6	0.64	1.1	0.1666	1.10 gr/Bhp-hr
		451.8	259.3	2.22	3,6	0.5763	
CO		449.7	274.4	2.35	3,9	0,6098	
		452.8	275.3	2.37	3.9	0.6140	
Mean		451.4	270.0	2.31	3.8	0,6000	9.69 gr/Bhp-hr
		106.8	61.3	0.100	0.5	0.0778	
voc		112.3	68.6	0.100	0.6	0.0870	
C ₃ - C ₆ + as C ₁	!	116.4	71.1	0.100	0.6	0.0902	3.63 lb/hr and
Mean	1	111.8	67.0	0.100	0.6	0.0850	1.50 gr/Bhp-hr
Fuel Sulfur		As H₂S in Fuel Gas				S gr/dscf in Fuel Gas	
(SOx as SO ₂)	1	<1.0				<0.001	0.3 gr/dscf
	10.62		<u></u>	<u> </u>			
O ₂	11.23						
	11.23						
Mean	11.03						
Comments:	******						
Goillino.neo.							
							<u> </u>
	- <u></u>						
							_
	-			711-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		<u> </u>	
				· · · · · · · · · · · · · · · · · · ·			
	-,			· —	· · · · · · · · · · · · · · · · · · ·		

Aera Energy LLC Lost Hills Gas Plant IC Engine # 2 Project 010-2806 May 22, 2002 Permit No. S-43-5-8

· · ·			ppm @	(5)			Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		83.3	47.4	0,67	1.1	0.1731	
NOx		78.2	44.6	0.63	1.1	0.1628	
		84.8	48.3	0.68	1.2	0.1765	2.67 lb/hr and
Mean		82.1	46.8	0.66	1.1	0.1708	1.10 gr/Bhp-hr
	,	459.1	261.2	2.24	3.8	0.5806	
co		447.3	255.0	2.18	3.7	0.5667	
	,	453.8	258.7	2.22	3.8	0.5750	
Mean		453.4	258.3	2.21	3.8	0.5741	9.69 gr/Bhp-hr
		64.2	36.6	0.000	0.3	0.0464	_
voc		67.7	38.6	0.000	0.3	0.0490	
C ₃ - C ₆ + as C ₁		60.7	34.6	0.000	0.3	0.0440	3.63 lb/hr and
Mean		64.2	36.6	0.000	0.3	0.0465	1.50 gr/Bhp-hr
_		As H₂S în				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel Gas	
(SOx as SO ₂)		<1.0		,		<0.001	0.3 gr/dscf
	10.53						
O_2	10.55						
	10.55						
Mean	10.54						
Comments:		,					

			······································				
						7	
	•		<u></u>				
					 		

Aera Energy LLC Lost Hills Gas Plant IC Engine # 3

Project 010-2806 May 21, 2002 Permit No. S-43-6-8

Pollutant	%	ppm	ppm @ 15% O₂	gr/Bhp-hr		lb/MMBtu	Permit Limits
1 Ollatant		69.9	44.7	0.63	1.2	0.1632	
NOx		80.3	51.2	0.72	1.4	0.1032	
NOX		88.1	56.3	0.79	1.6	0.2054	2.67 lb/hr and
Mean		79,4	50.7	0.71	1,4	0.1851	1.10 gr/Bhp-hr
		348.1	222.5	1.91	3.7	0.4946	
со		329.1	209.7	1.80	3.5	0.4661	
		346.5	221.3	1.89.	3.8	0.4918	
Mean		341.2	217.8	1.87	3.7	0.4842	9,69 gr/Bhp-hr
		427.2	273.1	0.400	2.6	0.3468	
voc		316.7	201.8	0,300	1.9	0.2563	
C3 - C6+ as C1		456 .6	291.5	0.400	2.8	0.3703	3.63 lb/hr and
Mean		400.2	255.5	0.367	2.4	0.3245	1.50 gr/Bhp-hr
Fuel Sulfur		As H₂S in Fuel Gas				S gr/dscf in Fuel Gas	
(SOx as SO ₂)		<1.0		İ		<0.001	0.3 gr/dscf
	11.67			<u> </u>			
O ₂	11.64						
	11.66						
Mean	11.66						
Comments:							
						-	
		······································	···	·			
					.		
				<u>-</u> -			· · · · · · · · · · · · · · · · · · ·
	**					Alexander Managades de la compansión de la compansión de la compansión de la compansión de la compansión de la	
							
	<u> </u>						

Aera Energy LLC Lost Hills Gas Plant IC Engine # 4

Project 010-2806 May 22, 2002 Permit No. S-43-7-7

Pollutant	%	nam	ppm @ 15% O ₂	gr/Bhp-hr	[b/hr	Ib/MMBtu	Permit Limits
Politicalit	70	ppm 76.0	43.4	0.61	0.9	0.1583	Links
NOx		76.0 76.4	43.4 43.8	0.62	0.9	0.1583	
NOX		76.4 76.0	43.8 43.9	0.62	0.9	0.1601	2.67 fb/hr and
N.F				0.62	0.9]	
Mean		76.1 741.4	43.7		5.3	0.1595	1.10 gr/Bhp-hr
со		741.4 735.1	423,0 421.9	3.62 3.61	5.3 5.3	0.9403 0.9377	
CO		733.1	421.9 423.6	3.63	5.3	0.9377	
				1		1	
Mean		736.8	422.8	3.62	5.3	0.9399	9.69 gr/Bhp-hr
		67.7	38.6	0.000	0.3	0.0491	
VOC		79.3	45.5	0,000	0.3	0,0578	0.00 !! !!
C3 - C6+ as C1		88.5	51.1	0.000	0.4	0.0649	3,63 lb/hr and
Mean		78.5	45.1	0.000	0.3	0.0573	1.50 gr/Bhp-hr
		As H₂S in)		S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuel Gas	0.0 43 5
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
	10.56						
O_2	10.62						
	10.68						
Mean	10.62						· · · · · · · · · · · · · · · · · · ·
Comments:							
				-4			
		 					
	·						
	-		 				
						·	
					<u>.</u>		

Aera Energy LLC Lost Hills Gas Plant IC Engine # 5 Project 010-2806 May 21, 2002 Permit No. S-43-8-7

****			ppm @				Permīt
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		61.1	35.1	0.49	0.8	0.1280	
NOx		63.8	36.7	0.52	0.9	0.1340	
		57.3	33.0	0,46	0.8	0.1204	2.67 lb/hr and
Mean		60.7	34.9	0.49	0.8	0.1275	1.10 gr/Bhp-hr
		479.7	275.3	2.36	3.8	0.6119	
со		474.1	272.6	2.33	3.8	0.6060	
		449.4	258.7	2.21	3.7	0.5749	
Mean		467.7	268.9	2.30	3.8	0.5976	9.69 gr/Bhp-hr
		67.1	38,6	0.000	0.3	0.0489	
voc		70.8	40.7	0.000	0.3	0.0517	
C ₃ - C ₆ + as C ₁		64.5	37.1	0.000	0.3	0.0472	3.63 lb/hr and
Mean		67.5	38.8	0.000	0.3	0.0493	1.50 gr/Bhp-hr
Fuel Sulfur		As H₂S in Fuel Gas				S gr/dscf in Fuel Gas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
	10.62			··			
O ₂	10.64						
	10.65						
Mean	10.64						
Comments:							
				<u>, , , , , , , , , , , , , , , , , , , </u>	***		
							
	-				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		·	· · · · · · · · · · · · · · · · · · ·			<u>,</u>	
	 						

Aera Energy LLC Lost Hills Gas Plant IC Engine #6 Project 010-2806 May 21, 2002 Permit No. S-43-9-7

D = 11t =t	0/		ppm @	aulDha ba	the/ferr	16-7500004	Permit
Pollutant	%	ppm	15% O ₂	gr/Bhp-hr	lb/hr	lb/MMBtu	Limits
		108.0	61.2	0.86	1,3	0.2235	
NOx		103.3	58.5	0.82	1.2	0.2138	
		117.2	65.7	0.92	1.4	0.2400	2.67 lb/hr and
Mean		109.5	61.8	0.87	1.3	0.2258	1.10 gr/Bhp-hr
		535.2	303.3	2.60	3.9	0.6742	
co		483.9	274.3	2.35	3.5	0.6096	
		504.1	282.7	2.42	3.6	0.6284	
Mean		507.7	286.8	2.46	3.7	0.6374	9.69 gr/Bhp-hr
		59.2	33.5	0.000	0.2	0.0426	
VQC		79.5	45.0	0.000	0.3	0.0572	
C3 - C6+ as C1		89.2	50.0	0.000	0.4	0.0635	3.63 lb/hr and
Mean		76.0	42.8	0.000	0,3	0.0544	1.50 gr/Bhp-hr
		As H₂S in				S gr/dscf in	
Fuel Sulfur		Fuel Gas				Fuelgas	
(SOx as SO ₂)		<1.0				<0.001	0.3 gr/dscf
	10.49						
O_2	10.49						
	10.38						
Mean	10.45						
Comments:							
		····					
					·		
			-				
					.,		······································

FAC	ID D	EV	LEASE	Emission Factor Source , PRO DES	PM	со	SOx	NOx		voc	Test Date	Btu/cf	P	mission M	Factor CO		lb/MMcf or lb/f SOx	Mgal NOx	voc	FROG	тос
43	3	4	Section 15 Gas Plant	IC ENGINE NAT GAS	8.9 : E-03 Ib/MMBiu Table 3.2 - 2		863.6	0	184.3	94.0	05/22/02		1020	10,1	1 6	563.6	0	184.3	94.	0 0.05405	1740
					0.91 E-03 lb:MMBu			_			05/22/02		1020			2040		4007		4 0 044504	1238
40	3	5	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2 9.91 E-03 lb/MM6br		634.9	0	188.9	51.4	05/21/02		1020	10.1	1 (334.9	O	188.9	9 51.	4 0.041504	1238
4:	3	6	Section 15 Gas Plant	IC ENGINE NAT GAS	Table 3.2-2 9.91 E-03	1	535.5	0	204.7	358.9	05/22/02		1020	10.11	1 5	535.5	0	204.7	7 358.	9 0.069186	5187
43	3	7	Section 15 Gas Plant	IC ENGINE NAT GAS	fb/MM6hi Table 3.2-2 9.91 2-03	1	039.5	0	176.4	63.0	05/21/02		1020	10.11	1 10	039.5	o	176.4	63.	3 0.037078	1708
43	3	8	Section 15 Gas Plant	IC ENGINE NAT GAS	lls/MMBlu Table 3 2-2		660.9	0	141.0	54.8				10.11	1 6	60.9	0	141.0	54.	5 0,039929	1364
4:	2	0	Section 15 Gas Blant	IC ENGINE NAT GAS	9 91 ff-03 Ib MMSiu Table 3 2-2		704.9	0	249.7	60.2	05/21/02		1020	10.1	1 1	704.9	0	249.7	7 60	2 0.043674	1379
	s K - SOL			TO ESTORIZE THAT ONE	, dois -> 2-2			-	270.1	00.				.0.1			·	2.0			,

black - source te blue - AP-42

PM10 1020 MMBTU/MMcf 9.916-00 lb/MMBTU 10.11 BMMCF

1106.3 MMBTU/MMcf 9.91E-03 lb/MMBTU 10.96 Ib/MMCF NOx 0.1666 lb/MMBTU 1106.3 MMBTU/MMSCF 184.30958 lb/MMscf

0.1708 lb/MMBTU 1106.3 MMBTU/MMSCF 188.95604 lb/MMscf

0.1851 Ib/MMBTU 1106.3 MMBTU/MMSCF 204.77613 Ib/MMscf 0.1595 Ib/MMBTU 1106.3 MMBTU/MMSCF 176.45485 Ib/MMscf

0.1275 lb/MMBTU 1106.3 MMBTU/MMSCF 141,05325 lb/MMscf

0.2258 lb/MMBTU 1106.3 MMBTU/MMSCF 249.80254 lb/MMscf CO 0.600 lb/MMBTU 1106 MMBTU/MMSCF 663.6 lb/MMscf

0.5741 lb/MMBTU 1106 MMBTU/MMSCF 634.9546 lb/MMscf

0.4842 lb/MMBTU 1106 MMBTU/MMSCF 535.5252 lb/MMscf

0.9399 lb/MMBTU 1106 MMBTU/MMSCF 1039.529 lb/MMscf

0.5976 lb/MMBTU 1106 MMBTU/MMSCF 660.9456 lb/MMscf

0.6374 lb/MMBTU 1106 MMBTU/MMSCF 704.9644 lb/MMscf

Aera Energy LLC IC Engine

Sample Description: Fuel Gas Sampled by: Victor Welliver

Project 010-2806A Laboratory ID 052202-02

Date Sampled: May 22, 2002 Date Received: May 22, 2002 Date Reported: May 22, 2002

Fuel Gas Analysis Results

CONSTITUENT	MOLE %	WT. %		CHONS Wt.%
Carbon Dioxide	1.844	4.322	Carbon	73.52
Oxygen	0,056	0.096	Hydrogen	22.63
Nitrogen	0.410	0.612	Oxygen	3.24
Carbon Monoxide	0.000	0.000	Nitrogen	0.61
			Sulfur	0.00
Methane	85.517	73,062	H/C	0.308
Ethane	9.442	15.121		
Propane	2.339	5,493		
Isobutane	0.102	0.317		
N-Butane	0,203	0.627		
Isopentane	0.030	0,115		
N-Pentane	0.027	0.105		
Hexanes	0.028	0.130		
Total(s)	100.000	100.000		

Specific Gravity (Air = 1)	0.6483
Specific Volume (cf/lb)	20,21
Gross Calorific Value, Dry (Btu/cf)	1106.26
Gross Calorific Value, Wet (Btu/cf)	1084.02
Gross Calorific Value, Dry (Btu/lb)	22358.40
Net Calorific Value, Dry (Btu/cf)	999.93
Net Calorific Value, Wet (Btu/cf)	979.84
Compressability Factor "Z" @ 60° F, 1 atm	0.9973
· - ·	

EPA F-Factor @ 68° F (DSCF/MMBtu) EPA F-Factor @ 60° F (DSCF/MMBtu) 8652 8523

References:

ASTM Methods D1945-96 & D3588-98

Terry M. Rowles, Laboratory Manager

Attention: Mr. Mike Brown

Aera Energy LLC P O Box 38 Lost Hills CA 93249

Sampled: 6/10/2002 Submitted: 6/10/2002 Analyzed: 6/11/2002 Reported: 6/11/2002

Gas Analysis by Chromotography - ASTM D 3588-91

 Meter#:
 9416
 Lab No.:
 020460-1

 Description:
 Pressure:

 Facility:
 Lost Hills
 Temperature:

Component		Mole %	Weight %	G/MCF	
Oxygen		0.27	0.46		
Nitrogen		1.11	1.66		
Carbon Dioxid	do.	1.93	4.56		
Hydrogen	a G	ND	0.00		
Carbon Mono	vida	ND	0.00		
Odi Bott Midito	A100	110	0.00		
Methane		85.65	73.60		
Ethane		8.88	14.30		
Propane		1.82	4.31	0.504	
iso-Butane		0.10	0.31	0.033	
n-Butane		0.17	0.53	0.054	
iso-Pentane		0.05	0.19	0.018	
n-Pentane		0.02	0.08	0.007	
Hexanes Plus	3	ND	0,00	0.000	
Totals		100.00	100.00	0.615	
Specific Volume,	ft3/lb	20,33	Values Corrected		
Compressibility (0.9974	for Compressibility	CHONS	Weight %
Specife Gravity,	Calculated	0.6446	0.6460	Carbon	72.210
•				Hydrogen	22.352
GROSS				Oxygen	3.777
BTU/(t3 (Dry	1079.6	1082.4	Nitrogen	1.661
1	Wet	1060.7	1063.5	Sulfur	0.000
BTU/lb (Dry	21945.4	22002.6		
BTU/lb v	Wet	21561.4	21617.6	F FACTOR @	8651
NET				68 deg F, dsct/MMBTU	
BTU/ft3	Dry	975.5	978.0		
	Wet	958.4	960.9	F FACTOR @	8521
BTU/Ib I	Dīy	19828.8	19880.5	60 deg F, dsc#MMBTU	
	Wet	19481.8	19532.6	-	
·	Hydrogen Su	ılfide ppm	Tr<1	Method	GC/FPC
-	Total Sulfur p	ppm	Tr<1	Method	ASTMD 3246
. 1	Hydrocarbon	Dew Point, deg F	Not Tested	Method	Bureau of Mines
	•	H2O/MMCF	Not Tested	Mathod	Bureau of Mines
ND : None Defected				Tr: Trace	
			· · · · · · · · · · · · · · · · · · ·		

Volume Flow Rate DSCFM by Fuel Rate and Fuel F-factor (Fd)

Reference:

EPA Code of Federal Regulations, Title 40, Part 60 Appendix A, Method 19.

The exhaust gas volume flow rate (DSCFM) is calculated based on the fuel flow rate (MMBtu/hr) and the Fuel F-factor (Fd, DSCF/MMBtu) corrected to the stack gas oxygen content (% O_2 vd).

Symbol Identification

DSCFM = Exhaust gas dry standard cubic feet per minute

Fd = Fuel F-factor, DSCF/MMBtu

CFH = Fuel Flow Rate, cubic feet per hour @ 60°F or 68°F GPH = Fuel Flow Rate, gallons per hour @ 60°F or 68°F

GCV = Fuel gross calorific value, Btu/lb

Calculations

1.
$$DSGFM = \frac{MMBtu}{hr} \times Fd \times \frac{20.9}{(20.9 - \%O_2)} \times \frac{1 hr}{60 \text{ min}}$$

2.
$$\frac{\textit{MMBtu}}{\textit{hr}}$$
, gaseous fuels = CFH \times $\frac{\textit{MMBtu}}{\textit{CF}}$
 $\frac{\textit{MMBtu}}{\textit{hr}}$, liquid fuels = GPH \times $\frac{\textit{MMBtu}}{\textit{gal}}$

3.
$$Fd = \frac{DSCF \text{ exhaust gas}}{MMBtu}$$
 @ 29.92"Hg & 68°F

based on fuel elemental analysis and gross calorific value

$$Fd = \frac{10^{6} (3.64 (\%H) + 1.53 (\%C) + 0.57 (\%S) + 0.14 (\%N) - 0.46 (\%C))}{GCV}$$

4.
$$Fd @ 60°F = Fd @ 68°F \times \frac{520°R}{528°R}$$

RECEIVED
NOV 3 0 2007
SJVAPCD
Southern Region

November 28, 2007

San Joaquin Valley APCD 2700 "M" Street, Suite 275 Bakersfield, CA 93301

ATTN: Mr. Richard Edgehill

SUBJECT: Additional Information - Emission Reduction Credits (ERCs)

Application - Shutdown of Lost Hills Section 15 Gas Plant (S-43)

[Project 1075362]

Attached is additional supporting information for the subject project.

Attachment 1 provides a comparison of actual fuel volumes recorded during the years 2001-2004 and fuel volumes that were erroneously reported in annual emission statements submitted by Aera to SJVAPCD for calendar years 2001, 2003, and 2004. This is to help clarify the discrepancy in fuel volumes that was noted for year 2003 during preliminary review of the ERC application.

Attachment 2 provides portable analyzer monitoring results for NOx and CO and compares them to emission factors used in calculation of historical actual emissions (HAE). The purpose of the comparison is to further establish that the proposed emission factors are generally representative – not to build a case that the portable analyzer results are more representative.

Should you have any questions or need further information, please contact me at (661) 665-4363.

Sincerely,

Brent Winn

Environmental Engineer - Belridge

Attachment 1

Comparison of Actual Recorded Fuel Volumes vs.
Fuel volumes Reported in Annual Emission Statements

