N₂O Emissions from Application of Fertilizers in Agricultural Soils

Johan Six

Martin Burger, Mark Fisher (LBL), William Salas, William Horwath, Charles Krauter (CSU Fresno), Kate Scow, Dave Smart, Louise Jackson, Tom Tomich

Background

Need to quantify and reduce amount of N₂O emissions and uncertainty around estimates of agricultural N₂O emissions at multiple spatial and temporal scales

Accurate assessments of annual N₂O budgets need detailed, event-related N₂O flux measurements to calibrate and validate biogeochemical models for prediction of daily, seasonal, and annual N₂O emissions from agriculture.

Objectives

To combine event-related N₂O measurements at multiple spatial and temporal scales with field information and soil measurements to develop a database ideal for calibration and validation of biogeochemical models used to estimate GHG budgets of current and future conventional and alternative CA cropping systems.

Tasks

- 1) determine detailed time series of N₂O fluxes and underlying factors at crucial management events (irrigation, fertilization, etc.) in representative agroecosystems in California.
- 2) assess N₂O emissions at the spatial scale of farmer management
- 3) use the intensive and extensive data on N₂O fluxes to initialize the calibration and validation of DNDC.

N₂O emissions: highly variable

Ranking of California crops

Table 2: California's 10 most important crops, area wise, and their economic value (California Department of Food and Agriculture)

area rank	сгор	area (1000 acres)	economic value (\$million)	economic rank
1	hay (mainly alfalfa)	1550	1141	6
2	nuts (almonds, walnuts and pistachios)	900	3454	1
3	grapes	800	3166	2
4	cotton	657	625	11
5	rice	526	408	13
	intensely cropped vegetables			
6	(lettuce, broccoli, carrots, celery, and peppers)	496	2920	3
7	wheat	369	104	>15
8	fruit trees (oranges, plums, lemon, peaches)	359	1292	5
9	tomatoes	307	942	9
10	corn	110	52	>15

Status of N₂O budgets

Figure 4: Available validation data containing yearly N₂O budgets per climate zone (left panel), and cropping system (right panel), compiled from 1015 observations in 209 studies.

Note: Since proposal writing, one paper on vineyards has been published: Steenwerth & Belina. 2008. Applied Soil Ecology 40:370-380.

Field sites

Russell Ranch--University of California research farm for controlled field experiments in tomato/wheat systems (5 fertilizer rates)

Farmers fields--alfalfa (2X), orchards (2X), vineyards (2X), corn (1X) and vegetables (1)

Sampling for gas fluxes will be:

- event-related: continuous measurements (1 wk) after critical events such as irrigation, fertilization
- non event-related: 10 manual measurements

N₂O monitoring requires targeted measurements

Chamber measurements

Continuous measurements for event sampling with 3 reps

Manual measurements for non-events with 6 reps

Eddy covariance (TDL / QCL)

N₂O flux footprint

100 to 10,000 m² resolution

30 min sampling freq

Yr 1: 2 fields Yr 2: 4 fields combined with chambers

Mark Fisher LBL

Modeling

DNDC model includes:

- soil climate, plant growth and decomposition sub-models
- biogeochemical process sub-models

Calibration and validation of the soil water and N cycle module

Model will then be used for scenario and trade-off analyses of potential ag practices to minimize GHG emissions

Collaborations and cost-sharing

- Evaluating the Potential for California Almond Orchards to Sequester Carbon and Mitigate Greenhouse Gas Emissions and Conservation Tillage of Cover Crops as a Means of Improving Carbon Storage in California Vineyard Soils and Mitigating GHG Emissions: The Almond Board of California (ABC), the American Vineyard Foundation (AVF), the California Competitive Grants Program for Research in Viticulture & Enology (CCGPRVE) and the USDA Viticulture Consortium (USDA VC) funds for preliminary N₂O emissions assessments to D.R. Smart.
- Field carbon data collection for vineyard and orchard crops funded by Natural Resources Conservation Service, to set up monitoring sites in orchards and vineyards to collect time series of soil C and production, with the immediate purpose of calibrating and validating the model for orchards and vineyards.
- Assessing the Carbon Budget of Almond Trees and Developing a 3-D Computer Simulation Model of Almond Tree Architectural Growth and Dry Matter Partitioning. Dr. T. De Jong and Dr. J. Six funded by Almond Board.
- Additional matching funds will be sought through the California State University (CSU) Agricultural Research Initiative (ARI). External grants can be matched up to \$150,000 per year for up to 3 years.
- The N₂O eddy covariance measurements are made possible for a minimal cost because the Lawrence Berkeley National Laboratory supported development of the instrument (\$115,000 for instrumentation and \$200,000 labor effort) for ammonia flux measurements. This proposal is hence leveraged by an approximately \$300,000 investment in instrumentation and intellectual capability.
- Establish Baseline N₂O Emissions from Nitrogen Fertilizer use Based on Field-Derived California Specific N₂O Emission Factors project, submitted to the California Air Resource Board (CARB) and California Department of Food and Agriculture (CDFA).
- Kearney Foundation of Soil Science
- Agricultural Sustainability Institute (ASI) Russell Ranch experimental farm