Nitrous Oxide Emissions in Response to Nitrogen Fertilization

Research Proposal Prepared for California Air Resources Board

by

William R. Horwath, Martin Burger, Johan Six, Timothy K. Hartz, Dave Goorahoo

Research Objectives

- Estimate annual baseline N₂O emissions in representative cropping systems under typical management practices
- Determine N₂O emission factors in response to a range of N fertilizer inputs
- Estimate potential reductions in N₂O emissions through lower N inputs, but without yield penalty
- Identify key environmental (magnitude of influence) conditions affecting N₂O flux
- Provide data for modeling by collaborators

California Crops

	<u>Acreage</u>	<u>kg N inputs/ac</u>	<u>County</u>
<u>This project</u>			
Alfalfa	1050,000	0-25	Yolo
Wheat, oats, barley	730,000	0-90	Yolo
Rice	526,000	0-200	Colusa, Butte
Lettuce, broccoli, celery	360,000	50-150	Monterey
Tomato	324,000	50-120	Yolo

Collaborators' projects

Almonds, walnuts	800,000	20-160
Vineyards	790,000	0-50
Cotton	560,000	30-120
Corn	520,000	0-140

Controls on N₂O Emissions

- Soil water content (WFPS = water-filled pore space)
 - Soil water content regulates diffusion of gases into the soil (O_2 , CH_4) and out of the soil (N_2O , N_2 , CO_2), as well as microbial activity
 - Irrigation
 - Winter rainfall
 - Tillage and traffic effects such compaction

• Carbon inputs:

- Residue incorporation
- Temperature
- Inorganic N concentration:
 - N fertilization: Ammonium, nitrate, organic matter mineralization
 - Residual nitrate after crop season

N₂O emissions tend to be event based

N₂O flux in response to N inputs and increased soil moisture in tomato systems in Yolo county.

N₂O emissions, Yield and Fertilizer N

 N_2O emissions increase non-linearly with N inputs exceeding those required to obtain maximum yield

Annual N₂O Emission Measurements

- Year-round N₂O flux measurements
 - Required to fine-tune crop (system) emission factors
- Frequent event-based N₂O flux measurements until fluxes recede to background level
 - after N fertilization
 - following irrigation and rainfall events
 - incorporation of residue
- Less intensive measurement when N₂O flux is low & soils relatively dry
- Integrate flux measurements to estimate yearly N₂O emissions

Emission Factors in Relation to Yield and N Fertilizer Levels

- Replicated microplots with a range of N fertilizer inputs (e.g. 0, 30, 60, 90, 120 kg N ac⁻¹)
- Measure yield and annual N₂O emissions at each N fertilization level Hypothesis: N₂O emissions increase mainly when N is applied in excess of the amount required to achieve optimal yields
- Emission factors = Annual N_2O-N emissions / Applied N
- Estimate N₂O mitigation potential under various N fertilization scenarios based on emission factors

Environmental Variables

- Measurements of ancillary variables (e.g. inorganic N, soil moisture, soil & air temperature)
 - Needed to calculate N_2O flux
 - Understand effects of typical management practices (e.g. irrigation or fertilizer type)
 - Modeling by collaborators

Benefits

- Baseline N₂O emissions for five types of cropping systems occupying 3 million acres of CA agricultural land
- N₂O emission factors at multiple N fertilizer levels to estimate potential N₂O emission offsets at reduced N fertilizer levels (Sliding emission factor)
- Results will provide basis for developing N fertilizer guidelines to growers
- Rich data set to calibrate and validate models
- Use results to evaluate effects of alternative management practices and future changes in California's cropping systems on N₂O emissions