

Clean Miles Standard Workshop 2018 Base Year Emissions Inventory

September 25, 2019

Purpose

- Establish 2018 base year emissions inventory
- Discuss data sources, methodology and assumptions
- Present preliminary results
- Solicit feedback on the assumptions

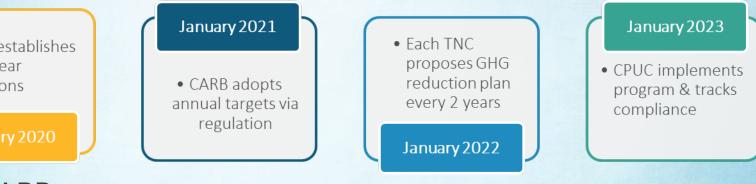
Important Note

- The data analysis and results presented in this workshop are <u>preliminary</u>
- The analysis is conducted using <u>March 2019</u> data submittals
 - Staff has worked closely with TNCs since March to QA/QC the data – updates were incorporated
 - Preliminary results presented in this workshop may not reflect all of the latest updates

Outline

- Introduction to SB 1014
- Base year inventory methodology
- Data description
- Assumptions (overlap removal/occupancy/fuel efficiency)
- Preliminary Results
- Next Steps

Clean Miles Standard



SB 1014 requires CARB and CPUC to adopt and implement a program to reduce GHG emissions from transportation network companies (TNCs)

The new regulation will encourage zero-emission vehicles and VMT reduction strategies and account for automated vehicles in TNC fleets

 CARB establishes base year emissions

January 2020

Transportation Network Companies

- California Public Utilities Commission (CPUC) Definition: "A Transportation Network Company (TNC) is a company or organization operating in California that provides transportation services using an online-enabled platform to connect passengers with drivers using their personal vehicles."
- In California, the CPUC oversees regulation and permitting of TNCs such as charter-party carriers. There may up to 14 different companies providing services

Principles of the New Regulation

- TNCs can facilitate state/local governments in meeting emissions reduction goals
- Decrease GHG emissions using a compliance metric of annual grams-CO₂per-passenger-mile traveled
- Transportation decarbonization by increasing zero-emission vehicles
- Increase passenger-mile-traveled by increased pooling, active transport (walk/bike), and transit usage
- Forward-looking with automated vehicles or new modes that may arise in future
- Aligned with other State policies
- Maximize transportation access equity

Base Year Emissions Inventory

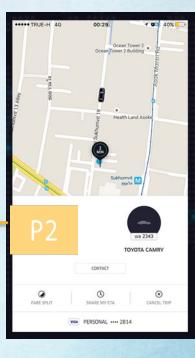
- SB1014 requires CARB to establish a GHG base year (2018) emissions for TNCs on a per passenger mile
- <u>Base year GHG emissions provides a reference point to</u> <u>establish future emission targets and evaluate effectiveness of</u> <u>future compliance scenarios</u>

Grams of CO2 per passenger-mile depend on

Vehicle Technology	Vehicle Operation
Fuel efficiency by vehicle specifications	 Vehicle Speed Vehicle Occupancy Trip Miles:
CARB	 ✓ Vehicle trip miles/Ride VMT ← Affect PMT ✓ Transit miles ← 8

Periods Defined for TNC Miles

Period 0 (not captured in rule) Work session not started


Period 1 Driver looking for riders

Period 2 Driver en route to riders

Period 3 Rider(s) in vehicle

Methodology

- <u>Occupancy</u> affects only the denominator
- Increasing occupancy reduces
 - TNC gCO2/PMT

- Deadheading affects only the numerator
- Decreasing deadhead VMT reduces
 - TNC gCO2/PMT

•

•

- CA Fleet GHGs
- CA Fleet VMT

- <u>Fuel economy</u> Affects the numerator only
- Increasing fuel economy reduces
 - TNC gCO2/PMT
 - CA Fleet GHGs
 - No affect on VMT ¹⁰