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

S-43-6															Volumes Reported in
S43-4															Annual Emission
S43-5 5.218						May			_						
S43-6 5.147 4.593 1.489 2.736 4.401 3.102 4.541 4.702 4.344 3.502 2.253 4.420 4.5.285 50.785 543-7 2675 2271 1686 2774 1670 2229 2497 2944 265 196 90 12 19.985 22.777 S43-8 0 0 0 32 2574 2619 3676 4102 2253 2412 4066 1370 23.104 S43-9 1673 1063 2542 1910 860 0 0 0 11 2188 1944 6 2881 15.079 165.915 Allocated Fuel Usage Per Engine (mcf)										_			, , , , ,		
S43-7 2675 2871 1686 2774 1670 2329 2497 2944 265 196 90 12 19.958 22.774 2619 3676 4102 2253 2412 4086 1370 23.104 26.915 165															55.385
S-43-8															50.758
S43-9 1673 1063 2542 1910 860 0 0 11 2188 1944 6 2881 15.079 165.915 186.947															
Allocated Fuel Usage Per Engine (mcf) 2002 2002 2002 2002 2008 Allocated Fuel Usage Per Engine (mcf) 2002 2002 2008 2008 2009 2008 2009 2008 2009															
Allocated Fuel Usage Per Engine (mcf) 2002 2003 2004 2005 20	S-43-9	1673	1063	2542	1910	860] 0	0	11	2188	1944	6	2881		
S-43-4 162 2,293 4,371 3,299 3,521 4,356 4,300 4,361 4,252 2,119 2,949 4,244 40,227	Allocated Fuel Usage Per Engine (mcf)													100.047	
\$\frac{3.45}{5}\$ \ \frac{4.30}{4.30}\$ \ \ \frac{2.158}{2.158}\$ \ \ \frac{3.81}{3.81}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							1								40 221
\$\frac{\cein_{4.564}}{\cein_{4.577}} = \frac{\cein_{4.554}}{\cein_{4.777}} = \frac{\cein_{4.777}}{\cein_{4.777}} = \frac{\cein_{4.577}}{\cein_{4.6577}} = \frac{\cein_{4.577}}															
S.43-7															
S-43-8															
S-43-9 279 1759 2097 1868 2046 222 0 0 0 0 757 3638 3745 16,412 178,316 178,316 178,317 178,316 178,317 178,317 178,317 178,318 178,317 178,318															
Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2003 Allocated Fuel Usage Per Engine (mcf) 2004 Allocated Fuel Usage															
Allocated Fuel Usage Per Engine (mcf) 2003 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual S-43-4 1.232 680 4.417 1,635 2.048 690 2.105 2.403 4.041 4.446 4.568 4.383 32.649 S-43-5 4.538 3.934 3.050 3.932 4.205 3.232 2.037 1,873 2.913 4.508 4.574 4.122 42.915 49.665 S-43-6 3.305 3.686 1,373 2.421 2.711 4.547 4.324 4.334 1.239 2.50 0 606 28.796 S-43-7 2011 3472 3773 2638 3846 398 1640 1427 1892 2265 3723 1013 28.099 20.776 S-43-8 1683 0 2659 3376 3820 3573 2715 3755 3449 3916 3848 3989 36.785 S-43-9 4175 3350 1228 727 0 3191 2805 2297 1746 1763 0 2104 23.387 17.460 Allocated Fuel Usage Per Engine (mcf) 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual S-43-4 4.416 4.374 4.500 3.123 1.306 672 865 0 0 0 0 0 0 0 0 1.9264 32.398 S-43-6 159 45 0 1.110 19 3.041 2.481 4.589 3.851 4.475 1.987 842 22.599 45.406 S-43-7 3.011 2.352 2.73 1.729 922 426 19 13 31 0 0 0 0 0 8.776 S-43-7 3.011 2.352 2.112 4.022 2.103 3.189 1.735 1.255 3.001 1.716 3.131 4.407 3.885 3.532 21.812 S-43-9 0 34 0 0 0 0 0 1.903 3.203 1.716 3.131 4.407 3.885 3.532 21.812	3-43-3	213	11.29		1000	2040		L			737	3030	3/43		
S-43-4 1,232 680 4,417 1,635 2,048 690 2,105 2,403 4,041 4,446 4,568 4,383 32,649 38,066 S-43-5 4,538 3,934 3,050 3,932 4,205 3,232 2,037 1,873 2,913 4,508 4,574 4,122 42,915 49,666 S-43-6 3,305 3,686 1,373 2,421 2,711 4,547 4,324 4,334 1,239 250 0 606 28,796 33,712 32,717 33,773 2638 3846 398 1640 1427 1892 2265 3723 1013 28,099 20,776 3449 3916 3848 3989 36,785 27,268 3449 3916 3848 3989 36,785 27,268 3449 3916 3848 3989 36,785 27,268 34,49 3916 3848 3989 36,785 27,268 34,49 3916 3848 3989 36,785 27													'		
S-43-5 4,538 3,934 3,050 3,932 4,205 3,232 2,037 1,873 2,913 4,508 4,574 4,122 42,915 49,665 S-43-6 3,305 3,686 1,373 2,421 2,711 4,547 4,324 4,334 1,239 250 0 606 28,796 33,712 S-43-7 2011 3472 3773 2638 3846 398 1640 1427 1892 2265 3723 1013 28,099 20,776 S-43-8 1683 0 2659 3376 3820 3573 2715 3755 3449 3916 3848 3989 36,785 27,268 S-43-9 4175 3350 1228 727 0 3191 2805 2297 1746 1763 0 2104 23,387 17,460 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov					l A m u	No.	leen	<u>Γ</u>	Tă un	iès-	Oot	Mari	IDee		
S-43-6 3,305 3,686 1,373 2,421 2,711 4,547 4,324 4,334 1,239 250 0 606 28,796 33.712 S-43-7 2011 3472 3773 2638 3846 398 1640 1427 1892 2265 3723 1013 28,099 20,776 S-43-8 1683 0 2659 3376 3820 3573 2715 3755 3449 3916 3848 3989 36,785 27.268 S-43-9 4175 3350 1228 727 0 3191 2805 2297 1746 1763 0 2104 23,387 17.460 Allocated Fuel Usage Per Engine (mcf) 2004 2004 2004 2004 2-43-4 4,416 4,374 4,500 3,123 1,306 672 865 0 0 0 0 0 19,254 S-43-5 4,378 4,425	2003	Jan	Feb	Mar										Annual	29 000
S-43-7 2011 3472 3773 2638 3846 398 1640 1427 1892 2265 3723 1013 28,099 20,776 S-43-8 1683 0 2659 3376 3820 3573 2715 3755 3449 3916 3848 3989 36,785 27,268 S-43-9 4175 3350 1228 727 0 3191 2805 2297 1746 1763 0 2104 23,387 17,460 Allocated Fuel Usage Per Engine (mcf) 2004 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual S-43-4 4,416 4,374 4,500 3,123 1,306 672 865 0 0 0 0 0 19,254 32,393 S-43-5 4,378 4,425 4,744 3,867 2,041 14 1,351 77	2003 S-43-4	Jan 1,232	Feb 680	Mar 4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	Annual 32,649	
S-43-8	2003 S-43-4 S-43-5	Jan 1,232 4,538	Feb 680 3,934	Mar 4,417 3,050	1,635 3,932	2,048 4,205	690 3,232	2,105 2,037	2,403 1,873	4,041 2,913	4,446 4,508	4,568 4,574	4,383 4,122	Annual 32,649 42,915	49.665
S-43-9 4175 3350 1228 727 0 3191 2805 2297 1746 1763 0 2104 23,387 192,630 186,947 Allocated Fuel Usage Per Engine (mcf) 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual S-43-5 4,378 4,425 4,744 3,867 2,041 14 1,351 77 359 30 1,087 2,180 24,552 43.639	2003 S-43-4 S-43-5 S-43-6	Jan 1,232 4,538 3,305	680 3,934 3,686	Mar 4,417 3,050 1,373	1,635 3,932 2,421	2,048 4,205 2,711	690 3,232 4,547	2,105 2,037 4,324	2,403 1,873 4,334	4,041 2,913 1,239	4,446 4,508 250	4,568 4,574 0	4,383 4,122 606	Annual 32,649 42,915 28,796	49.665 33.712
Allocated Fuel Usage Per Engine (mcf) 2004 200	2003 S-43-4 S-43-5 S-43-6 S-43-7	Jan 1,232 4,538 3,305 2011	680 3,934 3,686 3472	Mar 4,417 3,050 1,373 3773	1,635 3,932 2,421 2638	2,048 4,205 2,711 3846	690 3,232 4,547 398	2,105 2,037 4,324 1640	2,403 1,873 4,334 1427	4,041 2,913 1,239 1892	4,446 4,508 250 2265	4,568 4,574 0 3723	4,383 4,122 606 1013	Annual 32,649 42,915 28,796 28,099	49.665 33.712 20.776
Allocated Fuel Usage Per Engine (mcf) 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual S-43-4 4,416 4,374 4,500 3,123 1,306 672 865 0 0 0 0 0 0 19,254 S-43-5 4,378 4,425 4,744 3,867 2,041 14 1,351 77 359 30 1,087 2,180 24,552 S-43-6 159 45 0 1,110 19 3,041 2,481 4,589 3,851 4,475 1,987 842 22,599 S-43-7 3,011 2,352 273 1,729 922 426 19 13 31 0 0 0 0 8,776 S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8	Jan 1,232 4,538 3,305 2011 1683	680 3,934 3,686 3472 0	4,417 3,050 1,373 3773 2659	1,635 3,932 2,421 2638 3376	2,048 4,205 2,711 3846 3820	690 3,232 4,547 398 3573	2,105 2,037 4,324 1640 2715	2,403 1,873 4,334 1427 3755	4,041 2,913 1,239 1892 3449	4,446 4,508 250 2265 3916	4,568 4,574 0 3723 3848	4,383 4,122 606 1013 3989	Annual 32,649 42,915 28,796 28,099 36,785	49.665 33.712 20.776 27.268
S-43-4 4,416 4,374 4,500 3,123 1,306 672 865 0 0 0 0 0 19,254 32.398 S-43-5 4,378 4,425 4,744 3,867 2,041 14 1,351 77 359 30 1,087 2,180 24,552 43.639 S-43-6 159 45 0 1,110 19 3,041 2,481 4,589 3,851 4,475 1,987 842 22,599 45.405 S-43-7 3,011 2,352 273 1,729 922 426 19 13 31 0 0 0 8,776 11.488 S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 27.474 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8	Jan 1,232 4,538 3,305 2011 1683	680 3,934 3,686 3472 0	4,417 3,050 1,373 3773 2659	1,635 3,932 2,421 2638 3376	2,048 4,205 2,711 3846 3820	690 3,232 4,547 398 3573	2,105 2,037 4,324 1640 2715	2,403 1,873 4,334 1427 3755	4,041 2,913 1,239 1892 3449	4,446 4,508 250 2265 3916	4,568 4,574 0 3723 3848	4,383 4,122 606 1013 3989	Annual 32,649 42,915 28,796 28,099 36,785 23,387	49.665 33.712 20.776 27.268 17.460
S-43-5 4,378 4,425 4,744 3,867 2,041 14 1,351 77 359 30 1,087 2,180 24,552 43.639 S-43-6 159 45 0 1,110 19 3,041 2,481 4,589 3,851 4,475 1,987 842 22,599 45.405 S-43-7 3,011 2,352 273 1,729 922 426 19 13 31 0 0 0 8,776 11.488 S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 27.474 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812 26.542	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9	Jan 1,232 4,538 3,305 2011 1683 4175	680 3,934 3,686 3472 0 3350	Mar 4,417 3,050 1,373 3773 2659 1228	1,635 3,932 2,421 2638 3376 727	2,048 4,205 2,711 3846 3820 0	690 3,232 4,547 398 3573 3191	2,105 2,037 4,324 1640 2715 2805	2,403 1,873 4,334 1427 3755 2297	4,041 2,913 1,239 1892 3449 1746	4,446 4,508 250 2265 3916 1763	4,568 4,574 0 3723 3848 0	4,383 4,122 606 1013 3989 2104	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630	49.665 33.712 20.776 27.268 17.460
S-43-6 159 45 0 1,110 19 3,041 2,481 4,589 3,851 4,475 1,987 842 22,599 45,405 S-43-7 3,011 2,352 273 1,729 922 426 19 13 31 0 0 0 0 8,776 11,488 S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 27,474 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812 26,542	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated	Jan 1,232 4,538 3,305 2011 1683 4175	680 3,934 3,686 3472 0 3350 Per Engin	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf)	1,635 3,932 2,421 2638 3376 727	2,048 4,205 2,711 3846 3820 0	690 3,232 4,547 398 3573 3191	2,105 2,037 4,324 1640 2715 2805	2,403 1,873 4,334 1427 3755 2297	4,041 2,913 1,239 1892 3449 1746	4,446 4,508 250 2265 3916 1763	4,568 4,574 0 3723 3848 0	4,383 4,122 606 1013 3989 2104	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630	49.665 33.712 20.776 27.268 17.460 186.947
S-43-7 3,011 2,352 273 1,729 922 426 19 13 31 0 0 0 8,776 11.488 S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 27.474 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812 26.542	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated 2004 S-43-4	Jan 1,232 4,538 3,305 2011 1683 4175 I Fuel Usage Jan 4,416	680 3,934 3,686 3472 0 3350 Per Engin Feb	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf) Mar 4,500	1,635 3,932 2,421 2638 3376 727 Apr	2,048 4,205 2,711 3846 3820 0	690 3,232 4,547 398 3573 3191 Jun 672	2,105 2,037 4,324 1640 2715 2805	2,403 1,873 4,334 1427 3755 2297	4,041 2,913 1,239 1892 3449 1746	4,446 4,508 250 2265 3916 1763	4,568 4,574 0 3723 3848 0	4,383 4,122 606 1013 3989 2104	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630 2004 Annual 19,254	49.665 33.712 20.776 27.268 17.460 186.947
S-43-8 1,672 2,112 4,022 2,103 3,189 1,735 1,255 3,001 1,164 12 669 767 21,701 27,474 S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812 26.542	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated 2004 S-43-4 S-43-5	Jan 1,232 4,538 3,305 2011 1683 4175 I Fuel Usage Jan 4,416 4,378	680 3,934 3,686 3472 0 3350 Per Engin Feb 4,374 4,425	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf) Mar 4,500 4,744	1,635 3,932 2,421 2638 3376 727 Apr 3,123 3,867	2,048 4,205 2,711 3846 3820 0 May 1,306 2,041	690 3,232 4,547 398 3573 3191 Jun 672	2,105 2,037 4,324 1640 2715 2805 Jul 865 1,351	2,403 1,873 4,334 1427 3755 2297 Aug 0	4,041 2,913 1,239 1892 3449 1746 Sep 0 359	4,446 4,508 250 2265 3916 1763 Oct	4,568 4,574 0 3723 3848 0 Nov	4,383 4,122 606 1013 3989 2104 Dec	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630 2004 Annual 19,254 24,552	49.665 33.712 20.776 27.268 17.460 186.947
S-43-9 0 34 0 0 0 1,903 3,203 1,716 3,131 4,407 3,885 3,532 21,812 26.542	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated 2004 S-43-4 S-43-5 S-43-6	Jan 1,232 4,538 3,305 2011 1683 4175 I Fuel Usage Jan 4,416 4,378 159	680 3,934 3,686 3472 0 3350 Per Engin Feb 4,374 4,425 45	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf) Mar 4,500 4,744	1,635 3,932 2,421 2638 3376 727 Apr 3,123 3,867 1,110	2,048 4,205 2,711 3846 3820 0 May 1,306 2,041	690 3,232 4,547 398 3573 3191 Jun 672 14 3,041	2,105 2,037 4,324 1640 2715 2805 Jul 865 1,351 2,481	2,403 1,873 4,334 1427 3755 2297 Aug 0 77 4,589	4,041 2,913 1,239 1892 3449 1746 Sep 0 359	4,446 4,508 250 2265 3916 1763 Oct	4,568 4,574 0 3723 3848 0 Nov	4,383 4,122 606 1013 3989 2104 Dec	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630 2004 Annual 19,254 24,552 22,599	49.665 33.712 20.776 27.268 17.460 186.947
	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated 2004 S-43-4 S-43-5 S-43-6 S-43-7	Jan 1,232 4,538 3,305 2011 1683 4175 I Fuel Usage Jan 4,416 4,378 159 3,011	680 3,934 3,686 3472 0 3350 Per Engin Feb 4,374 4,425 45 2,352	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf) Mar 4,500 4,744 0 273	1,635 3,932 2,421 2638 3376 727 Apr 3,123 3,867 1,110 1,729	2,048 4,205 2,711 3846 3820 0 May 1,306 2,041 19	690 3,232 4,547 398 3573 3191 Jun 672 14 3,041 426	2,105 2,037 4,324 1640 2715 2805 Jul 865 1,351 2,481	2,403 1,873 4,334 1427 3755 2297 Aug 0 77 4,589	4,041 2,913 1,239 1892 3449 1746 Sep 0 359 3,851 31	4,446 4,508 250 2265 3916 1763 Oct 0 30 4,475 0	4,568 4,574 0 3723 3848 0 Nov 0 1,087 1,987 0	4,383 4,122 606 1013 3989 2104 Dec 0 2,180 842	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630 2004 Annual 19,254 24,552 22,599 8,776	33.712 20.776 27.268 17.460 186.947 32.399 43.639 45.405 11.488
	2003 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8 S-43-9 Allocated 2004 S-43-4 S-43-5 S-43-6 S-43-7 S-43-8	Jan 1,232 4,538 3,305 2011 1683 4175 I Fuel Usage Jan 4,416 4,378 159 3,011 1,672	Feb 680 3,934 3,686 3472 0 3350 Per Engin Feb 4,374 4,425 45 2,352 2,112	Mar 4,417 3,050 1,373 3773 2659 1228 e (mcf) Mar 4,500 4,744 0 273 4,022	1,635 3,932 2,421 2638 3376 727 Apr 3,123 3,867 1,110 1,729 2,103	2,048 4,205 2,711 3846 3820 0 May 1,306 2,041 19 922 3,189	690 3,232 4,547 398 3573 3191 Jun 672 14 3,041 426 1,735	2,105 2,037 4,324 1640 2715 2805 Jul 865 1,351 2,481 19	2,403 1,873 4,334 1427 3755 2297 Aug 0 77 4,589 13	4,041 2,913 1,239 1892 3449 1746 Sep 0 359 3,851 31 1,164	4,446 4,508 250 2265 3916 1763 Oct 0 30 4,475 0	4,568 4,574 0 3723 3848 0 Nov 0 1,087 1,987 0 669	4,383 4,122 606 1013 3989 2104 Dec 0 2,180 842 0 767	Annual 32,649 42,915 28,796 28,099 36,785 23,387 192,630 2004 Annual 19,254 24,552 22,599 8,776 21,701	49.665 33.712 20.776 27.268 17.460 186.947 32.399 43.639 45.405 11.488 27.474

118,695

26.542 186.947

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	3	8	496	365	0	0	0	0	1	403	533	307	COMPRESSOR #1
S-43-5	739	671	7 4 4	645	736	501	743	724	706	517	516	418	COMPRESSOR #2
S-43-6	729	625	248	424	708	487	739	739	698	571	358	694	COMPRESSOR #3
S-43-7	478	524	315	428	305	433	457	526	45	33	15	2	COMPRESSOR #4
S-43-8	0	0	0	5	470	487	673	733	383	407	680	231	COMPRESSOR #5
S-43-9	299	194	475	300	157	0	0	2	372	328	1	486	COMPRESSOR #6
	1471	1304	1488	1434	1444	988	1482	1463	1405	1491	1407	1419	Subt - precomprs
	777	718	790	733	932	920	1130	1261	800	768	696	719	Subt- Refrig Comprs

Meter Readings - 2001

														_
2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	
9356	10,386	9,582	8,934	9,254	8,975	6,294	9,107	9,308	8,744	9,300	8,854	9,037	107,774	PLANT PRE-COMPRESSOR FUI
9354	4,348	3,934	4,228	4,666	5,104	4,948	6,173	7,057	4,706	4,552	4,162	4,263	58,141	PLANT REFRIG.FUEL
													165,915	-

107,774

58,141

Allocated Fuel Usage Per Engine

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	21	59	2,978	2,355	0	0	0	0	6	2,514	3,354	1,955	13,242
S-43-5	5,218	4,931	4,467	4,162	4,575	3,192	4,566	4,606	4,394	3,225	3,247	2,662	49,243
S-43-6	5,147	4,593	1,489	2,736	4,401	3,102	4,541	4,702	4,344	3,562	2,253	4,420	45,288
S-43-7	2675	2871	1686	2724	1670	2329	2497	2944	265	196	90	12	19,958
S-43-8	0	0	0	32	2574	2619	3676	4102	2253	2412	4066	1370	23,104
S-43-9	1673	1063	2542	1910	860	0	Ö	11	2188	1944	6	2881	15,079
													165,915

2001	1Q	2Q	3Q	4Q	
S-43-4	3,058	2,355	6	7,823	
S-43-5	14,615	11,929	13,566	9,134	
S-43-6	11,229	10,239	13,587	10,234	165,915
S-43-7	7,232	6,724	5,705	297	
S-43-8	0	5,225	10,032	7,848	
S-43-9	5,278	2,770	2,200	4,831	

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	26	373	723	545	586	719	690	739	703	350	510	707	COMPRESSOR #1
S-43-5	711	351	63	415	430	425	101	633	267	561	678	348	COMPRESSOR #2
S-43-6	731	608	657	475	464	290	582	89	46 6	560	250	406	COMPRESSOR #3
S-43-7	0	0	0	0	154	327	679	732	685	727	310	36	COMPRESSOR #4
S-43-8	693	312	399	398	526	646	663	737	700	577	401	674	COMPRESSOR #5
S-43-9	46	227	334	321	365	39	0	0	0	148	719	720	COMPRESSOR #6
	1468	1332	1443	1435	1480	1434	1373	1461	1436	1471	1438	1461	Subt - precomprs
	739	539	733	719	1045	1012	1342	1469	1385	1452	1430	1430	Subt- Refrig Comprs

Meter Readings - 2002

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
9356	9,146	8,188	8,724	8,687	8,893	8,688	8,556	8,621	8,686	8,904	8,315	8,771	104,179 PRE-COMPRESSOR FUEL
9354	4,479	4,176	4,603	4,185	5,859	5,763	7,402	8,034	7,533	7,431	7,235	7,437	74,137 REFRIG.FUEL
						-							178,316

Allocated Fuel Usage Per Engine

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	
S-43-4	162	2,293	4,371	3,299	3,521	4,356	4,300	4,361	4,252	2,119	2,949	4,244	40,227	
S-43-5	4,430	2,158	381	2,512	2,584	2,575	629	3,735	1,615	3,396	3,920	2,089	30,024	104,179
S-43-6	4,554	3,737	3,972	2,875	2,788	1,757	3,627	525	2,819	3,390	1,446	2,437	33,928	
S-43-7	0	0	0	0	863	1862	3745	4003	3726	3721	1568	187	19,676	
S-43-8	4201	2417	2506	2317	2949	3679	3657	4031	3807	2953	2029	3505	38,050	74,137
S-43-9	279	1759	2097	1868	2046	222	0	Ö	0	757	3638	3745	16,412	

2002	1Q	2Q	3Q	4Q
S-43-4	6,826	11,177	12,913	9,312
S-43-5	6,968	7,671	5,980	9,405
S-43-6	12,264	7,421	6,971	7,273
S-43-7	0	2,726	11,474	5,476
S-43-8	9,123	8,944	11,495	8,487
S-43-9	4,135	4,137	0	8,140

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738	COMPRESSOR #1
S-43-5	740	636	513	635	698	501	359	321	475	722	720	694	COMPRESSOR #2
S-43-6	539	596	231	391	450	705	762	743	202	40	0	102	COMPRESSOR #3
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194	COMPRESSOR #4
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764	COMPRESSOR #5
S-43-9	739	658	237	137	0	634	590	449	323	316	0	403	COMPRESSOR #6
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534	Subt - precomprs
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361	Subt- Refrig Comprs

Meter Readings - 2003

1	9356	9,075	8,300	8,840	7,987	8,964	8,469	8,466	8,610	8,192	9,204	9,142	9,111	104,360 PRE-COMPRESSOR FUEL
	9354	7,869	6,822	7,660	6,741	7,666	7,162	7,161	7,480	7,088	7,944	7,571	7,106	88,270 REFRIG.FUEL
														192,630

104,360

88,270

192,630

Allocated Fuel Usage Per Engine

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383	32,649
5-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122	42,915
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	0	606	28,796
5-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013	28,099
S-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989	36,785
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104	23,387
													192,630

2003	1Q	2Q	3Q	4Q	
S-43-4	6,330	4,373	8,549	13,397	
S-43-5	11,521	11,36 <u>8</u>	6,822	13,204	
S-43-6	8,364	9,679	9,897	856	
S-43-7	9,256	6,882	4,960	7,001	
S-43-8	4,342	10,769	9,920	11,753	
S-43-9	8,753	3,918	6,849	3,867	

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	695	687	699	495	277	146	137	0	0	0	Ō	0	COMPRESSOR #1
S-43-5	689	695	737	613	433	3	214	12	60	5	227	536	COMPRESSOR #2
S-43-6	25	7	0	176	4	661	393	719	644	737	415	207	COMPRESSOR #3
S-43-7	524	411	48	319	157	71	3	2	5	0	0	0	COMPRESSOR #4
S-43-8	291	369	706	388	543	289	203	465	190	2	106	131	COMPRESSOR #5
S-43-9	0	6	0	0	0	317	518	266	511	721	616	603	COMPRESSOR #6
	1409	1389	1436	1284	714	810	744	731	704	742	642	743	Subt - precomprs
	815	786	754	707	700	677	724	733	706	723	722	734	Subt-Refrig Comprs

Meter Readings - 2004

9356	8,952	8,843	9,244	8,100	3,366	3,727	4,697	4,666	4,210	4,505	3,074	3,022	66,406 PRE-COMPRESSOR FUEL
9354	4,683	4,498	4,295	3,832	4,111	4,065	4,477	4,730	4,326	4,419	4,554	4,299	52,289 REFRIG.FUEL

118,695

Allocated Fuel Usage Per Engine

2004	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0	0	0	0	0	19,254
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77	359	30	1,087	2,180	24,552
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589	3,851	4,475	1,987	842	22,599
S-43-7	3,011	2,352	273	1,729	922	426	19	13	31	. 0	0	0	8,776
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001	1,164	12	669	767	21,701
S-43-9	0	34	0	0	0	1,903	3,203	1,716	3,131	4,407	3,885	3,532	21,812

118,695

66,406

52,289

Tillocati	a diamitchly i uel os	age i ci Liigiiic			
2004	1Q	2Q	3Q	4Q	
S-43-4	13,289	5,100	865	0	
S-43-5	13,547	5,922	1,786	3,297	
S-43-6	203	4,171	10,922	7,304	118,695
S-43-7	5,636	3,077	62	0	
S-43-8	7,805	7,027	5,420	1,448	
S-43-9	34	1,903	8,051	11,824	

33,901

Compressor Run Hours

2005	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
S-43-4	C	0	0	0	0	0	0	0	0	0	0	0	COMPRESSOR #1
S-43-5	752	648	360	349	538	613	544	683	311	700	702	0	COMPRESSOR #2
S-43-6] 1	2	383	364	216	71	197	12	423	23	6	0	COMPRESSOR #3
S-43-7] 0	0	0	0	0	0	0	0	0	0	0	0	COMPRESSOR #4
S-43-8	314	0	0	0	0	0	0	0	0	0	0	0	COMPRESSOR #5
S-43-9] 0	0	0	0	0	0	0	0	0	0	0	0	COMPRESSOR #6
	753	650	743	713	754	684	741	695	734	723	708	0	Subt - precomprs
	314	0	0	0	0	0	0	0	0	0	0	0	Subt- Refrig Comprs

Meter Readings - 2005

9356	2,912	2,636	3,092	3,126	3,043	2,934	2,962	2,704	3,170	2,772	2,696		32,088 PRE-COMPRESSOR FUEL
9354	1,854	0	0	0	0	0	0	0	. 0	0	0	0	1,854 REFRIG.FUEL

Allocated Fuel Usage Per Engine

2005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
S-43-4	0	0	0	0	0	0	0	0	0	0	0	0	0
S-43-5	2,908	2,628	1,498	1,530	2,171	2,629	2,175	2,657	1,343	2,684	2,673	0	24,897
S-43-6	4	8	1,594	1,596	872	305	787	47	1,827	88	23	0	7,150
S-43-7	0	0	0	0	0	0	0	0	0	0	0	0	0
S-43-8	1854	0	0	0	0	0	0	0	0	0	0	0	1,854
S-43-9	0	0	0	0	0	0	0	0	0	0	0	0	0
													33,901

1,854

32,047

Anocateu	Qualtelly I uci Osc	ige rei Liigilie		
2005	1Q	2Q	3Q	4Q
S-43-4	0	0	0	0
S-43-5	7,034	6,331	6,175	5,357
S-43-6	1,606	2,772	2,661	111
S-43-7	0	0	0	0
S-43-8	1,854	0	0	0
S-43-9	0	0	0	0

Attachment 2

Comparison of Portable Analyzer Monitoring Results and Proposed Emission Factors

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

ADD PORTABLE ANALYZER RESULTS for NOx & CO

	2002	Quarterly f	uel (mcf)		
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	6,825.9	11,176.5	12,912.7	9,312.0	40,227
S-43-5	6,968.1	7,670.9	5,979.6	9,405.4	30,024
S-43-6	12,263.6	7,420.6	6,970.7	7,272.7	33,928
S-43-7	0.0	2,725.6	11,474.2	5,476.3	19,676
S-43-8	9,123.4	8,944.5	11,494.8	8,487.1	38,050
S-43-9	4,135.0	4,136.9	0.0	8,139.7	16,412

178,316

CO	2002					_
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	4,529.7	7,416.7	8,568.9	6,179.4	663.6	Source Test 5/21 & 22/2002
S-43-5	4,424.0	4,870.3	3,796.4	5,971.5	634.9	Source Test 5/21 & 22/2002
S-43-6	6,567.2	3,973.7	3,732.8	3,894.5	535.5	Source Test 5/21 & 22/2002
S-43-7	0.0	2,833.2	11,927.4	5,692.6	1039.5	Source Test 5/21 & 22/2002
S-43-8	6,029.7	5,911.4	7,596.9	5,609.1	660.9	Source Test 5/21 & 22/2002
S-43-9	2,914.7	2,916.1	0.0	5,737.7	704.9	Source Test 5/21 & 22/2002
	24,465.3	27,921.5	35,622.5	33,084.7		_

NOx	2002					_
Quarterly Emissions (ibs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	923.3	1,511.7	1,746.6	1,259.5	135.3	Rule 1110.2 Limit (36 ppm)
S-43-5	942.5	1,037.6	808.8	1,272.2	135.3	Rule 1110.2 Limit (36 ppm)
S-43-6	1,658.8	1,003.7	942.9	983.7	135.3	Rule 1110.2 Limit (36 ppm)
S-43-7	0.0	368.7	1,552.0	740.7	135.3	Rule 1110.2 Limit (36 ppm)
S-43-8	1,234.0	1,209.8	1,554.8	1,148.0	135,3	Rule 1110.2 Limit (36 ppm)
S-43-9	559.3	559.6	0.0	1,101.0	135.3	Rule 1110.2 Limit (36 ppm)
	5,317.9	5,691.1	6,605.0	6,505.0		-

2002 CO

Portable Analyzer Results (ppm CO @15% O2)

1Q	2Q	3Q	4Q	Average	Converted to
	341.8	334.1	350.4	342.1	782.4
	255.9	346.6	311.8	304.8	697.1
	265.2	274.9	246.2	262.1	599.4
	560.5	397.4	462.0	473.3	1082.4
	361.5	369.9	325.4	352.3	805.7
	No test	No test	284.3	284.3	650.2

2002	NOx
	1100

Portable Analyzer Results (ppm NOx @15% O2)

					,
1Q	2Q	3Q	4Q	Average	Converted to
	62.6	56.6	68.1	62.4	234.5
	52.6	68.6	64.8	62.0	232.9
	33.5	31.6	25.3	30.1	113.1
	52.1	36.7	52.3	47.0	176.6
	31.2	53.1	42.6	42.3	158.9
	No test	No test	35.2	35.2	132.3

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

ADD PORTABLE ANALYZER RESULTS for NOx & CO

	2003 C	2003 Quarterly fuel (mcf)							
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)				
S-43-4	6,329.8	4,373	8,549	13,397	32,649				
S-43-5	11,520.7	11,368	6,822	13,204	42,915				
\$-43-6	8,364.4	9,679	9,897	856	28,796				
S-43-7	9,256.1	6,882	4,960	7,001	28,099				
S-43-8	4,342.1	10,769	9,920	11,753	36,785				
S-43-9	8,752.8	3,918	6,849	3,867	23,387				
				ſ	192,630				

CO	2003					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	4,200.5	2,901.9	5,673.3	8,890.2	663.6	Source Test 5/21 & 22/2002
S-43-5	7,314.5	7,217.6	4,331.4	8,383.5	634.9	Source Test 5/21 & 22/2002
S-43-6	4,479.1	5,183.2	5,299.6	458.2	535.5	Source Test 5/21 & 22/2002
S-43-7	9,621.7	7,153.6	5,156.1	7,277.2	1039.5	Source Test 5/21 & 22/2002
S-43-8	2,869.7	7,117.5	6,556.0	7,767.8	660.9	Source Test 5/21 & 22/2002
\$-43-9	6,169.8	2,761.9	4,827.8	2,725.8	704.9	Source Test 5/21 & 22/2002
	34,655.4	32,335.7	31,844.3	35,502.7		

NOx	2003			
Quarterly				
Emissions				
(lbs)	10	2Q	3Q	4Q
S-43-4	856.2	591.5	1,156.4	1,812.1
5-43-5	1,558.3	1,537.6	922.8	1,786.0
S-43-6	1,131.4	1,309.2	1,338.6	115.7
S-43-7	1,252.0	930.8	670.9	946.9
S-43-8	587.3	1,456.7	1.341.8	1,589.8
S-43-9	1,183.9	530.0	926.4	523.0
	6,569.0	6,355.8	6,356.8	6,773.5

135.3 Rule 1110.2 Limit (36 ppm) 135.3 Rule 1110.2 Limit (36 ppm) 135.3 Rule 1110.2 Limit (36 ppm) 135.3 Rule 1110.2 Limit (36 ppm) 135.3 Rule 1110.2 Limit (36 ppm) 135.3 Rule 1110.2 Limit (36 ppm)

Emission Factor (ib/mmcf)

CO 2003

Portable Analyzer Results (ppm @15% O2)

					Converted to		
1Q_	2Q	3Q	4Q	Average	lb/mmcf	Rule :	1110.2 Limit (2000 ppm)
276.2	295.0	274.4	361.3	301.7	690.0	co	4574.002 lb/MMcf
273.8	296.2	280.0	286.2	284.1	649.7		
249.5	265.2	314.7	253.9	270.8	619.3		
413.0	No test	433.1	439.7	428.6	980.2		
266.4	306.9	329.1	328.8	307.8	703.9		
253.3	265.5	255.1	313.1	271.8	621.6		

NOx 2003

Portable Analyzer Results (ppm @15% O2)

_	(FF C											
	1Q	2Q	3Q	4Q	Average	Converted to	Rule 1110.2 Limit (36 ppm)					
	51.5	31.4	41.3	28.6	38.2	143.5	NOx 135.260 lb/MMcf					
	63.6	56.1	67.3	69.6	64.2	241.2						
	36.6	30.5	28.2	45.4	35.2	132.3						
Г	38.9	No test	72.6	Failed test	55.8	209.7	Re-tested in Jan 2004 @ 64.3 ppr					
	67.6	62.6	67.7	Failed test	66.0	248.0	Re-tested in Jan 2004 @ 67.1 ppr					
Ľ	29.8	38.4	61.7	30.6	40.1	150.7] - ''					

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

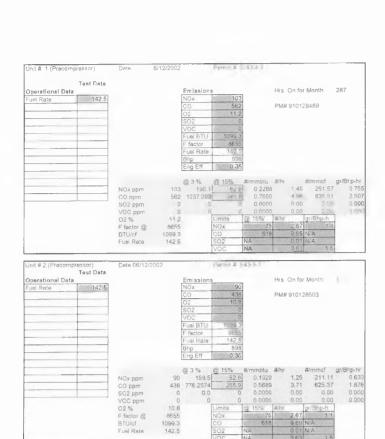
ADD PORTABLE ANALYZER RESULTS for NOx & CO

	2004 0	Quarterly fu			
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	13,289	5,100	865	0	19,254
S-43-5	13,547	5,922	1,786	3,297	24,552
S-43-6	203	4,171	10,922	7,304	22,599
S-43-7	 5,636	3,077	62	0	8,776
S-43-8	7,805	7,027	5,420	1,448	21,701
S-43-9	34	1,903	8,051	11,824	21,812
				Г	118,6

