Evaluating Mitigation Options of Nitrous Oxide Emissions in California Cropping Systems

Martin Burger, William Horwath, Johan Six University of California Davis

Objectives

- Systematic investigations of management practices that potentially mitigate N₂O emissions
- Management practices must maintain or enhance yield potential
- Evaluate practices in terms of nitrogen (N) use efficiency
- Consider total greenhouse gas emissions associated with each management practice

- Subsurface drip irrigation (SDI)
- Nitrification inhibitors
- Decrease N fertilizer concentration

- Subsurface drip irrigation (SDI)
 - Incremental application of N fertilizers according to plant demand
 - Smaller volume of soil with high moisture compared to furrow irrigation

Nitrification inhibitors

- Lowered N₂O emissions by 35% (-45% to -31%) according to a meta-analysis of 35 studies (Akiyama *et al.,* 2010)
- Slow down conversion of ammonium to nitrate:

• N fertilizer concentration:

- Fertilizer N application rate
- Lower N concentrations of fertilizer material has lower N₂O emission potential:

Organic N fertilizers	2-6% N
Calcium nitrate	9% N
Aqua ammonia	20% N
Urea ammonium nitrate	32% N
Urea	46% N
Anhydrous ammonia	82% N

- Placement of N fertilizer affects the concentration

Cropping Systems

	Acres	Irrigation
 Tomato 	290,000	>50% SDI
• Corn	550,000	furrow, flood, drip
 Lettuce 	300,000	sprinkler, drip (35%), sprinkler/drip combination

Experimental Approach

Tomato on-farm trials

- Use of urease and nitrification inhibitors (AgrotainPlus[™]) with UAN fertilizer applied incrementally via SDI.
 Control: UAN without inhibitors.
- 2. Organic management: N supplied by soil and organic amendments to the soil, legume cover crops. Furrow irrigation.
- 3. Effects of other types of nitrification inhibitors (charge, mobility) and fertilizers (UAN32, CAN-17) on N_2O emissions will be tested next season (2013).

Experimental Approach

<u>Corn</u>

- Three types of fertilizers:
 - UAN with/without nitrification inhibitors
 - Aqua ammonia with/without nitrification inhibitors
 - Calcium nitrate
- Furrow irrigation, 5 ft-beds, UCD research site
- Reduced tillage or no-till
 - Placement of fertilizer, i.e. spacing of N fertilizer bands
 - Flood irrigation, on-farm

Experimental Approach

Lettuce

- Pre-plant & side-dress application of N fertilizer, sprinkler irrigation
 - VS.

• Fertigation, SDI

Measurements

- N₂O flux
 - static chamber technique
 - sample collection by hand & automated system
 - gas chromatography
 - intensive sampling after N applications and irrigation/rainfall events
- Soil moisture
- Soil, ambient air, and chamber temperatures
- Soil inorganic N pools (NH₄⁺, NO₂⁻, NO₃⁻)
- Yields & total biomass
 - N uptake

Evaluation of Management Options

- N₂O emissions
 - Time-integrated N₂O emission estimates
 - Mitigation potential of management practices
 - Yield-scaled N₂O emissions of management practices
- Total greenhouse gas emissions
 - including major emission sources (energy use for irrigation, farm equipment) associated with each management practice
- N use efficiency:
 - Fertilizer N applied / N removal by crops

Timeline

On-farm tomato experiments, started ✓ 2012 – spring 2014

Corn UCD research site, starting

2012 - spring 2014

Corn, reduced tillage, on-farm

Lettuce, USDA research site, grower fields in Salinas

2012 – spring 2014