Data Description

- CARB received approximately 1.4 billion trip records for 600k vehicles operating for TNCs
- Data from 14 TNC companies received in March, 2019
- Data issues: Faulty VINs; Self-overlapping trips

Data Fields			
1. Unique trip ID	5.	Trip periods (P1,P2,P3)	9. Latitude and longitude
2. Unique driver ID	6.	Vehicle miles traveled(VMT) by period	10. Average speeds
3. Vehicle ID number	7.	Date/time for trips start and end	11. Pooled or shared rides
4. Make and model name	8.	Zip codes	12. Surge period

CARB

(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

Some preliminary statistics...

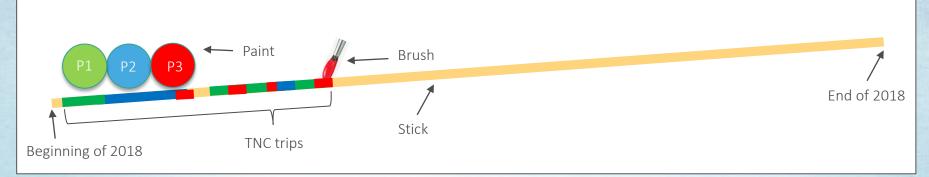
	TNC wide/Proportion (%)	California Passenger Vehicles (EMFAC2017)
Total number of vehicles	600 thousand <mark>(2.3%)</mark>	25.2 million
Total VMT	4.2 billion miles <mark>(1.2%)</mark>	342.3 billion miles
Number of trips (Only P3 Trips)	0.37 billion <mark>(0.9%)</mark>	41.4 billion
Average trip length*	11.4 miles per trip	8.3 miles per trip
Cars vs. Trucks	79% Cars & 21% Trucks	63% Cars & 37% Trucks
VMT Weighted Average Model Year	2010.5	2009
* Total VMT/ Number of P3 Trips		

Methodology

Let's start with VMT and Ride VMT

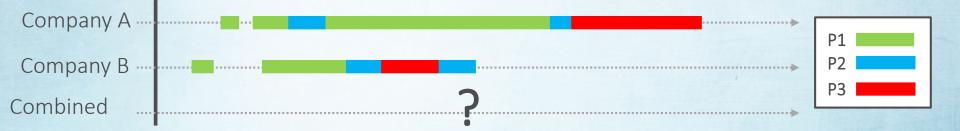
Grams CO ₂	VMT (miles) x Real World Fuel Consumption x Conversion Factor
PMT	Ride VMT (miles) x Occupancy + Active/Transit PMT

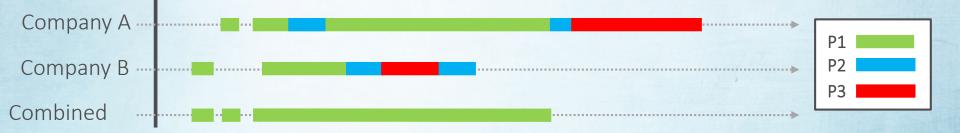
- Calculating actual VMT
- Revising data to identify unique, real VMT for each vehicle


Multi-Apping

- A common practice of drivers being available for service on multiple platforms at the same time.
- To avoid double counting, instances of multi-apping should be identified and removed accordingly (i.e., "combined")

(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

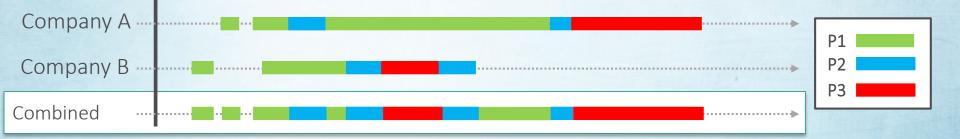

Combined – Trip Overlap Removal


"Stick Painting algorithm"