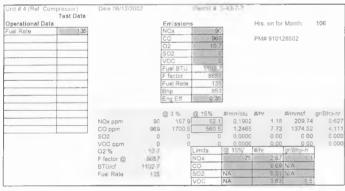
CO	2004					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	12,133.1	4,656.6	789.7	0.0	913.01	Source Test 7/22/2004
S-43-5	10,991.8	4,805.3	1,449.5	2,675.5	811.41	Source Test 7/22/2004
\$-43-6	150.6	3,087.2	8,084.7	5,406.5	740.24	Source Test 7/22/2004
S-43-7	4,398.8	2,401.7	48.5	0.0	780.44	Source Test 5/18/2004
S-43-8	6,571.9	5,916.8	4,563.6	1,219.3	841.98	Source Test 5/19/2004
S-43-9	17.3	957.8	4,051.0	5,949.6	503.18	Source Test 6/17/2004
	34,263.4	21,825.4	18,986.9	15,250.8		

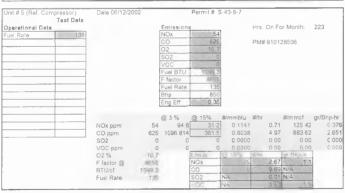
NOx	2004				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	744.5	285.7	48.5	0.0	56.0 Source Test 7/22/2004
S-43-5	816.9	357.1	107.7	198.8	60.3 Source Test 7/22/2004
S-43-6	10.8	222.1	581.7	389.0	53.3 Source Test 7/22/2004
S-43-7	762,4	416.2	8.4	0.0	135.3 Rule 1110.2 Limit (36 ppm
S-43-8	236.4	212.9	164.2	43.9	8 3.44 _38:3 Source Test 5/19/2004
S-43-9	2.0	109.6	463.6	680.9	57.6 Source Test 6/17/2004
	2,572.9	1,603.7	1,374.1	1,312.6	•

CO 2004

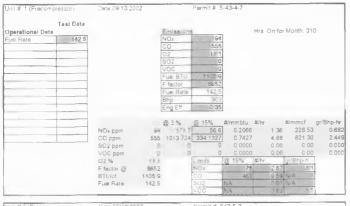

Portable Analyzer Results (ppm CO @15% O2)

						Converted to
1	1Q	2Q	3Q	4Q	Average	lb/mmcf
Γ	369.3	451.5	413.4	No test	411.4	940.9
Г	290.2	242.9	338.9	316.3	297.1	679.5
Γ	265.9	299.6	353.6	378.5	324.4	741.9
Γ	333.9	339.7	317.4	No test	330.3	755.4
Γ	229.6	234.3	141.4	210.1	203.9	466.3
	No test	258.3	235.3	268.2	253.9	580.7


NOx 2004

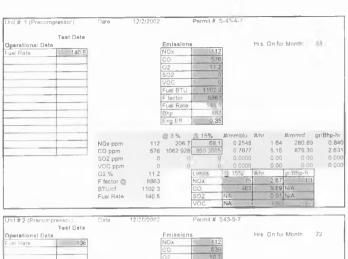

Portable Analyzer Results (ppm NOx @15% O2)

1Q	2Q	3Q	4Q	Average	Converted to
21.1	24.2	12.5	No test	19.3	72.5
69.8	28.6	9.3	19.9	31.9	119.9
34.1	49.7	12.5	18.1	28.6	107.5
53.5	51.9	32.6	No test	46.0	172.8
33.4	44.6	12.5	36.6	31.8	119.5
No test	17.2	12.3	27.4	19.0	71.4



Unit #3 (Preco	mpressor) Test Data	Date 06/12/200)2		Formit S	043-6-2			
Operational D				Emission			Hrs. On fo	r Month:	282
Fuel Rate	142.5			NOx	55 436				
				CO	436	3	PM# 9101	28504	
				Q2 SQ2	11.2				
						8			
				Vac					
				Fuel BTU	1099,3				
				F factor	8655				
				Fuel Rate	142.5				
				Bhp	898				
				Eng Eff	0.35				
					the extent		17.0	40 /	- imi 1 -
				@3%	@ 15%		#/hr		
	-	NOx ppm	55	101 5					
		СО ррт	436	804.5773					
		SO2	0	0	0	0.0000			
		VOC ppm O2 %	0	0	Limits	159	#/hr	gr/Bhp-h	
			11.2			@ 15%'	2.67	grionp-n	
		F factor @ BTU/cf	8655		NOx CO	618		N/A	
			1099.3		502	NA NA		N/A	
		Fuel Rate	142.5		113L	PLA	0.01	IN/A	
					- CERTS	1767	Acres de la Contraction de la	State of the	

Unit #6 (ref. Compress Tes	or) Date 06/12/2 t Date	2002		Financia A	5-43-9-1			
Operational Data			missions			Hrs. On f	or Month	0
Fuei Rate	5 5 11/2		IOx					
			0			PM# 910	128505	
)2		-			_
			02	1 1	4		sor Down for	
			OC .		2		- Will Test v	
			uel BTU fector	1102.7		returned	to service. N	MKB
			uel Rate	8001	7			
			hp h		7			
			ng Eff	0.35	2			
		1	ng ion	0.00				
		6	03%	@ 15%	#/mmblu	#/hr	#/mmcf	gr/Bhp-h
	NOx ppm	0	0.0	0.0	0.0000	0.0	0.00	#DIV/0
	CO ppm	0	0	0	0.0000			
	SO2	0	0	0	0 0000			
	VOC ppm	0	0,		0 0000			#DIV/0
	02 %	0		Limits	@ 15%	#/hr	gc:Bhp-h	-
	F fector @	8657		NOX	75			
	BTU/cf	1102.7		CO	U		9 N/A	
	Fuel Rafe	0		502	NA		1 N/A	
				VOC	NA	510	1.0	

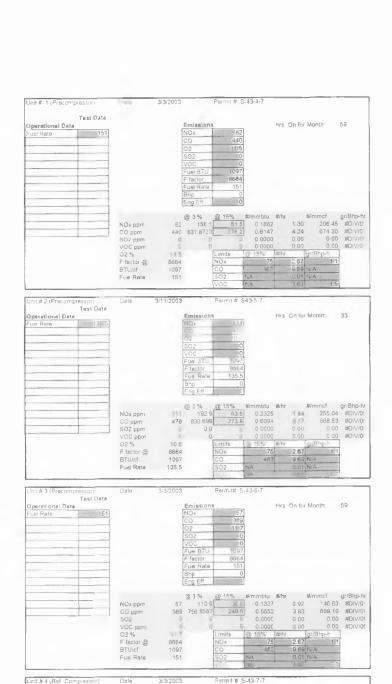

Unit # 2 (Preco	Ompressor) Test Data	Date 09/13/200	2		Permit #	S43-5-7				
Operational D	lata			Emissions		_	Hrs	On for	Month, 59	
Fuel Rate	5,1142.5			NOx	1121					
				CO	611					
				02	10.5	5				
				502		0				
				VOC	(5				
				Fuel BTU	1105.9	9				
				F factor	8652	2				
				Fuel Rate	142.5	5				
				Bhp	903					
				Eng Eff	0.38					
				@3%						gr/Bhp-hr
		NOx ppm	121					1.65		
		СО ррт		1051.525				5 06		
		SO2 ppm	D.			0 0000			0.00	
		VOC ppm	20	D	0			0.00		0.00
		02 %	10.5		Limits		#/hr		gr/Bhp-h	
		F factor @	8652		NOx	75		2.67	1.1	
		BTU/c1	1105 9		CO	463		9 69	N/A	
		Fuel Rate	142.5		SO2	NA		0.01	N:A	
					VOC	NA		3.63	11.5	

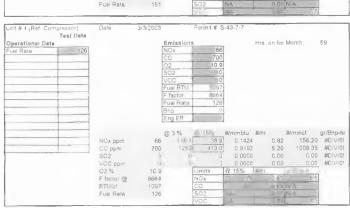
Unit #3 (Precumpr	essori Test Data	Date 09.26/2003	2		Permit# S	43-6-7				
Operational Data				Emissions			Hrs	On for	Month:	451
Fuel Rate	138			NOx	52					
				cc	452					
				02	1102					
				SO2	C					
				VOC	0					
				Fuel BTU	1105 9					
				F factor	8652					
				Fuel Rate	138					
				Bhp	875					
				Eng Eff	0 35					
				@3%	@ 15%	#/mmblu	#hr	1	Vmmcf	gr/Bho-iv
		NOx ppm	5.2			0.1155		0.73	127.72	0.38
		CO ppm	452	834 1031	274 9278	0.6111		3.89	675.78	2.01
		SO2	0		0			0.00	0.00	0.00
		VOC ppm	0	0	0			0.00	0.00	0.00
		02 %	11.2		Limits	@ 15%	#Ehr		Bhp.h	
		F factor @	8652		NOx	.75		2 67		
		BTU/cl			00	161		1498	- 8	
			138		SO2				V.A.	
						NA.		753		

	ompressor) Test Data	Date 09/26/2002	2		Permit # S	-43-7-7				
Operational Da	ta			Emission:			Hra	on for	Month.	589
Fuel Rate	123 5			NOx	61]				
				CO	660					
				02	1111					
				502	0					
				VOC	0	1				
				Fuel BTU	1105.9					
				F factor	8652					
				Fuel Rate	123.5					
				Bhp	783					
				Eng Eff	0.35					
-	-			Eng-Li	0.00	1				
				01%	@ 15%	#/mmbtu	#/hr		#/mmcf	gr/Bhp-h
		NOx ppm	61					0.76	148 30	
		CO ppm	660					5.03	976.68	2.91
	1	S02			0	0 0000		0.00		0.00
		VOG ppm	0	0				0.00		
		02 %	71.1		Limits	@ 15%	#/hr		gr/8hp-h	
		F factor @	8652		NOx	75		2.67		1
			1105.9		CO	463		9.69		
			123 5		SO2	NA	1	0.01		1
) USI IVELE	1200		VOL	igh.	-	0.07		1

Unit # 5 (Ref	Compressor) Test Data	Date 09:26/200	2		Permit # .				
Operational	Data			Emission:		Hrs	On Fo	r Month:	604
Fuel Raia	123.5			NOx	9X 577				
				CO					
				02	10 9	3			
				SO2		7			
				VOC	(3			
				Fuel BTU	Y105 S	9			
				F factor	3652	2			
				Fuel Rate	123.5	5			
				Bhp	783	3			
				Eng Eff	0.36	5			
						-			
				@3%	@ 15%	#/mmblu #/hr		#/mmcf	gr/Bhp-hr
		NOx ppm	90	161 1	53 1	0 1939	1.10	214 43	0.64
		CO ppm	627	1122.33	369 93	0 8222	4 68	909 29	2.71
		502				0 0000	D 00	0.00	0.00
		VOC ppm	- 0	. 0	_ (0 0000	0.00	0.00	0.00
		02 %	10.8		Limits	@ 15% #/hr		gr/Bnp-h	
		F factor @	8652		NOx	73.1	2 67	1.1	
		BTU/cf	1105.9		CO	DE L	9.00		
		Fuel Rate	123 5		SO2	30.			
					VOC	10.00		1.5	

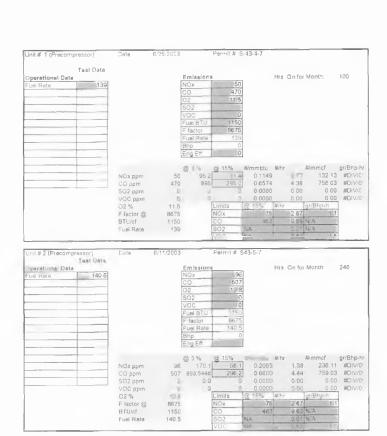
Unit #6 (ref Compressor) Test Data	Date	9/1/2002		Permit #	S-43-9-7				
Operational Data			Emissions			Hrs O	n for l	Month: 0	
Fuel Rate Lightly			NOx	Charles of		Engine	dawi	n for repair	is will
			CO			test wi	nen re	nurning lo	SEFVICE
			02			MABS	V30/0	2	
			S02						
			VOC						
			Fuel BTU	1105					
			F factor	865	2				
			Fuel Rate		0				
			Bhp		0				
			Eng Eff	0.3	5				
			000	CO AFN	#/mmblu	Mar.			'Di 5
	110		@3%	@ 15%			0.00	Vm/mc1 0.00	gr/Bhp-h #DIV/0
	NOx ppm		10.0		0.0000		0.00	0.00	
	CO ppm SO2		. 0		0.0000		0.00	0.00	
	VOC ppm	- 5			0.0000		0.00	0 00	
	O2 %	- 2		Limits	@ 15%	#2hr		Bhp-h	I III
	F factor (6)	8652		NOx	75		2.67	371	
	BTU/cf	1105.9		co	463		1 88.5	VA	
	Fuel Rate	D		SO2	P.A		0.01		
		-		inno	A1A	1	non!	4 2	


Unit # 2 (Precomp	Test Data	Date 1	2/20/2002		Permit #	\$43-5-7				
Operational Data				Emissions			Hrs	On for	Month.	72
Fuel Rate	136			NOx	1.1	2				
	1			CO	53	9				
				02	10	7.				
				SO2		0				
				VOC		D)				
				Fuel BTU	1102	3				
				F factor	886	3				
				Fuel Rate	13	6				
				Bhp	85	9				
			l	Eng Eff	0.3	5				
				53%	@ 15%	#/mmblu	#/hr		#/mmcf	gr/Bhp-hi
		NOx ppm	112	196.5	64.	8 0.242	3	1.51	267.12	0.79
		CO ppm	539	945.8922	311.774	5 0.709	9	4.43		
		SO2 ppm	0	-0.10		0 000		0.00		
		VOC ppm	0	U		0.000	0	0.00		0.00
		02 %	10.7		Limits	@ 15%			gr/Bhp-h	
		Filactor @	8863		NOx	7	5	2.67		1
		BTU/cf	1102 3		CO	46	3	9.69		
		Fuel Rate	136		SO2	NA		0.01	N/A	
					VOC	565	1			


Unit # 3 (Precompressor) Test Date	Date	12/2/2002		Permit#	S-43-6-7				
Operational Data			Emissions			Hrs.	On for	Month:	34
Fuel Rate 140.	5		NOX	4	12				
	-		CO	40	39				
			02	11	1				
			502		0)				
			VOC		0				
			Fuel BTU	1102	3				
			F factor	886	53				
			Fuel Rate	140	.5				
			Bhp	88	37				
			Eng Eff	0.3	35				
			@3%	D.18%	#mmblu	#/hr		#/mmct	gr/Bhp-hr
	NOx ppm	42	.76 7	25	3 0 0946		0.61	104 26	0.31
	CO ppm	409	747.051	246 234	0 5606		3.62	617.99	1.84
	SO2	0			0.0000		0.00	0.00	0.00
	VOC ppm	.03	0		0.0000		0.00	0.00	0.000
	02 %	11.1		Limits	@ 15%'	#/hr		gr/Bhp-h	
	F factor @	8883		NOx	75		207	1 1	
	BTU/cf	1102.3			lin a		11.89		
	Fuel Rate	140 5		SO2	NA			N/A	
				700	NA			1.5	

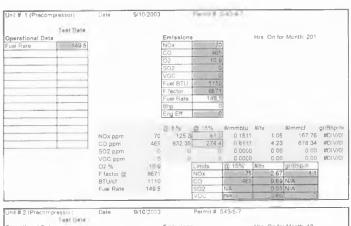
Unit #4 (Ref. 0	Test Data	Date 12	2/2002		Permit #	3-43-7-7			
Operational D	ata			Emissions	1		Hrs. on fo	r Month:	34
Fuel Rate	122		[NOx	94				
					830				
				02	10,3	3			
			[SO2	(0			
				VOC					
				Fuel BTU	1102.3				
				F factor	886				
				Fuel Rate	122				
				Bhp	771	1			
	-		(Eng Eff	0.35	5			
	-			@3%	@ 15%	#/mmbtu	#/hr	#/mmcf	gr/Bhp-hr
		NO× ppm	94	158.7					
		CO ppm	830	1401.604					
		SO2	0	A	4011011	0.0000			
		VOC ppm	0:	10	y.	0 0000			
		02 %	10.3		Limits	(@ 15%)	#/hr	gr/Bhp-h	1
		F factor @	8863		NOx	75	2.67	191	
			1102.3		CO	463	969	N/A	
		Fuel Rate	122		SO2	NA.	0.01	NA	
					QCS6	14	190	3 3	

Unit # 5 (Ref. Con Operational Data	Tost Date	Dala	12/2/2002	Emission	Permit #	S-43-8-7	blen	06.50	or Month:	2
F.el Raia	122			NOx CQ O2 SC2 VOC Fuel BTU F factor Fuel Rate Bhp	7, 55) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 0 0 3 3 3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, 1100	
		NOx ppm CO ppm SO2 VOC ppm O2 % F factor @ BTU/ct Fuel Rate	73 557 6 8863 1102 3	129 4 987.1584 0 0	@ 15% 42.6 325.3762	#/mmbtu 0 1595 0 7408 0 0.0000 0 0.0000	#. Pur	0 89 4 11 0 00 0 00 2.67 9.69 0.01 3.63	175 83 816 62 0 00 0 00 gr/Bhp-h	0.526 2.443 0.000 0.000


Unit #6 (ref. C	ompressor) Test Data	Date	12'2 2002		Permit #	S-43-9-7				
Operational Da	nt n			Emissions			Hra	On for	Month:	34
Fuel Rate	122			NOx	47	Q.				
				CO	477	7				
				02	1	1				
				SO2	1	3				
				VOC	- 1	37				
				Fuel BTU	1107.3	3				
				F factor	8860					
				Fuel Rate	122					
				Bhp	77					
				Eng Eff	0.35					
					0.761					
				@ 3 %	2 15%	Wrombtu	#/hr		#/mmcf	gr/Bho-hr
		NOx ppm	59		35 2	0 1315		275	144 98	0.434
		CO ppm	477	862 4545	284 2727	0 6472		3.63	713 46	2.138
		302	0	13	- (0 0000		0.00	0.00	
		VOC ppm	0	· a		0 0000		0.00	0.00	
		02 %	11		Limits		#/hr		gr/Bhp-h	1
		F factor @	8863		NOx	75		2.67		1
		BTU/cf	1102 3		CO	463		8.69		
		Fuel Rate	122		SO2	NA	-	0.01		
		1 001 11010	122		VOC	NA		1	1976	

Unit #5 (Ref.)	Compressor) Test Dala	Date :	3/11/2003		Permit#	S-43-8-7				
Operational D	ata			Emission	5		Hrs	On Fo	r Month:	34
Fuel Rate	1.457 122.5			NOx	5.18	3				
				C0 O2	468	5]				
				02	10 €	3				
				S02	0	5				
			1	VOC		5]				
				Fuel BTU	1097	7				
				F factor	8664					
				Fuel Rate	122.5					
				Bhp	(5				
				Eng Eff		1				
				- 3	-	13				
				@3%	@ 15%	#/mmbtu	#/hr		Wmmcf	gr/Bhp-h
		NOx pom	118	205.1	67 E	0 2472		1 38	271.13	#DIV/0
		CO ppm	465	808, 1068	268.4	0 5928		3.32	650.35	#DIV/0
		S02	- 2	. 0		0 0000		0.00	0.00	#DIV/0
		VOC ppm	17		1	0.0000		100		#DIV/0
		02 %	10.8		Limits	@ 15%	#/hr		gr/Bhp-h	
		F factor @	8664		NOx	75		2.67	1/1	
		BTU/ct	1097		co	463		9.69	N/A	1
		Fuel Rale	122 5		SO2	NA.		0.01		1
					100	194				1

	Compressor) Test Data	Date 3/	3/2003		Permit # 3	3-43-9-7			
Fuel Rate	Na(= 126			Emission NOx CO O2 SO2 VOC Fuel BTU F factor Fuel Rate Bhp Eng EH	50 425 11 0 0 0 497 8664 126		Hrs Onfo	ir Month:	5
***		NOx ppm CO ppm SO2 VOC ppm O2 %	50 425	90.4 768 4343	253 3	0 1090 0 5637 0 0000 0 0000	0 63 3.25 0 00 0.00	618.42 0.00 0.00 gr/Bhp-h	#DIV/0
		Filactor @ BTU/ct Fuel Rate	8664 1097 126		NOx CO SO2	75 463 NA	9.69	N/A N/A	



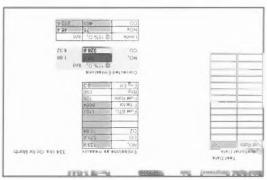
Unit # 3 (Precom	pressor) Test Data	Date	6/11/2003		Permit# S	-43-6-7				
Operational Dat	a			Emissions			Hrs. O.	n for h	Vonth.	238
Fuel Rate	140.5		ſ	NOI	747	7				
			1	CO	409	1				
				02	11.8					
			Ī	SO2	0	1				
			Ī	VOC	0	1				
				Fuel BTU	1150					
			1	F factor	8675	1				
			Ī	Fuel Rate	140.5	1				
				Bhp	0					
				Eng Eff						
	-			@3%	a 15%	#/mmbtu	#/br	#	Vmmcf	gr/Bhp-h
		NOx ppm	47	92.5				75		#DIV/01
		CO ppm	409					148		#DIV/0
		SO2		. 11	1	0.0000		00	0.00	#DIV/0
		VOC ppm	0.	0	.70	0.0000		00	0.00	#DIV/08
		02 %	2918		Limits	@ 15%	#/hr		r/Bhp-h	
		F factor @	8675		NOx	75	2	67	1.1	
		BTU/cf	1150		CO	463		169 N		
		Fuel Rate	140.5		SO2	NA	0	1.01 N	UA.	
						196.1	-	-		

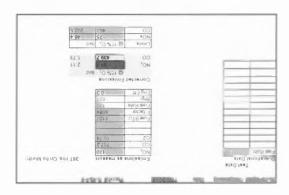
Unit # 4 (Ref. Compressor: Test D		6/1/2003	Perm	1 # S-43-7	-7			
Operational Data		Emi	ssions			Hrs. on for	Month:	
Fuel Rate		NOX						
		CO						
		02		Automotive to the				
		SO2		0				
		VOC		0				
				1150				
		F fac		8675				
			Rate	0				
		Bhp		0				
		Eng	Eff					
						44		
			% @ 15					gr/Bhp-h
	NOx ppm	0	0.0		0000			#DIV/C
	CO ppm				0000			
	S02		- 10		0000			
	VCC ppm	7.	Transaction of the last of the		0000	0 00		#DIV/0
	02 %	0075	Limits	@ 15			gr/Bhp-h	
	F factor @	8675	NOx	-	75			
	BTU/cf	1150		1000	463		N/A	
	Fuel Rate	9.	SO2	NA		V.01	N/A.	
			VUC	100	- 2	Total Control	Annual I	

Unit # 5 (Ref. Co.	Test Data	Date 6	711/2003		Permit #	S-43-8-7				
Operational Date				Emission		-	Hrs	On Fa	r Month.	239
Fue Rate	123			NOx	108					
				00	516					
				02	1.					
				502)				
				VOC.		3				
				Fuel BTU	1150	5				
	-			F factor	8675	5				
				Fuel Rate	123					
				Bhp	-	5				
				Eng Eff		1				
					-					
	-			@3%	@ 15%	#/mmbtu	Mhr		Alleria I	gr/Bhp-h
		NOx ppm	105					24		
		GO ppm	515					4.03		
		SO2	313	931,1010	300.5			0.00		
			D.			0.0000		0.00		
		∨0C ppm 02 %	-11		Limits	@ 15%	#/hr	0 00	gr/Bhp-h	1
						75		-0.07		
		F factor @	8675		NOx			2.67		
		BTU/cf	1150		CO	463	-	9.69		
		Fuel Rate	123		502	NA		0.01	NA	
					Tele	190				

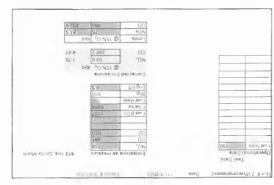
Unit #6 (ref Compres	st Data	Date	6/11/2003		Permit #	S-43-9-7				
Operational Data				Emissions	5		Hra C	n for	Month	15
Fuel Rate	123			NOx	65					
				CO	450					
				02	10.9	9				
				S02						
				VOC)				
				Fuel BTU	1150					
				F factor	8675	5				
				Fuel Rate	123	3				
				Bhp	0)				
				Eng Eff						
				@3%	@ 15%	#/mmblu				gr/Bhp-hr
		NOx ppm	65					0.83		
		CO ppm	450	805.5	265.8	0.5917		3 49		
		S02	0	0	(0.00	0.00	
		VOC ppm	0					0.00		#DIV/01
		02 %	10 9		4.10000	@ 15%	1300.0.0		gr/Bhp-h	
		F factor @	8675		NOx	75		2.67		
		BTU/of	1150		CO	463		9 69		
		Fuel Rate	123		SO2	NA		0.01		
					VOC	NA		3.63	1.5	

Unit # 2 (Precomp	ressor]	Date	9/10/2003		Permit # 3	\$43-5-7				
Operational Data				Emissions	5		Hrs C	n for	Month, 10	
Fuel Rate	141.5			NOx	121					
				CO	503	ĺ				
				02	10.3					
				502	0	1				
				VOC	0					
				Fuel BTU	1116	1				
				F factor	8671					
				Fuel Rate	141.5	ā .				
				Bhp	0	ī				
				Eng Eff						
	-			@3%	@ 15%	#/mmblu	#/hr		#/mmcf	gr/8hp-l
		NOx ppm	121					1.61	273 57	
	_	CO ppm	503					4 08		
	_	SO2 ppm	16	0.0		0.0000		0.00		
		VOC ppm	1.0		7	0 0000		660	0.00	#DIV/0
		02 %	10.3		Limits	@ 15%	#/hr		gr.Bhp-h	
		F factor @	8671		NOx	75		2.67		
		BTU/cf	1110		co	483		9.69		1
		Fuel Rate	141.5		SO2	NA		0.01		1
					VOC	F4.5.		183	5.7	

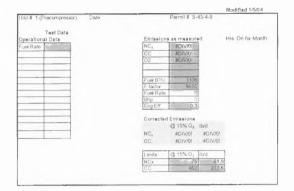

Linit # 3 (Precor	mpressor1 Test Data	Date	9/10/2003		Pairmoth 2	13-6-7			
Operational Da	ta			Emissions	1		Hrs Onfo	r Month: 202	
Fuel Rate	149.5			xCM	43				
				CO	480				
				02	11.9	1			
				S02	0	1			
				VOC	-0	1			
				Fuel BTU	1110	1			
				F factor	8671	1			
				Fuel Rate	149.5	1			
-				Bnp	0				
				Eng Eff					
				E-15 W					
				0.1%	@ 15%	#mmblu		#/mmcf	gr/3hp-f
		NOx ppm	43	85 5	28 2				
		CO ppm	480	954 6667	314 7				
		SO2	D	0	- 2	0000			
		VOC ppm	.0	D	.0	0 0000			#DIV/0
		02 %	11/9		Limits	@ 15%	並/hr	gr/Bhp-h	
		F factor @	8671		NOx	75	2 67	1 1	
		BTU/cf	1110		co	463	9 69	N/A	
		Fual Rate	1495		SO2	NA	0.01	N/A	
					100	76.4	2.00	1.5	


Unit #4 (Ref. Cor	npressor) Test Data	Date 9/25/2003			Permit # .	S-43-7-7				
Operational Data				Emissions	9		Hrs	an for	Month 340	
Fuel Rate	128			xCM	123	3				
				CO	734	5				
				02	10.5	9				
				S02	- (
				OCV	(0				
				Fuel BTU	1706					
				F factor	8656					
				Fuel Rate	126	5]				
				Bhp	(
				Eng Eff.						
				@3%	@ 15%	#/mmbtu			#/mmcf	gr/Bhp-h
		NOx ppm	123					1 54		
		CO ppm	734	1313.86	433.1			5 58		
		SO2	D			0 0000		0.00		
		VOC ppm	-0		7.	0 0000		0.00		#DIV/0
		O2 %	109		Limits		#/hz		gr/Bhp-h	
		F factor @	8658		NOx	75		2.67		
		BTU/cf	1104		CO	463	1	9.69		
		Fuel Rate	126		SO2	NA			N/A	
					VOC	NA		3/51		

