Determining NO_x Emissions from Soil in California Cropping Systems to Improve Ozone Modeling

Principal Investigator William R. Horwath

> Co-Investigator Martin Burger

Dept. of Land, Air and Water Resources University of California Davis

Project Funded by California Air Resources Board Start date: July 2010

Objectives

- ➢ Measure NO_x flux in cropping systems of the Sacramento and San Joaquin Valley to provide CARB and the San Joaquin Air Pollution Control District with data that will be useful in improving the predictive capability of O₃ models.
- Study NO_x flux in response to nitrogen fertilization under varying soil moisture and air temperature conditions.

Supplement on-going N₂O studies
 ✓ All NOx monitoring sites co-located with N₂O
 ✓ Relationship of N₂O and NO_x: any correlation?

Background

Study requested by stakeholders

➢ Proposal reviewed by ARB and San Joaquin Valley Ag Tech Committee

➢Significance

✓ Precursor of tropospheric ozone

Harmful to human health

Cause crop damage

≻Atmospheric process:

- ✓ NO_x + volatile organic compounds (VOCs) + sunlight interact to generate O₃
- ✓ NO_x controls O₃ formation if ratio of VOC/NO_x is high, e.g. in rural/ agricultural setting
- Currently no estimates of NO_x emissions from biogenic (nonanthropogenic) sources in the California Emission Inventory Development and Reporting System (CEIDARS)

Previous studies and this research

Matson Study (1997):

- NO_x was measured in isolation (sole gas monitored)
- Measurements mainly during middle to late summer, when O₃ concentration is generally highest
- Study design due to Eric Davidson (1991, 1993)

This Study:

- This study will measure N₂O and NO_x simultaneously (monitoring sites collocated)
- Focus on responses to fertilizer and lagoon water application
- Fertilizer applications take place mostly in spring and in early summer
- Rod Venterea's research showing the effect of ammonium on NO_x emission was done after 1995.

N₂O and NO_x Production and Emission - the "Leaky Pipe Theory"

Summary of Tasks

>Open to stakeholders' inputs anytime

≻Main tasks:

- ✓ Select sites for NO_x flux measurements
- ✓ Measure NO_x flux in response to N fertilization
- Assess influence of physical and chemical soil environment on NO_x emissions:
 - Soil type
 - Crops/rotation
 - Soil moisture
 - Air temperature
 - Nitrogen species in soil (ammonium, nitrite)
 - Soil pH

✓ Report

Task 1. Site Selection

➤Cropping systems:

Crop	Site	County			
Tomato	UCD Research site	Yolo			
Wheat	Grower field	Yolo			
Alfalfa	Grower fields	Yolo			
Corn	Dairy farms	Stanislaus			
Almonds	Nickels orchard	Colusa			

> Collocated with CARB-funded N₂O monitoring sites

Task 2. Measure NO_x Flux

Measure flux during summer growing season

Focus on N fertilizer and irrigation events

 N fertilizer rates same as in CARB funded N₂O project

≻Method

- \checkmark Instantaneous analysis in the field
- ✓ Chemiluminescence NO_x analyzer (LMA-3, Scintrex/ Unisearch, Concord. ON, Canada)
- ✓ Chamber is connected to analyzer via flow-through system
- ✓ Short chamber deployment time (2 to 5 min)

Task 3. Environmental Variables

Critical variables controlling NO_x flux

 ✓ Soil ammonium (NH₄+) and nitrite (NO₂-) concentration: *Nitrification main process generating NO in soil Correlation between NO*₂- concentration and NO production

 \checkmark pH: Controls formation of HNO₂ (NO precursor)

- ✓ Soil moisture:
 - Regulates ammonification & nitrification rates
 - Increasing water-filled pore space increases N₂O production
 - Soil water content controls diffusion of gases out of the soil

Task 3 (continued)

We will compare NO_x flux between plots fertilized at varying N rates at varied moisture content before and after irrigations

➤Of particular interest:

- ✓ Ammonium-based fertilizers
- ✓ Plots fertilized with dairy lagoon water

Task 4. Report

➢Quarterly progress reports

➢Final report

- ✓ Summaries of NO_x flux data
- \checkmark Comparisons between NO_x and N₂O emissions
- ✓ Discussion of effects of N fertilizer rates, N fertilizer types, moisture, pH, temperature on NO_x under field conditions

Stakeholder review

Research Screening Committee (RSC) review

Timeline (revised, 6 month delay in start time reflected)

Task 1: Task 2:	Select sites Measure NO flux												
Task 3: Task 4:	Measure ancillary variables Prepare final report												
2010	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													
2011	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													
2012	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													

Task 1 includes chamber modifications, equipment testing and trial runs