- Assume that time is a long stick that can be painted on
- Assign a color to each time period, i.e. P1, P2, P3
- Start with a VIN; for each trip record using the assigned trip period colors paint a segment on the stick that corresponds to the beginning and end times of that trip record
 - Start with painting P1 trip periods on the stick first, then move on to P2 trip periods, and at last to P3
- Reconstruct the trip records by identifying the color of each painted segments on the stick and converting the beginning and end locations to beginning and end of the trip periods

Step 1: Paint P1 trips on the "Combined" stick

Step 2: Paint P2 trips on the "Combined" stick


(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

Trip Overlap Removal: Example (One VIN with Multiple TNC Apps)

Step 3: Paint P3 trips on the "Combined" stick

Step 4: Reconstruct the records

Methodology

Occupancy is a key factor determining PMT

Grams CO ₂	VMT (miles) x Real World Fuel Consumption x Conversion Factor		
PMT –	Ride VMT (miles) x Occupancy + Active/Transit PMT		

Occupancy data is not provided by TNCs

(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

- CA fleet average occupancy (PMT/VMT) is 1.68, estimated using data from the 2010 – 2012 California Household Travel Survey
- Scientific studies have found the following on average occupancy for TNCs:
 - a) Circella et.al 2019 CA average occupancies: 1.90 (N = 1,287)

Weekday = 1.69, Weeknight = 1.93, Weekend Day = 1.95, Weekend Night = 2.16

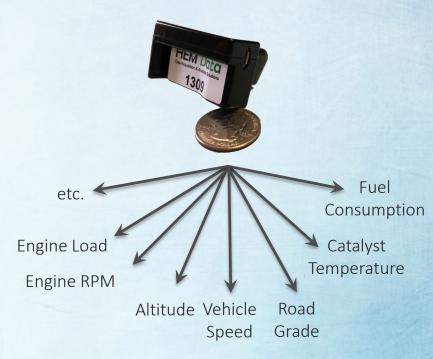
b) Henao et.al 2018 Colorado average occupancy = 1.34 (N = 416)

CARB has also conducted an in-house study to collect occupancy information



CARB Occupancy Project

- Goal: Determine occupancy rates for pooled and non-pooled rides, and collect activity information to develop drive cycles
- 2 week study period
- TNC drivers maintain a daily trip diary—
- Data loggers record on-board vehicle data



Trip Diary and Data Logger Parameters (Examples)

	Daily T	rip Diary	
Date:			
Vehicle:			Driver:
Odometer:			
	Event Code	TNC Type	Number of
	S: Start the App		Passengers
	O: App turned Off	AP: Pooled	(not including
	W: Waiting	AN: Non Pooled	driver)
	R: Receive Call	BP: Pooled	
	P: Pick Up	BN: Non Pooled	
	D: Drop Off	CP: Pooled	
		CN: Non Pooled	
	Circle one for each line:	Circle one:	Circle one:
Time (AM / PM)	Event	TNC Type	No of Passengers
	SOWRPDF	AP AN BP BN CP CN	1 2 3 4 5 6
	SOWRPDF	AP AN BP BN CP CN	1 2 3 4 5 6
	SOWRPDF	AP AN BP BN CP CN	1 2 3 4 5 6
	SOWRPDF	AP AN BP BN CP CN	1 2 3 4 5 6
	SOWRPDF	AP AN BP BN CP CN	1 2 3 4 5 6