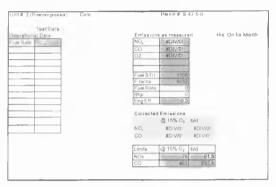
Unit #5 (Ref. Cor	Test ()ate	Date 9/26/2003			Permit #	S-43-8-7				
Operational Date				Emissions	3		Hrs. Or	Fo	Month: 545	
Fuel Rate	128.5			NOx	11	7				
				CO	56	9				
				02	10.	7				
				SO2		0				
				VOC		0)				
				Fuel BTU	110					
				F factor	865					
				Fuel Rate	128.	5				
				Bhp		0				
				Eng Eff						
				@3%	@ 15%	#/mmblu	#/hr		#/mmcf	gr/Bhp-h
		NOx ppm		205.3	67	7 0.2473	1	46	273.01	#DIV/0
		CO ppm	569			0.7320	4	33	808.17	#DIV/0
		502	0	0		0.0000	0	.00	0.00	#DIV/0
		VOC ppm	0			0 0000		00	0.00	#DIV/0
		□2 %	10.7		Limits	@ 15%	#Jru		gr/Bhp-h	
		F factor @	8658		NOx	75		67		
		BTU/cf	1104		CO	463			NIA	
		Fuel Rate	128 5		502	NA			N/A	
					VOC	NA		1011		


Unit#6 (ref Compresso Test!		9/25/2003		Permit# !	S-43-5-7			
Operational Data			Emissions			Hra On I	or Month: 206	
Fuel Rate	126		NOx	113	3			
			CO					
			02	10.1	1			
			SO2	0)]			
			VOC		3			
			Fuel BTU	1100				
			Ffactor	8658	3			
			Fuel Rate	126	5			
			Bhp	0	1			
			Eng Eff					
			@3%	@ 15%	#/mmbtu	ft/hv	#/mmcf	gr/8hp-h
	NOx p	pm 113					1 249 03	
	CO pr						9 626 45	
	502	0		200	0 0000			
	VOC				00000			
	02 %			Limits	@ 15%	#.br	ar/Bhp-h	1
	F facili			NOx	75	2.6		
	BTU/c			CO	463		9 N/A	
	Fuel F			SO2	NA		1 N/A	1
				DC	100	3.0	1	7

535 0	[090	00	1		
9 99	94	XON			
	P/QI 20 %91	D smun'y			
1176	3131	7 00			
99 0	9.00	"ON			
550	P/91 ZO %91			-	_
		Corrected Em			+
	€.0	#3 go3			
	969	dug			_
	971	etsR leu-i			
	1886	F 180000		_	_
	1011	UT8 leu 3			1
	0.500	70			
	80 0s	05		-	-
	9 898	*ON		100	4,000
dinoM tot nO ath E8		Emissions as			Nungy H
disold to on side E8.	911198-0-22	es amplesion-		P(K)) (8e	



Hra On for Month.	22	MUSEBIG SE	Emissions		staG far ats0	I Isnottated
		7.46	"ON		141	els Rate
		433	00			
		10.84	20			
		1041	tiff beig			-
		1011	Fuel BTU			-
		P298	Fuel Rate		-	-
		562	gyb		-	-
		£.0	#3 pn3			
			Corrected			
		EO 461 0				
	1.13	V 94	*ON			
	58.5	523 8	00			
	P/4	-0 %S1 0	8 lirmi.]			
1	610	94	XON			
	232.6	E9#	00			



1	535 0	E81-	00			
	3 19	92	*ON			
[B/43	10 491 D	S)KUIT			
	99.9	3843	00			
	0.72	28.6	"ON			
	pAq	10 %91 0				
			Defoeting			
		0.3	Eng Eff			
		918	d48			
		091	Fuel Rafte			
		14990	Toloist F			
		1011	UT8 leui		-	-
		-	70			
		15.35	05		-	+
		525.4			201	OWN L WOL
		9.14	ON		091	elieR Rate
Hra. On for Month	384	Fillassim as	ano(aalm3		Alad tea	lauxille sext

Tirria	NO,	CO	02
Average	#DIV/01	#DIV/0!	#DIV/05

Operational I	st Data Data	Emissions as measured Hrs. On for M	onth:
Fuel Rate	160	NO. #DIV/0!	
		CO MDIV/01	
		O2 WDfV/pr	
-		Fuel BYU 1196	
		F factor 8652	
		Fuel Rate 1990	
		Bhp Rote	
	-	Eng Eff 0.3	
		Corrected Emissions	
		@ 15% O ₂ 16/d	
-		NO. #DIV/O! #DIV/O!	
		CO WDIV/O! WDIV/O!	
		Limits. @ 15% O; lth/d	
		NOx 76 61.9 CO 463 232.6	

Tune	NO,	CO	02
	98	671	11.5
	108	723	11.4
	106	745	11.2
	104	792	11.3
	105	810	11.3
Average	104.2	748.2	11 34

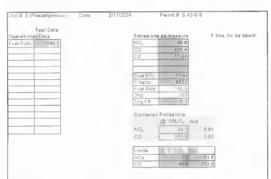
Test Data			
Operational Data		as measure	14 Hrs. On for Month:
Fuel Rate 160	NO,	104.2	
	CO	748.2	
	02	11.34	
	1		
	Fuel BTU	1108	
	F factor	1108 8652	
	Fuel Rate	TVIE	
	Bhp	8459	
	EngEff	0.3	
	Corrected E	missions	
		@ 15% O ₂ Ib/d	
	NO,	64.3	1.73
	co	461.8	7.57
	Limits	& 15% O. Jib/if	
	NOx		46 4
	CO		328

Time	NO.		02
	126	601	
	112	572	10.4
	111	606	10.6
	126	569	10.3
	121	576	10.5
Average	119 2	584.8	10 42

Unit # 5 (Ref Compression) Date	1/5/2004	PROME SALA	2
Teer Date	Emlesions	as measure	54 Hrs. On for Month
Operational Data	NO.	119.2	sa Hrs. On for Month
V Train add	CO	584.8	
	02	10.42	
	92	10.42	
	Fuel BTU	1100	
	F factor	8652	
	Fuel Rate	144	
	Bhp	782	
	EngErr	0.3	
	Corrected	Emissions	
		@ 15% O2 lb/d	
	NO,	67.1	1.63
	CO	329 2	4 86
	Limits	gaso, lor	
	NOx	75	46 4
	CO	463	232 8

Time	NO,	60	02
Average	#DIV/01	#OIV/0!	#DIV/01

Init #6 (Ref. Compressor)	THE REAL PROPERTY.
Test Data	
Operational Data	Emissions as measured here this by about
uel Rate 160	NO, #DIV/01
	CO #DIV/O!
	O2 #O(V/O)
	Fuel BTU 1106
	F factor 8652
	Fuel Rate Tritte
	Bhp RG
	EngEff (3 03)
	Corrected Emissions
	@ 15% O ₂ lb/d
	NO. WDIV/DI WDIV/01
	CO #DIV/0! #DIV/0!
	Limits @ 15% O. litvif
	NOx 75 45.4
	CO 463 232 6


Time	NO,		02
	27	504	12.8
	29	515	12.7
	29	510	12 7
	30	513	12.8
	31	512	12.7
Average	29.2	510.8	12.74

Test Data Operational Data	Emissioneia	s measure 216 Hrs. On for Mo	nlh
Fuel Rate 152 5	NO,	29.2	
	CO	51D 8	
	02	12.74	
	Fuel BTU	1150	
	F factor	8674	
	Fuel Rate	152 5	
	Bhp	861	
	Eng Eff	0.3	
	Corrected E	missions	
	6	2 15% O₂ lb/d	
	NO,	21 1 0 56	
	co [369.3 6.01	
	Limits	2 15% O ₂ lib/d	
	NOx	75 61.6	
	CO	463 - 232.€	

Time	NO.	CO	02
	110	503	10.7
	125	509	10.6
	131	535	10.6
	123	515	10.6
	115	461	10.7
Average	121 4	504.6	10.64

Unil# 2 (Precompressor) Date	5/6/50/9	Permit # S-43-5-9	
Test Data			
Operational Data		121 4 216 Hrs On fo	r Monin
Fuel Rale 152 5	NO.		
	CO	504.65	
	O2	10 64	
	Fuel BTU	1150	
	F factor	8674	
	Fuel Rate	152 5	
	Bnp	BG1	
	Eng Eff	0.3	
	Corrected	Emissions	
		@ 15% O ₂ lb/d	
	NO,	69 8 1 87	
	CO	290 2 4.72	
	Limits	@ 15% O, Ibd	
	NOx	75 61 5	
	CO	463 232.6	

Time	NO _x	CO	O2
	40	385	11.0
	54	416	11.2
	60	450	11.1
	6.7	494	11
	58	432	11.1
A verage	55.8	435 4	11 24

Tyne	PAC)		
	.60	570	1,7
	10/0	524	13.4
	8.8	.509	115
	.64	107	11.7
	74	492	11.9
Average	RA W	520.5	33.7

Unit # 4 (Ref. Compressor Date	3/26/2004 Fermit # S-43-	7-8
Test Data		
Operational Data	Emissions as measure	8 Hrs On for Month
Fuel Rate 142	NO, 83.4	
	CO 520 6	
	02	
	Fual BTU 1101	
	Filactor 8662	
	Fuel Rate 142	
	8np 768 Eng Eff 0.3	
	Eng Eff 0.3	
	Corrected Emissions	
	@ 15% O2 1b/	d
	NO, 53 5	1 27
	CO 333.9	4 84
	Limits @ 15% O2 Rtv	d
	NOx 75	46 4
	CO 483	232 6
	-	

Time	790.3		05
	50	354	77.0
	-635	351	11.9
	8.7	3/49	51.9
	90	3.07	11.9
	62	2017	51.7
Auntado	51.8	357.8	11.82

Unit # 5 (Ref. Compressor) Date	3/26/2004 Permil # S-43-8-8
Test Data Operational Data Fuel Rate 158	Emissions as measure 596 Hrs. On for Month NO. 51.4 CO 353.4 O2
	Find ETU 1101 Fitaetox 8663 Fond Rate 158 Bhg 854 Eng Eff 0.3
	Corrected Emissions
	NO, 33.4 0.89 CO 229.6 3.70
	Limits Qt 15% O ₃ livid NOx 75 46.4 CO 4(4.1) 232.6

Time	NO.	CO	02
	-	-	
	+	-	
A very service	MANAM	MANAN	****

Intro (Aut Compressor) Turk	Permit # S-43-9-8
Test Data	
Operational Bata	Emissions as measured Hrs. On for Month
Fuel Rate 160	NO. WOIVIO!
	CO #DIVIO!
	O2 NOIVIO
	Fuel BTU 1160
	F factor 8674
	Fuel Rate 160
	Bhp 904
	Eng Eff 0.3
	Corrected Emissions
	@ 15% O ₂ 1b/d
	NO, WDIV/0! WDIV/0!
	CO #DIV/0! #DIV/0!
	Limits @ 15% O2 lb/d
	NOx 75 46.4
	CO 463 232.6

Operational Data	Emissions as measure 104 Hrs. On for Mor	nih:
ruei Rate 126	NC; 31.4	
1	GO 588.2	
	02 11, 24	
	Fuel BRU	
	F-factor 3659	
	Fuel Rate 12	
	Bro S81	
	Eng En 0.3	
	Corrected Emissions	
	@ 15% O2 lb/d	
	NO. 242 6.51	
	GO 451.5 5.81	
	Limits @ 15% O ₂ llb/d	
	NOx 75 61.9	
	CO 463 232.6	

Janu.	NO,	0 102	
		334	
	39	3.65	
	4.2	0.90	
	39	1 5	
	42	360	170
Average	-41.2	350	12.4

Test Data Operational Data	Em	issions as meas:	are 565 Hrs. On for Month
Fuel Rate 144	NO.		
	co		
	Ö2		4
	Euc	HBTU 11	
		ictor 965	
	Fue		3.3
	Bhp		79
	Eng	Eff 0	3
	Cor	rected Emission	
		@ 15% 0	
	NO	28	6 0.69
	CO	242	3.57
	Lim		2 lb/d
	NO		75 61 9 33 232 8
	CO	4	33 232 6

72 A01 11-4 51 850 11-4 61 872 11-4 77 490 11-4 70 419 11-4 70 419 11-4) me	NO.		
8 80 104 87 80 114 70 8 9 114		75	ABU	15.4
77 49 11 4 70 4 9 11 4		3		11.4
70 919 11.4		10.1	A72	110
70 919 11.4		87	ASC	115-4
Nome to Alg. 11.4			813	13.4
	CLASS (S. etc.)	800	-ABZ-8	11.4

Operational [st Data Jata		Emissions	as measure	7 Hrs. O	n for Month
Fuel Rate	173		NO _x	30		
			CO	482 4		
			02	11 d		
-	-		Fuel BTU	1107		
			F factor	8659		
			Fuel Rate	173		
			Bhp	936		
			Eng Eff	0.3		
-			Corrected	Emissiona		
				@ 15% 02 1	b/d	
			NO.	49.7	1,44	
			co	299 6	5.29	
			Limits	@ 15% O ₂ [1	tvd 1	
			NOx	75	61.9	
			CO	483	232 3	

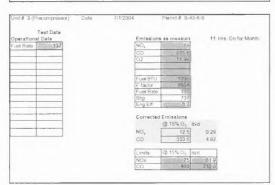
Unit # 4 (Ref. Completesor Link	6/5/2004	Permit # 9/877	8
Tenf Data Userational Data	Emissions	as measure	10 Hrs. On for Month
100 H (100 - 150)	NO.	88.6	
200	CO	580.4	
	02	580.4 10.82	
	02	10.02	
	Fuel BTU	1096	
	F factor	8661	
	Fuel Rate	133	
	Bhp	716	
	Eng Eff	0.3	
	Corrected 8	missions	
		@ 15% O2 1b/d	
	NO.	51,9	1.15
	co	339.7	4.59
	D0 [550.11	4.00
	Limits	@ 15% O ₂ lb/d	
	NOx	75	46.4
	co	463	232 8
	00		AUX C

Tillne	NO.	CO	02
	51	343	12
	75	361	11.8
	80	370	11.9
	80	369	11.8
	54	344	12
Average	68	357.4	11.9

Operational (est Data Data	Emissions as measure 9 Hrs. On for Month
Fuel Rate	138	NO, 68
		CO 357.4
		02 11.9
-	-	
		Fuel BTU 1096
		F factor 8561
		Fuel Rate 138
		Bhp 743
		Eng Eff 0.3
		Corrected Emissions
		@ 15% O ₂ tb/d
		NO _e 44.6 1.03
		CO 234,3 3,29
		Limits @ 15% O ₂ lb/d
		NOx 75 46.4
		CO 463 232.6

inte	NO,		C2
	25	404	11.4
	28	408	31.1
	37	446	10.6
	28	411	11.5
	22	-437	11.6
Average	28	421.2	11.28

Uni Wil His Edroppelian III UNE	BUREAGO FOR A SHORE
Teel Data	Emissions as measure 25 Hrs. On for Mon
Core afforms: 7d m.	NO, 28
74	CO 4212
	02 1128
	Fuel BTU 1108
	F (actor 6656)
	Fuel Rate 64
	Bhp 348
	Eng Eff 8.3
	Corrected Emissions
	@ 15% O; lb/d
	NO. 17.2 0.19
	CO 258.3 1.70
	Limits @ 15% O ₂ lb/d
	NOx 75 45 4
	CO 463 292.5



Operational Data	Emissions as	measure 12 Hrs. On for Month:
Fuel Rate 137	NO,	18.8
	có	620.8
	O2	12 04
	Fuel BTU	1095
	F factor	3664
	Fuel Rate	137
	Bhp	737
	Eng Eff	0.3
	Corrected Em	
	@	15% O ₂ lb/d
	NO,	12.5 0.29
	co	413.4 5.75
		15% O ₂ R/d
	NOx	76 61.8
	CO	463 232.6

Time	NO,	CO	02
	14	498	12
	14	518	12
	14	504	12
	14	523	12
	14	513	12
Average	14	511.2	12

Test Data Operational Data	Emissions as measure 14 Hrs. On for Month:
Fuel Rate 128	NO. 14
	CO 511 2
	05 45
	Fuel BTU 1095
	F factor 8664
	Fuel Rate 128
	Bhp 688
	Eng Eff 0.3
	Corrected Emissions
	@ 15% O ₂ lb/d
	NO ₄ 9.3 0.20
	CO 338.9 4.40
	Limits @ 15% O ₂ lib/d
	NOx 75 61 9
	CO 463 232 6

Time	NO.	CO	02
	18	527	12
	17	535	12.1
	26	537	11.9
	16	551	112
	18	529	11.8
Average	19	535.8	11,96

Time	NO _x	CO	02
	48	523	11.7
	55	496	11.2
	53	536	11.3
	53	512	11.2
	56	510	11.2
Average	53	515.4	11.32

Unit # 4 (Ref. Compressor) Date	9/30/2004 Pe	rmit # S-43-7-8	
Test Data			
Operational Data	Emissions as		or Month.
Fuel Rate 145	NO.	53	
	CO	515.4	
	02	11.32	
	Fuel BTU	8663	
	F factor	1098	
	Fuel Rate	145	
	Bhp	6170	
	Eng Eff	0.3	
	Corrected Em		
	@	15% O ₂ lb/d	
	NO,	32.6 0.79	
	co	317.4 4 69	

	Limits @	15% O ₂ Rvd	
	NOx	75 46 4	
	CO	463 232 6	

Time	NO.	CO	02
	17	221	11.3
	21	208	11.4
	32	202	11.1
	13	269	11.5
	18	243	11.5
Average	20.2	228.6	11.36

Test Data Operational Data	Emissions	es measure 75 Hrs.	On for Month:
Fuel Rate 142	NO.	20.2	
	co	228.6	
	02	11.36	
	Fuel STU	1095	
	F factor	8664	
	Fuel Rate	142	
	Bhp	764	
	Eng Eff	0.3	
	Corrected E		
	(⊉ 15% O₂ 1b/d	
	NO,	12.5 0.30	
	co	141.4 2.04	
	Limits	2 15% O ₂ lb/d	
	NOx	75 46.4	
	CO	463 232.0	

Tittle	NO.	CO	02
-	22	387	
	23	394	10.8
	23	391	10.8
-	17	407	11.2
-	18	399	11.1
Average	20.6	395.6	10.98

Unit #6 (Ref. Compressor) Date	7/1/2004	Permit # S-43-9-	8
Test Data			
Operational Data		ons as measure	11 Hrs. On for Month
Fuel Rate 137	NO.	20.6	
	CO	395.6	
	02	10 SR	
	Fuel 81	U 1085	
	F factor	6664	
	Fuel Ra		
	Bhp	737	
	Eng Eff	0.3	
	Correct	ed Emissions	
	NO,	@ 15% O, Ib/d	0.26
		235.3	3.27
	GO	233.31	3.41
	Limits	@ 15% O ₂ lb/d	
	NOx	75	46.4
	CO	463	232.6

	Analzer			Unil # 14	Precompressor)	Date		Parmi V 9 43-	1-/1
Time	NO.	CO	02		Test Data				
				Operatio			Emissions	as measured	Hrs. On for Mo
	-	-		Fuel Rate			NO,	#DIV/0!	
	+	-		1 00 11010			CO	#DIV/0!	
	+	-					02	#D{V/0!	
Average	64884	HHHHH	RESEST	-				100000000000000000000000000000000000000	
rivolugo	1								
							Fuel BTU	1106	
							F factor	9652	
							Fuel Rate	0	
							Bhp	0	
							Eng Eff	0.3	
				_	_		Corrected	Emissions	
								@ 15% O, Ib/	d
							NO.		DIV/0!
							CO		DIV/01
									51176
							Limite	E 14-15 190	1
							ENLIK	E 10 - 1 - 194	37.0

Time	NO.	CO	02
	31	542	10.3
	39	577	10.3
	37	581	10.2
	36	579	10.3
	36	573	10.2
Acres	35 8	575.8	18.75

Unit # 2 (Precompressor) Date	11/12/2004 Permit # S-43-5-9
Test Data	
Operational Data	Emissions as measure 33 Hrs. On for Month
Fuel Rate 86	NO. 35.8
	GO 570.4
	10.28
	Fuel BTU 1099 F factor 8661
	F factor 861 Fuel Rate 86
	Bhp 464
-	Eng Eff Q 3
	Corrected Emissions
	@ 15% O ₂ lb/d
	NO, 19.9 0.29
	CO 3163 2.77
	Limits @ 15% O ₂ Ryd
	NOx 75 619
	CO 463 232 6

7 mg	ING,		0.0
	70	E)18	111
	-30	6.46	111
	-30	676	84.7
	32	636	300
	79	1573	
North Admi	30.7	E10	48.03

Unit#3 (Precompressor) Date	Permt # S-43-6-9
Test Data	
Operational Data	Emissions as measure 204 Hrs. On for Month
Fuel Rate 98	NO, 30 2
	CO 630
	02 11 08
	Fuel B7L 1099
	F factor 8661
	Fuel Rate 98
	Bhp 529 Eng Eff 03
	Corrected Emissions
	@ 15% O ₂ 1b/d
	NO _x 18.1 0.30
	CO 378 5 3.78
	Limits @ 15% O ₂ lts/d
	NOx 75 (11)
	CO 463 232 ft

Time	NO _z	CO	02
	-	_	
	+		-
Average	0.0000	nunun	HHHHA

Unit # 4 (Ref. Compressor) Date	Permit # S-43-7-8
Test Date	Entradore as measured Hrs Cn for Month
Operational Data	NO. #DIVO
Fuel Rate 160	
	CO #014/0'
	O2 NOIV/O
	Fuel BTU 1106
	F factor 8652
	Fuel Rate 160
	Bhp 869
	Eng El' 0.3
	Corrected Emissions
	@ 15% O ₂ ibid
	NO, NDIV/0! NDIV/0!
	CO #DIV/01 #DIV/0!
	Limite @ 15% O ₂ lb/d
	NOx 75 46 4
	CO 463 232 6

Ime	MO,		02
	1,0	364	11
	51	3.08	11.
	100	348	7.5
	673	357	17
	1.6	380	10.7
A yet was	51.6	354	16.98

Test Data Operational Data	Emission	s as measure	12 Hrs. On for Month:
Fuel Rate 160	NO _x	61.6	
	CO	354	
	02	10.96	
	Fuel BTU	1099	
	F factor	8661	
	Fuel Rate	160	
	Bhp	864	
	Eng Eff	0.3	
	Corrected	Emissions	
		@ 15% O; Ibd	
	NO,	36.6	0.98
	CO	210.1	3.43
	Limits	@ 15% O ₇ lb/d	
	NOx	75	46.4
	CO	463	232 6

11000	(nDe	CO	02
	26	355	12
	44	397	11.6
	6.2	477	11.5
	39	412	119
	42	441	11.7
Average	42.6	416.4	11.74

Test					
Operational Dat			ons as measur		s. On for Month
Fuel Rate	163	NO _x	42.6		
		CO	410.0		
		02	11.74		
		Fuel B	U 1095		
		F facto			
-		Fuel Ra			
		Bhp	880		
		Eng Eff	0.3	3	
		Correc	ted Emissions		
			@ 15% 0,	ib/d	
		NO.	27 4	0.75	
		co	268.2	4.45	
		Limits	@ 15% 0,	1b/d	
		NOx	71	46.4	
		CO.	460	232.6	

Richard Edgehill

From: Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent: Tuesday, November 27, 2007 11:48 AM

To: Richard Edgehill

Subject: RE: ERC application S43, 1075362

Richard:

Attached is an Excel file showing the portable analyzer results for NOx and CO for the years 2002-2004. I have highlighted in light green the instances where:

1) The Rule 1110.2 limit of 36 ppm is higher than the average portable analyzer test values for the same period

2) The biennial source test values are higher than the average portable analyzer test values for the same period

It appears to me that, overall, the portable analyzer tests show that use of a 36 ppm emission factor does not overestimate emissions for the representative period. For the great majority of the data, the portable analyzer results are higher than the emission factors used and therefore the requested credit amounts are quite conservative.

It would be a fairly large undertaking to re-calculate the actual emissions based on portable analyzer (PA) results. I would not recommend this, since PA tests are intended only for *monitoring* and not for certifying emission compliance. Also, if PA test results are to be considered representative for *lower* emission values, they should also be considered representative for *higher* emission values. If PA test data were to be applied across-the-board, the overall total of requested credit amounts would probably be higher.

The comparison here does provide further demonstration that the emission factors that have been proposed are conservative. However, I don't think the differences warrant a re-calculation.

Please let me know how you would like to proceed from here.

Thanks....

-B. Winn

----Original Message----

From: Winn BT (Brent) at Aera

Sent: Monday, November 19, 2007 4:24 PM

To: 'Richard Edgehill'

Subject: RE: ERC application S43, 1075362

Richard:

Here are a few answers and clarifications, and then I will have to dig for any information you still need after this.

I discovered the year 2003 fuel usage discrepancy (186.95 vs. 192.63 MMscf) while preparing the ERC application when I compared the actual fuel meter numbers to the quantities Aera reported in their annual emission statements. The fuel numbers for the annual emission statements had been provided each year by gas plant staff who used a spreadsheet to allocate the fuel to each compressor based on the total combined fuel for all compressors and individual run hours. Each year, staff would pull up the same spreadsheet and revise/update it with the current year's data. It appears that there were some years when staff changed the run hours in the spreadsheet but forgot to change the overall combined fuel amount. The attached spreadsheet provides a comparison of the actual amounts versus the amounts reported in Aera's annual emission statements.

The gas plant staff have moved on to other positions and responsibilities. However, based on the numbers I have reviewed, it appears that this is what happened:

- A) The volumes reported for year 2000 (total combined 185.69 mmcf) were accurate.
- B) For year 2001, gas plant staff re-used the same spreadsheet and plugged in accurate run hours but accidentally kept the total combined fuel volume from the previous year in the spreadsheet. After allocating the *erroneous* fuel volume based on run hours, the total combined volume came out at 186.95 mmcf very close to the volume reported for 2000. I assume the slight difference was due to rounding. The total combined volume for 2001 should have been 165.92 mmcf based on actual meter readings.
- C) The same spreadsheet was used for year 2002 and both the run hours and fuel volumes used were accurate.
- D) For year 2003, it appears that gas plant staff pulled up the spreadsheet that was used for year 2001 (skipped back two years) and again plugged in accurate run times for 2003 but forgot to change the (erroneous) combined total fuel volume (186.95 mmcf). The combined total volume should have been 192.63 mmcf based on actual meter readings.
- E) For year 2004, the gas plant staff repeated the same error they made for year 2003 (the runtimes were accurate but the erroneous volume of 186.95 mmcf was still included in the spreadsheet). The combined total volume should have been 118.69 mmcf based on actual meter readings.
- F) Year 2005, runtimes and volumes were accurate.

Aera's environmental staff did not catch these errors for two reasons:

- 1) When the fuel volumes were checked for accuracy, environmental staff compared each individual compressor's volume to the previous year's individual volume. Since the individual volumes were different from year to year, but did not differ greatly, that was within the realm of what was expected. The individual volumes differed somewhat because they were allocated based on actual run hours from year to year.
- 2) In the annual emission statements, the total gas plant combined emissions were compared between the current and the previous year in an effort to identify any potentially significant discrepancies. Different emission factors were used every 2 years, based on the most recent source test results for the engines. Furthermore, the emission totals included *all* of the plant equipment not just the compressors so it was not evident that the reported combined compressor volumes were repeated in years 2001, 2003, and 2004.

Aera's staff plans to submit revised annual emission statements to the District's emission inventory group as needed.

About baseline period:

The 2 years previous to the shutdown (July 2005 to July 2007) were not representative because, for a large part of that time, the gas plant was not processing any gas. Therefore, it is necessary to look to a different 2-year period as representative of normal operation. Normal operation must logically include times when the gas plant was processing gas from both Aera and Chevron's producing areas. Aera's gas was diverted to the field in May 2004. At that point, two compressors (S-43-4 and -7) were placed on standby (and then made dormant in December 2004). After that, compressors S-43-5 and -6 were not used to feed gas to the gas plant - they were used to divert Aera's produced gas back to the field. Compressors S-43-8 and -9 continued to put Chevron's gas into the plant processes, but operation of these compressors after May 2004 was not representative of normal gas plant volumes. Even after Chevron's feed to the plant was discontinued in January 2005, compressors S-43-5 and -6 continued to send Aera's gas to the field - until they were shut down in November 2005.

