Assessment of Baseline Nitrous Oxide Emissions in California's Dairy Systems

Principal Investigator William R. Horwath

> Co-Investigators Stuart Pettygrove Martin Burger

Dept. of Land, Air and Water Resources University of California Davis

Project Funded by California Air Resources Board Start date: July 2010

Objectives

- Determine N₂O emissions and N₂O emission factors in forage crop systems receiving dairy lagoon water, corral manure and inorganic nitrogen as fertilizer
- Contribute N₂O emission data from dairy systems to calibrate and validate biogeochemical models

Background

Dairy forage systems have high N throughputs:
 Inputs: 600 - 700 kg N ha⁻¹ year⁻¹(General Order rules)
 Dry manure (corral scrapings), lagoon water, and synthetic N
 Outputs: 350 - 600 kg N ha⁻¹ year⁻¹; 2 - 3 crops per year

> Potential for substantial N₂O emissions

- ✓ High N inputs and large residual nitrate pools
- ✓Anaerobically stored manure contains volatile fatty acids,
- \checkmark which may stimulate denitrification

Summary of Tasks

- Select sites
- Account for annual nitrogen inputs
- > Measure N_2O emissions
- Calculate annual N₂O emissions and emission factors
- Measure chemical and physical factors influencing N₂O flux
- Report

Task 1. Select Site

Cropping systems:

- Three dairy farms in Stanislaus and Sacramento County
 Vary in soil type
 - ✓Type of N inputs typically used:
 - Dairy waste lagoon water (irrigation water)
 - Solid dairy waste (spring & fall applications)
 - Synthetic N (supplemental)

✓No-till, conventional tillage

✓ Silage corn, Sudan grass, wheat, oats, Triticale

Task 2. Account for Nitrogen (N) Inputs

Measure N in dairy waste lagoon water mixed with the applied irrigation water

➤Measure N applied as corral manure

Account for additional N applications in the form of synthetic fertilizers

Task 3. Measure N₂O Flux in Fields Receiving Dairy Waste

>Event-based sampling (at least 5 events):

✓ After manure application and irrigation

 \checkmark First rainfall in the fall

✓ During the rainy season

Control treatments will not receive N input (irrigation water only vs. irrigation water mixed with dairy waste lagoon water).

Static chamber technique will be used to collect air samples and measure $\rm N_2O$ flux from dairy forage fields

Task 4. Annual N₂O Emissions

- Annual N₂O emissions will be estimated based on the event-based measured emissions (e.g. total N₂O emissions during an irrigation event until N₂O fluxes subside to background levels).
- > N_2 O emission factors (N_2 O-N emitted/N applied) will be calculated for total N_2 O emission and for the difference in N_2 O-N emitted between fertilized and control treatments.

Task 5. Soil Physical and Chemical Factors Affecting N₂O Flux

Environmental variables:
 Soil moisture (water-filled pore space)
 Inorganic N concentrations
 Soil and air temperature
 PH

- The above ancillary variables, as well as the NO_x flux results, will be used to characterize the environmental conditions influencing N₂O emissions
- The ancillary data will be used to calibrate and validate models of N₂O emission.

Task 6. Report

>Quarterly progress reports

➢Final report

Stakeholder review

Research Screening Committee (RSC) review

Timeline (revised, 6 month delay reflected)

- Task 1: Select sites
- Task 2:Measure manure & lagoon water N inputs
- Task 3:Measure N_2O emissions
- Task 4:Calculate annual emissions
- Task 5:Measure ancillary variables
- Task 6:Prepare final report

2010	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													
5													
6													

2011	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													
5													
6													

2012	MONTH	1	2	3	4	5	6	7	8	9	10	11	12
TASK													
1													
2													
3													
4													
5													
6													