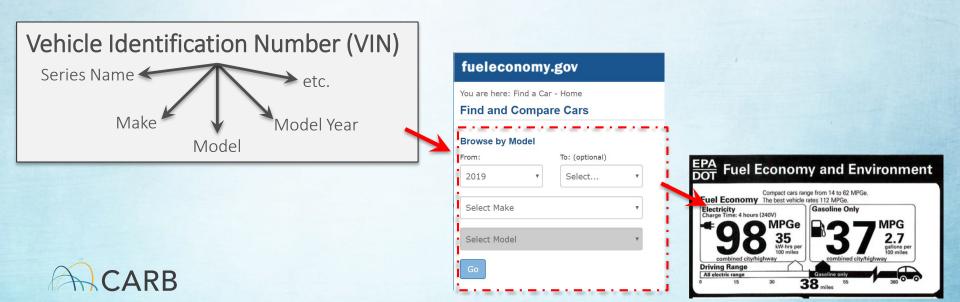
Preliminary Occupancy Analysis

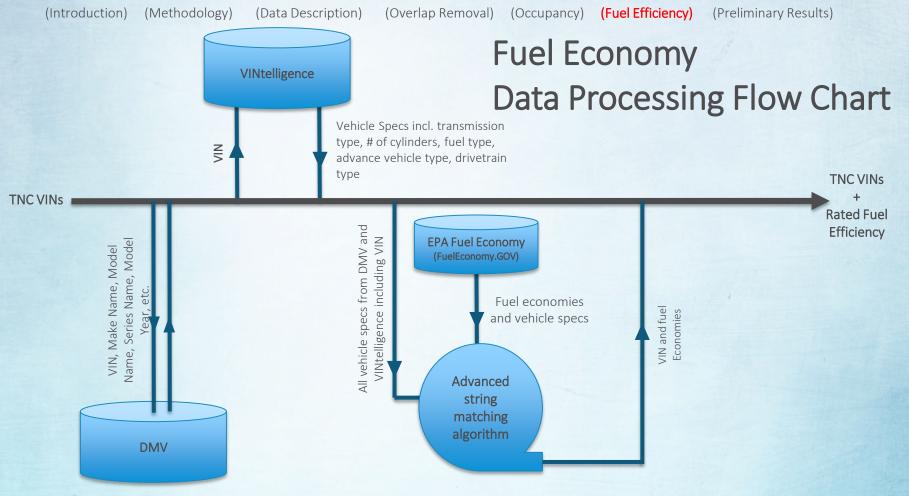
- 22 trip diaries have been returned (almost 2,000 fares)
- Staff expecting to receive a total of ~40 trip diaries by the end of October
- Occupancy data from this study is used for this analysis

Pooled Ride 1.48 (264 fares) Non-Pooled Ride 1.50 (1,754 fares)