So, although the fuel volumes make it appear that compressors S-43-5, -6, -8, and -9 may have continued to operate normally after May 2004, this was not representative of normal plant operation. Normal plant operation would be best represented by a 2-year period preceding May 2004 (going back to May 2002), but this time period is not completely within the 5-year window preceding July 2007 ("shutdown" date). The representative period cannot begin any sooner than July 2002.

- B. Winn

-----Original Message-----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Monday, November 19, 2007 11:52 AM

To: Winn BT (Brent) at Aera **Cc:** Leonard Scandura

Subject: ERC application S43, 1075362

Brent: The following information is required to continue to process REC application S43, 1075362

Project 1041364 designated the 6 IC engines '-4 though '-9 as DEUs and was finalized 12-3-04. The Equipment Configuration and Operational Data submitted with the application included a total 2003 hours of operation and fuel use of '-4 through '-9 as 26,543 hrs and 186.95 MMscf. The ERC application listed the 2003 hours and fuel use for '-4 through '-9 as 33,981 hrs and 192.63 MMscf. Please explain the discrepancy.

Source test results for '-4 through '-9 indicated NOX concentrations of 45.6, 46.8, 50.7, 43.7, 34.9, and 61.4 ppmv @ 15% O2 in 2002 and 14.3, 15.4, 13.6, 51.4, 21.9, and 14.2 ppmv @ 15% O2 in 2004. Please provide portable monthly monitoring data for NOx covering the baseline period (see below).

Annual fuel use (mcf) for '-4 through '-9 from 2001 through 2005 was 165,915 (2001), 178,316 (2002), 192,630 (2003), 118,695 (2004), and 33,942 (2005). However, engine S-43-5 operated normally in 2005 (24,897 mcf fuel used), except in December when no fuel was consumed. Please recalculate ERCs for S-43-5 for a baseline period from December 2003 through November 2005. Please explain why the baseline period (Oct 2002 through Sept 2004) for '-6, '-8, and '-9 did not include 4th qtr 2004 (Oct-Dec 2004) as these engines apparently operated normally then.

Thanks

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Croll. C. Engine Compressors S-43-4 through S-43-9

ADD PORTABLE ANALYZER RESULTS for NOx & CO

	2002	Quarterly	fuel (mcf)		
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)
S-43-4	6,825.9	11,176.5	12,912.7	9,312.0	40,227
S-43-5	6,968.1	7,670.9	5,979.6	9,405.4	30,024
S-43-6	12,263.6	7,420.6	6,970.7	7,272.7	33,928
S-43-7	0.0	2,725.6	11,474.2	5,476.3	19,676
S-43-8	9,123.4	8,944.5	11,494.8	8,487.1	38,050
S-43-9	4,135.0	4,136.9	0.0	8,139.7	16,412

178,31	6

				· · · · · · · · · · · · · · · · · · ·	
PM ₁₀	2002				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	69.0	113.0	130.5	94.1	10.11
S-43-5	70.4	77.6	60.5	95.1	10.11
S-43-6	124.0	75.0	70.5	73.5	10.11
\$-43-7	0.0	27.6	116.0	55.4	10.11
S-43-8	92.2	90.4	116.2	85.8	10.11
S-43-9	41.8	41.8	0.0	82.3	10.11
	397.5	425.4	493.7	486.2	

CO	2002				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	4,529.7	7,416.7	8,568.9	6,179.4	663.6
S-43-5	4,424.0	4,870.3	3,796.4	5,971.5	634.9
S-43-6	6,567.2	3,973.7	3,732.8	3,894.5	535.5
S-43-7	0.0	2,833.2	11,927.4	5,692.6	1039.5
\$-43-8	6,029.7	5,911.4	7,596.9	5,609.1	660.9
S-43-9	2,914.7	2,916.1	0.0	5,737.7	704.9
	24,465.3	27,921.5	35,622.5	33,084.7	

SOx	2002

Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0
\$-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
S-43-9	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

NOx	2002				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	923.3	1,511.7	1,746.6	1,259.5	135.3
S-43-5	942.5	1,037.6	808.8	1,272.2	135.3
S-43-6	1,658.8	1,003.7	942.9	983.7	135.3
S-43-7	0.0	368.7	1,552.0	740.7	135.3
S-43-8	1,234.0	1,209.8	1,554.8	1,148.0	135.3
S-43-9	559.3	559.6	0.0	1,101.0	135.3
	5,317.9	5,691.1	6,605.0	6,505.0	

VOC	2002				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	641.9	1,051.0	1,214.2	875.6	94.0
S-43-5	358.0	394.1	307.2	483.2	51.4
S-43-6	4,006.7	2,424.4	2,277.4	2,376.1	326.7
S-43-7	0.0	172.6	726.5	346.7	63.3
S-43-8	497.0	487.3	626.2	462.4	54.5
S-43-9	249.0	249.2	0.0	490.2	60.2
	5,752.6	4,778.5	5,151.6	5,034.3	

E

Device ID#	Process Number	Equipment Type	Yearly Process Rate	Units Source Classification Code	NOX lb / Unit	TOG lb / Unit
1	3	FUGITIVE EMIS	6.348	IC FEET OF (0.00	3.17
				31000299	0.00	17.21
3	1	FLARE	2.504	CUBIC FEET	68.00	2,000
				31000205	0.09	2.50
4	1	IÇ ENĞINE	40.331	CUBIC FEET	184.26	1,740

				20200202	3.72	35.08
5	1	IC ENGINE	30.126	CUBIC FEET	188.90	1,238
				20200202	2.85	18.65
6	1	IC ENGINE	33.723	CUBIC FEET	204.70	5,187
				20200202	3.45	87.46
7	1	IC ENGINE	20.354	CUBIC FEET	176.40	1,708
				20200202	1.80	17.38
8	1	IC ENGINE	37.506	CUBIC FEET	141.00	1,364
				20200202	2.64	25.59
9	1	IC ENGINE	16.277	CUBIC FEET	249.70	1,379
				20200202	2.03	11.22
13	1	EATER NAT GA	0	CUBIC FEET	100.00	13.87
				31000404	0.00	0.00
14	2	GINE DIESEL	0.06	GALLONS BU	85.11	6.76
				20200102	0.00	0.00
15	1	EATER NAT GA	30.728	CUBIC FEET	83.57	13.87
				31000414	1.28	0.21

Totals For the Facility (Tons/Year)

17.86

215.30

9.1. 1	
Contact	PEGGY SHUE
Company	AERA ENERGY LLC
<u>Adress</u>	PO BOX 11164
City,State,Zip	BAKERSFIELD, CA 93389
<u>Telephone</u>	(661) 6655689
Email Address	pashue@aeraenergy.com
Loation of faility	AERA ENERGY LLC
if different	LOST HILLS GAS PLANT
from above	

Emission Factor Source

	PRO_DES	PM10	CO	SOx	NOx
S-43-4	IC ENGINE NAT GAS	9.91 E-03 lb/MMBtu Table 3.2-2	913.0	0	56.0
S-43-5	IC ENGINE NAT GAS	9.91 E-03 lb/MMBtu Table 3.2-2	811.1		60.3
	IC ENGINE	9.91 E-03 lb/MMBtu Table 3.2-2	740.24		
S-43-6	NAT GAS		740.24	0	53.3

		9.91 E-03 lb/MMBtu Table 3.2-2			
S-43-7	IC ENGINE NAT GAS		780.4	0	207.9
S-43-8	IC ENGINE NAT GAS	9.91 E-03 lb/MM8tu Table 3.2-2	842.0	0	30.3
S-43-9	IC ENGINE NAT GAS	9.91 E-03 lb/MMBtu Table 3.2-2	503.18	0	57.6

Emission Factor Source

FAC_ID	PRO_DES	PM10	CO	SOx	NOx	
	IC ENGINE	0.0786				
S-43-4	NAT GAS	lb/MMcf	663.6	ŝ	0	184.3
	IC ENGINE	0.0786				
S-43-5	NAT GAS	lb/MMcf	634.9	9	0	188.9
	IC ENGINE	0.0786				
S-43-6	NAT GAS	lb/MMcf	535.5	5	0	204.7
	IC ENGINE	0.0786				
S-43-7	NAT GAS	lb/MMcf	1039.9	5	0	176.4
	IC ENGINE	0.0786				
S-43-8	NAT GAS	lb/MMcf	660.9	9	0	141.0
	IC ENGINE	0.0786				
S-43-9	NAT GAS	lb/MMcf	704.9	9	0	249.7

black - source test blue - AP-42 green - permit limit red - delete equipment

Emission Factors revised to answer Disti

PM10	⊨mission		PM 10 Emission	
Emission	Factor	PM or	Factor lb/MMscf of	or
Factor	Source	PM10?	lb/Mgal	
7.71 E-05	AP-42 Table	PM10	0.0	0786
ib/MMBtu	3.2-2 with			
	default 1020			
	Btu/scf			

edit Application

AP-42

AP-42

AP-42

AP-42

AP-42

AP-42

2002 **CO**

Portable Analyzer Results (ppm CO @15% O2)

Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002

1Q	2Q	3Q	4Q	Average
·	341.8	334.1	350.4	342.1
	255.9	346.6	311.8	304.8
	265.2	274.9	246.2	262.1
	560.5	397.4	462.0	473.3
	361.5	369.9	325.4	352.3
	No test	No test	284.3	284.3

Portable Analyzer Results (ppm NOx @15% O2)

Rule 1110.2 Limit (36 ppm) Rule 1110.2 Limit (36 ppm) Rule 1110.2 Limit (36 ppm) Rule 1110.2 Limit (36 ppm) Rule 1110.2 Limit (36 ppm) Rule 1110.2 Limit (36 ppm)

1Q	2Q	3Q	4Q	Average
	62.6	56.6	68.1	62.4
	52.6	68.6	64.8	62.0
	33.5	31.6	25.3	30.1
	52.1	36.7	52.3	47.0
	31.2	53.1	42.6	42.3
	No test	No test	35.2	35.2

Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Rule 1110.2 limit (250 ppm) Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002

Emission Statement - Calendar Year 2002 Emissions

Fraction of ROG	VOC Lb / Unit	SOX lb / Unit		
0.39	1.23	0.00	 	
	6.66	0.00		
0.75	105.00	10.10		
	1.87	0.01		
0.05	94.03	0.00		

	1.90	0.00		
0.04	51.38	0.00		
	0.77	0.00		
0.07	358.86	0.00		
	6.05	0.00		
0.04	63.32	0.00		
	0.64	0.00		
0.04	54.48	0.00		
	1.02	0.00		
0.04	60.23	0.00		
	0.49	0.00		
0.50	5.50	0.60		
	0.00	0.00		
0.76	36.47	5.60		
	0.00	0.00		
0.50	5.50	0.60		
	0.11	0.01		

17.80 0.02

VOC	Test Date	Btu/cf		
	5/22/2002 SOx,	1020		
	7/22/04 CO,			
420.0	NOx, VOC			
	5/22/2002 SOx,	1020		
	7/22/04 CO,			
	NOx, VOC		i	
413.6			<u> </u>	
	5/22/2002 SOx,	1020		
	7/22/04 CO,			
	NOx, VOC			
291.8				

	5/22/2002 Sox, 5/18/04 CO, Nox, VOC	1020		
81.0				
119.0	5/21/2002 Sox, 5/19/04 CO, Nox, VOC	1020		
75.7	5/21/2002 Sox, 6/17/04 CO, Nox, VOC	1020		

VOC	٦	Fest Date	Btu/cf	
	94.0	05/22/02		1020
	51.4	05/22/02		1020
	358.9	05/21/02		1020
		05/22/02		1020
	63.3	05/21/02		1020
	54.5	05/21/02		1020
	60.2			

rict's mid-2003 request to ensure PM10 (not total PM) and VOC (not TOG) emission factors

Emission Other
TOG or VOC Factor Information
Emission Factor Source Used
1.47 lb TOC /MMBtu; AP-42 Table
0.118 lb VOC /MMBtu 3.2-2 assumes 1020
Btu/scf

Aera Energy Lost I

ADD PORTABLE ANA

	2003
	1Q
S-43-4	6,329.8
S-43-5	11,520.7
S-43-6	8,364.4
S-43-7	9,256.1
S-43-8	4,342.1
S-43-9	8,752.8

PM ₁₀	2003
Quarterly	
Emissions	
(lbs)	1Q
S-43-4	64.0
S-43-5	116.5
S-43-6	84.6
S-43-7	93.6
S-43-8	43.9
S-43-9	88.5
	491.0

CO	2003
0 - 1 - 1	
Quarterly	
Emissions	
(lbs)	1Q
S-43-4	4,200.5
S-43-5	7,314.5
S-43-6	4,479.1
S-43-7	9,621.7
S-43-8	2,869.7
S-43-9	6,169.8
	34,655.4

Converted to	
lb/mmcf	Rule 1110.2 Limit (2000 ppm)
782.4	CO 4574.002 lb/MMcf
697.1	
599.4	
1082.4	
805.7	
650.2	

Quarterly	
Emissions	
(lbs)	1Q
S-43-4	0.0
S-43-5	0.0
S-43-6	0.0
S-43-7	0.0
S-43-8	0.0
S-43-9	0.0
	0.0

Converted to			
lb/mmcf	Rule 1110	.2 Limit (36 pp	m)
234.5	NOx	135.260	lb/MMcf
232.9			
113.1			
176.6			
158.9			
132.3			

NOx	2003	
Quarterly		
Emissions		
(lbs)	1Q	
S-43-4	856.2	
S-43-5	1,558.3	
S-43-6	1,131.4	
S-43-7	1,252.0	
S-43-8	587.3	
S-43-9	1,183.9	
	6,569.0	

Rule 111	10.2 limit (250 ppm)
voc	326.714 lb/MMcf

VOC	2003
Quarterly	
Emissions	
(lbs)	1Q
S-43-4	595.0
S-43-5	592.2
S-43-6	2,732.8
S-43-7	585.9
S-43-8	236.6
S-43-9	526.9
	5,269.4

CO lb / Unit	PM Lb / Unit	Fraction PM10	PM10 Lb / Unit
 0.00	N/A	N/A	0.00
 0.00			0.00
 370.00	N/A	N/A	7.60
0.46			0.01
663.60	N/A	N/A	0.08

Tons /Yr.
Tons /Yr.

DEV
1
3
S-43-4

Tons /Yr.	0.00	1		13.38	
1	0.08	N/A	N/A	634.90	
Tons /Yr.	0.00			9.56	
]	0.08	N/A	N/A	535.50	
Tons /Yr.	0.00			9.03	
]	0.08	N/A	N/A	1,040	
Tons /Yr.∷	0.00			10.58	
]	0.08	N/A	N/A	660.90	
Tons /Yr.	0.00			12.39	
]	0.08	N/A	N/A	704.90	
Tons /Yr.	0.00			5.74	
	7.60	N/A	N/A	84.00	
Tons /Yr.	0.00	1.0		0.00	
	42.48	N/A	N/A	18.34	
Tons /Yr.	0.00			0.00	,
]	7.60	N/A	N/A	172.18	
Tons /Yr.	0.12			2.65	
-	1.03			63.79	•

S-43-5
S-43-6
S-43-7
S-43-8
S-43-9
13
14
15

FAC_ID
1
3
S-43-4
\$-43-5
S-43-6
S-43-7 S-43-8
S-43-8
S-43-9
13
14
15

Emission Factor Used, lb/MMcf

PM10	CO	SOx	NOx	VOC
 10.11	913.0	0	56.0	420.0
1				
 10.11	811.1	0	60.3	413.6
10.11	740.24	0	53.3	291.8

 10.11	780.4	0	207.9	81.0
 10.11	842.0	0	30.3	119.0
10.11	503.18	0	57.6	75.7

Emission Factor Used, lb/MMcf or lb/Mgal

PM10	CO		SOx	NOx	:	VOC		FR TOO	;
0.0786	i	663.6		0	184.3	3	94.0	0	1740
0.0786	i	634.9		0	188.9)	51.4	0	1238
0.0786	i	535.5		0	204.7	' ;	358.9	0	5187
0.0786	i	1039.5		0	176.4	Ļ	63.3	0	1708
0.0786	;	660.9		0	141.0)	54.5	0	1364
0.0786	;	704.9		0	249.7	•	60.2	0	1379

FROG FROG Ib/MMscf Ib/MMscf
Divide AP- 0.0803 1,499 120
42 VOC by AP-42 TOC

Hills Section 15 Gas Plant Emission Reduction Credit Application ressors S-43-4 through S-43-9

LYZER RESULTS for NOx & CO

Quarterly fuel (mcf)					
2Q	3Q	4Q	Annual Fuel (mcf)		
4,373	8,549	13,397	32,649		
11,368	6,822	13,204	42,915		
9,679	9,897	856	28,796		
6,882	4,960	7,001	28,099		
10,769	9,920	11,753	36,785		
3,918	6,849	3,867	23,387		
			192,630		

2Q		3Q	4Q	Emission Factor (lb/mmcf)	
44	4.2	86.4	135.4	10.11	_AP-42
114	4.9	69.0	133.5	10.11	AP-42
97	7.9	100.1	8.6	10.11	AP-42
69	9.6	50.1	70.8	10.11	AP-42
108	3.9	100.3	118.8	10.11	AP-42
39	9.6	69.2	39.1	10.11	AP-42
475	5.1	475.1	506.3		

CO	2003

Portable Analyzer Res

1Q	2Q
276.2	295.0
273.8	296.2
249.5	265.2
413.0	No test
266.4	306.9
253.3	265.5

2Q	3Q	4Q	Emission Factor (lb/mmcf)	
2,901.9	5,673.3	8,890.2	663.6	Source Test 5/21 & 22/2002
7,217.6	4,331.4	8,383.5	634.9	Source Test 5/21 & 22/2002
5,183.2	5,299.6	458.2	535.5	Source Test 5/21 & 22/2002
7,153.6	5,156.1	7,277.2	1039.5	Source Test 5/21 & 22/2002
7,117.5	6,556.0	7,767.8	660.9	Source Test 5/21 & 22/2002
2,761.9	4,827.8	2,725.8	704.9	Source Test 5/21 & 22/2002
32,335.7	31,844.3	35,502.7		

2Q	3Q	4Q	Emission Factor (lb/mmcf)
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	

NOx	2003
-----	------

2Q	3Q	4Q	Emission Factor (lb/mmcf)	
591.5	1,156.4	1,812.1	135.3	Rule 1110.2 Limit (36 ppm)
1,537.6	922.8	1,786.0	135.3	Rule 1110.2 Limit (36 ppm)
1,309.2	1,338.6	115.7	135.3	Rule 1110.2 Limit (36 ppm)
930.8	670.9	946.9	135.3	Rule 1110.2 Limit (36 ppm)
1,456.7	1,341.8	1,589.8	135.3	Rule 1110.2 Limit (36 ppm)
530.0	926.4	523.0	135.3	Rule 1110.2 Limit (36 ppm)
6,355.8	6,356.8	6,773.5		

Portable Analyzer Res			
1Q	2Q		
51.5	31.4		
63.6	56.1		
36.6	30.5		
38.9	No test		
67.6	62.6		
29.8	38.4		

2Q	3Q	4Q	Emission Factor (lb/mmcf)
411.1	803.6	1,259.3	94.0
584.3	350.7	678.7	51.4
3,162.3	3,233.4	279.5	326.7
435.6	314.0	443.1	63,3
586.9	540.6	640.6	54.5
235.9	412.3	232.8	60.2
5,416.1	5,654.6	3,534.0	

Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Rule 1110.2 limit (250 ppm) Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002 Source Test 5/21 & 22/2002

2003						
PR = 2003	UNITS	PRO_DES	PM10_EF	PM10_EMS		
		CLHGP FUC	0.0	0.00		
1,91	MILLION (OFLARE	7.6	0.01		
38.07	MILLION (CIC ENGINE	10.1	0.19	·	

49.66 MILLION QIC ENGINE	10.11	0.25	
33.71 MILLION CIC ENGINE	10.11	0.17	
20.78 MILLION CIC ENGINE	10.11	0.11	
27.27 MILLION CIC ENGINE	10.11	0.14	•
17,46 MILLION CIC ENGINE	10.11	0.09	
0 MILLION CHEATER N	7.60	0.00	
0.05 1000 GALUIC ENGINE	42.48	0.00	
34.20 MILLION CHEATER N	7.60	0.13	

1.08

2004					
Fuel Use	UNITS	PRO_DES	PM10_EF	PM10_EM	IS S
7609.42	MILLION C	LHGP FUG	0.00	0.00	
1.51	MILLION C	FLARE	7.60	0.01	
	MILLION C			0.16	
	MILLION C			0.22	
	MILLION C			0.23	
	MILLION C			0.06	
	MILLION C			0.14	
26.54	MILLION C	IC ENGINE	10.11	0.13	
	MILLION C			0.00	
	1000 GALL			0.00	
37.67	MILLION C	HEATER N	7.60	0.14	

Aera Energ I. C. Engine

ADD PORTAE

S-43-4	
S-43-5	
S-43-6	
\$-43-7	
S-43-8	•
S-43-9	

PM ₁₀
Quarterly
Emissions
(lbs)
S-43-4
S-43-5
S-43-6
S-43-7
S-43-8
S-43-9

sults (ppm @15% O2)

			Converted to		
3Q	4Q	Average	lb/mmcf	Rule	1110.2 Limit (2000 ppm)
274.4	361.3	301.7	690.0	CO	4574.002 lb/MMcf
280.0	286.2	284.1	649.7		
314.7	253.9	270.8	619.3		
433.1	439.7	428.6	980.2		
329.1	328.8	307.8	703.9		
255.1	313.1	271.8	621.6		

0
Quarterly
Emissions
(lbs)
S-43-4
S-43-5
S-43-6
S-43-7
S-43-8
S-43-9

Quarterly	
Emissions	
(lbs)	
S-43-4	
S-43-5	_
S-43-6	
S-43-7	
S-43-8	•
S-43-9	

sults (ppm @15% O2)

3Q	4Q	Average
41.3	28.6	38.2
67.3	69.6	64.2
28.2	45.4	35.2
72.6	Failed test	55.8
67.7	Failed test	66.0
61.7	30.6	40.1

		Rule 11
	143.5	NO:
	241.2	
	132.3	
1	209.7	Re-test

248.0

150.7

,			
	Rule 1110.2	Limit (36 p	pm)
	NOx		

Re-tested in Jan 2004 @ 64.3 ppm Re-tested in Jan 2004 @ 67.1 ppm

NOx
Quarterly
Emissions
(lbs)
S-43-4
S-43-5
S-43-6
S-43-7
S-43-8
S-43-9

Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

VOC
Quarterly
Emissions
(lbs)
5-43-4
S-43-5
S-43-6
S-43-7
S-43-8
S-43-9

		 CO_EF	CO_EMS	SOX_EF	SOX_EMS
		0.00	0.00	0.00	0.00
		370.00	0.35	10.10	0.01
	•	663.60	12.63	0.00	0.00

634.90	15.77	0.00	0.00
535.50	9.03	0.00	0.00
1039.50	10.80	0.00	0.00
660.90	9.01	0.00	0.00
704.90	6.15	0.00	0.00
84.00	0.00	0.60	0.00
130.18	0.00	39.74	0.00
172.18	2.94	0.60	0.01

66.69

CO_EF	CO_EMS	SOX_EF	 SOX_EMS
0.00	0.00	0.00	0.00
370.00	0.28	10.10	0.01
 913.01	14.79	0.00	0.00
811.41	17.70	0.00	0.00
740.24	16.81	0.00	0.00
780.44	4.48	0.00	0.00
841.98	11.57	0.00	0.00
503.18	6.68	0.00	0.00
84.00	0.00	0.60	0.00
130.18	0.00	39.74	0.00
172.18	3.24	0.60	0.01

75.55

0.02

0.02

y Lost Hills Section 15 Gas Plant Emission Reduction Credit Application ⇒ Compressors S-43-4 through S-43-9

3LE ANALYZER RESULTS for NOx & CO

2004	Quarterly fu			
1Q	2Q	3Q	4Q	Annual Fuel (mcf)
13,289	5,100	865	0	19,254
13,547	5,922	1,786	3,297	24,552
203	4,171	10,922	7,304	22,599
5,636	3,077	62	0	8,776
7,805	7,027	5,420	1 ,4 48	21,701
34	1,903	8,051	11,824	21,812
			Γ	118,695

2004					
1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
134.4	51.6	8.7	0.0	10.11	AP-42
137.0	59.9	18.1	33.3	10.11	AP-42
2.1	42.2	110.4	73.8	10.11	AP-42
5 7 .0	31.1	0.6	0.0	10.11	AP-42
78.9	71.0	54.8	14.6	10.11	AP-42
0.3	19.2	81.4	119.5	10.11	AP-42
409.6	275.0	274.0	241.4		

2004					
1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
12,133.1	4,656.6	789.7	0.0	913.01	Source Test 7/22/2004
10,991.8	4,805.3	1,449.5	2,675.5	811.41	Source Test 7/22/2004
150.6	3,087.2	8,084.7	5,406.5	740.24	Source Test 7/22/2004
4,398.8	2,401.7	48.5	0.0	780.44	Source Test 5/18/2004
6,571.9	5,916.8	4,563.6	1,219.3	841.98	Source Test 5/19/2004
17.3	957.8	4,051.0	5,949.6	503.18	Source Test 6/17/2004
34,263.4	21.825.4	18.986.9	15,250.8		

CO

Portable A

1Q
369.3
290.2
265.9
333.9
229.6
No test

1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	

NOx	
-----	--

Portable	1

2004			
1Q	2Q	3Q	4Q
744.5	285.7	48.5	0.0
816.9	357.1	107.7	198.8
10.8	222.1	581.7	389.0
762.4	416.2	8.4	0.0
236.4	212.9	164.2	43.9
2.0	109.6	463.6	680.9
2,572.9	1,603.7	1,374.1	1,312.6

Emission Factor (lb/mmcf)	
56.0	Source Test 7/22/2004
60.3	Source Test 7/22/2004
53.3	Source Test 7/22/2004
135.3	Rule 1110.2 Limit (36 ppm)
30.3	Source Test 5/19/2004
57.6	Source Test 6/17/2004

 OI LUDIO
1Q
21.1
69.8
34.1
53.5
33.4
No test

2004				
1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
4,341.7	1,666.3	282.6	0.0	326.7
4,425.8	1,934.9	583.6	1,077.3	326.7
59.4	1,217.0	3,187.1	2,131.3	291.8
456.3	249.1	5.0	0.0	81.0
928.7	836.1	644.9	172.3	119.0
2.6	144.1	609.6	895.3	75.7
10,214.5	6,047.6	5,312.8	4,276.2	

Rule 1110.2 limit (250 ppm) Rule 1110.2 limit (250 ppm) Source Test 7/22/2004 Source Test 5/18/2004 Source Test 5/19/2004 Source Test 6/17/2004

ſ	NOX_EF	NOX_EMS	TOG_EF	TOG_EMS	FROG	VOC_EF	VOC_EMS
Γ	0.00	0.00	2.75	12.66	0.21	0.58	2.67
Ι	68.00	0.07	187.34	0.18	0.75	140.00	0.13
Γ	184.26	3.51	1740.00	33.12	0.05	94.00	1.79

188.90	4.69	1238.00	30.74	0.04	51.40	1.28
204.70	3.45	5187.00	87.43	0.07	358.90	6.05
176.40	1.83	1708.00	17.74	0.04	63.30	0.66
141.00	1.92	1364.00	18.60	0.04	54.50	0.74
249.70	2.18	1379.00	12.04	0.04	60.20	0.53
100.00	0.00	11.00	0.00	0.50	5.50	0.00
604.30	0.02	63.06	0.00	0.76	47.96	0.00
83.57	1.43	11.00	0.19	0.50	5.50	0.09

19.09 212.69 13.94

NOX_EF	NOX_EMS	TOG_EF	TOG_EMS	FROG	VOC_EF	VOC_EMS	
0.00	0.00	0.52	1.96	0.21	0.11	0	.41
68.00	0.05	187.34	0.14	0.75	140.00	0	1.11
56.02	0.91	6610.18	107.08	0.06	420.01	6	.80
60.30	1.32	5709.99	124.59	0.04	413.63	9	.03
53.26	1.21	5044.19	114.52	0.07	291.81	6	.62
207.88	1.19	1658.57	9.53	0.04	80.96	0	.47
30.29	0.42	1759.28	24.17	0.04	118.98	1	.63
57.59	0.76	1381.79	18.34	0.04	75.72	1	.00
100.00	0.00	11.00	0.00	0.50	5.50	0	.00
604.30	0.02	63.06	0.00	0.76	47.96	0	.00
83.57	1.57	11.00	0.21	0.50	5.50	0	.10

