Measuring particulate matter emissions during parked active diesel particulate filter regeneration of heavy-duty trucks

David C. Quiros¹, Seungju Yoon¹, Mark A. Burnitski¹, Harry A. Dwyer²

¹ California Air Resources Board ² University of California, Davis

Mobile Sources 5E | Control #42

Air Quality Measurement Methods and Technology A&WMA, Sacramento, CA - November 20, 2013

In support of ARB Research Division Contract #11-329

Background CUMMINS DOC+DPF

2007 model year (MY) particulate matter (PM) standard, <u>0.01 g/bhp-hr</u>, is achieved by diesel particulate filter (DPF)

REGENERATION

THIS STUDY 2007 MY

BASELINE

DOC+DPF (no regeneration)

DYNAMOMETER TESTING ON OTHER VEHICLES

Objective

- Evaluate PM mass measurement when challenged with active parked regeneration emissions:
 - TSI Scanning Mobility Particle Sizer (SMPS) 3936L88
 - TSI Engine Exhaust Particle Sizer (EEPS) 3090

SMPS 5.4-198 nm

PM Mass for EEPS and SMPS

Liu, et al. (2009) and Maricq and Xu (2004)

Liu, et al. (2009). Comparison of Strategies for the Measurement of Mass Emissions from Diesel Engines Emitting Ultra-Low Levels of Particulate Matter. Aerosol Science and Technology, 43, 1142-1152.

Maricq and Xu. (2004). The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. Journal of Aerosol Science, 35, 1251-1274.

Objective

- Evaluate PM mass measurement when challenged with active parked regeneration emissions:
 - TSI Scanning Mobility Particle Sizer (SMPS) 3936L88
 - TSI Engine Exhaust Particle Sizer (EEPS) 3090
 - TSI DustTrak DRX 8533
 - Dekati Mass Monitor (DMM) 230-A
 - Gravimetric analysis of 47-mm filters

SMPS 5.4-198 nm

Filter

DMM 0.01-1.3 μm

Study Design ┥ 6 CFM 9.1 m < \geq ∩9,000 CFM 1.2 x 1.2 m exhaust mixed by deflection plate chamber é < ambient dilution air 2007/2010 HDDT ט'ט -... OBD SEMTECH-DS (Cummins Insite) PEMS

Two Regimes

NUCLEI, CMD < 30 nm

PM Mass Emissions

PM Mass Emissions

Mass-based size distributions differ

Derivation of (C₂) correction for EEPS

More EEPS-to-SMPS Ratios

- 1-to-1 Reference Line
- Ratio of Fit Curves, SMPS:EEPS .

Average Regeneration Emissions

Conclusions

- PM emissions from 2007 MY truck are substantial and should be considered when quantifying real-world emissions
- Regeneration "nuclei" emissions (CMD < 30 nm) dominated for 2010 MY, although less apparent need for active regeneration
- Real-time instrumentation findings:
 - DustTrak DRX reported substantial PM >1 µm during regeneration. However, during certification following 40 CFR Part 1065, this PM would be removed by a pre-classifier. Quantitatively, instrument calibration was ~3.9 times greater than the gravimetric equivalent, and was insensitive to all ultrafine PM.
 - SMPS conferred adequate time resolution for regeneration.
 - **EEPS** accuracy was questionable due to charge inversion, but rapid measurement may be needed for transient emissions.
 - **DMM** reported mass consistent with gravimetric reference, but "black box" operation gave no indication of basis for accurate or precise PM mass measurement.
- PM density, size, and physical appearance (i.e. color on filter) is different between regeneration and engine-out conditions

Acknowledgements

Don Chernich Robert Ianni Roelof Riemersma Tullie Flower Wayne Sobieralski John Collins Tao Huai Michael Werst

Contact

David C. Quiros

Monitoring & Laboratory Division | CA Air Resources Board e. <u>dquiros@arb.ca.gov</u> | p. 916-445-9370