N$_2$O Emissions from Application of Fertilizers in Agricultural Soils

Johan Six
Martin Burger, Mark Fisher (LBL), William Salas, William Horwath, Charles Krauter (CSU Fresno), Kate Scow, Dave Smart, Louise Jackson, Tom Tomich
Need to quantify and reduce amount of N$_2$O emissions and uncertainty around estimates of agricultural N$_2$O emissions at multiple spatial and temporal scales.

Accurate assessments of annual N$_2$O budgets need detailed, event-related N$_2$O flux measurements to calibrate and validate biogeochemical models for prediction of daily, seasonal, and annual N$_2$O emissions from agriculture.
Objectives

To combine event-related N$_2$O measurements at multiple spatial and temporal scales with field information and soil measurements to develop a database ideal for calibration and validation of biogeochemical models used to estimate GHG budgets of current and future conventional and alternative CA cropping systems.

Tasks

1) determine detailed time series of N$_2$O fluxes and underlying factors at crucial management events (irrigation, fertilization, etc.) in representative agroecosystems in California.

2) assess N$_2$O emissions at the spatial scale of farmer management

3) use the intensive and extensive data on N$_2$O fluxes to initialize the calibration and validation of DNDC.
N$_2$O emissions: highly variable

N$_2$O emissions (g N$_2$O-N ha$^{-1}$ day$^{-1}$)
Ranking of California crops

Table 2: California’s 10 most important crops, area wise, and their economic value (California Department of Food and Agriculture)

<table>
<thead>
<tr>
<th>area rank</th>
<th>crop</th>
<th>area (1000 acres)</th>
<th>economic value ($million)</th>
<th>economic rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hay (mainly alfalfa)</td>
<td>1550</td>
<td>1141</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>nuts (almonds, walnuts and pistachios)</td>
<td>900</td>
<td>3454</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>grapes</td>
<td>800</td>
<td>3166</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>cotton</td>
<td>657</td>
<td>625</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>rice</td>
<td>526</td>
<td>408</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>intensely cropped vegetables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(lettuce, broccoli, carrots, celery, and peppers)</td>
<td>496</td>
<td>2920</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>wheat</td>
<td>389</td>
<td>104</td>
<td>>15</td>
</tr>
<tr>
<td>8</td>
<td>fruit trees (oranges, plums, lemon, peaches)</td>
<td>350</td>
<td>1292</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>tomatoes</td>
<td>307</td>
<td>942</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>corn</td>
<td>110</td>
<td>52</td>
<td>>15</td>
</tr>
</tbody>
</table>
Status of N_2O budgets

<table>
<thead>
<tr>
<th>cropping system</th>
<th>nr observations in literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>alfalfa</td>
<td>4</td>
</tr>
<tr>
<td>nut orchards</td>
<td>0</td>
</tr>
<tr>
<td>vineyards</td>
<td>0</td>
</tr>
<tr>
<td>cotton</td>
<td>5</td>
</tr>
<tr>
<td>rice</td>
<td>78</td>
</tr>
<tr>
<td>intensely cropped</td>
<td></td>
</tr>
<tr>
<td>vegetables</td>
<td>29</td>
</tr>
<tr>
<td>wheat</td>
<td>77</td>
</tr>
<tr>
<td>fruit orchards</td>
<td>0</td>
</tr>
<tr>
<td>tomato</td>
<td>6</td>
</tr>
<tr>
<td>corn</td>
<td>157</td>
</tr>
</tbody>
</table>

Field sites

Russell Ranch--University of California research farm for controlled field experiments in tomato/wheat systems (5 fertilizer rates)

Farmers fields--alfalfa (2X), orchards (2X), vineyards (2X), corn (1X) and vegetables (1)

Sampling for gas fluxes will be:
- event-related: continuous measurements (1 wk) after critical events such as irrigation, fertilization
- non event-related: 10 manual measurements
N₂O monitoring requires targeted measurements

The graph shows the emission of N₂O (g N₂O-N ha⁻¹ day⁻¹) over time, with peaks during certain seasons and times. Key points include:

- **Winter**
- **Tomato growing season**
- **Fall**
- **Dry post-harvest**
- **Spring tillage**
- **Post spring tillage**
- **N applications**
- **Fall tillages**

The graph also indicates rainfall (mm day⁻¹) on the right axis, with significant rainfall events shown.
Chamber measurements

Continuous measurements for event sampling with 3 reps

Manual measurements for non-events with 6 reps

Figure 6: Drawing of the proposed mobile gas autosampler for continuous measurements in the field
Eddy covariance (TDL / QCL)

N$_2$O flux footprint

100 to 10,000 m2
resolution
30 min sampling freq
Yr 1: 2 fields
Yr 2: 4 fields combined with chambers

Mark Fisher
LBL
Modeling

DNDC model includes:
- soil climate, plant growth and decomposition sub-models
- biogeochemical process sub-models

Calibration and validation of the soil water and N cycle module

Model will then be used for scenario and trade-off analyses of potential ag practices to minimize GHG emissions
Collaborations and cost-sharing

- **Evaluating the Potential for California Almond Orchards to Sequester Carbon and Mitigate Greenhouse Gas Emissions and Conservation Tillage of Cover Crops as a Means of Improving Carbon Storage in California Vineyard Soils and Mitigating GHG Emissions**: The Almond Board of California (ABC), the American Vineyard Foundation (AVF), the California Competitive Grants Program for Research in Viticulture & Enology (CCGPRVE) and the USDA Viticulture Consortium (USDA VC) funds for preliminary N$_2$O emissions assessments to D.R. Smart.

- **Field carbon data collection for vineyard and orchard crops** funded by Natural Resources Conservation Service, to set up monitoring sites in orchards and vineyards to collect time series of soil C and production, with the immediate purpose of calibrating and validating the model for orchards and vineyards.

- **Assessing the Carbon Budget of Almond Trees and Developing a 3-D Computer Simulation Model of Almond Tree Architectural Growth and Dry Matter Partitioning**: Dr. T. De Jong and Dr. J. Six funded by Almond Board.

- Additional matching funds will be sought through the California State University (CSU) Agricultural Research Initiative (ARI). External grants can be matched up to $150,000 per year for up to 3 years.

- The N$_2$O eddy covariance measurements are made possible for a minimal cost because the Lawrence Berkeley National Laboratory supported development of the instrument ($115,000 for instrumentation and $200,000 labor effort) for ammonia flux measurements. This proposal is hence leveraged by an approximately $300,000 investment in instrumentation and intellectual capability.

- **Establish Baseline N$_2$O Emissions from Nitrogen Fertilizer use Based on Field-Derived California Specific N$_2$O Emission Factors** project, submitted to the California Air Resource Board (CARB) and California Department of Food and Agriculture (CDFA).

- Kearney Foundation of Soil Science

- Agricultural Sustainability Institute (ASI) Russell Ranch experimental farm