Methodology

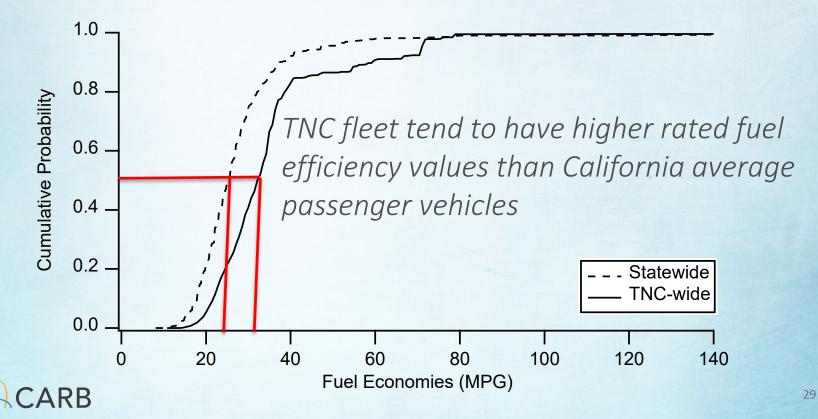
Now let's move on to fuel efficiency




Real-world TNC fuel efficiency is not the same as CA fleet average •

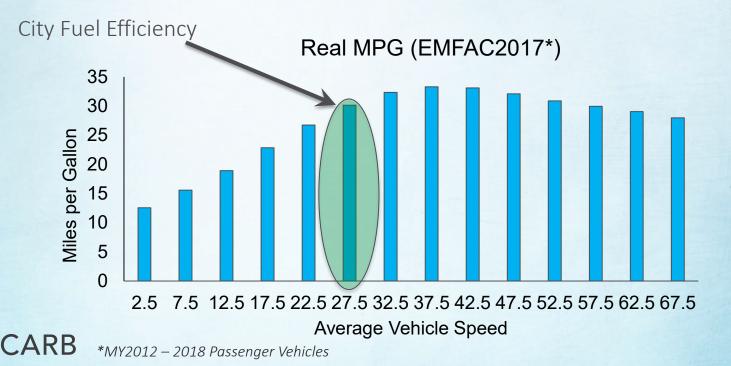
Rated Fuel Efficiency

• First staff assigned each vehicle with a Fuel efficiency rating derived from Federal Fuel Economy Data

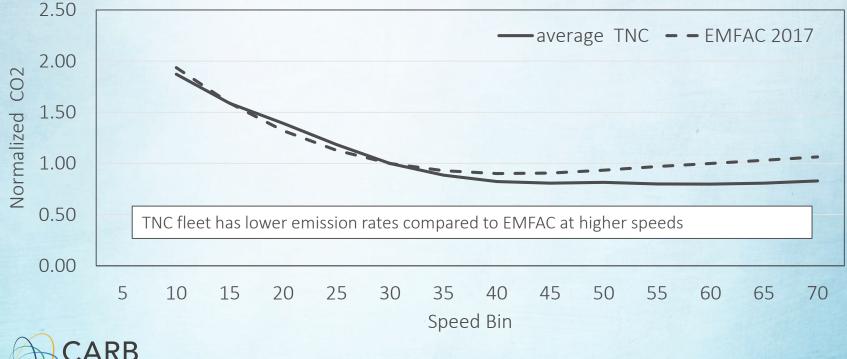


CARB

Note: CO2 emissions are calculated assuming complete conversion of fuel carbon to CO2 and using conversion factors: 8,887 and 10,180 grams of CO2 per gallon of fuel, for gasoline and diesel, respectively ²⁸


(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

Rated Fuel Economies TNC-wide vs. California LDV (MY2008+)


In-Use Fuel Efficiency Varies by Driving Condition

• Fuel efficiencies are corrected for various driving conditions

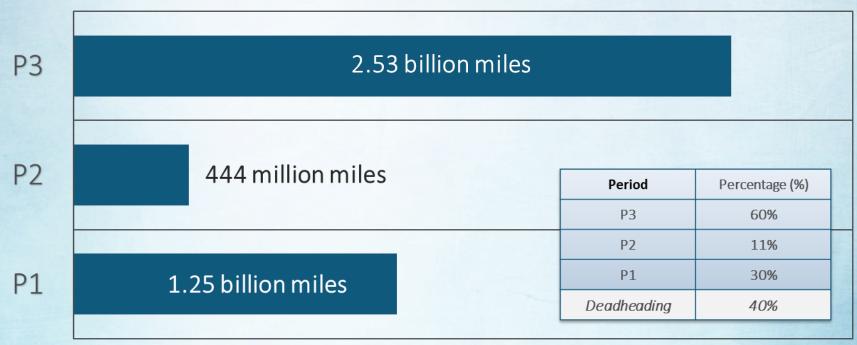
EMFAC2017 vs. TNC 40-Vehicle Study

CO2 Normalized at 30 mph: TNC vs. EMFAC

How Electric Vehicles are identified?

- Decoded VIN numbers to identify Battery, Plug-in hybrid, and Fuel Cell Electric vehicles
- Assumed 15% eVMT for PHEVs (preliminary assumptions)
- 0.7% eVMT (30.2 million miles) as compared to total TNC VMT (i.e., 4.2 billion miles)

	Plug-in Hybrid Electric Vehicles	Battery Electric Vehicles	Fuel Cell Electric Vehicles
Population (Proportion of TNC fleet)	5,400 (1%)	2,800 (0.5%)	50 (0.01%)
VMT (million miles)	43.6	23.6	0.17
eVMT (million miles)	6.5	23.6	0.17