7.45 400.53 26.18

2004

nalyzer Results (ppm CO @15% O2)

2Q	3Q	4Q	Average	Converted to	Rule 1110	0.2 Limit (2000 ppm)
451.5	413.4	No test	411.4	940.9	CO	4574.002 lb/MMcf
242.9	338.9	316.3	297.1	679.5		
299.6	353.6	378.5	324.4	741.9		
339.7	317.4	No test	330.3	755.4		
234.3	141.4	210.1	203.9	466.3		
258.3	235.3	268.2	253.9	580.7]	

2004

unalyzer Results (ppm NOx @15% O2)

	<u>''''</u>		·				
2Q	3Q	4Q	Average	Converted to lb/mmcf_	Rule 1110.	2 Limit (36 p	pm)
24.2	12.5	No test	19.3	72.5	NOx	135.260	lb/MMcf
28.6	9.3	19.9	31.9	119.9		·	
49.7	12.5	18.1	28.6	107.5			
51.9	32.6	No test	46.0	172.8			
44.6	12.5	36.6	31.8	119.5			
17.2	12.3	27.4	19.0	71.4			

Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

56	.02
60	.30
53	.26
207	.88
30	.29
 57	.59

5/22/2002 Sox, 7/22/04 CO, Nox, VOC 5/22/2002 Sox, 7/22/04 CO, Nox, VOC 5/21/2002 Sox, 7/22/04 CO, Nox, 5/22/2002 Sox, 5/18/04 CO, Nox, VOC 5/21/2002 Sox, 5/19/04 CO, Nox, VOC

5/21/2002 Sox, 6/17/04 CO, Nox, VOC

Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application I. C. Engine Compressors S-43-4 through S-43-9

ADD PORTABLE ANALYZER RESULTS for NOx & CO

	2005 C	2005 Quarterly fuel (mcf)						
	1Q	2Q	3Q	4Q	Annual Fuel (mcf)			
S-43-4	0	0	0	0	0			
S-43-5	7,034	6,331	6,175	5,357	24,897			
S-43-6	1,606	2,772	2,661	111	7,150			
S-43-7	0	0	0	0	0			
S-43-8	1,854	0	0	0	1,854			
S-43-9	0	0	0	0	0			
			<u> </u>		33,901			

PM ₁₀	2005					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	10.11	AP-42
S-43-5	71.1	64.0	62.4	54.2	10.11	AP-42
S-43-6	16.2	28.0	26.9	1.1	10.11	AP-42
S-43-7	0.0	0.0	0.0	0.0	10.11	AP-42
S-43-8	18.7	0.0	0.0	0.0	10.11	AP-42
S-43-9	0.0	0.0	0.0	0.0	10.11	AP-42
	106.1	92.0	89.3	55.3		

CO	2005					
Quarterly Emissions (Ibs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	913.01	Source Test 7/22/2004
S-43-5	5,707.6	5,136.9	5,010.4	4,346.7	811.41	Source Test 7/22/2004
S-43-6	1,188.7	2,052.1	1,969.8	82.2	740.24	Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	780.44	Source Test 5/18/2004
S-43-8	1,561.0	0.0	0.0	0.0	841.98	Source Test 5/19/2004
S-43-9	0.0	0.0	0.0	0.0	503.18	Source Test 6/17/2004
	8,457.3	7,189.0	6,980.2	4,428.9		

SOx	2005
-----	------

Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	0.0
S-43-5	0.0	0.0	0.0	0.0	0.0
S-43-6	0.0	0.0	0.0	0.0	0.0
S-43-7	0.0	0.0	0.0	0.0	0.0
S-43-8	0.0	0.0	0.0	0.0	0.0
S-43-9	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

NOx	2005				
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)
S-43-4	0.0	0.0	0.0	0.0	56.0 Source Test 7/22/2004
S-43-5	424.2	381.7	3 7 2.4	323.0	60.3 Source Test 7/22/2004
S-43-6	85.5	147.6	141.7	5.9	53.3 Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	135.3 Rule 1110.2 Limit (36 բ
S-43-8	56.2	0.0	0.0	0.0	30.3 Source Test 5/19/2004
S-43-9	0.0	0.0	0.0	0.0	57.6 Source Test 6/17/2004
	565.8	529.4	514.1	328.9	

VOC	2005					
Quarterly Emissions (lbs)	1Q	2Q	3Q	4Q	Emission Factor (lb/mmcf)	
S-43-4	0.0	0.0	0.0	0.0	326.7	Rule 1110.2 limit (250
S-43-5	2,298.2	2,068.4	2,017.5	1,750.2	326.7	Rule 1110.2 limit (250
S-43-6	468.6	808.9	776.5	32.4	291.8	Source Test 7/22/2004
S-43-7	0.0	0.0	0.0	0.0	81.0	Source Test 5/18/2004
S-43-8	220.6	0.0	0.0	0.0	119.0	Source Test 5/19/2004
S-43-9	0.0	0.0	0.0	0.0	75.7	Source Test 6/17/2004
	2,987.4	2,877.3	2,794.0	1,782.6		_

2005						
DEV	PR = 2005	· · · · · ·	PRO_DES		PM10_EN	CO_EF
1	402.73	MILLION C	LHGP FUG	0.00	0.00	0.00
3	1.06	MILLION C	FLARE	7.60	0.00	370.00
S-43-4	0.00	MILLION C	IC ENGINE	10.11	0.00	913.01

S-43-5	1		IC ENGINE		0.12	811.41
S-43-6			IC ENGINE		0.03	740.24
S-43-7	1		IC ENGINE		0.00	780.44
S-43-8			IC ENGINE		0.01	841.98
S-43-9			IC ENGINE		0.00	
13			HEATER N		0.00	
14	1		IC ENGINE		0.00	
15	2.44	MILLION C	HEATER N	7.60	0.01	172.18

Rule 1110.2 Limit (2000 ppm) CO 4574.002 lb/MMcf Rule 1110.2 Limit (36 ppm) NOx 135.260 lb/MMcf

ppm) 1 1

> Rule 1110.2 limit (250 ppm) VOC 326.714 lb/MMcf

ppm) ppm) 1 1

CO_EMS	SOX_EF	SOX_EMS	NOX_EF	NOX_EM	TOG_EF	TOG_EMS	FROG	VOC_EF
0.00	0.00	0.00	0.00	0.00	0.52	0.10	0.21	0.11
0.20	10.10	0.01	68.00	0.04	187.34	0.10	0.75	140.00
0.00	0.00	0.00	56.02	0.00	1740.00	0.00	0.05	420.01

9.80	0.00	0.00	60.30	0.73	1238.00	14.95	0.04	413.63
2.41	0.00	0.00	53.26	0.17	5187.00	16.86	0.07	291.81
0.00	0.00	0.00	207.88	0.00	1708.00	0.00	0.04	80.96
0.78	0.00	0.00	30.29	0.03	1364.00		0.04	118.98
0.00	0.00	0.00	57.59	0.00	1379.00	0.00	0.04	75.72
0.00	0.60	0.00	100.00	0.00	11.00	0.00	0.50	5.50
0.00	39.74	0.00	604.30	0.02	63.06	0.00	0.76	47.96
0.21	0.60	0.00	83.57	0.10	11.00	0.01	0.50	5.50

13.40

0.01

1.08

33.30

Richard Edgehill

From: Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent: Tuesday, November 27, 2007 11:48 AM

To: Richard Edgehill

Subject: RE: ERC application S43, 1075362

Richard:

Attached is an Excel file showing the portable analyzer results for NOx and CO for the years 2002-2004. I have highlighted in light green the instances where:

1) The Rule 1110.2 limit of 36 ppm is higher than the average portable analyzer test values for the same period

2) The biennial source test values are higher than the average portable analyzer test values for the same period

It appears to me that, overall, the portable analyzer tests show that use of a 36 ppm emission factor does not overestimate emissions for the representative period. For the great majority of the data, the portable analyzer results are higher than the emission factors used and therefore the requested credit amounts are quite conservative.

It would be a fairly large undertaking to re-calculate the actual emissions based on portable analyzer (PA) results. I would not recommend this, since PA tests are intended only for *monitoring* and not for certifying emission compliance. Also, if PA test results are to be considered representative for *lower* emission values, they should also be considered representative for *higher* emission values. If PA test data were to be applied across-the-board, the overall total of requested credit amounts would probably be higher.

The comparison here does provide further demonstration that the emission factors that have been proposed are conservative. However, I don't think the differences warrant a re-calculation.

Please let me know how you would like to proceed from here.

Thanks....

-B Winn

-----Original Message-----

From: Winn BT (Brent) at Aera

Sent: Monday, November 19, 2007 4:24 PM

To: 'Richard Edgehill'

Subject: RE: ERC application S43, 1075362

Richard:

Here are a few answers and clarifications, and then I will have to dig for any information you still need after this.

I discovered the year 2003 fuel usage discrepancy (186.95 vs. 192.63 MMscf) while preparing the ERC application when I compared the actual fuel meter numbers to the quantities Aera reported in their annual emission statements. The fuel numbers for the annual emission statements had been provided each year by gas plant staff who used a spreadsheet to allocate the fuel to each compressor based on the total combined fuel for all compressors and individual run hours. Each year, staff would pull up the same spreadsheet and revise/update it with the current year's data. It appears that there were some years when staff changed the run hours in the spreadsheet but forgot to change the overall combined fuel amount. The attached spreadsheet provides a comparison of the actual amounts versus the amounts reported in Aera's annual emission statements.

The gas plant staff have moved on to other positions and responsibilities. However, based on the numbers I have reviewed, it appears that this is what happened:

- A) The volumes reported for year 2000 (total combined 185.69 mmcf) were accurate.
- B) For year 2001, gas plant staff re-used the same spreadsheet and plugged in accurate run hours but accidentally kept the total combined fuel volume from the previous year in the spreadsheet. After allocating the *erroneous* fuel volume based on run hours, the total combined volume came out at 186.95 mmcf very close to the volume reported for 2000. I assume the slight difference was due to rounding. The total combined volume for 2001 should have been 165.92 mmcf based on actual meter readings.
- C) The same spreadsheet was used for year 2002 and both the run hours and fuel volumes used were accurate. D) For year 2003, it appears that gas plant staff pulled up the spreadsheet that was used for year 2001 (skipped back two years) and again plugged in accurate run times for 2003 but forgot to change the (erroneous) combined total fuel volume (186.95 mmcf). The combined total volume should have been 192.63 mmcf based on actual meter readings.
- E) For year 2004, the gas plant staff repeated the same error they made for year 2003 (the runtimes were accurate but the erroneous volume of 186.95 mmcf was still included in the spreadsheet). The combined total volume should have been 118.69 mmcf based on actual meter readings.
- F) Year 2005, runtimes and volumes were accurate.

Aera's environmental staff did not catch these errors for two reasons:

- 1) When the fuel volumes were checked for accuracy, environmental staff compared each individual compressor's volume to the previous year's individual volume. Since the individual volumes were different from year to year, but did not differ greatly, that was within the realm of what was expected. The individual volumes differed somewhat because they were allocated based on actual run hours from year to year.
- 2) In the annual emission statements, the total gas plant combined emissions were compared between the current and the previous year in an effort to identify any potentially significant discrepancies. Different emission factors were used every 2 years, based on the most recent source test results for the engines. Furthermore, the emission totals included *all* of the plant equipment not just the compressors so it was not evident that the reported combined compressor volumes were repeated in years 2001, 2003, and 2004.

Aera's staff plans to submit revised annual emission statements to the District's emission inventory group as needed.

About baseline period:

The 2 years previous to the shutdown (July 2005 to July 2007) were not representative because, for a large part of that time, the gas plant was not processing any gas. Therefore, it is necessary to look to a different 2-year period as representative of normal operation. Normal operation must logically include times when the gas plant was processing gas from both Aera and Chevron's producing areas. Aera's gas was diverted to the field in May 2004. At that point, two compressors (S-43-4 and -7) were placed on standby (and then made dormant in December 2004). After that, compressors S-43-5 and -6 were not used to feed gas to the gas plant - they were used to divert Aera's produced gas back to the field. Compressors S-43-8 and -9 continued to put Chevron's gas into the plant processes, but operation of these compressors after May 2004 was not representative of normal gas plant volumes. Even after Chevron's feed to the plant was discontinued in January 2005, compressors S-43-5 and -6 continued to send Aera's gas to the field - until they were shut down in November 2005.

So, although the fuel votumes make it appear that compressors S-43-5, -6, -8, and -9 may have continued to operate normally after May 2004, this was not representative of normal plant operation. Normal plant operation would be best represented by a 2-year period preceding May 2004 (going back to May 2002), but this time period is not completely within the 5-year window preceding July 2007 ("shutdown" date). The representative period cannot begin any sooner than July 2002.

- B. Winn

-----Original Message-----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Monday, November 19, 2007 11:52 AM

To: Winn BT (Brent) at Aera **Cc:** Leonard Scandura

Subject: ERC application S43, 1075362

Brent: The following information is required to continue to process REC application S43, 1075362

Project 1041364 designated the 6 IC engines '-4 though '-9 as DEUs and was finalized 12-3-04. The Equipment Configuration and Operational Data submitted with the application included a total 2003 hours of operation and fuel use of '-4 through '-9 as 26,543 hrs and 186.95 MMscf. The ERC application listed the 2003 hours and fuel use for '-4 through '-9 as 33,981 hrs and 192.63 MMscf. Please explain the discrepancy.

Source test results for '-4 through '-9 indicated NOX concentrations of 45.6, 46.8, 50.7, 43.7, 34.9, and 61.4 ppmv @ 15% O2 in 2002 and 14.3, 15.4, 13.6, 51.4, 21.9, and 14.2 ppmv @ 15% O2 in 2004. Please provide portable monthly monitoring data for NOx covering the baseline period (see below).

Annual fuel use (mcf) for '-4 through '-9 from 2001 through 2005 was 165,915 (2001), 178,316 (2002), 192,630 (2003), 118,695 (2004), and 33,942 (2005). However, engine S-43-5 operated normally in 2005 (24,897 mcf fuel used), except in December when no fuel was consumed. Please recalculate ERCs for S-43-5 for a baseline period from December 2003 through November 2005. Please explain why the baseline period (Oct 2002 through Sept 2004) for '-6, '-8, and '-9 did not include 4th qtr 2004 (Oct-Dec 2004) as these engines apparently operated normally then.

Thanks

mission Reduction Credit Application Aera Energy Lost Hills Section 15 Gas Plant Er L.C. Engine Compressors S-43-4 through S-43-ADD PORTABLE ANALYZER RESULTS for NOV & CO fuel (mch 3Q 4Q 0 0 5,175 5,357 2,661 111 0 0 0 0 0 0 PM₁₀ Quarterly Emissions (fbg) 9-43-4 9-43-5 9-43-5 9-43-6 9-43-8 9-43-8 Emission Factor (lb/mmcf) 10.11 10.11 10.11 10.11 10.11 10.11 CO 2005 Questarity Entistens 10 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 5-03-1 Emission Factor (lb mmcf) 913-01 811-41 740-24 780, 44 641-98 503-18 Rule 1110.2 Limii (2000 ppm) CO 4574 002 ib MMcf SOx 2005 30 00 00 00 00 00 NOX 2005
Quarterly
Emissions (lbai) 1Q
S-13-4 0,0
S-13-5 424 2
S-13-7 0,0
S-13-7 0,0
S-13-8 56,5
S-13-8 0,0 Rule 1110 2 Limit (36 ppm) NOx 135 260 lb:MM 56 0. Source Test 7/22/2004 60:3 Source Test 7/22/2004 53.3 Source Test 7/22/2004 135.3 Rule 1110 2 Limit (36 or 30:3 Source Test 6/17/2004 57:6 Source Test 6/17/2004 VOC 2005

Quarterly
Enlasions
(194)
9-13-4
0,0
3-43-5
2-29-6
3-43-7
0,0
3-43-9
0,0
3-43-9
0,0
3-43-9
0,0
3-43-9
0,0
3-43-9
0,0
3-43-9
0,0
3-43-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
3-843-9
0,0
0 Rule 1110 2 limit (250 ppm) VOC 338 714 lb NMd/ Rule 1110 2 limit (250 ppm) VOC 338 714 lb NMd/ Source Test 172/2004 Source Test 519 2004 Source Test 517 2004 | 2005 | 2007 | Aera Energy Lost Hills Section 15 Gas Plant Emission Reduction Credit Application

ADD PORTABLE ANALYZER RESULTS for NOx 5 CO.

	2004 C	tuerterly fo	uel (mcfl		
	19	20	30	10	Annual Fuel (mcf)
5-43-4	13.289	5,100	365	0	19.254
3-43-5	13.547	5.922	1.786	3.297	24.552
9-43-6	203	4,171	10.922	7.304	22.599
\$-43-7	5.636	3.077	62	0	8,776
S-43-8	7.805	7.027	5.420	1,448	21,701
8-43-9	34	1,903	8,051	11,824	21,812
	_			1	118,69

PM ₁₀	2004					
Quarterly Emissions (lbs)	19	_ 2Q	30	10	Emission Factor (lb/mmcf)	
9-43-4	134 4	51 6	6.7	0.0	10 11	AP-42
3-43-5	137 0	59.9	15 1	33.3	10 11	AP-42
3-43-6	2 1	42.2	110.4	73.8	10.11	AP-42
S-43-7	57.0	31 1	0.6	υu	10 11	AP-42
5-43-5	78 9	710	54.8	14.6	10 11	AP-42
8-43-9	. 0.3	19 2	61 4	1195	10 11	AP-42
	409 6	275 D	274 0	241 4		

CO	2004					_
Quarterly Emissions (lbs)	10	20	30	49	Emission Factor (lb/mmcf)	
9-43-4	12,133 1	4.656.6	789.7	ot	913 01	Source Test 7:22:2004
3-43-5	10,991 8	4,505 3	1,449.5	2.675.5	611.41	Source Test 7:22,2004
S-43-5	150.6	3.087 2	8.084.7	5.406 5	740 24	Source Test 7/22/2004
S-43-7	4,398 8	2 401 7	48 5	0.0	780.44	Source Test 5/18:2004
8-43-8	6.571.9	5,916.8	4.563.6	1.219 3	841.98	Source Test 5:19:2004
9-43-9	173	957 8	4.051.0	5,949 6	503 16	Source Test 6: 17:2004
	34.263 4	21.825 4	18,986 9	15.250 B		

- 1	[
10	20	30	.49	Average	Converted to	Rule 1110 2 Limil (2000 p
369.3	451.5	413 4	No test	4114	940 9	CO 4574.002 lb.M
290.2	242 9	338.9	316 3	297.1	679.5	
265 9	299.6	353 6	378 5	324 4	741 9	1
333.9	339 7	317 4	No lest	330 3	755.4	1
229.6	234.3	141.4	210 1	203 9	466.3	1
No lest	258 3	235 3	268 2	253 9	580.7	1

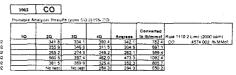
SOx	2004				
Quarterly Emissions ((bs)	19	2Q	30	49	Emission Factor (lb/mmcf)
5-43-4	.00	0.0	0.0	0.0	0.0
5-43-5	0.0	0.0	0.0	0.0	0.0
5-43-4	0.0	0.0	0.0	0.0	0.0
5-43-7	0.0	0.0	0.0	0.0	0.0
9-43-4	0.0	0.0	0.0	0.0	0.0
3-43-9	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	

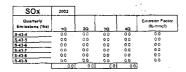
NOx	2004					
Quarterly Emissions (fbs)	10	20	30	49	Emission Factor (lb/mmcf)	
5-43-4	744.5	285.7	48.5	0.0	56.0	Source Test 7/22/2004
\$-43-5	816.9	357 1	107 7	198.8	60 3	Source Test 7/22/2004
5-43-4	10.8	222 1	581 7	389.0	53.3	Source Test 7/22/2004
5-43-7	762.4	416.2	5.4	0.0	135 3	Rule 1110 2 Limit (35 ppm)
S-43-8	236 4	2129	164 2	43.9	30 3	Source Test 5'19/2004
9-43-9	2.0	109.6	463.8	680 9	57.6	Source Test 6/17/2004
	2,572 9	1.603 7	1,374.1	1.312.6		

	NUX	2004							
	Portable A	natyzer N	avults (ppm	NOx ∰155	s 02i				
	10	20	30	49	Average	Converted to	Rule 1110.	2 Limit (36	ppm)
	21.1	24.2	12.5	No lesi	19 3	72.5	NOx	135 260	Ib MMcf
	698	28.5	9.3	19.9	319	119.9			
	34.1	49.7	12 5	18.1	28 6	107 5	ţ		
m)	53,5	51.9	326	No test	46 0	172.8	1		
	33 4	44.5	12.5	36.6	31.8	119 5	}		
	No lest	17.2	123	27.4	19.0	71.4			

VOC	2004					
Quarterly Emissions (lbs)	10	2Q	30	40	Emission Factor (lb/mmcf)	
S-43-4	4,341.7	1,666 3	282 6	00	326.7	Rule 1110.2 limit (250 pomil
S-43-5	4,425.8	1,934.9	583.6	1,077.3	326.7	Rule 1110.2 kmit (250 ppm)
5-43-6	59.4	1,217.0	3,197.1	2,1313	291.8	Source Test 7/22/2004
3-43-7	456.3	249.1	5.0	0.0	81.0	Source Test 5/18/2004
5-43-8	928.7	336 1	644.9	172.3	119.0	Source Test 5/19/2004
S-43-9	2.6	144.1	609.6	895.3	75.7	Source Test 5:17/2004
	10 214 5	C 047 6	5 312 8	4 276 2		•

Rule 1110.2 limit (250 ppm) VOC 325.714 /b/MMcf




ADD PORTABLE ANALYZER RESULTS for NOV & CO

	2002	Quarterly	Quarterly fuel (mcf)				
	10	20	30	.40	Annual Fuel (mch		
S-43-4	6,825.9	11,176.5	12,912 7	9.3120	40.227		
5-43-5	6.968 1	7,670 9	5,979 6	9.405 4	30.024		
9434	12,263 6	7,420.6	6,970 7	7.272.7	33,928		
9-43-7		2,725 6	11,474.2	5.476 3	19.676		
S-43-8	9.123.4	5 944 5	11.494.3	8,467 1	38.050		
8.41.9	4.135.0	4,136 9	0.0	6,139 7	16,412		

PM ₁₀	2002				
Quarterly Emissions (lbs)	19	20	30	49	Emission Factor (ib/mmcf)
6-43-4	69.0	113.0	130.5	94.1	10 11
3-43-5	70 4	77.6	60 5	95 1	10 11
\$43-6	124 0	75.0	70 5	73.5	10 11
9-43-7	0.0	27 6	1160	55.4	10 11
\$ 43.4	92.2	90.4	116.2	85.8	10.11
9-43-9	41.6	41.8	0.0	82.3	10 11
	397.5	425 4	493.7	486.2	

			1.0			
CO	2002					_
Querterly Emissions (lbs)	10	20	10	40	Emission Factor (45 mmcf)	
9-43-4	1,529 7	7,416 7	8.568.9	6.179 4	863 6	Source Test 5:21 & 22:200:
9-43-5	4,424.0	4.870 3	3,796 4	5.971.5	934.9	Source Teet 5-21 3-22:200:
643-6	6,567 2	3.973.7	3,732 8	3,894 5	535, 5	Source Test 5:21 & 22/2003
S-43-7	50.0	2.533 2	11.927.4	5.692.6	1039.5	Source Test 5:21 & 22:200:
9-43-8	6.029 7	5.911.4	7.596 9	5.509 1	660.9	Source Test 5.21 & 22/200:
5-43-9	2,914 7	2,916 1	0.0	5.737.7	704.9	Source Test 5-21 & 22/2000

NOx	2002					
Quarterly Emissions (ibs)	10	20	30	40	Emission Factor (lb/mmcf)	
8-43-4	923.3	1,511.7	1,746.5	1,259 5	135 3	Rule 1110.2 Limit (36 com)
3-43-5	942.5	1.037.6	8,808	1.272.2	135 3	Rule 1110.2 Limit (36 pom)
8-43-6	1,658.8	1.003.7	942 9	983 7	135.3	Rule 1110 2 Limit (36 pom)
8-43-7	0.0	368.7	1,552.0	740 7	135 3	Rufe 1110 2 Limit (35 pom)
S-43-4	1,234 0	1,209 8	1,554 5	1.1480	135.3	Rute 1110.2 Limit (36 pom)
8-43-9	559 3	559.6	0.0	1,101.0	135.3	Rule 1110 2 Limit (36 ppm)
5 57	5,317,9	5,691 1	6,605 0	6,505 0		•

2002	NOx					
rtable A	natyzer Rasult	s (opm NOr	@15% O2			
10	20	30	40_	Average	Converted to lb/mmcf	Rule 1110 2 Limit (36 ppm)
	62.6	56.6	68.1	62.4	234 5	NOx 135 260 15/MM
	52 6	68.6	64.6	62.0	232 9	
	33 5	31.6	25.3	30 1	113 1	7
	52.1	36.7	52 3	47.0	176.6	3
	31 2	53 1	42.6	42.3	158.9	1
	No lest	No test	35.2	35 2	1323	7

VOC	2902		_			_
Quarterly Emissions (lbs)	10	20	30	40	Emission Factor (lb/mmcf)	
S-43-4	6419	1,051.0	1,214.2	875.6	94.0	Source Test 5-21 & 22/200
3-43-5	358.C	394 1	307 2	483.2	51.4	Source Test 5/21 & 22/200.
5-43-6	4,006 7	2,424 4	2.277.4	2,376.1	326 7	Rule 1110.2 limit (250 ppm
5-43-7	0.0	172 6	726.5	346.7	63.3	Source Test 5/21 & 22/200:
5-43-8	497 0	467 3	626.2	462.4	54.5	Source Test 5/21 & 22/200.
S-43-9	249 0	249.2	0.0	490.2	60.2	Source Test 5/21 & 22/200
	5 750 C	4 778 6	5 161 C	5.024.2		

Rule 1110 2 hmil (250 ppm) VOC 326.714 ib*MMcE

Emission Statement - Calendar Year 2002 Emissions

	Process Number	Equipment Type	Process Acts	Source Clerefication	HOX B-/ Unit	TOO B / Unit	er ROG	VOC Us / Unit	BOX B/Unit			e / Uma	PRE Lib / Units	Prector PM 19	PE 10 Lb / Unit	
7	3	FUCITIVE EME	6 348	IC FEET OF C	0.00	3 17	0.39	1.23	0.00			0.00	N/A	16A	0.00	1
				31000260	0.00	17.21		18	0.50			0.00	- Jan 19 1		0.00	Ton
3	- 1	FLARE	2.504	CUBIC FEET	68.00	2,000	0.75	105 00	10.10			 370.00	N/A	74A	7.60	1
			44.	31000205	0.08	2.50		1.87	0.01			 0.44		."" 1"	0.01	Ten
4	1	IC ENOME	40.331	CUBIC FEET	184 26	1,740	0.05	94.03	0.00			 667.00	NA	N/A	0.08	3
_				70200202	1.72	35.08		1.90	0.00			 13,38			0.00] Ton
5	1	IC ENGRE	30,126	CUBIC FEET	155.90	1,238	Q 04	31.38	0.00			634.90	N/A_	N/A	0.06	I
		1 1		20200202	2.85	18.65		0.77	0.00			 9.36		Γ	0.00	Ton
6	1 -	IC ENGINE	33 723	CUBIC FEET	204.70	5,157	0.07	358 86	0.00			 535.50	NVA	N/A	0.08	1
				20200202	3,45	37.48		6.05	0.00			 9,03			0.00	Ton
7	-1	IC ENGINE	20 354	CLEIC FEET	176 40	1,708	0.04	63.32	0.00			 1,040	NA	N/A	0.08	1.
	4 1 L			20200202	1.80	17.38		0.54	0.00			 10.58			0.00	Ton
8		IC ENONE	37 506	CUBIC PEET	141.00	1,364	0.04	54 48	0.00			660.90	N/A	N/A	0.08	1
				20200202	2.64	25.59		1.02	0.00	· · ·		 12.39		Γ	0.00	Tor
9	· · · · · · · · · · · · · · · · · · ·	IC ENONE	16,277	CUBIC PEET	249 70	1,379	0.04	60.23	0.00			 704 90	N/A	_N/A	0.08	1
		_1. 1		20200207	2.03	11.22		0.49	0.00			5.74			0.00	Ten
13	1	EATER NAT GO	_	CUBIC FEFT	100.00	13.67	0.50	5.50	0.60			84.00	N/A	N/A	7.60	1
- 1		1 1	-	31000464	9.00	0.00		0.00	0.00			 0.00		-	0.00	Ton
14	. 2	OPE DESEL	0.06	DALLONS BL	85 11	6.76	0.76	25.47	5.60			 18.34	N/A	N/A	42.45	1 ~
- 1		1 1		20200107	0.00	0.00		27 0.00	0.00		1	 0.00		———	0.00	1 700
15 1		EATER NAT G	30 728		83.57	13.67	0.50	150	0.60			 172.18	NA	N/A	7.50	1 '`‴'
٠٠]	,	- Table	JU /28	21000414	1,28	9.21	V 30	0.11	0.01			 2.93	NEA.	N'A		ł
┷		Totals For			17.56	215.30		17.50	0.03			 63.79			0.12	Ten

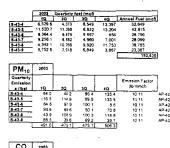
onlact .	PEGGY SHUE
Company	AERA ENERGY LLC
Adress	PO 60X 11164
City, State, Zio	BAKERSFIELD, CA 93389
felephone:	(661) 6655689
mail Address	pashue@sersenergy.com
villigh to nelten.	AERA ENERGY LLC
f different :	LOST HILLS GAS FLANT
Irom above	1

Emissio n Factor Source

mission Factor Used, to/Miscf

	PRO DES	PM 10	co	so.	NOx	voc	Test Date	Bruct			PM 10	co	SOx	NOx	voc
9-13-4	IC ENGINE	ovi ovi	913.0		56.0	420 (5/22/2002 50x 7/22/04 CO				10 11	913 0	337	56 O	
S-43-5	IC ENGINE	raga di ya garenge rajaran ili	811.1		60 3	413.6	5/22/2002 SOs 7/22/04 CO. NOs. VOC				10.11	811 1		60.3	
	IC ENGINE	29 K 29 K 20 C					5/22/2002 SOx 7/22/04 CO NOx VOC	.,,						-	
9-43-6	NAT GAS		740 24	- 3	53 3	291 8			<u></u>		10.11	740 24		53.3	291 8
					Ì		\$12,72002 Sev \$18,04 CO New YOC	1							
5-43-7	IC ENGINE		750 4		207.9	31 (1			10.21	780 4	3	207 9	810
8414	IC ENGINE		842 0		30.3	1190	\$/21/2002 Sou \$/19/04 GO New //OC			[10 ***	842 0		30 3	119 0
S-43-9	IC ENGINE		503.18		57.6	75.7	\$171/2002 Sex \$117/04 CO Nov VOC	7			10 11	503 18		57 6	75.7

FAC ID	Emission Factor Sour	co sov	NOv	voc		Tesi Dilie		Emission PM10	Factor Used. CO		VOC FF TO	00
9-43-4	MAT GAS - LIME	663 6	0	184.3	94 0	05 22 02	1.74	0.0786	663 6	 184 3	9400	1740
3-43-5	NAT GAS + 1994	634 9	٥	188 9	51.4	05-22-02	~	0.0786	634 9	 188 9	514 0	1238
5-43-6	NAT DAS LUMB	535.5		204.7	358 9	35/21/02	***	p 0786	535 5	 204.7	358 9 n	5187
5-43-7	NAT OAS - 100	1039 5		176 4	63.3	05-22 02		0.0786	1039 5	176 4	63 3 0	1708
9-43-8	NAT GAS STATE	660 9	0	141.0		05/21/02	100	0.0786		141.0	54.5 0	1364
9-43-9	NAT GAS THE	704 9	,	249 7		05.21/02	· ~	0.0786		249 7	50 2 0	1379


black source (asl

Emission Fectors revised to enswer Districts mid-2003 request to ensure PM10 (not total PM) and VOC (not TOG) emission factors

PM 10 Emission	Emission Factor	PM or	PM 10 Emission Factor in MMscf or	TOG at VOC	Emission Factor	Other Information
	Source Ac-42 faure 1.7.2 with deleted 1020		0.0756	Emission Factor 147 to TGC MMBs. 1115 to VGC MMPs.		Used API42 Table assume (CD0 No.cd)

TOG VOC
Envision Envision Envision
Source of Factor, F

ADD PORTABLE ANALYZER RESULTS for NOX & CO.

				*			CO
CO	2003						Portable.
Quarterly Emission & (fbs)	19	20	30	40	Emission Factor (lb.mmcf)		19
9434	4,200.5	2.9019	5.673 3	8,890.2	663 6	Source Test 5.21 & 22/2002	276 2
9-43-5	7,314 5	7.2176	4,3314	8,383.5	634 9	Source Test 5.21 & 22:2002	273 8
5-43-4	4.479 1	5.183 2	5,299 6	458 2	535.5	Source Test 5:21 & 22/2002	249 5
3-43-7	9,621 7	7.153.6	5.156.1	7,277.2	1039.5	Source Test 5 21 & 22/2002	413 0
9-43-4	2,859 7	7,1175	6.556.0	7.767 8	660 9	Source Test 5:21 & 22:2002	266.4
3-43-9	6.169.8	2.7619	4,527.8	2,725.6	704 9	Source Test 5 21 & 22:2002	253.3

2003							
Analyzer Res	ulty (µpm	się 18% ():	9				
20	30	49	Average	Converted to lb/mmcf	Rule	1110 2 Limil (2000)	opm'
295 Q	274.4	3613	301 7	690 0	00	4574 002 lb/	MMC
295.2	280 0	286 2	264 1	649 7			
265.2	314 7	253 9	270 8	6193			
No lest	433.1	439 7	428 6	980 2			
306.9	329 1	328.6	307 6	703 9			
265.5	255 1	313 1	271 8	6216			

SOx	2003				
Quarterly Emission s (lbs)	19	20	30	40	Emission Factor (lb/mmcf)
3-43-4	0.0	0.0	0.0	0.0	0.0
9-43-5	0.0	0.0	0.0	0.0	0.0
9-43-6	0.0	0.0	0.0	0.0	0.0
5-43-7	0.0	0.0	0.0	0.0	0-0
943-8	0.0	0.0	0.0	0.0	0.0
3-43-9	0.0	0.0	0.0	0,0	0.0
	00	0.0	0.0	0.0	

2003						Portable
10	20	30	49	Emission Factor (lb/mmcl)		10
856.2	591.5	1.156.4	1 812 1	135 3 Rute 1	110.2 Limit (35.ppm)	51
1,558.3	1,537.6	922.0	1.786.0			63
1,131.4	1,309.2	1,338.6	115 7	135.3 Rule 1	110.2 Limit (36 ppm)	36
1.252.0	930.8	670.9	946 9	135 3 Rule 1	110.2 Limit (35 ppm)	38
5873	1,456.7	(3410	1,589.8	135 3 Rule 1	110 2 Lenvil (36 pare)	67
1,183.9	530 0	926.4	523.0	135 3 Rule 1	110.2 Limit (36 ppm)	29
	10 556.2 1,558.3 1,131.4 1,252.0 587.3	10 20 858.2 591.5 1,558.3 1,537.6 1,131.4 1,309.2 1,252.0 930.8 587.3 1,456.7	10 29 39 858 2 591 5 1,156 4 1,558 3 1,537.6 922.6 1,131.4 1,309 2 1,338 8 1,252.0 930.8 670.9 587 3 1,456.7 (341.6	10 20 30 40 588 2 591 5 1,156 4 1,812 1 1,558 3 1,537 8 922 8 1,756 0 1,131 4 1,302 2 1,338 8 115 7 1,232 0 930 8 670 9 946 9 547 3 1,454 7 1,341 8 1,539,8	10 20 30 40 (hmml) 133 Rus 1552 5915 1156 41 157 152 1 133 Rus 1559 3 1,337 8 922 8 1786 0 134 Rus 157 134 Rus 157 135 Rus 157	10 20 30 40 Emission Factor (Burnet) 1559 1594 1512 1515 1516 1516 1517 15

voc	2003		1			
Quarterly Emission a (1ba)	10	žQ.	30	40	Emission Factor (lb/mmcf)	
9434	595.0	4111	803.6	1,259.3	94.0	Source Test 5/21 & 22/2002
\$-43-5	592.2	584.3	350 7	678.7	51 4	Source Test 5/21 & 22/2002
\$-43-6	2,732.8	3,1523	3.233.4	279 5	326.7	Rule 1110.2 limit (250 ppm)
8-43-7	585.9	435 6	3140	443.1	63.3	Source Test 5/21 & 22/2002
5-43-8	236.6	585.9	540.6	640.6	54.5	Source Test 5/21 & 22/2002
5-43-9	526 9	235 9	4123	232 B	60.2	Source Test 5/21 & 22/2002
	5 000 L		4 44 . 4	-		

2003					
2Q	need) sent	40	Average	Converted to Ib/mmcf	Rule 1110,2 (Jmil (36 ppm)
314	413	28 6	38.2	143.5	NOx 135.260 Ib/MMcf
56 1	67 3	596	64.2	241 2	
30 5	28.2	45,4	35.2	132.3	
No test	72.6	Farled less	55.5	209 7	Re-rested in Jan 2004 #3 64 3 com
52 5	67.7	Failed test	66.0	248 0	Re-lested in Jan 2004 @ 67 1 ppf
38 4	617	30.6	40 1	150.7	

Rule 1110 2 limit (250 ppm) VOC 326 714 lb.MMc/

	2093					
DEV	PR 2	UNRIS	PRO_DES	PM10_EF	PM10_EMS	
1		MILLION			0.00	
- 3	1.91	MICLION	FLARE	760	0.01	
5-43-4	38.07	MILLION (IC ENGIN	10 11	0.19	
3-43-5		MILLION			0 25	
9-43-6	33 71	MILLION	IC ENGIN		0.17	
5-43-7		MILLION		10.11	0.11	
9-43-8 8-43-9	27.27	MILLION	IC ENGIN		0.14	
3-43-9		MILLION		10.11	0.09	
13	0	MILLION	HEATER (760	9.00	. 1
14		1000 GAL			0.00	
15	34.20	MILLION	MEATER I	7 60	0 13	

FAC_ID	2004 Fuel	UNITS	PRO_DES	PM10_EF	PM10_EMS	
1	7609.42	MILLION (LHGP FU	0.00	0.00	
3		MILLION		7 50	0.01	
5-43-4			IC ENGIN		0 16	
8-43-5	43 54	MILLION	IC ENGINE	10.11	0.22	
8-43-6	45.41	MILLION (IC ENGIN	10.11	0 23	
8-43-7			IC ENGIN		0.06	
9.43-6	27 47	MILLION O	IC ENGIN	10 11	0 14	
9-43-9	25.54	MILLION (IC ENGIN	10.11	0.13	
. 13			HEATER I		0.00	
14	0.06	1000 GAL	IC ENGINE	42 48	0.00	
15	37 67	MILLION	HEATER 1	7 60	0 14	

	ICO EF	Ten eus	ISOX EF	I I SOX EMS	INOX EF	I NOX EMT	TOG EF	TOG EMS	E8/72	TOWN EE	IVOC EMS
	0.0						2.75			0.58	2 67
	370.0		10.10		58.00	0.07	18734	0 18	075		0 13
· · · ·	663.6			0.00			1740,00	33 12	0.05	94.00	1.79
	634 9						1238 00	30 74	0.04	51.40	
	535.5 1039.5		9.00	0.00	204 70 175 40		5187 00 1708 00		0 07	358.90 63.30	
	660.9						1364 00		0.04		
	704.5	0 615	0.00	0.00	249 70	2 15	1379 00	12.04	0.04	60.20	0.53
	84.0	0 00			100.00		11.00	0.00	0.50	5 50	0.00
	130.1						63.06	0.003	0.76		
	172.1	8 294	0.60	0.01	83 57	1 13	11.00	0 19	0.50	5 50	0.09
		96 69		0.02		19 09		212 69			13 94

	CO EF	CO EMS	SOX_EF	SOX	EMS 1	OX_EF	NOX_EM:	TOG_EF	TOG_EMS	FROG	VOC_EF	VOC EMS
	0.00	0.00	0.00		C 00	9.00	0.00		1 96		0.11	0.41
	370 00	0.58	10 10		0.01	68.00	0.05	167.34	0.14	9.75	140 00	0.11
	913 01	14 79			0.00	56.02	0.91	661018		0.06	420.01	6 80
	511 41	17 70	. 0 00		0.00	50,30	1 32		124 59	0.04	413.53	9.03
	740 24	16 91	0.00		0.00	53.26	1.21	5044 19	114 52	0.07	291 81	6 62
	780 44	4 48	0.00		0.00	207 88	1,19	1858 57	9 53	0.04	80.96	0.47
	841 98	11 57			0.00	30 29	0.45	1759 28		0.04	118 98	1.63
	503, 18	6 68	000		0.00	57 59	0.76	1381.79	18.34	0.04	75 72	1 00
£ 100 x 10 1	84 00	0.00	0.60		0.00	100 00	0.00	11.00	000	0.50	5.50	
	130.18	9.00	39 74		0.00	604.30	0.02	63.06	0.00	0.76	47.96	0.00
	172 18	3 24	0.60		0.01	83 57	1 57	11.00	. 0.21	9.50	5 50	0 10

Richard Edgehill

From: Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent: Monday, November 19, 2007 4:24 PM

To: Richard Edgehill

Subject: RE: ERC application S43, 1075362

Richard:

Here are a few answers and clarifications, and then I will have to dig for any information you still need after this.

I discovered the year 2003 fuel usage discrepancy (186.95 vs. 192.63 MMscf) while preparing the ERC application when I compared the actual fuel meter numbers to the quantities Aera reported in their annual emission statements. The fuel numbers for the annual emission statements had been provided each year by gas plant staff who used a spreadsheet to allocate the fuel to each compressor based on the total combined fuel for all compressors and individual run hours. Each year, staff would pull up the same spreadsheet and revise/update it with the current year's data. It appears that there were some years when staff changed the run hours in the spreadsheet but forgot to change the overall combined fuel amount. The attached spreadsheet provides a comparison of the actual amounts versus the amounts reported in Aera's annual emission statements.

The gas plant staff have moved on to other positions and responsibilities. However, based on the numbers I have reviewed, it appears that this is what happened:

- A) The volumes reported for year 2000 (total combined 185.69 mmcf) were accurate.
- B) For year 2001, gas plant staff re-used the same spreadsheet and plugged in accurate run hours but accidentally kept the total combined fuel volume from the previous year in the spreadsheet. After allocating the *erroneous* fuel volume based on run hours, the total combined volume came out at 186.95 mmcf very close to the volume reported for 2000. I assume the slight difference was due to rounding. The total combined volume for 2001 should have been 165.92 mmcf based on actual meter readings.
- C) The same spreadsheet was used for year 2002 and both the run hours and fuel volumes used were accurate.
- D) For year 2003, it appears that gas plant staff pulled up the spreadsheet that was used for year 2001 (skipped back two years) and again plugged in accurate run times for 2003 but forgot to change the (erroneous) combined total fuel volume (186.95 mmcf). The combined total volume should have been 192.63 mmcf based on actual meter readings.
- E) For year 2004, the gas plant staff repeated the same error they made for year 2003 (the runtimes were accurate but the erroneous volume of 186.95 mmcf was still included in the spreadsheet). The combined total volume should have been 118.69 mmcf based on actual meter readings.
- F) Year 2005, runtimes and volumes were accurate.

Aera's environmental staff did not catch these errors for two reasons:

- 1) When the fuel volumes were checked for accuracy, environmental staff compared each individual compressor's volume to the previous year's individual volume. Since the individual volumes were different from year to year, but did not differ greatly, that was within the realm of what was expected. The individual volumes differed somewhat because they were allocated based on actual run hours from year to year.
- 2) In the annual emission statements, the total gas plant combined emissions were compared between the current and the previous year in an effort to identify any potentially significant discrepancies. Different emission factors were used every 2 years, based on the most recent source test results for the engines. Furthermore, the emission totals included *all* of the plant equipment not just the compressors so it was not evident that the reported combined compressor volumes were repeated in years 2001, 2003, and 2004.

Aera's staff plans to submit revised annual emission statements to the District's emission inventory group as needed.

About baseline period:

The 2 years previous to the shutdown (July 2005 to July 2007) were not representative because, for a large part of that time, the gas plant was not processing any gas. Therefore, it is necessary to look to a different 2-year period as representative of normal operation. Normal operation must logically include times when the gas plant was processing gas from both Aera and Chevron's producing areas. Aera's gas was diverted to the field in May 2004. At that point, two compressors (S-43-4 and -7) were placed on standby (and then made dormant in December 2004). After that, compressors S-43-5 and -6 were not used to feed gas to the gas plant - they were used to divert Aera's produced gas back to the field. Compressors S-43-8 and -9 continued to put Chevron's gas into the plant processes, but operation of these compressors after May 2004 was not representative of normal gas plant volumes. Even after Chevron's feed to the plant was discontinued in January 2005, compressors S-43-5 and -6 continued to send Aera's gas to the field - until they were shut down in November 2005.

So, although the fuel volumes make it appear that compressors S-43-5, -6, -8, and -9 may have continued to operate normally after May 2004, this was not representative of normal plant operation. Normal plant operation would be best represented by a 2-year period preceding May 2004 (going back to May 2002), but this time period is not completely within the 5-year window preceding July 2007 ("shutdown" date). The representative period cannot begin any sooner than July 2002.

- B. Winn

----Original Message-----

From: Richard Edgehill [mailto:Richard.Edgehill@valleyair.org]

Sent: Monday, November 19, 2007 11:52 AM

To: Winn BT (Brent) at Aera **Cc:** Leonard Scandura

Subject: ERC application S43, 1075362

Brent: The following information is required to continue to process REC application S43, 1075362

Project 1041364 designated the 6 IC engines '-4 though '-9 as DEUs and was finalized 12-3-04. The Equipment Configuration and Operational Data submitted with the application included a total 2003 hours of operation and fuel use of '-4 through '-9 as 26,543 hrs and 186.95 MMscf. The ERC application listed the 2003 hours and fuel use for '-4 through '-9 as 33,981 hrs and 192.63 MMscf. Please explain the discrepancy.

Source test results for '-4 through '-9 indicated NOX concentrations of 45.6, 46.8, 50.7, 43.7, 34.9, and 61.4 ppmv @ 15% O2 in 2002 and 14.3, 15.4, 13.6, 51.4, 21.9, and 14.2 ppmv @ 15% O2 in 2004. Please provide portable monthly monitoring data for NOx covering the baseline period (see below).

Annual fuel use (mcf) for '-4 through '-9 from 2001 through 2005 was 165,915 (2001), 178,316 (2002), 192,630 (2003), 118,695 (2004), and 33,942 (2005). However, engine S-43-5 operated normally in 2005 (24,897 mcf fuel used), except in December when no fuel was consumed. Please recalculate ERCs for S-43-5 for a baseline period from December 2003 through November 2005. Please explain why the baseline period (Oct 2002 through Sept 2004) for '-6, '-8, and '-9 did not include 4th qtr 2004 (Oct-Dec 2004) as these engines apparently operated normally then.

Thanks

Allocated Fuel Usage Per Engine (mcf)

2001	Jan		Feb	Mar	Apr	May	Jun	Jul	Aug
S-43-4		21	59	2,978	2,355	O	0	0	0
S-43-5	5,2	8	4,931	4,467	4,162	4,575	3,192	4,566	4,606
S-43-6	5,14	17	4,593	1,489	2,736	4,401	3,102	4,541	4,702
S-43-7	26	75	2871	1686	2724	1670	2329	2497	2944
S-43-8		Ō	0,	0	32	2574	2619	3676	4102
S-43-9	16	73	1063	2542	1910	860	0	0	11

Allocated Fuel Usage Per Engine (mcf)

7 111 0 0 0 110 0	allocated t dol codge t of Engling (mor)								
2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	
S-43-4	162	2,293	4,371	3,299	3,521	4,356	4,300	4,361	
S-43-5	4,430	2,158	381	2,512	2,584	2,575	629	3,735	
S-43-6	4,554	3,737	3,972	2,875	2,788	1,757	3,627	525	
S-43-7	0	0	0	0	863	1862	3745	4003	
S-43-8	4201	2417	2506	2317	2949	3679	3657	4031	
S-43-9	279	1759	2097	1868	2046	222	0	0	

Allocated Fuel Usage Per Engine (mcf)

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334
S-43-7	2011	3472	3773	2638	3846	398	1640	1427
S-43-8	1683	0	2659	3376	3820	3573	2715	3755
S-43-9	4175	3350	1228	727	0	3191	2805	2297

Allocated Fuel Usage Per Engine (mcf)

2004	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
S-43-4	4,416	4,374	4,500	3,123	1,306	672	865	0
S-43-5	4,378	4,425	4,744	3,867	2,041	14	1,351	77
S-43-6	159	45	0	1,110	19	3,041	2,481	4,589
S-43-7	3,011	2,352	273	1,729	922	426	19	13
S-43-8	1,672	2,112	4,022	2,103	3,189	1,735	1,255	3,001
S-43-9	0	34	0	0	0	1,903	3,203	1,716

				2001
Sep	Oct	Nov	Dec	Annual
6	2,514	3,354	1,955	13,242
4,394	3,225	3,247	2,662	49,243
4,344	3,562	2,253	4,420	45,288
265	196	90	12	19,958
2253	2412	4066	1370	23,104
2188	1944	6	2881	15,079
				165,915

Volumes Reported in
Annual Emission
Statement (mmcf)
15,300
55.385
50,758
22,771
26.019
16.715
186.947

				2002
Sep	Oct	Nov	Dec	Annual
4,252	2,119	2,949	4,244	40,227
1,615	3,396	3,920	2,089	30,024
2,819	3,390	1,446	2,437	33,928
3726	3721	1568	187	19,676
3807	2953	2029	3505	38,050
0	757	3638	3745	16,412
				178,316

40.331
30.126
33.723
 20.354
 37.506
16.277
178.317

				2003
Sep	Oct	Nov	Dec	Annual
4,041	4,446	4,568	4,383	32,649
2,913	4,508	4,574	4,122	42,915
1,239	250	Ō	606	28,796
1892	2265	3723	1013	28,099
3449	3916	3848	3989	36,785
1746	1763	0	2104	23,387
				192,630

38.066
 49.665
33.712
20.776
27.268
17.460
186.947

				2004
Sep	Oct	Nov	Dec	Annual
. 0	0	0	0	19,254
359	30	1,087	2,180	24,552
3,851	4,475	1,987	842	22,599
31	0	0	0	8,776
1,164	12	669	767	21,701
3,131	4,407	3,885	3,532	21,812
				118,695

41		
54	}	32.399
52	Ì	43.639
99		45.405
76		 11.488
01		27.474
12		26.542
95		186.947

.

		Ja	anuary	Fe	bruary
	Lost Hills Gas Plant and Field Meters	MSCF	MMBtu/mscf	MSCF	MMBtu/mscf
					_
9354	PLANT REFRIG.FUEL	4,701		4,213	
9356	PLANT PRE-COMPRESSOR FUEL	11,142		9,785	

COMPRESSOR #1	S-43-4	Januar	y 9845	10561	744 716
COMPRESSOR #2	S-43-5	DFR	0	0 DFR	0
COMPRESSOR #3	S-43-6		4371		730
COMPRESSOR #4	S-43-7		40504	40683	179
COMPRESSOR #5	S-43-8		47376	47936	560
COMPRESSOR #6	S-43-9		36328		0
		DFR		DFR	
		July			744
COMPRESSOR #1	S-43-4		14119	14853	734
COMPRESSOR #2	S-43-5		2641	3377	736
COMPRESSOR #3	S-43-6		6032		1
				DFR	
COMPRESSOR #4	S-43-7		43280	43985	705
COMPRESSOR #5	S-43-8	DFR	49627	49993	366
COMPRESSOR #6	S-43-9		1739	2154	415
					299

		Hrs. Run Per Year	Avg. Per Day
COMPRESSOR #1	S-43-4	6592	18.06027397
COMPRESSOR #2	S-43-5	6396	17.52328767
COMPRESSOR #3	S-43-6	4325	11.84931507
		4	
COMPRESSOR #4	S-43-7	5615	15.38356164
COMPRESSOR #5	S-43-8	2854	7.819178082
COMPRESSOR #6	S-43-9	3772	10.33424658

	March		April		May		June
MSCF	MMBtu/mscf	MSCF	MMBtu/mscf	MSCF	MMBtu/mscf	MSCF	MMBtu/mscf
4,534		5,487		5,853		6,798	3
10,110		9,608		9,572		8,678	3

Februa	•	11001	696		March	44005	744
96.24%	10561	11261	700	100.57%	11261	11985	724
0.00% DFR	0	4	4	0.57%	4	517	513
98.12%	5101	5801	700	100.57%	5801	6031 DFR	230
24.06%	40683	41230	547	78.59%	41230	41837	607
75.27%	47936	48106	170	24.43%	48106	48241	135
0.00% DFR	36328 D	36328 FR	0	0.00%	36328 DFR	36328 DFR	0

Augu	st		744	S	eptember		720
98.66%	14858	15444	586	78.76%	15444	15707	263
98.92%	3382	4113	731	98.25%	4113	4663	550
0.13%	6033	6184	151	20.30%	6184	6788	604
DFR							
94.76%	44009	44682	673	90.46%	44682	45368	686
49.19%	50020	50243	223	29.97%	50243	50256	13
55.78% 40.19%	2159	2733	574	77.15%	2733	3393	660

	July		August September		August September		August		September		ctober
MSCF	MMBtu/mscf	MSCF	MMBtu/mscf	MSCF	MMBtu/mscf	MSCF	MMBtu/mscf				
7,748		7,653		7,264		5,507	1.095				
9,413		9,349		9,529		10,250	1.0786				

April			720		May		744
97.31%	11985	12709	724	100.56%	12709	13433	724
68.95%	517	1241	724	100.56%	1241	1955	714
30.91%	6031 D	6031 FR	0	0.00%	6031	6031	0
81.59%	41837	42231	394	54.72%	42231	42619	388
18.15%	48241	48728	487	67.64%	48728	49265	537
0.00% DFR	36328 cc	orrected I	-36328 95	-5045.56% 13.19%	276	1020 corrected I	744 144

Oct	ober		744	November			720
36.53%	15707	15883	176	23.66%	15883	16206	323
76.39%	4663	5220	557	74.87%	5220	5793	573
83.89%	6788	7515	727	97.72%	7515	8061	546
95.28%	45368	45673	305	40.99%	45673	46132	459
1.81%	50256	50257	1	0.13%	50257	50257	0
91.67%	3393	4086	693	93.15%	4086	4434	348

No	vember	D€		
MSCF	MMBtu/mscf	MSCF	MMBtu/mscf	Annual
				Totals
4,594		4,351		68,704
9,337		10,210		116,984
		- ·-		185,688

Jui 97.31%	ne 13433	14119	720 686	05 200/	
97.31%	13433	14119	000	95.28%	
95.97%	1955	2641	686	95.28%	
0.00%	6031	6032	1	25.00%	
52.15%	42619	43280	661	91.81%	
72.18%	49265	49627 DFR	362	50.28%	
100.00%	1020	1739	719	99.86%	
19.35%	C	orrected h	224	31.11%	

	744		December	
31.72%	236	16442	16206	44.86%
81.72%	608	6401	5793	79.58%
85.35%	635	8696	8061	75.83%
1.48%	11	46143	46132	63.75%
0.00%	0	50257	50257	0.00%
98.79%	735	5169	4434	48.33%

Compressor Run Hours

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
S-43-4	3	8	496	365	0	0	0	0	1
S-43-5	739	671	744	645	736	501	743	724	706
S-43-6	729	625	248	424	708	487	739	739	698
S-43-7	478	524	315	428	305	433	457	526	45
S-43-8	, o	0	0	5	470	487	673	733	383
S-43-9	299	194	475	300	157	0	0	2	372
	1471	1304	1488	1434	1444	988	1482	1463	1405
	777	718	790	733	932	920	1130	1261	800

Meter Readings - 2001

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
9356	10,386	9,582	8,934	9,254	8,975	6,294	9,107	9,308	8,744
9354	4,348	3,934	4,228	4,666	5,104	4,948	6,173	7,057	4,706