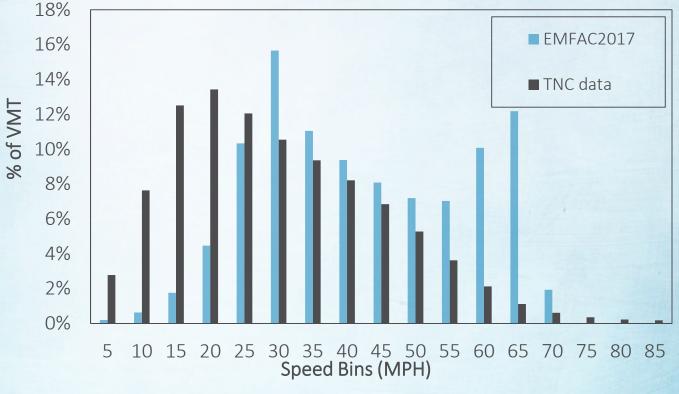
(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

Preliminary Results

VMT By Time Period

Change in VMT Before And After Trip Overlap Removal

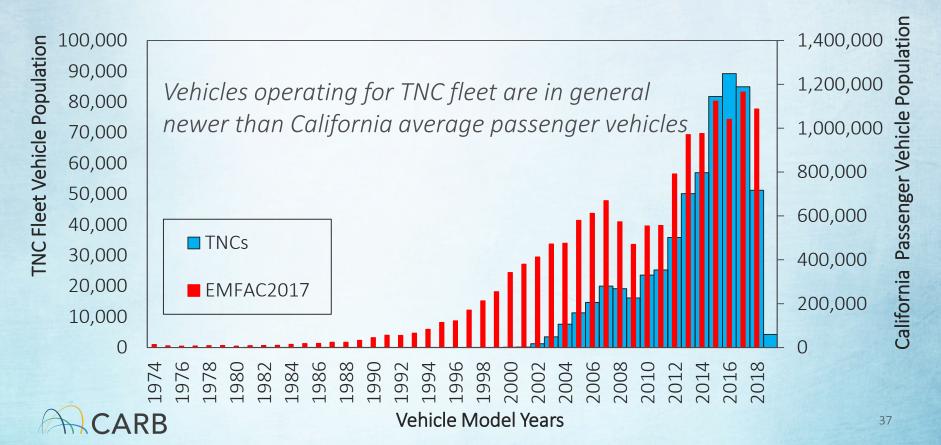
Trip Periods	VMT <i>Before Removal</i> (miles)	VMT <i>After Removal</i> (miles)	Percent Change
All Periods	4.49 billion	4.22 billion	6%



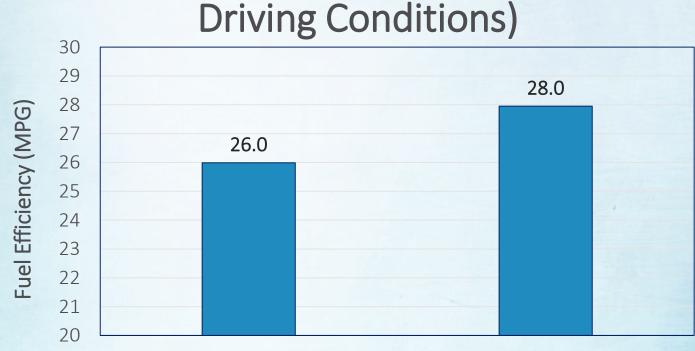
(Introduction) (Methodology) (Data Description)

(Overlap Removal) (Occupancy) (Fuel Efficiency)

(Preliminary Results)


VMT Distribution By Speed Bin

Average Speeds are lower for TNCs •



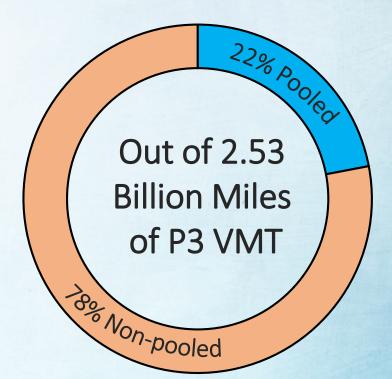
Model Year Distribution

(Introduction) (Methodology) (Data Description) (Overlap Removal) (Occupancy) (Fuel Efficiency) (Preliminary Results)

Fleet Average In-Use Fuel Efficiency (Corrected for

CA

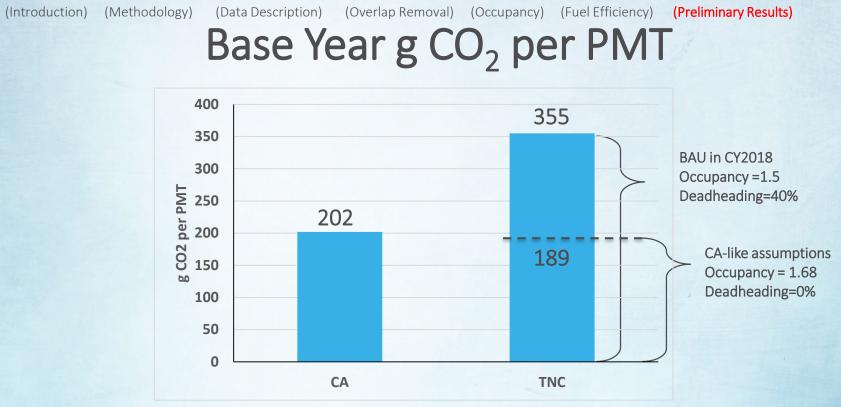
TNC


• The efficiency gain of newer model years vehicle might get slightly offset by slower trip average speeds

(Overlap Removal) (Occupancy) (Fuel Efficiency)

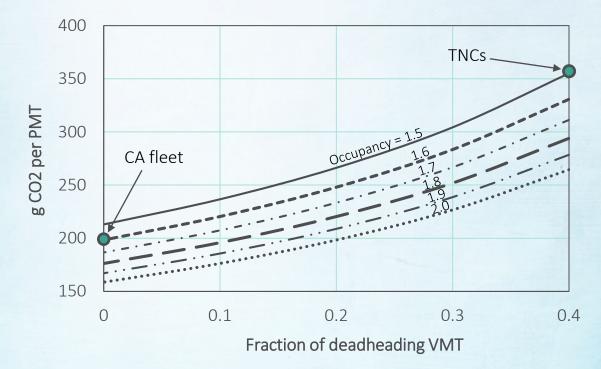
(Preliminary Results)

Pooling



٠ RB

Pool ride do not necessarily reflect the rides that were matched to


another passenger. It may include rides that were not matched too.

- Although TNC fleet has better in-use fuel efficiency, lower occupancy and higher deadhead VMT drive higher emissions (+ 75% emissions per PMT)
- For California fleet average; PMT/VMT of 1.68 was used

CARB

Base Year g CO₂ per PMT Sensitivity Analysis

Next Steps

- Finalized data analysis using latest data submittal by TNCs
- Late 2019 Release draft emissions inventory documentation
- Early 2020 Potential informational board item on initial inventory and program overview
- Q4 2019 Workshop on regulatory concepts

Take Home Questions

- How can we further improve our estimates of occupancy? Are there other data sources than those presented here?
- Are there available data on %eVMT for PHEVs operating in ridesharing business?
- What assumptions should we make for active transportation in the base year emissions inventory?
- What are better ways to reflect the impact of congestion/driving conditions on real world fuel efficiency?
 CARB

Comments and Questions

- Please submit your comments related to 2018 base year emissions by October 25, 2019
- Questions and comments can be emailed to <u>cleancars@arb.ca.gov</u>
- For more information on the Clean Mile Standards, please visit our website at: <u>https://ww2.arb.ca.gov/our-</u> <u>work/programs/clean-miles-standard</u>