Allocated Fuel Usage Per Engine

2001	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
S-43-4	21	59	2,978	2,355	0	0	0	0	6
S-43-5	5,218	4,931	4,467	4,162	4,575	3,192	4,566	4,606	4,394
S-43-6	5,147	4,593	1,489	2,736	4,401	3,102	4,541	4,702	4,344
S-43-7	2675	2871	1686	2724	1670	2329	2497	2944	265
S-43-8	0	0	0	32	2574	2619	3676	4102	2253
S-43-9	1673	1063	2542	1910	860	0	0	11	2188

Allocated Quarterly Fuel Usage Per Engine

2001	1Q
S-43-4	3,058
S-43-5	14,615
S-43-6	11,229
S-43-7	7,232
S-43-8	0
S-43-9	5,278

2Q	
2,355	1
11,929	l
10,239	
6,724	l
5,225	l
2,770	l

3Q
6
13,566
13,587
5,705
10,032
2,200

Γ.	Oct	Nov	Dec	
	403	533	307	COMPRESSOR #1
	517	516	418	COMPRESSOR #2
	571	358	694	COMPRESSOR #3
	33	15	2	COMPRESSOR #4
	407	680	231	COMPRESSOR #5
	328	1	486	COMPRESSOR #6
	1491	1407	1419	Subt - precomprs
	768	696	719	Subt- Refrig Comprs

	Oct	Nov	Dec	Annual	
ſ	9,300	8,854	9,037	107,774	PLANT PRE-COMPRESSOR FUL
Γ	4,552	4,162	4,263	58,141	PLANT REFRIG.FUEL

1	6	5,	,9	1	5
---	---	----	----	---	---

Oct	Nov	Dec	Annual
2,514	3,354	1,955	13,242
3,225	3,247	2,662	49,243
3,562	2,253	4,420	45,288
196	90	12	19,958
2412	4066	1370	23,104
1944	6	2881	15,079
			405.045

58,141

107,774

165,915

4Q
7,823
9,134
10,234
297
7,848
4,831

165,915

ΞL

Compressor Run Hours

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S-43-4	26	373	723	545	586	719	690	739	703	350	510	707
S-43-5	711	351	63	415	430	425	101	633	267	561	678	348
S-43-6	731	608	657	475	464	290	582	89	466	560	250	406
S-43-7	0	0	0	0	154	327	679	732	685	727	310	36
S-43-8	693	312	399	398	526	646	663	737	700	577	401	674
S-43-9	46	227	334	321	365	39	0	0	0	148	719	720
	1468	1332	1443	1435	1480	1434	1373	1461	1436	1471	1438	1461
	739	539	733	719	1045	1012	1342	1469	1385	1452	1430	1430

Meter Readings - 2002

2002					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	Sep			Dec
								8,621			-	
9354	4,479	4,176	4,603	4,185	5,859	5,763	7,402	8,034	7,533	7,431	7,235	7,437

Allocated Fuel Usage Per Engine

2002	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S-43-4	162	2,293	4,371	3,299	3,521	4,356	4,300	4,361	4,252	2,119	2,949	4,244
S-43-5	4,430	2,158	381	2,512	2,584	2,575	629	3,735	1,615	3,396	3,920	2,089
S-43-6	4,554	3,737	3,972	2,875	2,788	1,757	3,627	525	2,819	3,390	1,446	2,437
S-43-7	0	0	0	0	863	1862	3745	4003	3726	3721	1568	187
S-43-8	4201	2417	2506	2317	2949	3679	3657	4031	3807	2953	2029	3505
S-43-9	279	1759	2097	1868	2046	222	0	0	0	757	3638	3745

Allocated Quarterly Fuel Usage Per Engine

2002	1Q	2Q	3Q	4Q
S-43-4	6,826	11,177	12,913	9,312
S-43-5	6,968	7,671	5,980	9,405
\$-43-6	12,264	7,421	6,971	7,273
S-43-7	0	2,726	11,474	5,476
S-43-8	9,123	8,944	11,495	8,487
S-43-9	4,135	4,137	0	8,140

COMPRESSOR #1
COMPRESSOR #2
COMPRESSOR #3
COMPRESSOR #4
COMPRESSOR #5
COMPRESSOR #6
Subt - precomprs

Subt- Refrig Comprs

104,179	PRE-COMPRESSOR FUEL
 74,137	REFRIG.FUEL
178,316	

Annual	
40,227	
30,024	104,179
33,928	
19,676	
38,050	74,137
16,412	

FAC_ID	DEV	PR 2002
43	4	40.331
43	5	30.126
43	6	33.723
43	7	20.354
43	8	37.506
43	c)	16.277
		178.317

οĸ

Compressor Run Hours

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S-43-4	201	110	743	264	340	107	371	412	659	712	719	738
S-43-5	740	636	513	635	698	501	359	321	475	722	720	694
S-43-6	539	596	231	391	450	705	762	743	202	40	0	102
S-43-7	356	682	728	497	739	79	345	279	350	406	683	194
S-43-8	298	0	513	636	734	710	571	734	638	702	706	764
S-43-9	739	658	237	137	0	634	590	449	323	316	0	403
	1480	1342	1487	1290	1488	1313	1492	1476	1336	1474	1439	1534
	1393	1340	1478	1270	1473	1423	1506	1462	1311	1424	1389	1361

Meter Readings - 2003

			<i>-</i>						_				
												9,142	
ı	9354	7,869	6,822	7,660	6,741	7,666	7,162	7,161	7,480	7,088	7,944	7,571	7,106

Allocated Fuel Usage Per Engine

2003	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
S-43-4	1,232	680	4,417	1,635	2,048	690	2,105	2,403	4,041	4,446	4,568	4,383
S-43-5	4,538	3,934	3,050	3,932	4,205	3,232	2,037	1,873	2,913	4,508	4,574	4,122
S-43-6	3,305	3,686	1,373	2,421	2,711	4,547	4,324	4,334	1,239	250	0	606
S-43-7	2011	3472	3773	2638	3846	398	1640	1427	1892	2265	3723	1013
S-43-8	1683	0	2659	3376	3820	3573	2715	3755	3449	3916	3848	3989
S-43-9	4175	3350	1228	727	0	3191	2805	2297	1746	1763	0	2104

Allocated Quarterly Fuel Usage Per Engine

	ou additionly i doi bou	g- · —g		
2003	1Q	2Q	3Q	4Q
S-43-4	6,330	4,373	8,549	13,397
S-43-5	11,521	11,368	6,822	13,204
S-43-6	8,364	9,679	9,897	856
S-43-7	9,256	6,882	4,960	7,001
S-43-8	4,342	10,769	9,920	11,753
5-43-9	8,753	3,918	6,849	3,867

COMPRESSOR #1
COMPRESSOR #2
COMPRESSOR #3
COMPRESSOR #4
COMPRESSOR #5
COMPRESSOR #6
Subt - precomprs
Subt- Refrig Comprs

	FAC_ID	DEV	PR 2003	PR 2004	PR 2005	PR 2006
	43	4	38.07	32.40	0.00	0.00
	43	5	49.66	43.64	24.15	0.00
ĺ	43	6	33.71	45.41	6.50	0.00
	43	7	20.78	11.49	0.00	0.00
	43	8	27.27	27.47	1.86	0.00
	43	9	17.46	26.54	0.00	0.00

104,360	PRE-COMPRESSOR FUE
88,270	REFRIG.FUEL
192,630	

Annual	
32,649	
42,915	104,360
28,796	
28,099	
36,785	88,270
23,387	
192,630	•

192,630

UNITS

MILLION CUBIC FEET

MILLION CUBIC FEET

MILLION CUBIC FEET

MILLION CUBIC FEET

MILLION CUBIC FEET

MILLION CUBIC FEET

Richard Edgehill

From:

Winn BT (Brent) at Aera [btwinn@aeraenergy.com]

Sent:

Monday, November 19, 2007 2:38 PM

To:

Richard Edgehill

Subject:

IC Engine Conversions Spreadsheet

ice_emission conversions.xls

Richard:

I had pasted a page from the attached spreadsheet into my other calculation spreadsheet and noticed today that the conversion calcs don't work in the place where I pasted them. You can use the attached to compare the 36 ppm (from Rule 1110.2) to the source test values. I will work on getting some portable analyzer data to provide additional info. But, we should keep in mind that portable analyzer data is not as "certifiable" as the source test data.

<<ice_emission conversions.xls>>

Thanks, Brent Winn Aera Energy LLC

Environmental Engineer - Belridge

Office: 661-665-4363 Pager: 661-747-8963 Cell: 661-747-8963 Home: 661-587-5181

FAX: 661-665-7437 E-Mail: btwinn@aeraenergy.com

Fuel burning equipment		100,000 B	tu/therm			updated 1/2000
AP-42 Natu	ural gas e	mission fa	ctors, 100	0 Btu/cf		
>100 MMBtu/hr_	1.4-1	1.4-2	1.4-2	1.4-1	1.4-2	_
uncontrolled	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	190	5.5	0.6	84	7.6	
lb/MMBtu	0.19	0.006	0.001	0.08	0.008]
lo-NOx	NOx	VOC	SOx	CO	₽M ₁₀	
lb/MMcf	140	5.5	0.6	84	7.6	
lb/MMBtu	0.14	0.006	0.001	0.08	0.008	
lo-NOx w/ FGR	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	100	5.5	0.6	84	7.6	1
lb/MMBtu	0.10	0.006	0.001	0.08	0.008	
						_
AP-42 Natu	_				4.4.4	
<100 MMBtu	1.4-1	1.4-2	1.4-2	1.4-1	1.4-1	จ
uncontrolled	NOx	VOC	SOx	CO	РМ ₁₀	
lb/MMcf	100	5.5	0.6	84	7.6	
Ib/MMBtu	0.10	0.006	0.001	0.08	0.008	
lo-NOx	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	50	5.5	0.6	84	7.6	
lb/MMBtu	0.05	0.006	0.001	0.08	0.008	
lo-NOx w/ FGR	NOx	VOC	SOx	CO	PM ₁₀	
lb/MMcf	32	5.5	0.6	84	7.6	
Ib/MMBtu	0.032	0.006	0.001	0.08	0.008	1

	SELECTION #
COAL (ANTHRACITE)	0
COAL (BITUMINOUS)	1
COAL (LIGNITE)	2
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	3
GAS (NATURAL)	4
GAS (PROPANE)	5
GAS (BUTANE)	6
WOOD	7
WOOD BARK	8
MUNICIPAL SOLID WASTE	9

STANDARD O2 CORRECTION FOR EXTERNAL COMBUSTION IS 3%					
Type of fuel (use table above)	0 COAL				
O2 correction (i.e., 3%)	0 %				
Enter LB/MMBTU emission factor					
NOx	0.000 LB/MMBTU				
co	0.000 LB/MMBTU				
VOC (as methane)	0.000 LB/MMBTU				

CALCULATED EQUIVALENT CONCE	NTRATIONS
NOx	0.00 ppmv
co	0.00 ppmv
VOC (as methane)	0.00 ppmv

pV = R*T	
pressure (p)	1 atm
universal gas constant (R*)	0.7302 atm-scf/lbmole-oR
temperature (oF)	60 oF
calculated molar specific volume (V)	379.5 scf/lbmole
Molecular weights	
NOx	46 lb/lb-mole
co	28 lb/lb-mole
VOC (as methane)	16 lb/lb-mole

F FACTORS FROM EPA METHOD 19 @ 68 F		
COAL (ANTHRACITE)	10100 DSCF/MMBTU	COAL
COAL (BITUMINOUS)	9780 DSCF/MMBTU	COAL
COAL (LIGNITE)	9860 DSCF/MMBTU	COAL
OIL (CRUDE, RESIDUAL, OR DISTILLATE)	9160 DSCF/MMBTU	OIL
GAS (NATURAL)	8710 DSCF/MMBTU	GAS
GAS (PROPANE)	8710 DSCF/MMBTU	GAS
GAS (BUTANE)	8710 DSCF/MMBTU	GAS
WOOD	9240 DSCF/MMBTU	WOOD
WOOD BARK	9600 DSCF/MMBTU	WOOD BARK
MUNICIPAL SOLID WASTE	9570 DSCF/MMBTU	SOLID WASTE
F FACTOR USED IN CALCULATIONS	10100 DSCF/MMBTU	COAL

Grams/Brake Horsepower - Hour ----> Parts Per Million Volume g/Bhp-hr ----> ppmv

Variables:							
	Engine Size:	0	hp				
	NOx:	0	g/bhp-hr				
	CO:	0	g/bhp-hr				
	VOC:	0	g/bhp-hr				
	O2 level:	0	%				
	Fuel Type	0					
	F-factor:	9160	dscf/MMBtu				
	Engine Efficiency:	0	% (Assumed)				
	OIL (CRUDE, RE	OIL (CRUDE, RESIDUAL, OR DISTILLATE)					
	GAS (NATURAL)						
	GAS (PROPANE)						
	GAS (BUTANE)			3			

	Conversion #1	379.5E+6	
	Conversion #2		bhp-hr/MMBtu
	Conversion #3	453.59	
	MW _(NOx) :	46	as NO2
	MW _(CO) :	28	
	MW(voc):	16	as CH4
	O ₂ Correction:	1.000	
i	Pressure (p)	1	atm
	Temp (oF)	60	oF

Formula:

g	1	1	(20.9 - O ₂ %)	Conversion #1	Conversion #2	1	Engine Eff
bhp-hr	F-factor	MWpollutant	20.9	1	1	Conversion #3	1

Given:

for NO_x:

 0.00 g	MMBtu	1	20.9 - 0	379.5E+6 dscf	393.24 bhp-hr	lb	0% _	_
bhp-hr	9160 dscf	46	20.9	₩	MMBtu	453.59 g	1	-

= 0.000 PPM

for CO:

0.00 g	MMBtu	1	20.9 - 0	379.5E+6 dscf	393.24 bhp-hr	₽	0%	_
bhp-hr	9160 dscf	28	20.9	lb	MMBtu	453.59 g	1	

= 0.000 PPM

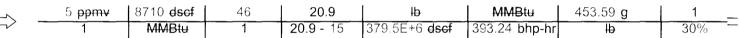
for VOC:

 0.00 g	MMBtu	1	20.9 - 0	379.5E+6 dscf	393.24 bhp-hr	₽	0%	_
bhp-hr	9160 dscf	16	20.9	l b	MMBtu	453.59 g	1	
			0.000	PPM				

Parts Per Million Volume --> Grams/Brake Horsepower - Hour

ppmv --> g/Bhp-hr

Variables:	<u> </u>						
	Engine Size:	800	hp				
	NOx:	5	ppmv				
	CO:	70	ppmv				
	VOC:	30	ppmv				
	O2 level:	15	%				
	Fuel Type	1					
	F-factor:	8710	dscf/MMBtu				
	Engine Efficiency:	30	% (Assumed)				
	OIL (CRUDE, RESIDUAL, OR DISTILLATE) GAS (NATURAL)						
	GAS (PROPANE)						
	GAS (BUTANE)			3			


Convers		379.5E+6	
Convers			bhp-hr/MMBtu
Convers	ion #3		
MW(NOx):		46	as NO2
MW(co):		28	
MW(voc)		16	as CH4
O ₂ Corre	ection:	3.542	
Pressur	e (p)		atm
Temp (°F)	60	°F

Formula:

ppmv	F-factor	MWpollutant	20.9	1	1	Conversion #3	1
1	1	1	$(20.9 - O_2\%)$	Conversion #1	Conversion #2	1	Engine Eff.

Given:

for NOx:

	=	0.071	g/bhp-hr	56.7 g/hr	0.125 lbs/hr	2.998 lbs/day
--	---	-------	----------	-----------	--------------	---------------

for CO:

70 ppmv	8710 dscf	28	20.9	lb	MMBtu	453.59 g	1 _
1	MMBtu	1	20.9 - 15	379.5E+6 desf	393.24 bhp-hr	lb	30%

 0.603	g/bhp-hr	483 g/hr	1.065 lbs/hr	25.55 lbs/day

for VOC:

_	30 ppmv	8710 dscf	16	20.9	lblb	MMBtu	453.59 g	1
_	1	MMBtu	1	20.9 - 15	379.5E+6 dscf	393.24 bhp-hr	₽	30%

 0.148	g/bhp-hr	118 g/hr	0.261 lbs/hr	6.257 lbs/day
	9 1	_ 0		

Richard Edgehill

From:

Richard Edgehill

Sent:

Tuesday, May 13, 2008 2:10 PM

To:

'yannayon.laura@epamail.epa.gov'; 'tmanders@arb.ca.gov'

Subject:

ERC projects 1075362 and 1080067, S-43

Laura and Theresa: Please let me know if you plan to comment on ERC projects S43, 1075362 and 1080067. The 30-day public comment period has ended.

Thank you.

Richard Edgehill **SJVAPCD** 2700 M St, Suite 275 Bakerwsfield, CA 93301 661 326-6958

Lanre called 3 pm 5-17-08 and raid the hal he comments.

ERC PROJECT ROUTING FORM

PROJECT NUMBER: 1075362	ORIG	INATING	FACILIT	Y ID: <u>S</u> -43	
NEW ERC #'s:				-	
CURRENT OWNER/APPLICANT NAME:	Aera Energy	LLC			
DATE RECEIVED: November 8, 2007					
PRELIMINARY REVIEW	ENGR	DA	TE	SUPR	DATE
A. Application Deemed Incomplete					
B. Application Deemed Complete	RUE	12-3-0	7	U8	12/4/0
180th Day for Developmental Projec	ets				
C. Application Pending Denial					
D. Application Denied					
ENGINEERING EVALU	ATION	,		INITIAL	DATE
E. Engineering Evaluation Complete			(2 UE	4/1/08
F. Supervising Engineer Approval		""		A	2500
H. Permit Services Regional Manager A	Approval			W	4/1/00
DIRECTOR REV	IEVA/. [] Net	Doguirod	ו ו	Dagwisad	
DIRECTOR REV		nequired	[] [required	
PROJECTS REQUIRING PUBLIC NOTIFIC	ATION				
PRELIMINARY DECISION:					
	emailed to Fres			2	
	of distribution 1				
	of contact with	_	_	•	•
Date	of contact with	n CARB re	garding	comments on	project.
FINAL DECISION:					
Date	emailed to Fres	no.			
Date	of distribution 1	to applica	nt, <mark>EPA</mark>	, and CARB.	

PROOF OF PUBLICATION

The BAKERSFIELD CALIFORNIAN P.O. BOX 440 **BAKERSFIELD, CA 93302**

SAN JOAQUIN VALLEY A.P.C.D. 1990 E GETTYSBURG FRED BATES FRESNO, CA 93726

RECEIVED

MAY 3 0 2008

STATE OF CALIFORNIA **COUNTY OF KERN**

I AM A CITIZEN OF THE UNITED STATES AND A RESIDENT OF THE COUNTY AFORESAID: I AM OVER THE AGE OF EIGHTEEN YEARS, AND NOT A PARTY TO OR INTERESTED IN THE ABOVE ENTITLED MATTER. I AM THE ASSISTANT PRINCIPAL CLERK OF THE PRINTER OF THE BAKERSFIELD CALIFORNIAN, A NEWSPAPER OF GENERAL CIRCULATION, PRINTED AND PUBLISHED DAILY IN THE CITY OF BAKERSFIELD COUNTY OF KERN,

AND WHICH NEWSPAPER HAS BEEN ADJUDGED A NEWSPAPER OF GENERAL CIRCULATION BY THE SUPERIOR COURT OF THE COUNTY OF KERN, STATE OF CALIFORNIA, UNDER DATE OF FEBRUARY 5, 1952, CASE NUMBER 57610; THAT THE NOTICE, OF WHICH THE ANNEXED IS A PRINTED COPY, HAS BEEN PUBLISHED IN EACH REGULAR AND ENTIRE ISSUE OF SAID NEWSPAPER AND NOT IN ANY SUPPLEMENT THEREOF ON THE FOLLOWING DATES. TO WIT: 5/28/08

ALL IN YEAR 2008

I CERTIFY (OR DECLARE) UNDER PENALTY OF PERJURY THAT THE FOREGOING IS TRUE AND CORRECT.

DATED AT BAKERSFIELD CALIFOR

5-28-08

Ad Number: 10897351

PO #: S-1075362

Run Times

Class Code **Legal Notices**

Start Date

Edition:

5/28/2008

Stop Date 5/28/2008

Billing Lines 20

TBC

Inches

120.92

Total Cost Billing

Address

\$ 74.60

Account 1SAN51

SAN JOAQUIN VALLEY A.P.C.D. 1990 E GETTYSBURGFRED BATES

FRESNO,CA

93726

RECEIVED

JUN 0 4 2008

Solicitor I.D.:

0

SJVAPCD Southern Region

First Text

NOTICE OF FINAL ACTIONFOR THE ISSUANCE O

Ad Number 10897351

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Aera Energy LLC for emission reductions generated by shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs to be issued is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

No comments were received following the District's preliminary decision on this project.

The application review for Project #8-1075362 is available for public inspection at the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 2700 'M' STREET SUITE 275, BAKERSFIELD, CA 93301.

May 28, 2008 (10897351)

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature A. Agent Addressee B. Received by (Printed Name) C. Date of Delivery D. Is delivery address different from item 12 Yes
1. Article Addressed to: Brent Winn Aera Energy LLC	*D. Is delivery address different from item 1? Li Yes If YES, enter delivery address below: No
PO Box 11164 Bakersfield, CA 93389	3. Service Type Certified Mail
700L 27L0 0000 1340 0738	
PS Form 3811, February 2004 Domestic Ret	

E)	U.S. Postal Service 103, CERTIFIED MAIL 103 RECEIPT (Domestic Mail Only; No Insurance Coverage Provided)				
20	For delivery information visit our websi				
	OFFICIA	<u>LUSE</u>			
1340	Postage \$				
_	Certified Fee				
0000	Return Receipt Fee (Endorsement Required)	Postmark Here			
	Restricted Delivery Fee (Endorsement Required)				
2760	Total Postag∈	1			
	Sent To Brent Winn	7			
7005	Aera Energy LLC	-			
L ~	City, State, ZIP Bakersfield, CA 933	389 -			
	PS Form 3800, August 2006 See Reverse for instructions				

MAY 2 2 2008

Brent Winn Aera Energy LLC PO Box 11164 Bakersfield, CA 93389

Notice of Final Action - Emission Reduction Credits

Project Number: S-1075362

Dear Mr. Winn:

The Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Aera Energy LLC for emission reductions generated by shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs to be issued is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

Enclosed are the ERC Certificates and a copy of the notice of final action to be published approximately three days from the date of this letter.

Notice of the District's preliminary decision to issue the ERC Certificates was published on April 10, 2008. The District's analysis of the proposal was also sent to CARB and US EPA Region IX on April 7, 2008. No comments were received following the District's preliminary decision on this project.

Thank you for your cooperation in this matter. If you have any questions, please contact Mr. Leonard Scandura at (661) 326-6900.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosures

Seyed Sadredin

Executive Director/Air Pollution Control Officer

MAY 2 2 2008

Gerardo C. Rios (AIR 3) Chief, Permits Office Air Division U.S. E.P.A. - Region IX 75 Hawthorne Street San Francisco, CA 94105

Notice of Final Action - Emission Reduction Credits

Project Number: S-1075362

Dear Mr. Rios:

The Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Aera Energy LLC for emission reductions generated by shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs to be issued is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

Enclosed are copies of the ERC Certificates and a copy of the notice of final action to be published approximately three days from the date of this letter.

Notice of the District's preliminary decision to issue the ERC Certificates was published on April 10, 2008. The District's analysis of the proposal was also sent to CARB and US EPA Region IX on April 7, 2008. No comments were received following the District's preliminary decision on this project.

Thank you for your cooperation in this matter. If you have any questions, please contact Mr. Leonard Scandura at (661) 326-6900.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosures

Seved Sadredin

Executive Director/Air Pollution Control Officer

MAY 2 2 2008

Mike Tollstrup, Chief Project Assessment Branch Stationary Source Division California Air Resources Board PO Box 2815 Sacramento, CA 95812-2815

RE: Notice of Final Action - Emission Reduction Credits

Project Number: S-1075362

Dear Mr. Tollstrup:

The Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Aera Energy LLC for emission reductions generated by shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs to be issued is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

Enclosed are copies of the ERC Certificates and a copy of the notice of final action to be published approximately three days from the date of this letter.

Notice of the District's preliminary decision to issue the ERC Certificates was published on April 10, 2008. The District's analysis of the proposal was also sent to CARB and US EPA Region IX on April 7, 2008. No comments were received following the District's preliminary decision on this project.

Thank you for your cooperation in this matter. If you have any questions, please contact Mr. Leonard Scandura at (661) 326-6900.

Sincerely,

David Warner

Director of Permit Services

DW:RUE/Is

Enclosures

Seyed Sadredin

Executive Director/Air Pollution Control Officer

NOTICE OF FINAL ACTION FOR THE ISSUANCE OF EMISSION REDUCTION CREDITS

NOTICE IS HEREBY GIVEN that the Air Pollution Control Officer has issued Emission Reduction Credits (ERCs) to Aera Energy LLC for emission reductions generated by shutdown of 6 natural gas-fired IC engines driving pre-compressors and refrigeration compressors, at the Section 15 Lost Hills Gas Plant. The quantity of ERCs to be issued is 23,654 lb/yr NOx, 1,669 lb/yr PM10, 105,498 lb/yr CO, and 23,079 lb/yr VOCs.

No comments were received following the District's preliminary decision on this project.

The application review for Project #S-1075362 is available for public inspection at the SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT, 2700 'M' STREET SUITE 275, BAKERSFIELD, CA 93301.

Emission Reduction Credit Certificate S-2774-1

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

May 15, 2008

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

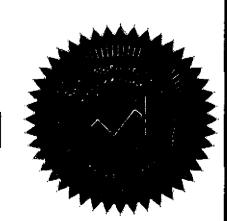
For VOC Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
8,176 lbs	5,745 lbs	5,185 lbs	3,973 lbs

Γ	1	Cond	ditions	Attac	hed
L	J	COIL	111101113	Allac	HEU

Method Of Reduction

[] Shutdown of Entire Stationary Source


[X] Shutdown of Emissions Units

[] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seved Sadredin, Executive Director / APCO

Emission Reduction Credit Certificate S-2774-2

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

May 15, 2008

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M,D.B.& M.

LOST HILLS, CA

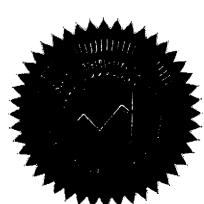
For NOx Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
5,817 lbs	4,899 lbs	4,757 lbs	8,181 lbs

ı	1	I C	ond	itio	กร	Atta	ched
1		, v	ullu	ILIV	113	Δ	CHEU

Method Of Reduction

[] Shutdown of Entire Stationary Source


[X] Shutdown of Emissions Units

[] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seved Sadredin, Executive Director / APCO

Emission Reduction Credit Certificate S-2774-3

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

May 15, 2008

LOCATION OF REDUCTION:

LOST HILLS GAS PLANT

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

For CO Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
29,596 lbs	23,125 lbs	21,911 lbs	30,866 lbs

 _				
l Co	ınditioı	ns A	ttac	hed

Method Of Reduction

[] Shutdown of Entire Stationary Source

[X] Shutdown of Emissions Units

[] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquín Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

Emission Reduction Credit Certificate S-2774-4

ISSUED TO:

AERA ENERGY LLC

ISSUED DATE:

May 15, 2008

LOCATION OF

LOST HILLS GAS PLANT

REDUCTION:

NE 15, T.27S, R.21E., M.D.B.& M.

LOST HILLS, CA

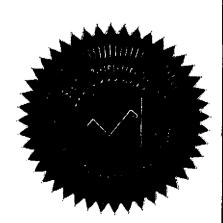
For PM10 Reduction In The Amount Of:

Quarter 1	Quarter 2	Quarter 3	Quarter 4
443 lbs	368 lbs	369 lbs	489 lbs

Γ.	l Con	ditions	Attached
		uillons	Muacheu

Method Of Reduction

[] Shutdown of Entire Stationary Source


[X] Shutdown of Emissions Units

[] Other

Shutdown of gas plant precompressors and refrigeration compressors (permits S-43-4 through S-43-9)

Use of these credits outside the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) is not allowed without express written authorization by the SJVUAPCD.

Seyed Sadredin, Executive Director / APCO

